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Abstract. This paper addresses the regularization of pointwise state constraints in optimal
control problems. By analyzing the associated dual problem, it is shown that the regularized problems
admit Lagrange multipliers in L2-spaces. Under a certain boundedness assumption, the solution of
the regularized problem converges to the one of the original state constrained problem. The results
of our analysis are confirmed by numerical tests.
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1. Introduction. In this paper, we suggest a regularization method to solve
certain classes of optimal control problems with pointwise state constraints of the
form y(x) ≥ yc(x) in a certain subset D ⊂ R

N , where y is the solution of a partial
differential equation associated with a control function u ∈ L2(D). If y and yc can
be assumed to be continuous, then the Lagrange multipliers associated with the state
constraints are measures, see, for instance, Casas [6] or Raymond [9] for the case
of elliptic and parabolic control problems. Therefore, the numerical treatment of
such problems is difficult. Moreover active-set strategies such as the ones proposed by
Bergounioux, Ito and Kunisch [2], Bergounioux and Kunisch [3] or Kunisch and Rösch
[8] cannot directly be applied to constraints of the form y(x) ≥ yc(x). The situation
changes, if mixed pointwise control-state constraints are given, say u(x) ≤ yc(x)+y(x)
or −u(x) ≤ yc(x) + y(x). Although these constraints must be considered in L2(D),
if u ∈ L2(D), special techniques apply to prove the existence of regular Lagrange
multipliers in L2(D). We refer to Bergounioux and Tröltzsch [4], [5] or Arada and
Raymond [1] or Casas, Raymond and Zidani [7] for parabolic control problems. This
experience led us to regularize the pointwise state constraints by

y(x) ≥ yc(x) − ε u(x),

where ε > 0 is a small parameter. This paper is to show that this idea exhibits
a satisfactory numerical performance. We show the strong convergence of optimal
contols for ε ↓ 0 and verify the analysis by associated numerical tests. Before defining a
quite general class of optimization problems in Hilbert spaces that covers in particular
elliptic and parabolic problems, let us explain our approach by an exemplary situation.

2. An introductory example for constraint regularization. We consider
the following elliptic control problem with pointwise state constraints and distributed
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minimize
1

2
‖y − yd‖

2
L2(Ω) +

κ

2
‖u‖2

L2(Ω)

subject to −∆ y(x) + c(x) y(x) = u(x) in Ω

∂νy = 0 on Γ

y(x) ≥ yc(x) a.e. in Ω

u(x) ≥ 0 a.e. in Ω

where Ω ⊂ IRN , N ≥ 2, is a bounded domain with C0,1-boundary Γ, κ is a fixed
positive real number and yd and yc are given functions from L2(Ω). Furthermore,
c(x) ≥ 0 is a fixed function from L∞(Ω) with c(x) > 0 on a measurable subset of Ω.
By ∂ν the normal derivative with respect to the outward normal vector is denoted.

It is well known that the Lagrange multipliers associated with pointwise state con-
straints can be Borel measures on Ω. They need not be measurable functions on Ω, see
for instance [6]. However, the situation is different, if mixed control-state constraints
of the form y ≥ yc − ε u are given. Therefore, we introduce an optimization problem
with regularized state constraints, where, under natural assumptions, the Lagrange
multipliers can assumed to be functions from L2(Ω). This modified optimization
problem is

(P1ε)



































minimize
1

2
‖y − yd‖

2
L2(Ω) +

κ

2
‖u‖2

L2(Ω)

subject to −∆ y(x) + c(x) y(x) = u(x) in Ω

∂νy = 0 on Γ

y(x) ≥ yc(x) − ε u(x) a.e. in Ω

u(x) ≥ 0 a.e. in Ω

with a regularization parameter ε > 0 and yc, yd, c and κ as defined above.

This regularization can also be justified in another way: Let us suppose for a while that
the state constraint at the optimal state is active everywhere, i.e. y(x) ≡ yc(x). The
solution operator of the elliptic equation S : u 7→ y is compact, hence the associated
equation for u, S u = yc, is ill-posed. This gives another hint that the regularization
to ε u+S u = yc should be useful. In this sense, our approach represents a Lavrentiev
type regularization.

Within this paper we will show that problem (P1ε) has a regular Lagrange multiplier
and a unique optimal solution from L2(Ω) that strongly converges to the optimal
solution ū of the initial problem (P1) when ε converges to zero.

We present our theory for a more general class of optimization problems that also
covers (P1) and (P1ε), respectively.

3. A general class of optimization problems with state constraints. We
embed our introductory example into the more general optimization problem

(P)























minimize
1

2
‖S u‖2

H +

∫

D

(a(x) u(x) +
κ

2
u(x)2) dx

subject to (G u)(x) ≥ yc(x) a.e. in D

u(x) ≥ 0 a.e. in D.
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In this problem, D ⊂ IRN is a Lebesgue-measurable bounded set while G and S are
linear compact operators from L2(D) to real Hilbert spaces H and L2(D), respectively.
The functions yc and a are fixed in L2(D) and κ > 0 is a fixed constant. Let us denote
the natural inner product of L2(D) by (· , ·) and the associated norm by ‖ · ‖. In all
what follows, we denote the primal objective function by f , i.e.

f(u) =
1

2
‖S u‖2

H +
κ

2
‖u‖2 + (a , u).

In the corresponding regularized problem, we again introduce a regularization term
in the state constraint,

(Pε)











minimize f(u)

subject to (G u)(x) ≥ yc(x) − ε u(x) a.e. in D

u(x) ≥ 0 a.e. in D

with some real number ε > 0.

The problems (P1) and (P1ε) are related to the general case as follows: In (P1) and
(P1ε), D equals Ω and H = L2(Ω). It is known that the elliptic Neumann problem
given in (P1) and (P1ε) admits for each u ∈ L2(Ω) a unique weak solution y ∈
H1(Ω). Thanks to the compact embedding of H1(Ω) in L2(Ω), the solution operator
S : u 7→ y can be regarded as a linear compact operator from L2(Ω) to L2(Ω). Thus,
the operator S in the general problem is the solution operator S : L2(Ω) → L2(Ω).
Expanding the first norm square in the objective functional in (P1) and (P1ε), we get
1
2 ‖y − yd‖

2
L2(Ω) = 1

2 ‖y‖
2
L2(Ω) − (S?yd , u) + const., hence a = −S?yd. As y appears

in the first constraint, the operator G is defined by G = S.

A parabolic example. A second example is represented by the following parabolic
boundary control problem:

(P2)















































minimize
1

2
‖α y(T ) − yΩ‖

2
L2(Ω) +

κ

2
‖u‖2

L2(Σ)

subject to yt(x, t) − ∆ y(x, t) = 0 in Q

∂ν y(x, t) + β(x, t) y(x, t) = u(x, t) on Σ

y(x, 0) = 0 in Ω

y(x, t) ≥ yc(x, t) a.e. on Σ

u(x, t) ≥ 0 a.e. in Σ.

Here, the standard notations Q = Ω × (0, T ), Σ = Γ × (0, T ) are used. Moreover,
functions α ∈ L∞(Ω), β ∈ L∞(Σ) are given.

Now the choice D = Σ fits into our setting. It is known that a parabolic differential
equation as in (P2) admits for each u ∈ L2(Σ) a unique weak solution y ∈ W (0, T )
with W (0, T ) = {y ∈ L2(0, T ; H1(Ω)) | yt ∈ L2(0, T ; H1(Ω)′)}. Therefore, the map-
ping S : u 7→ α y(T ) is well defined, linear and compact from L2(Σ) to H = L2(Ω).
The operator G is defined by G : u 7→ τy, where τ : W (0, T ) → L2(Σ) denotes the
trace operator. Moreover, G is linear and compact in L2(Σ) and thus S and G fulfill
the assumptions in the definition of our general problem.

The corresponding regularized problem again looks almost the same except the first
inequality constraint, which now is given by

y(x, t) ≥ yc(x, t) − ε u(x) a.e. on Σ.
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Thus, also this parabolic problem fits into the settings of our general optimization
problem and can be solved by using regularized state constraints.

4. Existence of regular Lagrange multipliers. The regularity of the La-
grange multipliers associated with (Pε) has already been discussed in [10] for slightly
different types of mixed control-state constraints. There, constraints of the form
y ≥ yc + u were analysed. However, the results can be applied here, too, by substi-
tuting u := ε u. For convenience of the reader, we shortly recall the main ideas.

We introduce the Lagrange functional L = L(u, µ, λ) : L2(D)3 → IR, by

L(u, µ, λ) = f(u) + (−ε u− G u + yc , µ) − (u , λ)

with Lagrange multipliers µ, λ ∈ L2(D). In all what follows, we will combine them
to the vector of Lagrange multipliers ω := (µ, λ).

Definition. Let uε be a solution of the problem (Pε). Functions µε, λε ∈ L2(D) are

said to be regular Lagrange multipliers associated with uε, if the following relations

are satisfied:

∂L

∂u
(uε, µε, λε) = 0

and

(−ε uε − G uε + yc , µε) = 0 , µε ≥ 0

(uε , λε) = 0 , λε ≥ 0.

It is easy to verify that (Pε), also called primal problem, can be equivalently expressed
by

(PPε) inf
u∈L2(D)

{ sup
ω∈L2(D)2, ω≥0

L(u, ω)},

where ω ≥ 0 means µ(x) ≥ 0 and λ(x) ≥ 0 almost everywhere on D.

Thanks to the strict convexity of f , the primal problem admits a unique optimal
solution uε for every ε > 0.

The Lagrange dual problem is defined by reversing the order of inf and sup,

(DPε) sup
ω∈L2(D)2, ω≥0

{ inf
u∈L2(D)

L(u, ω)}.

If one can show that the optimal values of the primal and dual problem coincide
and regular functions µε and λε exist, solving the dual problem (DPε), then these
functions represent Lagrange multipliers in the sense of the definition above (cf. [10],
section 2). With the help of a separation theorem, it is shown in [10] that the optimal
values of the primal and dual problem indeed agree, i.e., that there is no duality gap.
Thus

f(uε) = sup(DPε).

It remains to prove the existence of the Lagrange multipliers in L2(D). For this
purpose we define the dual objective function by

g(µ, λ) = (yc , µ) −
1

2
‖a − ε µ − G?µ − λ‖2

Λ,
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where the norm ‖ · ‖Λ is given by Λ = κ I + S?S and

‖d‖2
Λ = (d , Λ−1d) .

In [10] it is shown that the dual problem (DPε) can be expressed with the help of the
dual objective function by

sup
ω∈L2(D)2, ω≥0

g(ω) = sup
ω∈L2(D)2, ω≥0

{ inf
u∈L2(D)

L(u, ω)}. (4.1)

To be consistent with [10], we denote the negative objective functional −g of (DPε)
by ϕ

ϕ(ω) = −(yc , µ) +
1

2
‖a − ε µ − G?µ − λ‖2

Λ. (4.2)

It is obvious that the dual problem is equivalent to minimizing ϕ on the set of non-
negative functions of L2(D)2,

inf
ω≥0

{−(yc , µ) +
1

2
‖a − ε µ − G?µ − λ‖2

Λ }.

Hence, if there is an optimal ωε := (µε, λε) ∈ L2(D)2 with ωε ≥ 0 minimizing ϕ, then
µε and λε are the Lagrange multipliers associated with the primal problem because
of (4.1).

Theorem 4.1. Assume that G satisfies the following assumptions of boundedness

‖G µ‖ ≤ cG ‖µ‖ ∀ µ ∈ L2(D)

and non-negativity, i.e.,

u(x) ≥ 0 a.e. on D ⇒ (Gu)(x) ≥ 0 a.e. on D.

Then Lagrange multipliers µε and λε associated with (Pε) exist in L2(D).

Proof: Let {ωn} = {(µn, λn)} be a minimizing sequence, i.e.

lim
n→∞

ϕ(ωn) = j,

where j denotes the infimum of ϕ. First we have to show that this infimum exists. The
Λ-norm in ϕ can be estimated by the L2(D)-norm, since the operator Λ = κ I + S?S

is positive definite and bounded, i.e. ‖Λ d‖ ≤ cΛ ‖d‖ for all d ∈ L2(D). This implies

‖d‖2
Λ = (d , Λ−1d) = (Λ (Λ−1d) , Λ−1d) ≥ κ ‖Λ−1d‖2 ≥ κ c−2

Λ ‖d‖2

for all d ∈ L2(D). Therefore we will estimate the Λ-norm in (4.2) by

‖a − ε µ − G?µ − λ‖2
Λ ≥ c1 ‖a − µn − G?µn − λn‖

2

≥ c1 (‖a‖2 − 2‖a‖‖µn + G?µn + λn‖ + ‖µn + G?µn + λn‖
2)

≥ c1 ‖µn + G?µn + λn‖
2 − c2 ‖µn + G?µn + λn‖ + c3,

with certain positive constants ci, i = 1, 2, 3. For the first term, the non-negativity
of G implies ‖µn + G?µn + λn‖

2 ≥ ‖µn + λn‖
2. Furthermore, we have ‖µn + λn‖

2 =
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‖µn‖
2 + 2(µn , λn) + ‖λn‖

2 ≥ ‖µn‖
2 + ‖λn‖

2, since µn, λn ≥ 0. Together with the
bondedness of G, this yields

‖a − ε µ − G?µ − λ‖2
Λ ≥ c1 (‖µn‖

2 + ‖λn‖
2) − c2(1 + cG) ‖µn‖ − c2 ‖λn‖ + c3.

Furthermore, (yc, µn) ≤ ‖yc‖‖µn‖ = cc ‖µn‖, cc ≥ 0, since yc ∈ L2(D). Alltogether
we obtain for ϕ

ϕ(ωn) ≥ c1 (‖µn‖
2 + ‖λn‖

2) − c2 (‖µn‖ + ‖λn‖) + c3, (4.3)

with some positive generic constants c1, c2, c3. Thanks to the positive quadratic terms,
ϕ is bounded from below and the infimum exists. Additionally, (4.3) means that
‖µn‖ and ‖λn‖ are bounded, otherwise ϕ would tend to infinity. Consequently we
can select weakly converging subsequences, w.l.o.g. µn ⇀ µε and νn ⇀ ν̄. The weak
lower semicontinuity of the objective functional ϕ implies j ≥ ϕ(ωε) giving in turn
j = ϕ(ωε). The set M = {v(x) ∈ L2(D) | v(x) ≥ 0 a.e. in D} is weakly closed in
L2(D). Therefore, we have ωε ≥ 0 and consequently ωε is an optimal solution of the
dual problem. Due to the strict convexity of ϕ, the optimal solution ωε, i.e. the vector
of Lagrange multipliers, is unique.

5. Pass to the limit. Given ε > 0 we denote the unique solution of (Pε) by uε

and the unique solution of (P) by ū. Our next aim is to show the strong convergence
of uε to ū as ε ↓ 0.

Let {εn} be a sequence of positive numbers tending to zero and let {un} be the
sequence of associated optimal solutions of (Pεn

). The regularization term κ
2 ‖u‖

2

within the objective functional ensures that ‖u‖ is bounded in L2(D). Thus we can
select a weakly converging subsequence, unk

⇀ ũ. Everything what follows is also
valid for any other weakly converging subsequence. Thus, a known argument yields
that w.l.o.g. un ⇀ ũ.

First we will show that ũ = ū. The main idea to prove this claim is the equality
f(ū) = f(ũ), that will be shown by the feasibility of ũ for (P) and ū for (Pε).

Lemma 5.1. Let ũ be the weak limit of {un}. Then ũ is feasible for (P).

Proof: For every εn > 0, the corresponding un fulfills the constraint inequality

(G un)(x) ≥ yc(x) − εn un(x) a.e. on D.

Moreover, εn ‖un‖ converges to zero when εn ↓ 0, due to the boundedness of ‖un‖.
Thus we can select a subsequence, w.l.o.g. {εn un}, converging to zero almost every-
where in D,

lim
n→∞

εn un(x) = 0 a.e. in D.

Furthermore, {G un} converges strongly in L2(D) due to the compactness of G and
the weak convergence of {un}. Thus

lim
n→∞

G un = G ũ for un ⇀ ũ.

Therefore, passing to the limit n → ∞, the first inequality constraint in (P) is satisfied,

(G ũ)(x) ≥ yc(x) a.e. in D.
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Since the set M = {u(x) ∈ L2(D) |u(x) ≥ 0 a.e. in D} is weakly closed in L2(D) and
un ⇀ ũ , un ≥ 0 ∀n, the second inequality constraint in (P),

ũ(x) ≥ 0 a.e. in D,

is also satisfied. Thus ũ is feasible for (P).

Lemma 5.2. For every ε > 0, the solution ū of (P) is feasible for (Pε).

Proof: Clearly, ū is feasible for (P), hence the inequality constraints of (P) are satisfied.
Moreover, by ū(x) ≥ 0 a.e. in D,

(G ū)(x) ≥ yc(x) ≥ yc(x) − εū(x) a.e. in D

holds true for every ε > 0. Therefore ū also fulfills the constraints of (Pε).

Theorem 5.3. The sequence of optimal solutions {un} of (Pεn
) converges strongly

in L2(D) to ū, as n → ∞, i.e un → ū.

Proof: The feasibility of ū and the optimality of un for (Pεn
) imply f(un) ≤ f(ū) for

all εn. Passing to the limit, one obtains

f(ū) ≥ lim sup
n→∞

f(un) ≥ lim inf
n→∞

f(un) ≥ f(ũ) ≥ f(ū), (5.1)

since f is weakly lower semicontinuous. For the last inequality in (5.1), we used the
feasibilty of ũ and the optimality of ū for (P). Thus we get f(ũ) = f(ū) and the strict
convexity of f implies

ũ = ū,

and hence un ⇀ ū.

It remains to show that the convergence of {un} is also strong, i.e. un → ū. We argue
as follows: From (5.1), the convergence

lim
n→∞

f(un) = f(ū).

is obtained. By definition of f we have

‖un‖
2 =

2

κ
(f(un) −

1

2
‖S un‖

2
H − (a , un)).

Since S is a compact operator, the right hand side converges to the value at ū. Thus
we have

lim
n→∞

‖un‖
2 =

2

κ
(f(ū) −

1

2
‖S ū‖2

H − (a , ū)) = ‖ū‖2.

As a well known fact, weak and norm convergence together yield strong convergence,
i.e. un → ū.

Remark 5.4. Clearly, the state yn = S un converges strongly in L2(D) to ȳ = S ū,

too.
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6. An optimization problem without control constraints. We will also
analyze the following optimization problem:

(Q)







minimize f(u) =
1

2
‖S u‖2

H +
κ

2
‖u‖2 + (a , u)

subject to (G u)(x) ≥ yc(x) a.e. in D,

where the control constraint occuring in (P) no longer appears. We impose the same
assumptions on D, S, G, a, yc and κ as for (P). The corresponding regularized
optimization problem now admits the form

(Qε)

{

minimize f(u)

subject to (G u)(x) ≥ yc(x) − ε u(x) a.e. in D.

The existence of an associated regular Lagrange multiplier µε can be proven in a
direct and rather trivial way. We substitute v = ε u + G u and assume that ε I + G

has a continuous inverse operator in L2(D). If G is positive semidefinit, then ε I+G is
invertible for all ε > 0. Then we have u = (ε I+G)−1v = R v, if we set R = (ε I+G)−1.
Define f̃(v) = f(R v). In this way, the problem (Qε) becomes equivalent to

(Q̃ε)

{

minimize f̃(v)

subject to v(x) ≥ yc(x) a.e. in D.

This is a problem with simple box constraints instead of state constraints. Therefore,
one obtains an associated Lagrange multiplier in L2(D) by standard methods, cf. [10],
section 4.1.

Now let {εn} again be a positive sequence converging to zero and {un} be the se-
quence of optimal solutions of (Qεn

). As εn > 0, (εn I + G)−1 exists as a continuous
operator. As above, we denote the unique optimal solution of (Q) by ū. The proof of
strong convergence un → ū is basically along the lines of the preceding section. How-
ever, we used ū(x) ≥ 0 a.e. in D in the proof of Lemma 5.2. This is the keypoint,
where the single control constraint influences the theory above. Our new proof of the
corresponding Lemma is based upon the existence of a Slater point for (Q) and an
assumption of lower boundedness of ū.

Lemma 6.1. Assume that the unique solution of (Q) is bounded from below, i.e.

ū(x) ≥ c̄ holds a.e. in D. Furthermore, let a function û(x) exist such that û(x) > 0
and (G û)(x) ≥ τ > 0 holds a.e. in D. Then for every δ > 0, a positive εδ exists such

that ū + δ û is feasible for (Qε) for every ε with ε ≤ εδ.

Proof: Due to the linearity of G, we have

(G (ū + δ û))(x) = (G ū)(x) + δ (G û)(x) ≥ yc(x) + δ τ > yc(x) a.e. in D.

Thus ū + δ û satisfies the constraint of (Q). For the constraint in (Qε), we obtain

(G (ū + δ û) + ε (ū + δ û))(x) = (G ū)(x) + ε ū(x) + δ ((G û)(x) + ε û(x))

≥ yc(x) − ε | c̄ | + δ τ,

since û(x) ≥ 0 holds a.e. in D. To make ū + δ û feasible for (Qε), δ τ − ε | c̄ | has to
be positive. This takes place for

0 < ε ≤
τ

| c̄ |
δ.
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Therefore, εδ is defined by εδ := τ
| c̄ | δ.

As above, we can select a weakly converging subsequence and by the same arguments,
as all these subsequences tend to the same weak limit, we have un ⇀ ũ, where ũ again
denotes the weak limit. Since f is continuous, we have

f(ū + δ û) ≤ f(ū) + δf

and δ ↓ 0 implies δf ↓ 0. Together with Lemma 6.1 and the lower semicontinuity of
f , we obtain for a fixed δ

f(ū) + δf ≥ f(ū + δ û) ≥ lim sup
n→∞

f(un) ≥ lim inf
n→∞

f(un) ≥ f(ũ) ≥ f(ū),

where the feasibilty of ũ and the optimality of ū for (Q) were used for the last in-
equality. The feasibilty of ũ for (Q) can be proven analogue to Lemma 5.1, since the
non-negativity of u was not required in this proof. Passing to the limit δ ↓ 0, we
finally get lim

n→∞
f(un) = f(ū) and, due to the strict convexity of f , ū = ũ.

The remaining part of the theory is along the lines of the preceding section and we
obtain an equivalent result:

Theorem 6.2. Assume that ū and û satisfy the assumption of Lemma 6.1. Then

the sequence of optimal solutions associated with (Qεn
), denoted by {un}, converges

strongly in L2(D) to ū as εn ↓ 0, i.e.

un → ū , n → ∞.

7. Numerical tests. We have tested the regularization of pointwise state con-
straints by the following example without control constraints:

(PT)



























Minimize
1

2
‖y − yd‖

2
L2(Ω) +

κ

2
‖u− ud‖

2
L2(Ω)

subject to −∆ y(x) + c y(x) = u(x) in Ω

∂νy = 0 on Γ

y(x) ≥ yc(x) a.e. in Ω

with Ω = [0, 1] × [0, 1] and κ ≡ c ≡ 1. Analogous to (P1), one can easily verify that
(PT) fits into the settings of (P).

Since Ω ⊂ IR2 and thus ȳ ∈ H2(Ω) ⊂ C(Ω̄), we consider the state constraint in
C(Ω̄), where a Slater condition can be fulfilled. In this case, the Karush-Kuhn-Tucker
theory ensures the existence of a Lagrange multiplier µ̄ in C(Ω̄)′. Hence, µ̄ in general
represents a real Borel measure, cf. Casas [6]. By standard methods, the optimality
system

−∆ ȳ + c ȳ = ū −∆ p̄ + c p̄ = ȳ − yd − µ̄ (7.1)

∂ν ȳ = 0 ∂ν p̄ = 0

p̄ + κ(ū − ud) = 0

ȳ(x) ≥ yc(x) , µ̄ ≥ 0 ,

∫

Ω

(y − yc) dµ̄ = 0
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is derived. The adjoint state p̄ is the weak solution of the adjoint equation (7.1) and
belongs to W 1,s(Ω) for all 1 ≤ s ≤ N

N−1 , [6].

The optimality system of the corresponding regularized problem (PTε) looks as fol-
lows:

−∆ yε + c yε = uε −∆ pε + c pε = yε − yd − µε

∂νyε = 0 ∂νpε = 0

pε + κ(uε − ud) − ε µε = 0

yε(x) ≥ yc(x) − ε uε(x) , µε(x) ≥0 , (yε − yc + ε uε , µε) = 0.

Now, in contrast to the case ε = 0, the Lagrange multiplier µε is a function of L2(Ω).
This regularity implies pε ∈ H1(Ω).
The regularized optimization problem was solved numerically by a primal-dual active
set strategy, see for instance [2] or [3]. We used a conform finite element method
to solve the state equation and the adjoint equation. State and adjoint state were
discretized by piecewise linear functions, whereas piecewise constant functions were
applied to the control u and the Lagrange multiplier µ.

Two different examples were considered. The main difference between them is the
regularity of the Lagrange multiplier. In the first example, we tested our regularization
method on an exact solution with a continuous Lagrange multiplier, whereas the
Lagrange multiplier in the second example represents a measure from H1(Ω)′.

7.1. Example 1. This example is constructed such that the optimal state ȳ and
the adjoint state p̄ are given by constant functions

ȳ(x1, x2) ≡ ŷ , p̄(x1, x2) ≡ −c κ ŷ ,

with a certain constant ŷ and c, κ as defined above. In our computations, we have
chosen ŷ ≡ 2. Being constant, ȳ and p̄ fulfill the Neumann boundary condition as
required in the state and the adjoint equation. From the state equation and the
optimality condition we get

ū = −∆ȳ + c ȳ = c ŷ and ud = ū +
1

κ
p̄ = 0.

The right hand side yc of the state constraint is defined by

yc(x1, x2) = min(ŷc(x1, x2) , ŷ)

with ŷc(x1, x2) = −20 (x1 − 0.5)2 − 20 (x2 − 0.5)2 + ŷ + 1. Due to the complementary
slackness condition, µ̄ has to vanish where ȳ(x1, x2) = ŷ > yc(x1, x2). Therefore, to
make ȳ, p̄ and ū optimal, we choose for µ̄

µ̄(x1, x2) = max(ŷc(x1, x2) − ŷ , 0)

This Lagrange multiplier is continuous, i.e. µ ∈ C(Ω̄), and therefore the adjoint
equation can be treated in a classical way. Finally, to fulfill all optimality conditions
at (ȳ, ū, p̄), we have to define

yd = ∆p̄ − c p̄ + ȳ − µ̄ = (1 + c2 κ) ŷ − µ̄.
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The functions yd and yc are shown in figures 7.1 and 7.2.
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Fig. 7.1. Desired state yd
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Fig. 7.2. Function yc in the state constraint

The following figures show the numerical solution of the regularized problem for
ε = 0.008. In all computations considered here, the mesh size was h = 0.04. The
numerical solutions of the regularized problem (PTε) are denoted by ( . )h. Notice
that ū(x1, x2) ≡ ȳ(x1, x2) ≡ 2 and p̄(x1, x2) ≡ −2.
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Fig. 7.3. Control uh at ε = 0.008
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Fig. 7.4. State yh at ε = 0.008
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Fig. 7.5. Adjoint state ph at ε = 0.008
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Fig. 7.6. Lagrange multiplier µh at ε = 0.008

The behaviour of uh, yh, ph and µh for ε ↓ 0 is of particular interest. The following
figures illustrate the L2-norms of the difference between the numerical solution of
(PTε) and the exact solution of (PT) for ε = 0.2, 0.1, 0.05, 0.0025, 0.00125 and
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0.000625. The L2-norms were approximated with third order Gaussian quadrature.
The exact solution is indicated by the subscript “opt”.
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7.2. Example 2. We now define the adjoint state p̄ by

p̄(x1, x2) =

{

0.5 − x2
1 , x1 < 0.5

0.25 , x1 ≥ 0.5.

It is easy to verify, that p̄ satisfies the Neumann boundary condition. The function p̄

belongs to H1(Ω), hence we know ∆ p̄ ∈ H1(Ω)′. Moreover, ∇ p̄ exhibits a discontinu-
ity at x1 = 0.5. Therefore, µ̄ consists of a regular part in Ω\{(x1, x2) |x1 = 0.5} and
a singular part (a δ-distribution with respect to x1) concentrated on Γ̂ = {(x1, x2) ∈
Ω | x1 = 0.5}. We define the regular parts of µ̄ on Ω\Γ̂ by

µ̄ ≡ 0 in Ω1 = {(x1, x2) ∈ Ω | x1 < 0.5}

and

µ̄ ≡ 1 in Ω2 = {(x1, x2) ∈ Ω | x1 > 0.5}.

Again, the optimal state is defined by

ȳ ≡ ŷ ≡ 2.
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Due to the complementary slackness conditions, ȳ and yc must satisfy ȳ ≥ yc a.e. in
Ω1 and ȳ = yc a.e. in Ω2. Hence, we define yc by

yc(x1, x2) =

{

2 x1 + ŷ − 1 , x1 < 0.5
ŷ , x1 ≥ 0.5.

This function is also presented in figure 7.12. Since p̄ is infinitely many times dif-
ferentiable in Ω1 and Ω2, respectively, we can evaluate the adjoint equation yd =
∆p̄ − c p̄ + ŷ − µ̄ separately in Ω1 and Ω2 to obtain the objective state function yd.
Thus, we get

yd(x1, x2) =

{

ŷ − 2 − 0.5 c + c x2
1 , x1 < 0.5

ŷ − 1 − 0.25 c , x1 > 0.5.

Since x1 = 0.5 belongs to the grid, we need discrete values of yd at x1 = 0.5 for the
numerical calculation. For convenience, we define

yd(x1, x2) ≡ ŷ − 1.5 − 0.25 c on Γ̂. (7.2)

This value just represents the arithmetic mean of the functions for yd in Ω1 and Ω2.
This function is shown in figure 7.11.
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Fig. 7.11. Desired state yd
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Fig. 7.12. Function yc in the state constraint

The optimal control can again be derived from the state equation. With c = 1 we get

ū(x1, x2) ≡ c ŷ ≡ 2.

It remains to define ud, which is given by

ud = ū +
1

κ
p̄ =

{

1
κ

(0.5 − x2
1) + c ŷ , x1 < 0.5

0.25 + c ŷ , x1 ≥ 0.5.

We exemplarily present the numerical solution of the regularized problem for ε =
0.002.
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Fig. 7.13. Control uh at ε = 0.002
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Fig. 7.16. Lagrange multiplier µh at ε = 0.002

We observe that the Lagrange multiplier tends to a measure with singular part located
at Γ̂. The following figures show the convergence behaviour for ‖uh−uopt‖, ‖yh−yopt‖
and ‖ph − popt‖.
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