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Abstract. We define a risk averse nonanticipative feasible policy for multistage stochastic pro-
grams and propose a methodology to implement it. The approach is based on dynamic program-
ming equations written for a risk averse formulation of the problem.

This formulation relies on a new class of multiperiod risk functionals called extended polyhedral
risk measures. Dual representations of such risk functionals are given and used to derive conditions
of coherence. In the one-period case, conditions for convexity and consistency with second order
stochastic dominance are also provided. The risk averse dynamic programming equations are
specialized considering convex combinations of one-period extended polyhedral risk measures such

as spectral risk measures.
To implement the proposed policy, the approximation of the risk averse recourse functions

for stochastic linear programs is discussed. In this context, we detail a stochastic dual dynamic
programming algorithm which converges to the optimal value of the risk averse problem.

AMS subject classifications: 90C15, 91B30.

1. Introduction

Let us consider a T -stage optimization problem of the form

(1)
inf E[

T
∑

t=1

ft(xt, ξt)]

xt ∈ χt(xt−1, ξt), a.s., xt Ft-measurable, t = 1, . . . , T,

where (ξt)
t
t=1 is a stochastic process and Ft is the sigma-algebra Ft := σ(ξj , j ≤ t). Depending on

the assumptions on the nature of uncertainty, two principal methods have been proposed so far for
making decisions in this uncertain environment. The first one is Robust Optimization which is a worst
case oriented approach where the parameters are only known to belong to some given uncertainty
sets. The second method is Stochastic Programming (SP) on which we focus and which assumes that
the uncertain parameters are realizations of random variables. In this setting, multistage stochastic
optimization problems set two challenging questions. The first question refers to modeling: how
to deal with uncertainty in this context? Once a model is chosen, the second question is to design
suitable solution methods.

For the first of these questions, we are interested in defining nonanticipative policies. This means
that the decision we make at any time step should be a function of the available history ξ[t] of the
process at this time step. This is a necessary condition for a policy to be implementable since a
decision has to be made on the basis of the available information. We will focus on models with
recourse. More precisely, introducing a recourse function Qt+1 for time step t and given xt−1, the
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decision xt is found by solving the problem

(2)
inf
xt

ft(xt, ξt) +Qt+1(xt, ξ[t])

xt ∈ χt(xt−1, ξt)

at time step t. In this problem, we have assumed that ξt is available at time step t and thus ξ[t]
gathers all the realizations of ξj up to time step t. The policy depends crucially on the choice of the
recourse function Qt+1 used in (2). Given x0 and the information ξ[1], a non-risk averse model uses
the recourse functions defined by

(3) Qt(xt−1, ξ[t−1]) = Eξt|ξ[t−1]

(

inf
xt

ft(xt, ξt) +Qt+1(xt, ξ[t])

xt ∈ χt(xt−1, ξt)

)

for t = 1, . . . , T , with QT+1 ≡ 0. These dynamic programming equations are associated to the
non-risk averse model

(4)
inf E[

T
∑

t=1

ft(xt(ξ[t]), ξt)]

xt(ξ[t]) ∈ χt(xt−1(ξ[t−1]), ξt), t = 1, . . . , T.

For the second of these questions, most of the efforts so far have been placed on solution methods
that approximate the recourse functions (3) in the case of multistage stochastic linear programs. In
this paper, we contribute to these two questions as follows.

From the modeling point of view, we define risk averse recourse functions. For this purpose, a
common approach (Ruszczyński and Shapiro [RS06a], [RS06b]) is based on a risk-averse nested for-
mulation of the problem using conditional (coherent) risk measures. In this situation, it is in general
difficult, even for simple risk measures such as the Conditional Value-at-Risk (CVaR) (Rockafellar
and Uryasev [RU02]), to determine a risk averse problem (using a risk measure that has a physical
interpretation) whose stagewise decomposition is given by these dynamic programming equations.
However, such an interpretation is important. This is why we define instead a risk averse problem
for (1) that is then decomposed by stages to obtain dynamic programming equations. A similar idea
appears in the recent book [Shapiro et. al, [SDR09], Chapter 6, p. 326] where a convex combination
of the expectation and of the CVaR of the final wealth is used for a portfolio selection problem.
Instead, we control partial costs (the sum of the costs up to the current time step) and use a new
class of risk measures that is suitable for decomposing the risk averse problem by stages. This class
of multiperiod risk measures called extended polyhedral risk measures has three appealing properties.
First, the class is large: it contains the polyhedral risk measures (Eichhorn and Römisch [ER05]);
in the one-period case some special cases include the Optimized Certainty Equivalent Ben-Tal and
Teboulle [BTT07], some spectral risk measures (Acerbi [Ace02]) and the CVaR. More generally, con-
ditions for such functionals to be coherent or convex are provided. Second, as stated above, it allows
us to define dynamic programming equations for our risk averse problem. Finally, these equations
are suitable for proposing convergent solution methods for a class of stochastic linear programs.

Regarding algorithmic issues, exact decomposition algorithms such as the Nested Decomposition
(ND) algorithm have shown their superiority to direct solution methods for obtaining approximations
of the recourse functions. Each iteration of these algorithms compute upper and lower bounds on
the optimal mean cost. If an optimal solution to the problem exists, the algorithm finds an optimal
solution after a finite number of iterations. These exact algorithms build at each iteration and each
node of the scenario tree a cut for the recourse functions. These cuts form an outer linearization of
these recourse functions.
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There are two important variants of the ND algorithm: a variant that adds quadratic proximal
terms in the objective functions of the master problems (Ruszczyński [Rus86]) and a variant that
uses multi-cuts (Birge and Louveaux [BL88]).

The purpose of the first variant is to discourage the solution to move too far from the best solution
found so far and this can significantly accelerate the convergence of the method even if the master
problems are quadratic programs with this approach. The proximal term penalties are positive and
can be dynamically modified in the course of the algorithm.

In the ND algorithm, for a given node in the scenario tree and a given input state xt−1 at t,
the subproblems associated to all the realizations in stage t + 1 are solved to obtain their optimal
simplex multipliers. These multipliers are then aggregated to obtain a single cut for each node in
each iteration. In the multi-cut variant, there are as many cuts as descendants realizations that are
built at each iteration. More information is thus passed from the children nodes to their immediate
ancestor by sending disaggregate cuts. The size of the master programs increases but we expect less
iterations (see Birge and Louveaux [BL88]).

However, for many applications, the number of scenarios is so large that even these improved
variants are difficult to apply since they entail prohibitive computational efforts. In this case,
approximation and bounding schemes may be used. A usual approximation scheme consists of
computing lower and upper bounds using Jensen and Edmundson-Madansky inequalities (see Birge
and Wets[BW89], [BW86], Kall et. al [KRF88]). In general, when the number of random parameters
is large, these approximation and bounding schemes are still difficult to apply.

Monte Carlo sampling-based algorithms constitute an interesting alternative in such situations.
Higle and Sen [HS96] introduced a stochastic cutting plane method for two-stage stochastic programs
and showed its convergence with probability one. Recently, Higle et al. [HRS10] extended this idea to
multistage models by applying a stochastic cutting plane method to the dual problem resulting when
dualizing nonanticipativity constraints. Their method is, hence, based on scenario decomposition. A
different approach for two-stage problems based on Monte Carlo (importance) sampling within the
L-shaped method was introduced by Dantzig and Glynn [DG90] and Infanger [Inf92]. For multistage
stochastic linear programs whose number of immediate descendant nodes is small but with many
stages, Pereira and Pinto [PP91] propose to sample in the forward pass of the ND. This sampling-
based variant of the ND is the so-called Stochastic Dual Dynamic Programming algorithm on which
we focus our attention. We detail a Stochastic Dual Dynamic Programming (SDDP) algorithm
(Pereira and Pinto [PP91]) to approximate our risk averse recourse functions, to be used in (2) in
place of Qt+1. The computations of the cuts in the backward pass of SDDP are detailed both in the
non-risk averse and in the risk averse setting.

Our developments can be easily extended to other sampling-based decomposition methods such
as AND and DOASA.

The Abridged Nested Decomposition (AND) algorithm proposed by Birge and Donohue [BD01]
is a variant of SDDP that also involves sampling in the forward pass. This algorithm determines in a
different manner the sequence of states and scenarios in the forward pass. The numerical simulations
in Birge and Donohue [BD01] report lower computational time on average for the AND algorithm
in comparison with SDDP.

When the number of immediate descendant nodes is large (possibly infinite) and when the problem
has many stages, we can also (or even have to) sample in the backward pass. In this case, for a
given node on a forward path k, not all the optimal simplex multipliers associated to the descendant
subproblems are computed. Only the descendant subproblems associated with some realizations are
solved. As explained in the Cut Calculation Algorithm (CCA) in Philpott and Guan [PG08], it is
however possible in this situation to replace the “missing” multipliers by some coefficients so that



4 VINCENT GUIGUES AND WERNER RÖMISCH

the cuts built still lie below the corresponding recourse functions. This gives rise to Dynamic Outer
Approximation Sampling Algorithms (DOASA) described in Philpott and Guan [PG08].

The paper is organized as follows. In the second section, we introduce the class of multiperiod
extended polyhedral risk measures and study their properties: dual representations are derived and
used to provide criteria for convexity and coherence and, in the one-period case, for convexity and
consistency with second order stochastic dominance. In Section 3, we derive dynamic programming
equations for a risk averse problem defined in terms of extended polyhedral risk measures. We also
provide conditions that guarantee the convergence of SDDP in this risk averse setting. In Section
4, we recall the SDDP algorithm for a class of stochastic linear programs (SLP). Finally, in Section
5, we propose to use SDDP to approximate the risk averse recourse functions from Section 3 for the
SLP considered in Section 4. In particular, formulas for the cuts in the backward pass are given.
We show that under some assumptions, some of the cut coefficients have explicit formulas that are
independent of the sampled scenarios.

We mention that after writing our paper we became aware of two recent and closely related papers:
Collado et. al [CPR] based on scenario decomposition and Shapiro [Sha10] which suggests to use
SDDP to approximate risk-averse recourse functions defined from a nested risk-averse formulation
of a multistage stochastic program.

We start by setting down some notation:

• For x ∈ R
n, the vectors x+ and x− are defined by x+(i) = max(x(i), 0) and x−(i) =

max(−x(i), 0) for i = 1, . . . , n;
• For a nonempty set X ⊆ R

n, the polar coneX∗ is defined by X∗ = {x∗ : 〈x, x∗〉 ≤ 0 ∀x ∈ X}
where 〈·, ·〉 is the standard scalar product on R

n;
• e is a column vector of all ones;
• If A is an m1×n matrix and B an m2×n matrix, (A;B) denotes the (m1+m2)×n matrix

(
A
B

);

• For vectors x1, . . . , xT ∈ R
n and 1 ≤ t1 ≤ t2 ≤ T, we denote (xt1 , . . . , xt2) ∈ R

n × . . .× R
n

by xt1:t2 ;
• For x, y ∈ R

n, the vector x ◦ y ∈ R
n is defined by (x ◦ y)(i) = x(i)y(i), i = 1, . . . , n;

• In is the n× n identity matrix and 0m,n is an m× n matrix of zeros;
• δij is the Kronecker delta defined for i, j integers by δij = 1 if i = j and 0 otherwise;
• Qt+1 denotes a (generic) recourse function used at time step t = 1, . . . , T , i.e., QT+1 ≡ 0 and
if t < T then Qt+1(xt, ξ[t]) represents a cost over the period t + 1, . . . , T . Various recourse
functions at t will be defined using the same notation Qt+1. Which Qt+1 is relevant will be
clear from the context.

As is usually done in the SP literature and to alleviate notation, we use the same notation for a
random variable and for a particular realization of this random variable, the context allowing us to
know which concept is being referred to.

2. Extended polyhedral risk measures

We consider multiperiod risk functionals ρ whose arguments are sequences of random variables.
We confine ourselves to discrete-time processes with a finite time horizon as in Ruszczyński and
Shapiro [RS06a]. Such risk functionals have to assess the riskiness of a finite sequence z1, . . . , zT of
random variables for some integer T ≥ 2. To reflect the evolution of information as time goes by, we
assume that zt is measurable with respect to some σ-field Ft, where F1, . . . ,FT form a filtration, i.e.,
F1 ⊆ F2 ⊆ . . . ⊆ FT = F , with F1 = {∅,Ω}. In this setting, z1 is deterministic and a multiperiod
risk functional ρ will be seen as a mapping ρ : ×T

t=1 Lp(Ω,Ft,P)→ R̄ for some p ∈ [1,+∞).
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Remark 2.1. Throughout the paper, the arguments (z1, . . . , zT ) of the risk functionals will be in-
terpreted as accumulated revenues (for which higher values are preferred). More precisely, if z̃t is

the revenue for time step t, we consider the accumulated revenues zt =
∑t

τ=1 z̃τ , t = 1, . . . , T .

For future use, we recall the definition of multiperiod convex risk measures (from Artzner et al.
[ADE+], [ADE+07], Föllmer and Schied [FS04]) which are multiperiod risk functionals of special
interest when the random variables zt represent revenues (accumulated or not).

Definition 2.2. A functional ρ on ×T
t=1 Lp(Ω,Ft,P) is called a multiperiod convex risk measure if

the following conditions (i)–(iii) hold:

(i) Monotonicity: if zt ≤ z̃t a.s, t = 1, . . . , T , then ρ(z1, . . . , zT ) ≥ ρ(z̃1, . . . , z̃T );
(ii) Translation invariance: for each r ∈ R we have ρ(z1 + r, . . . , zT + r) = ρ(z1, . . . , zT )− r;
(iii) Convexity: for each λ ∈ [0, 1] and z, z̃ ∈ ×T

t=1 Lp(Ω,Ft,P) we have ρ(λz + (1 − λ)z̃) ≤
λρ(z) + (1 − λ)ρ(z̃).

It is called a multiperiod coherent risk measure if in addition condition (iv) holds:

(iv) Positive homogeneity: for each λ ≥ 0 we have ρ(λz1, . . . , λzT ) = λρ(z1, . . . , zT ).

In the literature, there appear different requirements instead of the translation invariance (ii)
above, e.g. Fritelli and Scandalo [FS05] and Pflug and Römisch [PR07].
Convex duality can be used to obtain dual representations of multiperiod convex risk measures.
Next, we cite such a representation that uses the set DT of generalized density functions where

DT := {λ ∈ ×T
t=1 L1(Ω,Ft,P) : λt ≥ 0 a.s., t = 1, . . . , T,

T
∑

t=1

E[λt] = 1}.

Theorem 2.3. Let ρ : ×T
t=1 Lp(Ω,Ft,P) → R̄ and assume that ρ is proper (i.e. ρ is finite on the

nonempty set dom ρ = {z : ρ(z) <∞}) and lower semi-continuous. Then ρ is a multiperiod convex
risk measure if and only it admits the representation

(5) ρ(z) = sup
{

E

(

−
T
∑

t=1

λtzt

)

− ρ∗(λ) : λ ∈ Pρ

}

,

for some convex closed subset Pρ ⊆ DT of the space ×T
t=1 Lq(Ω,Ft,P) ( 1p + 1

q = 1) on which the

conjugate ρ∗ of ρ is given, too. The functional ρ is coherent if and only if the conjugate ρ∗ in (5) is
the indicator function of Pρ.

A proof of the above theorem can be found in e.g. Ruszczyński and Shapiro [RS06b]. We are
now in a position to define the class of multiperiod extended polyhedral risk measures.

Definition 2.4. A risk measure ρ on ×T
t=1Lp(Ω,Ft,P) is called multiperiod extended polyhedral if

there exist matrices At, Bt,τ , vectors at, ct, and functions ht(z) = (ht,1(z), . . ., ht,nt,2(z))
⊤ for given

functions ht,1, . . . , ht,nt,2 : Lp(Ω,Ft,P)→ Lp′(Ω,Ft,P) with 1 ≤ p′ ≤ p such that

(6) ρ(z1, . . . , zT ) =







inf E[
∑T

t=1 c⊤t yt]
yt ∈ Lp(Ω,Ft,P;R

kt), t = 1, . . . , T,

Atyt ≤ at a.s., t = 1, . . . , T,
∑t−1

τ=0 Bt,τyt−τ = ht(zt) a.s., t = 2, . . . , T.

Another less general extension of polyhedral risk measures is due to Eichhorn [Eic07]. Like a
multiperiod polyhedral risk measure Eichhorn and Römisch [ER05], a multiperiod extended poly-
hedral risk measure is given as the optimal value of a T -stage linear stochastic program where the
arguments of the risk measure appear on the right hand side of the dynamic constraints. Multiperiod
polyhedral risk measures constitute a particular case with at = 0, t = 2, . . . , T , Bt,τ row vectors,
and ht(zt) = ht,1(zt) = zt (i.e., nt,2 = 1).
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The need to consider the extended versions from Definition 2.4 is twofold:

(i) Modelling: some (popular) risk measures are extended polyhedral but not polyhedral in
the sense of Eichhorn and Römisch [ER05] (see examples in the end of this section).

(ii) Algorithmic issues: as announced in the introduction, dynamic programming equations
can be written for risk averse versions of (1) defined in terms of extended polyhedral risk
measures. Moreover, the convergence of a class of decomposition algorithms applied to the
corresponding nested formulation of the risk averse problem will be proved in Section 3
for a subclass of extended polyhedral risk measures that contain some non-polyhedral risk
measures. For this subclass, we have ht(zt) = ztbt + b̃t for some vectors bt, b̃t.

In view of (ii) above, extended polyhedral risk measures with ht(zt) = ztbt + b̃t play a particular
role when algorithmic issues come into play. In the rest of this section, we study properties of such
risk functionals. In this context, the matrices At, Bt,τ and the vectors at, bt, b̃t, and ct are fixed and
deterministic. They have to be chosen such that ρ exhibits desirable risk measure properties. In
particular, conditions on these parameters for the corresponding extended polyhedral risk measure
to be coherent are given in the Corollary 2.6 of Theorem 2.5 which follows. This theorem gives dual
representations for stochastic program (6) when ht(zt) = ztbt + b̃t for some vectors bt, b̃t. In the
sequel, the dimensions of at and bt are respectively denoted by nt,1 and nt,2.

Theorem 2.5. Let ρ be a functional of the form (6) on ×T
t=1Lp(Ω,Ft,P) with p ∈ [1,∞) and

ht(zt) = ztbt + b̃t for some vectors bt, b̃t. Assume

(i) complete recourse: {y1 : A1y1 ≤ a1} 6= ∅ and for every t = 2, . . . , T , it holds that {Bt,0yt :
Atyt ≤ at} = R

nt,2 ;

(ii) dual feasibility: {(u, v) : u ∈ ×T
t=1R

nt,1 , v ∈ ×T
t=2R

nt,2 , ct+A⊤

t ut+
∑T

τ=max(2,t) B⊤

τ,τ−tvτ−1 =

0, t = 1, . . . , T } 6= ∅.

Then ρ is finite, convex, and continuous on ×T
t=1Lp(Ω,Ft,P) and with 1

p + 1
q = 1 the following dual

representation holds:
(7)

ρ(z) =











sup −E[
∑T

t=1 λ⊤

1,tat +
∑T

t=2 λ
⊤

2,t−1(ztbt + b̃t)]
λ1 ∈ ×

T
t=1 Lq(Ω,Ft,P;R

nt,1), λ2 ∈ ×
T
t=2 Lq(Ω,Ft,P;R

nt,2), λ1,t ≥ 0 a.s., t = 1, . . . , T,

ct +A⊤

t λ1,t +
∑T

τ=max(2,t) B⊤

τ,τ−tE[λ2,τ−1|Ft] = 0 a.s., t = 1, . . . , T.

We also have

(8) ρ(z) = sup

{

E

[

T
∑

t=1

z∗t zt

]

− ρ∗(z∗) : z∗ ∈ ×T
t=1 Lq(Ω,Ft,P)

}

where ρ∗ is the conjugate of ρ. Next, for every z∗ ∈ dom(ρ∗), ρ∗(z∗) is given by

(9) ρ∗(z∗) =















inf E[
∑T

t=1 λ⊤

1,tat +
∑T

t=2 λ
⊤

2,t−1b̃t]
λ1 ∈ ×T

t=1 Lq(Ω,Ft,P;R
nt,1), λ2 ∈ ×T

t=2 Lq(Ω,Ft,P;R
nt,2),

z∗t = −λ⊤

2,t−1bt a.s., t = 2, . . . , T, λ1,t ≥ 0 a.s., t = 1, . . . , T,

ct +A⊤

t λ1,t +
∑T

τ=max(2,t) B⊤

τ,τ−tE[λ2,τ−1|Ft] = 0 a.s., t = 1, . . . , T

where
(10)

dom(ρ∗) =























z∗ ∈ ×T
t=1 Lq(Ω,Ft,P) such that

∃ λ1 ∈ ×T
t=1 Lq(Ω,Ft,P;R

nt,1), λ2 ∈ ×T
t=2 Lq(Ω,Ft,P;R

nt,2) satisfying
λ1,t ≥ 0 a.s., t = 1, . . . , T,

ct +A⊤

t λ1,t +
∑T

τ=max(2,t) B⊤

τ,τ−tE[λ2,τ−1|Ft] = 0 a.s., t = 1, . . . , T, and

z∗1 = 0, z∗t = −λ⊤

2,t−1bt a.s. t = 2, . . . , T























.
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Proof. We use results on Lagrangian and conjugate duality. Consider the following Banach spaces
and their duals

E := ×T
t=1Lp(Ω,Ft,P;R

kt) E∗ = ×T
t=1Lq(Ω,Ft,P;R

kt)
Z := ×T

t=1Lp(Ω,Ft,P) Z∗ = ×T
t=1Lq(Ω,Ft,P)

with bilinear forms

〈e, e∗〉E/E∗ =
T
∑

t=1

E[e⊤

t e
∗
t ] and 〈z, z∗〉Z/Z∗ =

T
∑

t=1

E[ztz
∗
t ].

Let us introduce the Lagrange multipliers λ1 ∈ ×T
t=1Lq(Ω,Ft,P;R

nt,1) (with λ1 ≥ 0 a.s.) and
λ2 ∈ ×T

t=2Lq(Ω,Ft,P;R
nt,2) associated to the constraints of (6) and the Lagrangian

L(y, λ1, λ2) := E

[

∑T
t=1 c

⊤

t yt + λ⊤

1,t(Atyt − at) +
∑T

t=2 λ
⊤

2,t−1(
∑t−1

τ=0Bt,τyt−τ − ztbt − b̃t)
]

= E

[

∑T
t=1(ct +A⊤

t λ1,t +
∑T

τ=max(2,t) B
⊤

τ,τ−tλ2,τ−1)
⊤yt

]

+E

[

−
∑T

t=1 λ
⊤

1,tat −
∑T

t=2 λ
⊤

2,t−1(ztbt + b̃t)
]

.

The dual functional is defined by

(11) θ(λ1, λ2) := inf
y∈E

L(y, λ1, λ2)

and the Lagrangian dual of (6) is the problem

(12) sup
λ1,λ2

{

θ(λ1, λ2) : λ1 ∈ ×
T
t=1Lq(Ω,Ft,P;R

nt,1), λ2 ∈ ×
T
t=2Lq(Ω,Ft,P;R

nt,2), λ1 ≥ 0 a.s.
}

.

Due to [Ruszczyński and Shapiro, [RS03], Proposition 5, Chapter 1] the conditional expectation
operator E[·|Ft] and the operation of minimization can be interchanged in (11) which gives for
θ(λ1, λ2) the expression

−E

[

T
∑

t=1

λ⊤

1,tat +
T
∑

t=2

λ⊤

2,t−1(ztbt + b̃t)

]

+E





T
∑

t=1

inf
yt∈Rkt

(ct +A⊤

t λ1,t +
T
∑

τ=max(2,t)

B⊤

τ,τ−tE[λ2,τ−1|Ft])
⊤yt



 .

Next, infyt∈Rkt (ct +A⊤

t λ1,t +
∑T

τ=max(2,t) B
⊤

τ,τ−tE[λ2,τ−1|Ft])
⊤yt is 0 if

ct +A⊤

t λ1,t +

T
∑

τ=max(2,t)

B⊤

τ,τ−tE[λ2,τ−1|Ft] = 0

and −∞ otherwise. The Lagrangian dual (12) can thus be expressed as

(13)

sup −E[
∑T

t=1 λ⊤

1,tat +
∑T

t=2 λ
⊤

2,t−1(ztbt + b̃t)]
λ1 ∈ ×T

t=1 Lq(Ω,Ft,P;R
nt,1), λ2 ∈ ×T

t=2 Lq(Ω,Ft,P;R
nt,2), λ1 ≥ 0 a.s.

ct +A⊤

t λ1,t +
∑T

τ=max(2,t) B⊤

τ,τ−tE[λ2,τ−1|Ft] = 0 a.s., t = 1, . . . , T.

From weak duality and dual feasibility, we obtain ρ(z) > −∞ and due to the complete recourse
assumption ρ(z) < +∞. It follows that ρ(z) is finite. More precisely, dual feasibility and complete
recourse imply that there is no duality gap: the optimal value of (6), i.e., ρ(z), is the optimal value
of (13). This shows (7).
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Next, we use conjugate duality. Let us introduce the vectors c = (c1, . . . , cT )
⊤, a = (a1, . . . , aT )

⊤,

b̃ = (b̃2, . . . , b̃T )
⊤ and the matrices A =







A1

. . .

AT






, B =







0 b2
...

. . .

0 bT






, and

B =













B2,1 B2,0 0 . . . 0

B3,2 B3,1 B3,0
. . .

...
...

...
...

. . . 0
BT,T−1 BT,T−2 BT,T−3 . . . BT,0













.

Let also Y = {y ∈ E : Ay(ω) ≤ a, for a.e. ω ∈ Ω} and

ϕ : E × Z → R̄

(y, z) → ϕ(y, z) = 〈y, c〉E/E∗ + δY (y) + δ{0}(By − Bz − b̃),

where δ denotes the indicator function taking values 0 and +∞ only. Since Y is closed and con-
vex, ϕ is lower semi-continuous and convex. With this notation, we can express ρ(z) as ρ(z) =
infy∈E ϕ(y, z) and due to [Bonnans and Shapiro [BS00], Proposition 2.143] ρ is convex. Since ρ
is finite valued, [Bonnans and Shapiro [BS00], Proposition 2.152] guarantees the continuity of ρ.
Since ρ is proper, convex and lower semi-continuous, by the Fenchel-Moreau Theorem we have that
ρ∗∗ = ρ where ρ∗∗ is the biconjugate of ρ, i.e.,

(14) ρ(z) = ρ∗∗(z) = sup {〈z, z∗〉Z/Z∗ − ρ∗(z∗) : z∗ ∈ Z∗}

which is (8). Next, ρ∗(z∗) = ϕ∗(0, z∗) where the conjugate ϕ∗ of ϕ is given by

ϕ∗(y∗, z∗) = sup {〈y, y∗〉E/E∗ + 〈z, z∗〉Z/Z∗ − ϕ(y, z) : y ∈ E, z ∈ Z}

= sup {〈y, y∗ − c〉E/E∗ + 〈z, z∗〉Z/Z∗ : Ay ≤ a a.s., By = Bz + b̃ a.s.}.

It follows that

(15) ρ∗(z∗) =







sup E[
∑T

t=1 (ztz
∗
t − c⊤t yt)]

yt ∈ Lp(Ω,Ft,P;R
kt), zt ∈ Lq(Ω,Ft,P), t = 1, . . . , T,

Atyt ≤ at a.s., t = 1, . . . , T,
∑t−1

τ=0 Bt,τyt−τ = ztbt + b̃t a.s., t = 2, . . . , T.

Due to (i) and (ii), complete recourse and dual feasibility also hold for (15) for every z∗ ∈ dom(ρ∗)
where dom(ρ∗) is given by (10). Using once again Lagrangian duality for problem (15), we obtain
for ρ∗(z∗) dual representation (9). �

Theorems 2.3 and 2.5 allow us to provide a criterion for an extended polyhedral risk measure to
be multiperiod coherent.

Corollary 2.6. Let ρ be a functional on ×T
t=1 Lp(Ω,Ft,P) of the form (6) with all at null and

ht(zt) = ztbt for some vector bt. Let the conditions of Theorem 2.5 be satisfied (complete recourse
and dual feasibility) and let

Mρ =























λ ∈ ×T
t=1Lq(Ω,Ft,P) such that there exist

µ1 ∈ ×T
t=1 Lq(Ω,Ft,P;R

nt,1), µ2 ∈ ×T
t=2 Lq(Ω,Ft,P;R

nt,2) satisfying
µ1,t ≥ 0 a.s. t = 1, . . . , T,

ct +A⊤

t µ1,t +
∑T

τ=max(2,t) B⊤

τ,τ−tE[µ2,τ−1|Ft] = 0 a.s., t = 1, . . . , T, and

λ1 = 0, λt = µ⊤

2,t−1bt a.s., t = 2, . . . , T























be the (convex) set of dual multipliers. IfMρ ⊆ DT then ρ is a multiperiod coherent risk measure.
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Proof. Using representation (7) of Theorem 2.5, we can write ρ(z) = supλ∈Mρ
−
∑T

t=1 E[λtzt]. We
conclude using Theorem 2.3 with Pρ =Mρ. �

Using representation (8) of Theorem 2.5, the properties of ρ can also be characterized by properties
of dom(ρ∗) where dom(ρ∗) is given by (10).

Corollary 2.7. Let ρ be a functional on ×T
t=1 Lp(Ω,Ft,P) of the form (6) with ht(zt) = ztbt + b̃t

for some vectors bt, b̃t and let the conditions of Theorem 2.5 be satisfied (complete recourse and dual
feasibility). The following holds:

(i) ρ is monotone ⇐⇒ for all z∗ ∈ dom(ρ∗) we have z∗t ≤ 0 a.s. for t = 1, . . . , T ;

(ii) ρ is translation invariant ⇐⇒ for all z∗ ∈ dom(ρ∗) we have
∑T

t=1 E[z∗t ] = −1;
(iii) ρ is positively homogeneous ⇐⇒ for all z∗ ∈ dom(ρ∗) we have ρ∗(z∗) = 0.

When T = 2, since z1 is deterministic, Definition 2.4 corresponds to one-period extended poly-
hedral risk measures that assess the riskiness of one random variable z only. For later reference
we recall the definition of such risk measures which extend the class of one-period polyhedral risk
measures.

Definition 2.8. Let (Ω,F ,P) be a probability space and let h(z) = (h1(z), . . . , hn2,2(z))
⊤ for given

functions h1, . . . , hn2,2 : Lp(Ω,F ,P)→ Lp′(Ω,F ,P) with 1 ≤ p′ ≤ p. A risk measure ρ on Lp(Ω,F ,P)
with p ∈ [1,∞) is called extended polyhedral if there exist matrices A1, A2, B2,0, B2,1, and vectors
a1, a2, c1, c2 such that for every random variable z ∈ Lp(Ω,F ,P)

(16) ρ(z) =















inf c⊤1 y1 + E[c⊤2 y2]
y1 ∈ R

k1 , y2 ∈ Lp(Ω,F ,P;Rk2),
A1y1 ≤ a1, A2y2 ≤ a2 a.s.
B2,1y1 +B2,0y2 = h(z) a.s.

For one-period risk measures, dual representations from Theorem 2.5 specialize as follows:

Corollary 2.9. Let ρ be a functional of the form (16) on Lp(Ω,F ,P) with some p ∈ [1,∞) and

h(z) = zb2 + b̃2 for some vectors b2, b̃2. Assume

(i) complete recourse: {y1 : A1y1 ≤ a1} 6= ∅ and {B2,0y2 : A2y2 ≤ a2} = R
n2,2 ;

(ii) dual feasibility: {(u, v) : u ∈ R
n1,1×Rn2,1 , v ∈ R

n2,2 , ct +A⊤

t ut +B⊤

2,2−tv = 0, t = 1, 2} 6= ∅.

Then ρ is finite, convex, continuous, and with 1
p + 1

q = 1, ρ admits the dual representation

ρ(z) =























sup −λ⊤

1 a1 − E[λ⊤

2 a2 + λ⊤

3 (zb2 + b̃2)]
λ1 ∈ R

n1,1 , λ2 ∈ Lq(Ω,F ,P;Rn2,1), λ3 ∈ Lq(Ω,F ,P;Rn2,2),
c1 +A⊤

1 λ1 +B⊤

2,1E[λ3] = 0
c2 +A⊤

2 λ2 +B⊤

2,0λ3 = 0 a.s.
λ1 ≥ 0, λ2 ≥ 0, a.s.

We also have

(17) ρ(z) = sup {E[z∗z]− ρ∗(z∗) : z∗ ∈ Lq(Ω,F ,P)}

where ρ∗ is the conjugate of ρ. Next, for every z∗ ∈ dom(ρ∗), ρ∗(z∗) is given by

(18) ρ∗(z∗) =























inf E[λ⊤

1 a1 + λ⊤

2 a2 + λ⊤

3 b̃2]
λ1 ∈ R

n1,1 , λ2 ∈ Lq(Ω,F ,P;R
n2,1), λ3 ∈ Lq(Ω,F ,P;R

n2,2),
z∗ = −λ⊤

3 b2 a.s., λ1 ≥ 0, λ2 ≥ 0 a.s.
c1 +A⊤

1 λ1 +B⊤

2,1E[λ3] = 0
c2 +A⊤

2 λ2 +B⊤

2,0λ3 = 0 a.s.
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where

(19) dom(ρ∗) =















z∗ ∈ Lq(Ω,F ,P) such that there exist
λ1 ∈ R

n1,1 , λ2 ∈ Lq(Ω,F ,P;Rn2,1), λ3 ∈ Lq(Ω,F ,P;Rn2,2) satisfying
c1 +A⊤

1 λ1 +B⊤

2,1E[λ3] = 0, λ1 ≥ 0, λ2 ≥ 0 a.s.
c2 +A⊤

2 λ2 +B⊤

2,0λ3 = 0 a.s., and z∗ = −λ⊤

3 b2 a.s.















.

Proof. It suffices to use Theorem 2.5 with T = 2. �

Definition 2.2 specializes as follows to the one-period case.

Definition 2.10. A functional ρ : Lp(Ω,F ,P)→ R̄ is called a convex risk measure if it satisfies the
following three conditions for all z, z̃ ∈ Lp(Ω,F ,P):

(i) Monotonicity: if z ≤ z̃ a.s., then ρ(z) ≥ ρ(z̃);
(ii) Translation invariance: for each r ∈ R we have ρ(z + r) = ρ(z)− r;
(iii) Convexity: for all µ ∈ [0, 1] we have ρ(µz + (1 − µ)z̃) ≤ µρ(z) + (1 − µ)ρ(z̃).

Such a functional ρ is said to be coherent if it is positively homogeneous, i.e., ρ(µz) = µρ(z) for all
µ ≥ 0 and z ∈ Lp(Ω,F ,P).

Using Theorems 2.3 and Corollary 2.9, a sufficient criterion can be provided for a one-period
extended polyhedral risk measure to be coherent:

Corollary 2.11. Let ρ be a functional on Lp(Ω,F ,P) of the form (16) with a1, a2 null, p ∈ [1,∞)
and h(z) = zb2 for some vector b2. Let the conditions of Corollary 2.9 be satisfied (complete recourse
and dual feasibility) and let Mρ be the following (convex) set of dual multipliers:

(20) Mρ =















λ ∈ Lq(Ω,F ,P) such that there exist
(µ1, µ2, µ3) ∈ R

n1,1 × Lq(Ω,F ,P;Rn2,1)× Lq(Ω,F ,P;Rn2,2) satisfying
c1 +A⊤

1 µ1 +B⊤

2,1E[µ3] = 0
c2 +A⊤

2 µ2 +B⊤

2,0µ3 = 0 a.s., µ1 ≥ 0, µ2 ≥ 0 a.s. with λ = µ⊤

3 b2















.

IfMρ ⊆ D1 then ρ is a (one-period) coherent risk measure.

Proof. From Corollary 2.9, we obtain ρ(z) = supλ∈Mρ
−E[λz] and the result follows taking Pρ =

Mρ in Theorem 2.3. �

A dual representation of the second-stage problem for (16) will prove useful for obtaining further
properties of one-period risk measures of the form (16):

Proposition 2.12. Let ρ be a functional of the form (16) on Lp(Ω,F ,P) with some p ∈ [1,∞) and

h(z) = zb2 + b̃2 for some vectors b2, b̃2. Let the conditions of Corollary 2.9 be satisfied (complete
recourse and dual feasibility). Assume the feasible set D of the dual of the second-stage problem is
nonempty where

(21) D = {λ = (λ1, λ2) ∈ R
n2,2×R

n2,1 : λ2 ≤ 0, B
⊤

2,0λ1 +A
⊤

2 λ2 = c2}.

Then ρ is finite, convex, continuous, and is given by

ρ(z) = inf
A1y1≤a1

{

c⊤1 y1 + E[sup
λ∈D

λ⊤

1 (zb2 + b̃2 −B2,1y1) + λ2a2]

}

.

Proof. Finiteness, convexity and continuity follow from Corollary 2.9. Next, we write ρ(z) as

(22) ρ(z) = inf
y1

{c⊤1 y1 + E[Q2(y1, z)] : A1y1 ≤ a1}

where for each y1 such that A1y1 ≤ a1 and for each z ∈ R we have defined

Q2(y1, z) = inf
y2

{c⊤2 y2 : B2,0y2 = zb2 + b̃2 −B2,1y1, A2y2 ≤ a2}.
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Finally, since D 6= ∅, by duality, we can express Q2(y1, z) as

(23) Q2(y1, z) = sup
(λ1,λ2)

{λ⊤

1 (zb2 + b̃2 −B2,1y1) + λ⊤

2 a2 : λ2 ≤ 0, B⊤

2,0λ1 +A⊤

2 λ2 = c2}.

�

The following proposition provides a sufficient criterion for some extended polyhedral risk mea-
sures to be convex risk measures when

(24) Y1 = {y1 : A1y1 ≤ a1}

is not necessarily a cone (a1 need not be 0).

Proposition 2.13. Let ρ be a functional on Lp(Ω,F ,P) of the form (16) with p ∈ [1,∞) and

h(z) = zb2 + b̃2 for some vectors b2, b̃2. Let the conditions of Corollary 2.9 be satisfied (complete
recourse and dual feasibility) and let D be defined as in Proposition 2.12. Assume

(i) D 6= ∅ with D ⊆ {b2}
∗×Rn2,1 ,

(ii) c1 6= 0 and b2 is of the form b2 = −Bi
2,1/c1(i) for at least one i ∈ I = {j : c1(j) 6= 0} with

y1(i) unconstrained and where Bi
2,1 denotes the ith column of B2,1.

Then ρ is a finite-valued convex risk measure.

Proof. Let Y1 be defined by (24). Finiteness and convexity of ρ follow from Corollary 2.9. The
monotonicity of ρ follows from (i). Indeed, if z, z̃ ∈ Lp(Ω,F ,P) satisfy z ≤ z̃ a.s.; then for every
y1 ∈ Y1 and every (λ1, λ2) ∈ D we have

λ⊤

1 (zb2 + b̃2 −B2,1y1) + λ⊤

2 a2 ≥ λ⊤

1 (z̃b2 + b̃2 −B2,1y1) + λ⊤

2 a2.

With the notation of Proposition 2.12 and with ϕ(y1, z) = c⊤1 y1+E[Q2(y1, z)], it follows that for every
y1 ∈ Y1, we have E[Q2(y1, z)] ≥ E[Q2(y1, z̃)], ϕ(y1, z) ≥ ϕ(y1, z̃), and ρ(z) = infy1∈Y1 ϕ(y1, z) ≥
infy1∈Y1 ϕ(y1, z̃) = ρ(z̃). The translation invariance condition follows from (ii). Indeed, eventually
after reordering the components of y1, c1, and the columns of B2,1, we can always assume that the
index i satisfying (ii) is the last k1th index, i.e., that c1, B2,1, and Y1 are of the form c1 = (ĉ1, c̄1)

⊤

with c̄1 ∈ R
∗, B2,1 = [B̂2,1,−c̄1b2], and Y1 = {y1 = (ŷ1, ȳ1) : Â1ŷ1 ≤ a1, ȳ1 ∈ R}. We then have for

each r ∈ R, for each z ∈ Lp(Ω,F ,P) and setting ỹ1 = ȳ1 +
r
c̄1
∈ R

ρ(z + r) = inf
Â1ŷ1≤a1, ȳ1∈R

{ĉ⊤1 ŷ1 + c̄1ȳ1 + E[ sup
(λ1,λ2)∈D

λ⊤

1 ((z + r)b2 + b̃2 − B̂2,1ŷ1 + ȳ1c̄1b2) + λ⊤

2 a2]}

= inf
Â1ŷ1≤a1, ỹ1∈R

{ĉ⊤1 ŷ1 + c̄1ỹ1 + E[ sup
(λ1,λ2)∈D

λ⊤

1 (zb2 + b̃2 − B̂2,1ŷ1 + ỹ1c̄1b2) + λ⊤

2 a2]} − r

= ρ(z)− r.

�

Proposition 2.13 extends the corresponding result in Eichhorn and Römisch [ER05]. Proposition
2.14 below shows that condition (i) in Proposition 2.13 ensures in fact a stronger type of monotonicity
than (i) in Definition 2.10. Such monotonicity is based on stochastic dominance rules Müller and
Stoyan [MS02]. For real-valued random variables z, z̃ ∈ L1(Ω,F ,P), stochastic dominance rules are
defined by classes of measurable real-valued functions on R. The stochastic dominance rule with
respect to class F is defined by

z �F z̃ :⇐⇒ ∀ f ∈ F : [ if E[f(z)] and E[f(z̃)] exist then E[f(z)] ≤ E[f(z̃)]]

for each z, z̃ ∈ L1(Ω,F ,P). Important special cases are the classes Fnd of nondecreasing functions
and Fndc of nondecreasing concave functions which respectively characterize first and second order
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stochastic dominance rules:

z �FSD z̃ :⇐⇒ z �Fnd
z̃ ⇐⇒ P(z ≤ t) ≥ P(z̃ ≤ t) ∀ t ∈ R,

z �SSD z̃ :⇐⇒ z �Fndc
z̃ ⇐⇒ E[min(z, t)] ≤ E[min(z̃, t)] ∀ t ∈ R.

In particular, it is said that a risk measure ρ is consistent with second order stochastic dominance
Ogryczak and Ruszczyński [OR02] if z �SSD z̃ implies ρ(z) ≥ ρ(z̃).

Proposition 2.14. Let ρ be a functional on Lp(Ω,F ,P) of the form (16) with p ∈ [1,∞) and

h(z) = zb2 + b̃2 for some vectors b2, b̃2. Let the conditions of Corollary 2.9 be satisfied (complete
recourse and dual feasibility) and let D be defined as in Proposition 2.12. Assume D 6= ∅ with
D ⊆ {b2}

∗×Rn2,1 . Then ρ is consistent with second order stochastic dominance.

Proof. With Y1 defined as in (24), let g be the function defined for every y1 ∈ Y1 and z ∈ R by

(25) g(y1, z) = c⊤1 y1 + sup
(λ1,λ2)∈D

{λ⊤

1 (zb2 + b̃2 −B2,1y1) + λ⊤

2 a2}.

For every y1 ∈ Y1, g(y1, ·) is convex and since D ⊆ {b2}
∗×Rn2,1 it is also nonincreasing. Let z �SSD

z̃. For every y1 ∈ Y1, since −g(y1, ·) is concave and nondecreasing E[−g(y1, z)] ≤ E[−g(y1, z̃)] and
ρ(z) = infy1∈Y1 E[g(y1, z)] ≥ infy1∈Y1 E[g(y1, z̃)] = ρ(z̃). �

For a one-period risk measure of the form (16) with h(z) = zb2 + b̃2 for some vectors b2, b̃2, the
first stage solution set S(ρ(z)) ⊆ Y1 is given by

(26) S(ρ(z)) = {y1 ∈ Y1 : ρ(z) = c⊤1 y1 + sup
(λ1,λ2)∈D

{λ⊤

1 (zb2 + b̃2 −B2,1y1) + λ⊤

2 a2}}.

For algorithmic issues considered in Sections 3 and 5, it can be useful to have at hand conditions
that guarantee the boundedness of S(ρ(z)). This question is addressed in the following proposition:

Proposition 2.15. Let ρ be a functional on Lp(Ω,F ,P) of the form (16) with p ∈ [1,∞), a2 null
and h(z) = zb2 for some vector b2. Let the conditions of Corollary 2.9 be satisfied (complete recourse
and dual feasibility) and assume that S(ρ(0)) is nonempty and bounded. Then S(ρ(z)) is nonempty,
convex, and compact for any z ∈ Lp(Ω,F ,P).

Proof. The proof follows the proof of Proposition 2.9 in Eichhorn and Römisch [ER05], with, in our
case, g given by (25). �

We provide examples of extended polyhedral risk measures. The above criteria for coherence and
consistency with second order stochastic dominance are applied.

Example 2.16 (Spectral risk measures and CVaR). Let Fz(x) = P(z ≤ x) be the distribution
function of random variable z and let F←z (p) = inf{x : Fz(x) ≥ p} be the usual generalized inverse
of Fz. Given a risk spectrum φ ∈ L1([0, 1]) the spectral risk measure ρφ generated by φ is given by
Acerbi [Ace02]

ρφ(z) = −

∫ 1

0

F←z (p)φ(p)dp.

Spectral risk measures have been used in a number of applications (portfolio selection Acerbi and
Simonetti [AS], insurance Cotter and Kevin [CD06]). The Conditional Value-at-Risk (CVaR) of
level 0 < ε < 1, also called Average Value-at-Risk (AVaR) in Föllmer and Schied [FS04], is a
particular spectral risk measure with a piecewise risk function φ having a jump at ε: φ(u) = 1

ε10≤u≤ε
(Acerbi [Ace02]). Let us consider more generally a piecewise risk function φ(·) with J jumps at
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0 < p1 < p2 < . . . < pJ < 1. Setting ∆φk = φ(p+k ) − φ(p−k ) = φ(pk) − φ(pk−1), for k = 1, . . . , J ,
with p0 = 0, we assume

(i) φ(·) is positive, (ii) ∆φk < 0, k = 1, . . . , J, (iii)

∫ 1

0

φ(u)du = 1.

With this choice of φ, we can express ρφ(z) as the optimal value of a linear programming problem,
Acerbi and Simonetti [AS]:

(27) ρφ(z) = inf
x∈RJ

J
∑

k=1

∆φk[pkxk − E [xk − z]+]− φ(1)E[z].

When J = 1,∆φ1 = −1/ε, p1 = ε, and φ(1) = 0, the above formula reduces to the formula for the
CVaR given by Rockafellar and Uryasev [RU02]:

(28) CV aRε[z] = inf
x∈R

[

x+
1

ε
E[z + x]−

]

.

A spectral risk measure with a piecewise risk function satisfying (i), (ii), and (iii) above is a
coherent extended polyhedral risk measure. Indeed, with respect to (16), we have c1 = ∆φ ◦ p with
∆φ = (∆φ1, . . . ,∆φJ )

⊤, c2 = (−∆φ; 0J,1;−φ(1)), B2,1 = (IJ ; 01,J), B2,0 = (−IJ , IJ , 0J,1; 01,2J , 1),
A2 = (−I2J , 02J,1), and h(z) = ze. The matrix A1 and the vectors a1 and a2 are null, b2 is a (J+1)-

vector of ones and b̃2 = 0. Notice that when J > 1 it is not polyhedral in the sense of Eichhorn
and Römisch [ER05]. The complete recourse and dual feasibility assumptions from Corollary 2.9 are
easily checked. This theorem provides for ρφ the dual representation

(29) ρφ(z) =







sup −E[λz]
λ = µ⊤e+ φ(1), µ ∈ Lq(Ω,F ,P;RJ),
E[µ] = −∆φ ◦ p, 0 ≤ µ ≤ −∆φ a.s.

Let Mρφ
be the set of dual multipliers from Corollary 2.11 for ρφ. For every λ ∈ Mρφ

, we have
λ ≥ 0 a.s. and

E[λ] = E[φ(1) + µ⊤e] = φ(1)−
J
∑

i=1

∆φipi = φ(1)−
J
∑

i=1

(φ(pi)− φ(pi−1))pi

= φ(0)p1 +

J−1
∑

i=1

φ(pi)(pi+1 − pi) + (1− pJ)φ(1) =

∫ 1

0

φ(u)du = 1.

It follows that Mρφ
⊆ D1 and using Corollary 2.11, ρφ is a coherent one-period risk measure.

Next, the set D in Proposition 2.14 is given by D = {(λ1, λ2) ∈ R
J+1×R2J : λ2 ≤ 0, λ1,J+1 =

−φ(1), λ1,1:J = λ2,J+1:2J , λ1,1:J = −λ2,1:J +∆φ}. For every (λ1, λ2) ∈ D, we have λ⊤

1 b2 = λ⊤

1 e ≤ 0.
It follows that D ⊆ {b2}

∗×Rn2,1 and due to Corollary 2.14, ρφ is consistent with second order
stochastic dominance. When J = 1,∆φ1 = −1/ε, p1 = ε, and φ(1) = 0, ρφ = CV aRε and we recover
results given in Eichhorn and Römisch [ER05]: the CVaR is consistent with second order stochastic
dominance and is an extended polyhedral risk measure of the form (16) with c1 = 1, c2 = (1ε ; 0),
B2,1 = −1, B2,0 = (−1, 1), A2 = −I2, h(z) = z, and A1, a1, a2 null. The dual representation (29)
becomes

CV aRε(z) = sup{−E[λz] : λ ∈ Lq(Ω,F ,P), 0 ≤ λ ≤
1

ε
a.s., E[λ] = 1}.

Example 2.17 (Optimized certainty equivalent (OCE) and expected utility.). Given a concave
non-decreasing utility function u, the optimized certainty equivalent Su(z) of the random variable
z is defined in Ben-Tal and Teboulle [BTT07] by Su(z) = supy1∈R y1 + E[u(z − y1)]. Considering
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for u a piecewise affine concave function, we can express the convex function −u as Rockafellar and
Wets, [RW98][Example 3.54]

(30) −u(x) = inf{c⊤y : y ∈ R
k, y ≥ 0, e⊤y = 1, b⊤y = x}

for some vectors b, c ∈ R
k. It follows that if u is a piecewise affine concave function, ρ(z) = −Su(z)

is given by

(31) ρ(z) =

{

inf −y1 + E[c⊤y2]
y1 ∈ R, y2 ∈ R

k, y2 ≥ 0, e⊤y2 = 1, b⊤y2 = z − y1.

In this case, the opposite of the OCE is an extended one-period polyhedral risk measure with h affine:
c1 = −1, c2 = c, A2 = [−Ik; e⊤;−e⊤], a2 = [0k,1; 1;−1], B2,1 = 1, B2,0 = b⊤, b2 = 1, and A1, a1,

and b̃2 null. Notice that it is not polyhedral in the sense of Eichhorn and Römisch [ER05] and that
complete recourse does not hold. However, properties of the OCE, given in Ben-Tal and Teboulle
[BTT07], are easily checked: monotonicity follows from the definition of −Su and the fact that u is
non-decreasing; translation invariance follows from the change of variable ȳ1 = y1 − r in (31) (for
ρ(z + r)) or in the definition of −Su(z + r); convexity can be checked directly from the definition
of Su (or using representation (31) and [Bonnans and Shapiro [BS00], Proposition 2.143], as in the
proof of Theorem 2.5).

Let us consider as a special case a piecewise linear utility function of the form

(32) u(x) = γ1(x)
+ − γ2(−x)

+ where 0 ≤ γ1 < 1 < γ2;

(note that u(x) < x for x 6= 0). The corresponding risk measure ρ(z) = −Su(z) is an extended
polyhedral risk measure with c1 = −1, c2 = (−γ1; γ2), B2,1 = 1, B2,0 = [1 − 1], A2 = −I2, h(z) = z,
and A1, a2, a2 null. Since complete (and even simple) recourse and dual feasibility hold, Corollary
2.9 provides the following dual representation:

ρ(z) = −Su(z) = sup{−E[λz] : λ ∈ Lq(Ω,F ,P), E[λ] = 1, γ1 ≤ λ ≤ γ2 a.s.}.

Using Corollary 2.11, we deduce that when u is of the form (32), ρ(z) = −Su(z) is a coherent risk
measure. More generally, it is shown in Ben-Tal and Teboulle [BTT07] that if u is a strongly risk
averse function (see Ben-Tal and Teboulle [BTT07]), ρ(z) = −Su(z) is coherent if and only if u is
of the form (32). For 0 < ε < 1, CVaRε constitutes a particular case with γ1 = 0 and γ2 = 1

ε . The
set D in Proposition 2.14 is given by D = {(λ1, λ2) : −γ2 ≤ λ1 ≤ −γ1, λ2 ≤ 0}. Since for every
(λ1, λ2) ∈ D we have λ⊤

1 b2 = λ⊤

1 e ≤ 0, using Proposition 2.14 we conclude that −Su(z) is consistent
with second order stochastic dominance.

For any concave utility function u, the risk measure ρ(z) = −E(u(z)) is an extended polyhedral
risk measure with h = u, B2,0 = c2 = 1, while the other parameters are null. In the particular
case when u is a piecewise affine concave function, representation (30) shows that −E(u(z)) can be
written as an extended polyhedral risk measure with h(z) = z and that complete recourse does not
hold. However, a dual representation of ρ can be derived from the dual representation

(33) −u(x) = sup{−λ1x− λ2 : λ ∈ R
2, λ1b+ λ2e ≤ −c}

of −u. Applying the expectation operator to both sides of the above equation and using Rockafellar
and Wets, [RW98][Theorem 14.60] (for switching the inf and expectation operators), we obtain for
ρ the dual representation

ρ(z) = sup{−E[λ1z + λ2] : λ ∈ Lq(Ω,F ,P;R
2), λ1b+ λ2e ≤ −c a.s.}.

Since −u is non-increasing, for every (λ1, λ2) in the feasible set of (33) we have λ1 ≥ 0 (otherwise,
there would be positive subgradients of −u at large enough points). It follows that in the above
representation of ρ, λ1 ≥ 0 a.s., which implies that ρ is monotone, convex, and consistent with
second order stochastic dominance. The expected regret or expected loss ρ(z) = E(z−β)− for some
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target β is a special case (already considered in Eichhorn and Römisch [ER05]) with utility function
u(z) = −(z − β)−. Finally, notice that ρ(z) = E[(z −E[z])k] for some 1 ≤ k ≤ p− 1, is an extended
polyhedral risk measure with h(z) = (z − E[z])k.

Example 2.18 (Multiperiod extended polyhedral risk measures).
We consider functionals ρ on ×T

t=1Lp(Ω,Ft,P) (p ∈ [1,∞)) of the form ρ(z) = CV aRε(Φ(z)) where
the function Φ is defined on R

T and maps to the extended real numbers.
Then ρ is a finite-valued coherent multiperiod risk measure if the function Φ is (i) concave, (ii)
monotone with respect to the (canonical) partial ordering in R

T , (iii) positively homogeneous, (iv)
satisfies the property Φ(ζ1 + r, . . . , ζT + r) = Φ(ζ1, . . . , ζT ) + r for all r ∈ R and ζ ∈ R

T and (v) has

linear growth, i.e., for some constant L > 0 it holds |Φ(ζ)| ≤ L
∑T

t=1 |ζt| for every ζ ∈ R
T .

There are two important special cases for the function Φ:

(a) Φ(ζ) =
∑T

t=1 γtζt with nonnegative γt, t = 1, . . . , T , such that
∑T

t=1 γt = 1. According to
the dual representation of CV aRε we obtain

ρ(z) = CV aRε
(

T
∑

t=1

γtzt

)

= sup
{

−
T
∑

t=1

γtE(λzt) : λ ∈ Lq(Ω,F ,P), E(λ) = 1, 0 ≤ λ ≤
1

ε
a.s.
}

= sup
{

−
T
∑

t=1

E(λtzt) : λt ∈ Lq(Ω,Ft,P), E(λt) = γt, 0 ≤ λt ≤
γt
ε
, t = 1, . . . , T,

γtE(λt+1|Ft) = γt+1λt a.s., t = 1, . . . , T − 1
}

,

where λt = γtE(λ|Ft), t = 1, . . . , T , and 1
p + 1

q = 1. Hence, ρ is a multiperiod extended

polyhedral coherent risk measure according to Theorems 2.3 and 2.5.
(b) Φ(ζ) = mint=1,...,T ζt for ζ ∈ R

T . Here, we use the representation (28) and obtain

ρ(z) = CV aRε
(

min
t=1,...,T

zt

)

= inf
{

x+
1

ε
E

([

min
t=1,...,T

zt + x
]−)

: x ∈ R

}

= inf
{

x+
1

ε
E

(

max
t=1...,T

{

0,−x− zt

})

: x ∈ R

}

= inf
{

x+
1

ε
E(vT ) : vt ∈ Lp(Ω,Ft,P), −x− zt ≤ vt, vt−1 ≤ vt, t = 1, . . . , T, v0 = 0, x ∈ R

}

.

The latter linear stochastic program may be rewritten in the form (6) and ρ is a multiperiod
extended polyhedral coherent risk measure. It has been first studied by Eichhorn in [Eic07].

3. Risk averse dynamic programming

3.1. General setting. When using a multiperiod extended polyhedral risk measure to deal with
uncertainty in the multistage stochastic programming framework (4), we consider accumulated rev-

enues zt = −
∑t

τ=1 fτ (xτ , ξτ ) and the sigma-algebras Ft = σ(ξj , j ≤ t) for t = 1, . . . , T . Recall that
x0 and χ1(x0, ξ1) are deterministic and that for any time step t = 1, . . . , T , we denote by ξ[t] the
available realizations of the process up to this time step, i.e., ξ[t] = (ξj , j ≤ t).

We also denote by Zt the space of Ft-measurable functions (these sets are embedded: Z1 ⊂ . . . ⊂
ZT ). Next, for t = 1, . . . , T, we assume the following:

(H1) the functions ft : RNt,x × R
Mt → R are continuous and χt : RNt−1,x × R

Mt ⇉ R
Nt,x are

measurable, bounded and closed valued multifunctions.
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We are now in a position to define a risk averse problem for (1) via a multiperiod risk measure. Let
ρ : Z1 × . . .ZT → R be a multiperiod risk measure and let us introduce the risk averse problem

(34)
inf ρ

(

−f1(x1, ξ1),−
2
∑

τ=1

fτ (xτ (ξ[τ ]), ξτ ), . . . ,−
T
∑

τ=1

fτ (xτ (ξ[τ ]), ξτ )

)

xt(ξ[t]) ∈ χt(xt−1(ξ[t−1]), ξt), t = 1, . . . , T.

In the above problem, the optimization is performed over Ft-measurable functions xt, t = 1, . . . , T
satisfying the constraints and such that ft(xt(·), ·) ∈ Zt. The sequence of measurable mappings
xt(·), t = 1, . . . , T , is called a policy. The Ft-measurability of xt(·) implies the nonanticipativity of
the policy, i.e., implies that xt is a function of ξ[t]. The policy obtained from (34) will be said to be
risk averse. A policy is said to be feasible if the constraints xt(ξ[t]) ∈ χt(xt−1(ξ[t−1]), ξt), t = 1, . . . , T,
are satisfied with probability one.

In this section, our objective is to provide a class of form (1) problems and a class of multiperiod
risk measures ρ having the following two properties:

(P1) Dynamic programming (DP) equations can be written for (34).
(P2) The SDDP algorithm applied to problem (34) decomposed by stages converges to an optimal

solution of (34).

We intend to enforce (P2) obtaining DP equations that satisfy conditions given in Philpott and
Guan [PG08]. These conditions imply the following:

(P3) The recourse functions are given as the optimal value of a non-risk averse stochastic program
(the objective function is an expectation) where the randomness appears on the right hand
side of the constraints only.

Property (P3) leads us naturally to use the class of extended polyhedral risk measures introduced
in the previous section.

3.2. Extended polyhedral risk measures. Taking for ρ a multiperiod extended polyhedral risk
measure of the form (6), problem (34) can be written

(35)

inf E[
∑T

t=1 c⊤t yt]
Atyt ≤ at a.s., t = 1, . . . , T,
∑t−1

τ=0 Bt,τyt−τ = ht(−
∑t

τ=1 fτ (xτ , ξτ )) a.s. t = 2, . . . , T,
xt ∈ χt(xt−1, ξt) a.s. t = 1, . . . , T.

Remark 3.1. In (35), the dependence of xt and yt with respect to ξ[t] was suppressed to alleviate
notation. This will in general be done in the sequel.

We first check that (P1) and (P3) hold for problem (35) above. Since we want to write dynamic
programming equations, and for further use, we start with the following simple remark:

Remark 3.2. Let us consider the following T-stage optimization problem

P

{

inf f(x1, . . . , xT )
xt ∈ X(x0, . . . , xt−1), t = 1, . . . , T.

We decompose f as f(x) =
∑T

k=1 fk(x1:k), where fk is the sum of all the functions in the sum
of functions defining f which depend on xk but not on xk+1:T (for a given k, fk is 0 if no such
functions exist). Dynamic programming equations for P can be written as follows:

Qt(x0:t−1) =

{

inf
xt

ft(x1:t) +Qt+1(x0:t)

xt ∈ X(x0:t−1)

for t = 1, . . . , T , with QT+1 ≡ 0.
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The application of Remark 3.2 to (35) yields the following DP equations: for t = 1, . . . , T ,
Qt(x0:t−1, ξ[t−1], y1:t−1) is given by
(36)

Qt(x0:t−1, ξ[t−1], y1:t−1) = Eξt|ξ[t−1]











infxt,yt
c⊤t yt +Qt+1(x0:t, ξ[t], y1:t)

Atyt ≤ at

(1− δt1)
(

∑t−1
τ=0 Bt,τyt−τ − ht(−

∑t
τ=1 fτ (xτ , ξτ ))

)

= 0

xt ∈ χt(xt−1, ξt)











where here, and in what follows, QT+1 ≡ 0. Since these DP equations correspond to the stagewise
decomposition of risk averse problem (35), the recourse functions Qt in (36) are said to be risk
averse.

Let us now take as a special case for ρ the multiperiod risk measure defined by

(37) ρ(z1, . . . , zT ) = −θ1E[zT ] +
T
∑

t=2

θtρ
t(zt)

for some non-negative weights θt, t = 1, . . . , T , summing to one (
∑T

t=1 θt = 1) and for some one-
period coherent extended polyhedral risk measures ρt : Zt → R, t = 2, . . . , T .

Remark 3.3. We easily check that ρ in (37) is a multiperiod (coherent) extended polyhedral risk
measure.

Observe that since ρt is coherent and z1 deterministic, we have ρt(zt − z1) = ρt(zt) + z1 and

ρ(z1, . . . , zT ) in (37) can be expressed as ρ(z1, . . . , zT ) = −z1 − θ1E[zT − z1] +
∑T

t=2 θtρ
t(zt − z1).

This expression reveals that the corresponding objective function in (34) is the sum of the first stage
(deterministic) cost and of a convex combination of the mean future cost and of risk measures of
future partial costs. With this choice of ρ, problem (34) becomes

(38)
inf f1(x1, ξ1) + θ1E[

T
∑

t=2

ft(xt, ξt)] +

T
∑

t=2

θtρ
t(−

t
∑

k=2

fk(xk, ξk))

xt ∈ χt(xt−1, ξt), t = 1, . . . , T.

Plugging the expression (16) of the risk measure ρt (taking the same for all time steps) into (38),
the latter can be written

inf
xt,wt,yt

f1(x1, ξ1) +

T
∑

t=2

θtc
⊤

1wt + E[θ1

T
∑

t=2

ft(xt, ξt) +

T
∑

t=2

θtc
⊤

2 yt]

B2,1wt +B2,0yt = h(−
∑t

k=2 fk(xk, ξk)), t = 2, . . . , T,
A1wt ≤ a1, A2yt ≤ a2, t = 2, . . . , T,
xt ∈ χt(xt−1, ξt), t = 1, . . . , T.

In turn, the above optimization problem can be expressed as

(39)
inf

x1,w2:T

f1(x1, ξ1) +

T
∑

t=2

θtc
⊤

1wt +Q2(x1, ξ[1], w2, . . . , wT )

A1wt ≤ a1, t = 2, . . . , T, x1 ∈ χ1(x0, ξ1),

where

(40) Q2(x1, ξ[1], w2:T ) =



















inf
xt,yt

E[θ1

T
∑

t=2

ft(xt, ξt) +

T
∑

t=2

θtc
⊤

2 yt]

B2,1wt +B2,0yt = h(−
∑t

k=2 fk(xk, ξk)), A2yt ≤ a2, t = 2, . . . , T,
xt ∈ χt(xt−1, ξt), t = 2, . . . , T.
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The application of Remark 3.2 to optimization problem (40) yields the following DP equations: for
t = 2, . . . , T , Qt(x1:t−1, ξ[t−1], wt:T ) is given by

(41) Eξt|ξ[t−1]

(

inf
xt,yt

θ1ft(xt, ξt) + θtc
⊤

2 yt +Qt+1(x1:t, ξ[t], wt+1:T )

B2,1wt +B2,0yt = h(−
∑t

k=2 fk(xk, ξk)), A2yt ≤ a2, xt ∈ χt(xt−1, ξt)

)

.

In DP equations (36) and (41) obtained for respectively risk averse problems (35) and (38), the state
variables memorize the relevant history of the process and of the decisions. For (36) (resp. (41)), we
can reduce the size of the state vector replacing the history of the decisions x1:t−1 by xt−1 and zt−1
(resp. xt−1 and z̃t−1 with z̃t−1 = zt−1 − z1). Variable z̃t−1 represents the total revenue (opposite of
the cost) from time step 2 until time step t − 1 (i.e., the total income until time step t − 1 for the
time steps where the data are random). Variables z̃t satisfy z̃t = z̃t−1 − ft(xt, ξt) for t = 2, . . . , T ,
with z̃1 set equal to 0. With this notation, DP equations (36) for problem (35) become

(42) Qt(xt−1, ξ[t−1], zt−1, y1:t−1)=Eξt|ξ[t−1]







infxt,yt,zt c⊤t yt +Qt+1(xt, ξ[t], zt, y1:t)

(1− δt1)
(

∑t−1
τ=0 Bt,τyt−τ − ht(zt)

)

= 0, Atyt ≤ at

zt = zt−1 − ft(xt, ξt), xt ∈ χt(xt−1, ξt)







for t = 1, . . . , T , with z0 = 0. As for the dynamic programming equations (39) and (41), they simplify
as follows: in (39), Q2(x1, ξ[1], w2, . . . , wT ) needs to be replaced by Q2(x1, ξ[1], z̃1, w2, . . . , wT ) and
for t = 2, . . . , T, we have

(43) Qt(xt−1, ξ[t−1], z̃t−1, wt:T )=Eξt|ξ[t−1]







inf
xt,z̃t,yt

− δtT θ1z̃t + θtc
⊤

2 yt +Qt+1(xt, ξ[t], z̃t, wt+1:T )

B2,1wt +B2,0yt = h(z̃t), A2yt ≤ a2
z̃t = z̃t−1 − ft(xt, ξt), xt ∈ χt(xt−1, ξt)






.

Remark 3.4. Comparing the non-risk averse dynamic programming equations (3) with the risk
averse ones (42) or (39) and (43), we see that additional decision and state variables are introduced
in the latter cases. More precisely, at the first time step, in the non-risk averse case the decision x1

is taken while in risk averse case (42) (resp. (39) and (43)), additional decision variables y1 and z1
(resp. (w2, . . . , wT )) are needed. This first stage problem is deterministic for all models.

For time step t = 2, . . . , T , in risk averse case (42) (resp. (39) and (43)), the state vector is
augmented with partial cost zt−1 and with the variables (y1, . . . , yt−1) (resp. partial cost z̃t−1 and
the variables (wt, . . . , wT )). For both risk averse models, additional decisions zt (or z̃t) and yt are
needed for stages t = 2, . . . , T . This is summarized in the table below:

First stage Stages t = 2, . . . ,T

Decision variables

NRA x1 xt

RA1 (x1, z1, y1) (xt, zt, yt)
RA2 (x1, w2, . . . , wT ) (xt, z̃t, yt)

State variables

NRA (x0, ξ[0]) (xt−1, ξ[t−1])
RA1 (x0, ξ[0]) (xt−1, ξ[t−1], zt−1, y1, . . . , yt−1)
RA2 (x0, ξ[0]) (xt−1, ξ[t−1], z̃t−1, wt, . . . , wT )

Table 1. Decision and state variables for the non-risk averse (NRA) DP equations
(3) as well as for the risk averse ones (42) (RA1), and (39) and (43) (RA2).

Remark 3.5. Other special cases for the multiperiod risk measure ρ in (34) for which DP equations
can be written are the risk measures from Example 2.18.
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Properties (P1) and (P3) thus hold for (35) and hold for (38) when using extended one-period
polyhedral risk measures for ρt. We now concentrate on (P2). So far, all the developments of this
section were valid for a problem of the form (1). To ensure that (P2) holds, we consider the special
case when (1) is a stochastic linear program (SLP). Indeed, the convergence of SDDP algorithm and
of related sampling-based algorithms is proved in Philpott and Guan [PG08] for SLP. We observe
that if (1) is a SLP, risk averse problem (35) (resp. (38)) is a SLP if and only if

(44) ht(z) = zbt + b̃t, for some bt, b̃t ∈ R
nt,2 (resp. h(z) = zb2 + b̃2, for some b2, b̃2 ∈ R

n2,2).

Of interest for applications, we now specialize the above DP equations (43) taking extended poly-
hedral risk measures with h(·) of the kind (44) above. As seen in the previous section, spectral risk
measures with piecewise constant spectra are of this kind. We provide the DP equations obtained
in this case using directly (27).

3.3. Spectral risk measures. Let φ be a piecewise risk spectrum satisfying (i), (ii), and (iii) given
in Example 2.16 and let ∆φk = φ(pk) − φ(pk−1), k = 1, . . . , J . If we take for ρt a spectral risk
measure ρφ (the same for all time steps), using (27) we can decompose (38) by stages and express
it under the form

(45)
inf f1(x1, ξ1) +

T
∑

t=2

θtc
⊤

1wt +Q2(x1, ξ[1], z̃1, w2, . . . , wT ),

x1 ∈ χ1(x0, ξ1), wt ∈ R
J , t = 2, . . . , T,

with z̃1 = 0, c1 = ∆φ ◦ p, and where for t = 2, . . . , T,

(46) Qt(xt−1, ξ[t−1], z̃t−1, wt:T ) = Eξt|ξ[t−1]

(

inf
xt,z̃t

f̃t(z̃t, wt) +Qt+1(xt, ξ[t], z̃t, wt+1:T )

z̃t = z̃t−1 − ft(xt, ξt), xt ∈ χt(xt−1, ξt)

)

with

f̃t(z̃t, wt) = −(δtT θ1 + φ(1)θt)z̃t − θt ∆φ⊤(wt − z̃te)
+.

When the risk spectrum φ has one jump, we obtain the CVaR.

3.4. Conditional Value-at-Risk. When taking ρt = CVaRεt and using (28), we can express (38)
under the form

(47)
inf

x1,w2:T

f1(x1, ξ1)−
T
∑

t=2

θtwt +Q2(x1, ξ[1], z̃1, w2, . . . , wT )

x1 ∈ χ1(x0, ξ1), wt ∈ R, t = 2, . . . , T,

with z̃1 = 0 and where for t = 2, . . . , T ,
(48)

Qt(xt−1, ξ[t−1], z̃t−1, wt:T ) = Eξt|ξ[t−1]





inf
xt,z̃t

− δtT θ1z̃t +
θt
εt
(wt − z̃t)

+ +Qt+1(xt, ξ[t], z̃t, wt+1:T )

z̃t = z̃t−1 − ft(xt, ξt), xt ∈ χt(xt−1, ξt)



 .

3.5. Convergence of SDDP in a risk averse setting. The convergence of SDDP algorithm
and of related sampling-based algorithms is proved in Philpott and Guan [PG08] for SLP with the
following properties:

(A1) Random data only appear in the right-hand side of the constraints.
(A2) The supports of the distributions of the underlying random vectors are discrete and finite.
(A3) Random vectors are interstage independent or satisfy a certain type of interstage dependence

(see Philpott and Guan [PG08]).
(A4) The feasible set of the linear program is nonempty and bounded in each stage.
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In what follows, we consider multistage stochastic linear programs of the form (1) where

(49) ft(xt, ξt) = d⊤

t xt and χt(xt−1, ξt) = {xt : xt ≥ 0, Ctxt = ξt −Dtxt−1}.

For these programs, Assumption (A1) holds and it can be noted that if (A1) holds for (1) then (A1)
holds for risk averse problems (35) and (38). In the remainder of the paper, we assume (A2) and
(A3). We also assume that (A4) holds for (1), which, in our context, can be expressed as follows:

(A4) For t = 1, . . . , T , for any feasible state xt−1 and for any realization ξit of ξt, the set

χt(xt−1, ξ
i
t) = {xt | xt ≥ 0, Ctxt = ξit −Dtxt−1}

is bounded and nonempty.

To apply the convergence results from Philpott and Guan [PG08] in our risk averse setting, (A4)
should also hold for risk averse problems (35) or (38). For (35), (A4) takes the following form:

(A5) {y1 : A1y1 ≤ a1} is bounded and for all t = 2, . . . , T , for any feasible states x1, y1, . . . ,
xt−1, yt−1, for any sequence of realizations ξi1, . . . , ξ

i
t of ξ1, . . . , ξt, the set {yt : Atyt ≤

at, Bt,0yt = ht(−
∑t

τ=1 fτ (xτ , ξ
i
τ ))−

∑t−1
τ=1Bt,τyt−τ for some xt ∈ χt(xt−1, ξ

i
t)} is bounded

and nonempty.

For (38), remembering Proposition 2.15, a condition implying (A4) is the following:

(A6) For t = 2, . . . , T , the sets S(ρt(0)) are nonempty and bounded where S(ρt(0)) is de-
fined in (26). {y1 : A1y1 ≤ a1} is bounded and for all t = 2, . . . , T , for any feasible
x1, y1, . . . , xt−1, yt−1, w2:T , for any sequence of realizations ξi1, . . . , ξ

i
t of ξ1, . . . , ξt, the set

{yt : Atyt ≤ at, ∃ xt ∈ χt(xt−1, ξ
i
t), B2,0yt = h(−

∑t
τ=2 fτ (xτ , ξ

i
τ )) − B2,1wt} is bounded

and nonempty.

Indeed, with respect to the non-risk averse setting, recall that the additional decision variables for
(38) are z̃t (bounded, due to (A4)), yt, and wt. Variables wt, t = 2, . . . , T are first stage decision
variables and due to Proposition 2.15, if S(ρt(0)) is nonempty and bounded then optimal wt are
bounded. Next, condition (A6) guarantees the boundedness of optimal yt.

However, even if the feasible set at each stage for (35) or (38) is not bounded, we may be able
to show, in some cases, that these feasible sets can be replaced by bounded feasible sets without
changing the problems, i.e., that the solutions are bounded. Such is the case for problems (45)
and (47). Indeed, for these problems, the only additional variables with respect to the non-risk
averse case are z̃t (bounded, due to (A4)) and first stage variables w2, . . . , wT . For the spectral risk
measure ρt = ρφ, t = 2, . . . , T , considered in (45), the sets S(ρt(0)) = S(ρφ(0)) = {0}, t = 2, . . . , T ,
are nonempty and bounded. Using Proposition 2.15, optimal values of wt in (45) are bounded. This
result can also be easily proved directly:

Lemma 3.6. Let assumption (A4) hold and let φ be a piecewise risk spectrum satisfying (i), (ii),
and (iii) given in Example 2.16. Let w∗2 , . . . , w

∗
T be optimal values of w2, . . . , wT for (45). Then

w∗t (k) is finite for every t = 2, . . . , T , and k = 1, . . . , J .

Proof. Since χt, t = 1, . . . , T , are bounded and ∆φ < 0, we can bound from below the objective

function of (45) by L1(w) = K1+
∑T

t=2 θt(∆φ◦p)⊤wt and L2(w) = K2+
∑T

t=2 θt(∆φ◦(p−e))⊤wt for
some constants K1 and K2. Since ∆φ◦p < 0, if one component wt(k) = −∞ then L1(w) = +∞, the
objective function is therefore +∞, and such wt(k) cannot be an optimal value of wt(k). Similarly,
since ∆φ ◦ (p − e) > 0, if one wt(k) = +∞ then L2(w) = +∞, the objective function is +∞ and
such wt(k) cannot be an optimal value of wt(k). �

The following corollary is an immediate consequence of this lemma:

Corollary 3.7. Let assumption (A4) hold. Let w∗2 , . . . , w
∗
T be optimal values of w2, . . . , wT for (47).

Then w∗t is finite for every t = 2, . . . , T .
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It follows that we can add (sufficiently large) box constraints on wt in (45) and (47) without
changing the optimal solutions of (45) and (47). Gathering our observations, we come to the
following proposition:

Proposition 3.8. [Convergence of SDDP in a risk averse setting] Consider multistage stochastic
linear programs of the form (1) with ft and χt given by (49). Assume that for such multistage
programs, Assumptions (A1), (A2), (A3), and (A4) hold. Consider the risk averse formulations
(45), (46) and (47), (48). Then an SDDP algorithm applied on these DP equations will converge if
the sampling procedures satisfy the FPSP and BPSP assumptions (see Philpott and Guan [PG08]).

The same convergence result holds for the following two risk averse formulations:

(1) assuming (A5), for risk averse program (35) decomposed by stages as (42) with ht(·) given
by (44);

(2) assuming (A6), for risk averse program (38) decomposed by stages as (39), (43) with h(·)
given by (44).

In the next two sections, we focus on solution methods for interstage independent SLP. The
developments can however be easily adapted to the case when the process affinely depends on
previous values. Our notation follows closely Birge and Donohue [BD01] and Philpott and Guan
[PG08].

4. Decomposition algorithms for a class of non-risk averse stochastic programs

Since the supports of the distributions of the random vectors ξ2, . . . , ξT are discrete and finite,
optimization problem (34) is finite dimensional and the evolution of the uncertain parameters over
the optimization period can be represented by a scenario tree having a finite number of scenarios
that can happen in the future for ξ2, . . . , ξT . The root node of the scenario tree corresponds to the
first time step with ξ1, x0 and χ1(x0, ξ1) deterministic.

For a given stage t, each node of the scenario tree corresponds to a possible realization of ξt and
the set of nodes is denoted by Ωt. The children nodes of a node at stage t ≥ 1 are the nodes that
can happen at stage t + 1 if we are at this node at t. A sampled scenario (ξ1, . . . , ξT ) corresponds
to a particular succession of nodes such that ξt is a possible value for the process at t and ξt+1 is a
child of ξt. A given node in the tree at stage t is identified with a scenario (ξ1, . . . , ξt) going from
the root node to this node. In this situation, the sigma algebra FT is the set of all subsets of ΩT .
More generally, Ft is the set of all subsets of the set whose ith atom is the set of scenarios that pass
through a given node i ∈ Ωt.

We consider multistage stochastic linear programs with ft and χt of the form (49) with an
interstage independent process ξt. In this situation, for t = 1, . . . , T, the recourse function Qt(xt−1)
is given by Qt(xt−1) = Eξt [Qt(xt−1, ξt)] with

(50) [LPt] Qt(xt−1, ξt) =

{

inf
xt

d⊤

t xt +Qt+1(xt)

Ctxt = ξt −Dtxt−1 , xt ≥ 0,

and QT+1 ≡ 0. Following the notation in Philpott and Guan [PG08], though problem [LPt] depends
on the choice of xt−1 and ξt, we write [LPt] instead of [LPt(xt−1, ξt)] to alleviate notation.

We assume relatively complete recourse for (50), which means that for any feasible sequence
of decisions (x1, . . . , xt) to any t-stage scenario (ξ1, ξ2, . . . , ξt), there exists a sequence of feasible
decisions (xt+1, . . . , xT ) with probability one.

We now detail the computations of optimality cuts as well as the computation of a confidence
interval on an upper bound on the expected value of a given first stage solution.
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4.1. SDDP: backward pass. The cuts are computed for time step T + 1 down to time step 2.
For time step T + 1, since Qi

T+1 = QT+1 = 0, we have for QT+1 the cuts Ek
T = ekT = 0 for

k = (i − 1)H, . . . , iH . At time step t = 2, . . . , T , the cuts for Qt are computed having at hand the
approximation Qi

t+1 of Qt+1 which satisfies

(51) Qt+1(xt) ≥ Q
i
t+1(xt).

Plugging (51) into (50), we obtain Qt(xt−1) ≥ Eξt

[

Qi
t(xt−1, ξt)

]

with

(52) Qi
t(xt−1, ξt) =











inf
xt

d⊤

t xt + θt

Ctxt = ξt −Dtxt−1
−→
E i

txt + eθt ≥
−→e i

t, xt ≥ 0.

On scenario k and time step t, the above problem is solved for (xt−1, ξt) = (xk
t−1, ξ

j
t ), j = 1, . . . , qt,

where ξjt , j = 1, . . . , qt are all possible realizations of ξt at time step t. Since relatively complete
recourse and (A4) hold, these linear programs have nonempty feasible sets; their optimal values are

finite and both the primal and the dual have the same optimal value. We denote by πk,j
t , ρk,jt the

(row vectors) optimal Lagrange multipliers associated to respectively the equality and cut constraints

for problem Qi
t(x

k
t−1, ξ

j
t ). In what follows we also set p(t, j) = P(ξt = ξjt ). The following theorem

provides the cuts computed for Qt at iteration i:

Theorem 4.1. In the backward pass of iteration i, H valid cuts for Qt, t = 2, . . . , T, are given by

Ek
t−1 =

∑qt
j=1 p(t, j)π

k,j
t Dt

ekt−1 =
∑qt

j=1 p(t, j)(π
k,j
t ξjt + ρk,jt

−→e i
t),

and Ek
T = ekT = 0 for k = (i− 1)H + 1, . . . , iH.

Proof. By duality, Qi
t(xt−1, ξ

j
t ) may be expressed as the optimal value of the following linear program:

sup
π,ρ

π
(

ξjt −Dtxt−1

)

+ ρ−→e i
t

π Ct + ρ
−→
E i

t ≤ d⊤

t , ρ e = 1 , ρ ≥ 0.

For the above problem, the optimal solutions are extremal points of the feasible set. Next, the

feasible set does not depend on xt−1. This means that for any xt−1, the row vectors πk,j
t and ρk,jt

are extremal points of the feasible set of the problem Qi
t(xt−1, ξ

j
t ). It follows that

Qi
t(xt−1, ξ

j
t ) ≥ πk,j

t (ξjt −Dtxt−1) + ρk,jt
−→e i

t,

for j = 1, . . . , qt. Using these inequalities and since Qt(xt−1) is bounded from below by the term

Eξt [Q
i
t(xt−1, ξt)] =

∑qt
j=1 p(t, j)Q

i
t(xt−1, ξ

j
t ), we obtain a cut of the form θkt−1 + Ek

t−1xt−1 ≥ ekt−1
and the result follows. �

Remark 4.2. Using the convexity of Qt, we can also express ekt−1 as

(53) ekt−1 =

qt
∑

j=1

p(t, j)
[

Qi
t(x

k
t−1, ξ

j
t ) + πk,j

t Dtx
k
t−1

]

.
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4.2. SDDP: stopping rule and algorithm. In the backward pass, for the first time step, the first
stage problem is solved using the recourse function Qi

2 ≤ Q2. Since (A4) holds, the optimal value
of this problem is finite and provides a lower bound zinf for the optimal mean cost.

In the end of the forward pass, we can compute the total cost −zk on scenario k for the policy
(x1, x

k
2 , . . . , x

k
T ):

−zk = d⊤

1 x1 +

T
∑

t=2

d⊤

t x
k
t ,

which is an upper bound on the optimal cost on this scenario. If the H scenarios were representing
all possible evolutions of (ξ1, . . . , ξT ), then

z̄ = −
1

H

iH
∑

k=(i−1)H+1

zk

would be an upper bound on the optimal mean cost. Since we only have a sample of all the possible
scenarios, z̄ is an estimation of an upper bound on the optimal mean cost. The standard deviation
of the estimator associated to this estimation is measured by

σz̄ =
1

H

√

√

√

√

iH
∑

k=(i−1)H+1

(z̄ − zk)2.

A 100(1− α)% confidence interval (with 0 < α < 1) for an upper bound on the optimal mean cost
is then given by

(54) [z̄ − tH−1(α)σz̄ , z̄ + tH−1(α)σz̄ ]

where tH−1(α) is the (1 − α
2 )-quantile of the Student density with H − 1 degrees of freedom. The

algorithm stops when the lower bound zinf belongs to the confidence interval (54) (stopping rule
from Pereira and Pinto [PP91]). Using the previous developments, SDDP algorithm for solving
(50) can be formulated as in Figure 1 which follows. We now have all the ingredients to detail the
application of SDDP for approximating the risk averse recourse functions from Section 3 for SLP.

5. SDDP for some risk averse stochastic programs

We consider the risk averse recourse functions from Section 3 in the case when ft and χt are
given by (49) and ht(·) and h(·) in respectively (42) and (43) are given by (44). Recall that risk
averse DP equations (42), or (39),(43) that define these recourse functions satisfy (P3) (like the
non-risk averse DP equations (3) but with additional state and control variables). We assume that
relatively complete recourse holds for (1) and that the assumptions of Proposition 3.8 hold. In
this context, relatively complete recourse also holds for risk averse problems (42) or (39),(43). The
SDDP algorithm presented in the previous section can thus be easily adapted to the risk averse
DP equations to obtain approximations of the corresponding risk averse recourse functions. These
adaptations and some specific comments are given below. In particular, we show that when ρt in
(38) is a spectral risk measure, we obtain closed-form expressions for some cut coefficients under
some assumptions.

5.1. Extended polyhedral risk measures. With respect to the previous section, at iteration i
of SDDP, the forward pass additionally provides decisions yk1 , . . . , y

k
T as well as the partial costs

zk1 , . . . , z
k
T on scenario k = (i − 1)H + 1, . . . , iH . In the backward pass of iteration i, H cuts are
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Step 0: INITIALISATION. Set i = 1 (iteration number), z̄ =∞, zinf = −∞, E0
t = 0

and e0t is a lower bound on Qt for t = 2, . . . , T + 1. Go to Step 1.
Step 1: FORWARD PASS.

Sample H scenarios (ξk1 , . . . , ξ
k
T ), k = (i− 1)H + 1, . . . , iH.

Ct=0, Ct Sq=0.
For k = (i − 1)H + 1, . . . , iH ,

For t = 1, . . . , T ,

Solve problem [AP i,k
t ] and store an optimal solution xk

t of this problem.
End For

Ct=Ct+
∑T

t=1 d
⊤

t x
k
t , Ct Sq=Ct Sq+

∑T
t=1(d

⊤

t x
k
t )

2.
End For

z̄ = Ct
H , σz̄ = 1

H

√

Ct Sq−Hz̄2. Go to Step 2.
Step 2: BACKWARD PASS.

For t = T + 1 down to 1,
For k = (i− 1)H + 1, . . . , iH ,

If (t = T + 1) then set E0
t and e0t to 0.

Else if (t ≥ 2)
For j = 1, . . . , qt,

Compute Qi
t(x

k
t−1, ξ

j
t ) given by (52) and let πk,j

t , ρk,jt be optimal
dual multipliers.

End For

Build a cut for Qt of the form θkt−1 + Ek
t−1xt−1 ≥ ekt−1

with Ek
t−1 and ekt−1 given in Theorem 4.1.

Else

Set zinf to the optimal value of the first stage problem.
End If

End For

End For

Go to Step 3.
Step 3: STOPPING RULE.

If |zinf − z̄| ≤ tH−1(α)σz̄ then stop.
Else i← i+ 1 and go to Step 1. End If

Figure 1. SDDP algorithm with relatively complete recourse for an interstage
independent SLP.

computed for Qt at (x
k
t−1, z

k
t−1, y

k
1 , . . . , y

k
t−1), k = (i−1)H+1, . . . , iH . Using the notation previously

introduced, the lower bounding approximations Qi
t of Qt have the form

Qi
t(xt−1, zt−1, y1:t−1) = max

j=0,1,...,iH
[−Ej

t−1xt−1 − Zj
t−1zt−1 −

t−1
∑

τ=1

Y j,τ
t−1yτ + ejt−1]

with Zj
t−1 ∈ R and for some row vectors Y j,τ

t−1 of appropriate dimensions. Following the develop-
ments of the previous section, for t = 2, . . . , T , we can bound from below Qt(xt−1, zt−1, y1:t−1) by
Eξt [Q

i
t(xt−1, zt−1, y1:t−1, ξt)] with Qi

t(xt−1, zt−1, y1:t−1, ξt) given as the optimal value of the following
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linear program:

(55)

inf
xt,yt,zt,θ̃t

c⊤t yt + θ̃t

Atyt ≤ at, xt ≥ 0
∑t−1

τ=0 Bt,τyt−τ − ztbt = b̃t (a)
zt + d⊤

t xt = zt−1 (b)
Ctxt = ξt −Dtxt−1 (c)
−→
E i

txt +
−→
Z i

tzt + eθ̃t ≥ −
∑t

τ=1

−→
Y i,τ

t yτ +
−→e i

t (d)

where
−→
Z i

t = (Z0
t , Z

1
t , . . . , Z

iH
t )⊤ and

−→
Y i,τ

t is the matrix whose (j+1)th line is Y j,τ
t for j = 0, . . . , iH .

We denote by σk,j
t , µk,j

t , πk,j
t , and ρk,jt the (row vectors) optimal Lagrange multipliers associated to

constraints (55)-(a), (55)-(b),(55)-(c), and (55)-(d) for the problem defining Qi
t(x

k
t−1, z

k
t−1, y

k
1:t−1, ξ

j
t ).

With this notation, the following theorem provides the cuts computed for Qt at iteration i:

Theorem 5.1. Let Qt, t = 2, . . . , T + 1, be the risk averse recourse functions given by (42) with
ht(·) given by (44). In the backward pass of iteration i of the SDDP algorithm, the following cuts

are computed for these recourse functions. For t = T + 1, we set Ek
t−1, Z

k
t−1, Y

k,τ
t−1 and ekt−1 to 0 for

k = (i− 1)H + 1, . . . , iH and τ = 1, . . . , T . For t = 2, . . . , T , and k = (i− 1)H + 1, . . . , iH, Ek
t−1 is

given by Theorem 4.1 and

Zk
t−1 = −

qt
∑

j=1

p(t, j)µk,j
t , Y k,τ

t−1 =
∑qt

j=1 p(t, j)(σk,j
t Bt,t−τ + ρk,jt

−→
Y i,τ

t ), τ = 1, . . . , t− 1.

Next, ekt−1 is given by (53) in Remark 4.2 where Qi
t(x

k
t−1, ξ

j
t ) needs to be replaced by

Qi
t(x

k
t−1, z

k
t−1, y

k
1:t−1, ξ

j
t )− µk,j

t zkt−1 +

t−1
∑

τ=1

(σk,j
t Bt,t−τ + ρk,jt

−→
Y i,τ

t )ykτ .

Proof. The proof is similar to the proof of Theorem 4.1. �

When applying SDDP on DP equations (39), (43), with respect to the previous section, at iteration
i of the SDDP algorithm, the forward pass additionally computes the first stage decisions wi

2, . . . , w
i
T

as well as the partial costs z̃k1 , . . . , z̃
k
T on scenario k = (i− 1)H +1, . . . , iH . In the backward pass of

iteration i, H cuts are computed for Qt at (xk
t−1, z̃

k
t−1, w

i
t, . . . , w

i
T ), k = (i − 1)H + 1, . . . , iH . The

lower bounding approximations Qi
t of Qt now have the form

Qi
t(xt−1, z̃t−1, wt:T ) = max

j=0,1,...,iH
[−Ej

t−1xt−1 − Zj
t−1z̃t−1 +

T−t+1
∑

τ=1

W j,τ
t−1wt+τ−1 + ejt−1]

with Zj
t−1 ∈ R and where W j,τ

t−1 is a row vector of appropriate dimension. We can bound from below

Qt(xt−1, z̃t−1, wt:T ) by Eξt [Q
i
t(xt−1, z̃t−1, wt:T , ξt)] with Qi

t(xt−1, z̃t−1, wt:T , ξt) given as the optimal
value of the following linear program:

(56)

inf
xt,yt,z̃t,θ̃t

− δtT θ1z̃t + θtc
⊤

2 yt + θ̃t

A2yt ≤ a2, xt ≥ 0

B2,1wt +B2,0yt = z̃tb2 + b̃2 (a)
z̃t + d⊤

t xt = z̃t−1 (b)
Ctxt = ξt −Dtxt−1 (c)
−→
E i

txt +
−→
Z i

tz̃t + eθ̃t ≥
∑T−t

τ=1

−→
W i,τ

t wt+τ +−→e i
t (d)

where
−→
W i,τ

t is the matrix whose (j + 1)th line is W j,τ
t for j = 0, . . . , iH .
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We denote by σk,j
t , µk,j

t , πk,j
t , and ρk,jt the (row vectors) optimal Lagrange multipliers associated to

constraints (56)-(a), (56)-(b),(56)-(c), and (56)-(d) for the problem defining Qi
t(x

k
t−1, z̃

k
t−1, w

i
t:T , ξ

j
t ).

With this notation, the following theorem provides the cuts computed for Qt at iteration i:

Theorem 5.2. Let Qt, t = 2, . . . , T + 1, be the risk averse recourse functions given by (43) with
h(·) given by (44). In the backward pass of iteration i of the SDDP algorithm, the following cuts
are computed for these recourse functions. For t = T + 1, we set Ek

t−1, Z
k
t−1, and ekt−1 to 0 for

k = (i− 1)H + 1, . . . , iH. For t = 2, . . . , T and k = (i− 1)H + 1, . . . , iH, Ek
t−1 is given in Theorem

4.1 and

Zk
t−1 = −

qt
∑

j=1

p(t, j)µk,j
t , W k,1

t−1 = −

qt
∑

j=1

p(t, j)σk,j
t B2,1,(57)

W k,τ
t−1 =

qt
∑

j=1

p(t, j)ρk,jt

−→
W i,τ−1

t , τ = 2, . . . , T − t+ 1.(58)

Further, ekt−1 is given by (53) in Remark 4.2 where Qi
t(x

k
t−1, ξ

j
t ) needs to be replaced by

Qi
t(x

k
t−1, z̃

k
t−1, w

i
t:T , ξ

j
t )− µk,j

t z̃kt−1 + σk,j
t B2,1w

i
t −

T−t
∑

τ=1

ρk,jt

−→
W i,τ

t wi
t+τ .

Proof. The proof is similar to the proof of Theorem 4.1. �

Since (P3) holds, the stopping criterion discussed in Section 4 can still be used.
As a special case, we can consider for ρ the risk measures from Example 2.18.

5.2. Spectral risk measures. We consider the application of SDDP to the DP equations (45), (46)
(when a spectral risk measure is used, a particular case of the previous section). In this particular
case, we intend to give for some particular choices of the first stage variable w1, the exact expressions

(independent of the sampled scenarios) of Zk
t−1 and W k,τ

t−1 for every t = 2, . . . , T , k = 1, . . . , H , and
τ = 1, . . . , T − t + 1. Recall that though the first stage feasible set for (45) is not bounded, the
optimal values of w2:T are bounded. For numerical reasons, in the course of SDDP, well-chosen box
constraints on wt, t = 2, . . . , T are added (at the first stage, and that do not modify the optimal
value of (45)) without changing the cut calculations (since these latter are performed for stages
t = 2, . . . , T where wt are state variables).

Let us define for t = 1, . . . , T, xt = (x1, . . . , xt), ξ
t = (ξ1, . . . , ξt), and let us introduce the set χt

of admissible decisions up to time step t:

χt = {xt : ∃ ξ̃t realization of ξt : xτ ≥ 0 and Cτxτ = ξ̃τ −Dτxτ−1, τ = 1, . . . , t}.

Since (A4) holds, the sets χt are compact and since f t(xt) =
∑t

τ=2 d
⊤

τ xτ is continuous, we can

introduce the pairs (Cu
t , C

ℓ
t ) ∈ R

2 defined by

Cu
t =

{

max f t(xt)
xt ∈ χt,

Cℓ
t =

{

min f t(xt)
xt ∈ χt.

Following the developments of Section 4 and introducing slack variables, Qt(xt−1, z̃t−1, wt:T ) is
bounded from below by Eξt [Q

i
t(xt−1, z̃t−1, wt:T , ξt)] with Qi

t(xt−1, z̃t−1, wt:T , ξt) given as the optimal
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value of the following linear program:

(59)

inf
xt,z̃t,vt,θ̃t

− (δtT θ1 + φ(1)θt)z̃t − θt∆φ⊤vt + θ̃t

vt ≥ 0, vt ≥ wt − z̃te, xt ≥ 0,
z̃t + d⊤

t xt = z̃t−1 (a)
Ctxt = ξt −Dtxt−1 (b)
−→
E i

txt +
−→
Z i

tz̃t + eθ̃t ≥
∑T−t

τ=1

−→
W i,τ

t wt+τ +−→e i
t (c)

with W j,τ
t ∈ R

1×J . Let σk,j
t , σ̃k,j

t , µk,j
t , πk,j

t , and ρk,jt , be the (row vectors) optimal Lagrange multi-
pliers respectively for the constraints vt ≥ w1

t − zte, vt ≥ 0, (59)-(a), (59)-(b), and (59)-(c) for the

problem defining Q1
t (x

k
t−1, z̃

k
t−1, w

1
t:T , ξ

j
t ) (of the form (59)).

The objective of the forward pass is to build states where cuts are computed in the backward
pass. At the first iteration, instead of building these states using the approximate recourse functions
Q0

t , we can choose arbitrary feasible states xt, z̃t, wt (which is a simple task since relatively complete

recourse holds). With this variant of the first iteration Qi
t(xt−1) = maxj=1,...,iH [−Ej

t−1xt−1 + ejt−1].

If we choose first stage variables w1
2:T such that (i) w1

t > −Cℓ
t e for t = 2, . . . , T (resp. such that (ii)

w1
t < −Cu

t e for t = 2, . . . , T ) then Zk,τ
t−1 and W k,τ

t−1 for k = 1, . . . , H , can be computed using Lemma
5.3-(i) (resp. Lemma 5.3-(ii)) which follows. For instance, if the costs are positive then item (i) is
fulfilled with w1

t = 0 and item (ii) taking for each component of w1
t the opposite of a strict upper

bound on the worst cost.

Lemma 5.3. [Cut calculation at the first iteration] Let us consider the risk averse recourse functions
Qt given by (46). Valid cuts for Qt are given by Theorem 5.2. Moreover, in the following two cases,

we obtain closed-form expressions for Zk
t−1 and W k,τ

t−1 (independent of the sampled scenarios):

(i) If for t = 2, . . . , T, w1
t > −Cℓ

t e, then for t = 2, . . . , T , P(t) holds where

P(t) :

{

∀ k = 1, . . . , H, Zk
t−1 = θ1 + φ(0)

∑T
ℓ=t θℓ,

∀ k = 1, . . . , H,W k,τ
t−1 = −θt+τ−1∆φ⊤, τ = 1, . . . , T − t+ 1.

(ii) If for t = 2, . . . , T, w1
t < −Cu

t e, then for t = 2, . . . , T , P̃(t) holds where

P̃(t) :

{

∀ k = 1, . . . , H, Zk
t−1 = θ1 + φ(1)

∑T
ℓ=t θℓ,

∀ k = 1, . . . , H,W k,τ
t−1 = 0, τ = 1, . . . , T − t+ 1.

Proof. Let us fix t ∈ {2, . . . , T }, k ∈ {1, . . . , H}, and j ∈ {1, . . . , qt}. We denote by xt, z̃t, vt, θ̃t
an optimal solution to the problem defining Q1

t (x
k
t−1, z̃

k
t−1, w

1
t:T , ξ

j
t ) above (the dependence of the

solution with respect to k, j is suppressed to alleviate notation).

The KKT conditions for problem Q1
t (x

k
t−1, z̃

k
t−1, w

1
t:T , ξ

j
t ) imply

−δtT θ1 − φ(1)θt − µk,j
t − σk,j

t e− ρk,jt

−→
Z 1

t = 0,(60)

−θt∆φ⊤ − σ̃k,j
t − σk,j

t = 0,(61)

σk,j
t ◦ (−z̃te+ w1

t − vt)
⊤ = 0,(62)

σ̃k,j
t ◦ v⊤

t = 0,(63)

where for t = T we have set ρk,jt = 0. Next, since z̃t can be written as z̃t = −f t(xt) for some xt ∈ χt,
in case (i), we have z̃te ≤ −Cℓ

t e < w1
t . Further vt = max(0, w1

t − z̃te) = w1
t − z̃te > 0. Using (61)

and (63) we then get

(64) σ̃k,j
t = 0 and σk,j

t = −θt∆φ⊤.
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Let us now first show (i) by backward induction on t. Plugging the value of σk,j
T given in (64) into

(60) we obtain

µk,j
T = −θ1 − φ(1)θT + θT e

⊤∆φ = −θ1 + θT (−φ(1) +
J
∑

ℓ=1

[φ(pℓ)− φ(pℓ−1)]) = −θ1 − θTφ(0).

Using the above relation and (57) yields Zk
T−1 = −

∑qT
j=1 p(T, j)µk,j

T = θTφ(0) + θ1. Further, using

(57) with −B2,1 the identity matrix, we obtain

(65) W k,1
T−1 =

qT
∑

j=1

p(T, j)σk,j
T = −

qT
∑

j=1

p(T, j)θT∆φ⊤ = −θT∆φ⊤.

This shows P(T ). Let us now assume that P(t+1) holds for some t ∈ {2, . . . , T −1} and let us show

that P(t) holds. First notice that (65) still holds with T substituted with t, i.e., W k,1
t−1 = −θt∆φ⊤.

Further, for τ = 2, . . . , T − t+ 1,

W k,τ
t−1 =

∑qt
j=1 p(t, j)ρk,jt

−→
W 1,τ−1

t , from (58),

= −
∑qt

j=1 p(t, j)ρk,jt θt+τ−1e∆φ⊤, using P(t+ 1),

= −
∑qt

j=1 p(t, j)θt+τ−1∆φ⊤ = −θt+τ−1∆φ⊤, since ρk,jt e = 1.

Also

Zk
t−1 = −

∑qt
j=1 p(t, j)µk,j

t , from (57),

= −
∑qt

j=1 p(t, j)(−φ(1)θt + θt∆φ⊤e− ρk,jt

−→
Z 1

t ), using (60) and (64),

= −
∑qt

j=1 p(t, j)(−φ(0)θt − ρk,jt

−→
Z 1

t ), using the definition of ∆φ,

= φ(0)θt +
∑qt

j=1 p(t, j)ρk,jt (θ1 + φ(0)
∑T

ℓ=t+1 θℓ)e, using P(t+ 1),

= θ1 + φ(0)
∑T

ℓ=t θℓ since ρk,jt e = 1.

We have thus shown P(t) which achieves the proof of (i).
Let us now assume that w1

t < −Cu
t e for t = 2, . . . , T and let us show (ii). Let us fix t ∈ {2, . . . , T },

k ∈ {1, . . . , H}, and j ∈ {1, . . . , qt}. As before, we denote by xt, z̃t, vt, θ̃t an optimal solution to the

problem defining Q1
t (x

k
t−1, z̃

k
t−1, w

1
t:T , ξ

j
t ). In this case, z̃te ≥ −Cu

t e > w1
t and vt = max(0, w1

t−z̃te) =
0. Using (61) and (62), we see that

(66) σ̃k,j
t = −θt∆φ⊤ and σk,j

t = 0.

Using (57) with B2,1 = −IJ , we get W k,1
t−1 = 0. We show (ii) by backward induction. For t = T ,

plugging the value of σk,j
T (66) into (60) gives µk,j

T = −θ1 − φ(1)θT , which, together with (57), gives

Zk
T−1 = θ1 + φ(1)θT . We have already proved that W k,1

T−1 = 0 and thus P̃(T ) holds. Let us now
assume that P(t + 1) holds for some t ∈ {2, . . . , T − 1} and let us show that P(t) holds. Since
−→
W 1,τ−1

t = 0, we obtain W k,τ
t−1 =

∑qt
j=1 p(t, j)ρk,jt

−→
W 1,τ−1

t = 0 for τ = 2, . . . , T − t + 1. Plugging

σk,j
t = 0 into (60) and using (57) gives

Zk
t−1 =

∑qt
j=1 p(t, j)(φ(1)θt + ρk,jt

−→
Z 1

t ),

=
∑qt

j=1 p(t, j)(θ1 + φ(1)
∑T

ℓ=t θℓ), using P̃(t+ 1) and ρk,jt e = 1,

= θ1 + φ(1)
∑T

ℓ=t θℓ.

This shows P̃(t) and achieves the proof of (ii). �

Remark 5.4. Lemma 5.3 can be used as a debugging tool to check the implementation of the SDDP
for risk averse problem (38) when ρt is a spectral risk measure (which can be a heavy implementation
when many constraints and interstage dependent SLP are considered). More precisely, we can check
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that in cases (i) and (ii) the formulas for Zk,τ
t−1 and W k,τ

t−1 given in Lemma 5.3 match the formulas
from Theorem 5.2.

5.3. Conditional Value-at-Risk. When ρt in (38) is CV aRεt , we obtain a result analogous to
Lemma 5.3:

Lemma 5.5. Let us consider the risk averse recourse functions Qt given by (48). Valid cuts for Qt

are given by Theorem 5.2. Moreover, in the following two cases, we obtain closed-form expressions

for Zk
t−1 and W k,τ

t−1 (independent of the sampled scenarios):

(i) If for t = 2, . . . , T, w1
t > −Cℓ

t , then for t = 2, . . . , T , P(t) holds where

P(t) :

{

∀ k = 1, . . . , H, Zk
t−1 = θ1 +

∑T
ℓ=t

θℓ
εℓ
,

∀ k = 1, . . . , H,W k,τ
t−1 = θt+τ−1

εt+τ−1
, τ = 1, . . . , T − t+ 1.

(ii) If for t = 2, . . . , T, w1
t < −Cu

t , then for t = 2, . . . , T , P̃(t) holds where

P̃(t) : ∀ k = 1, . . . , H, Zk
t−1 = θ1, and W k,τ

t−1 = 0, τ = 1, . . . , T − t+ 1.

Proof. The proof is similar to the proof of Lemma 5.3. �

Remark 5.6. In the particular case when the CVaR levels εt = ε ∈)0, 1( are the same at each time
step, Lemma 5.5 is a particular case of Lemma 5.3 with φ(1) = 0, φ(0) = 1

ε , and ∆φ = −1/ε ∈ R.

6. Conclusion

The class of extended polyhedral risk measures was introduced in this paper. Dual representations
of these risk measures were obtained and used to provide conditions for coherence, convexity and
consistency with second order stochastic dominance.

This class allowed us to write risk averse dynamic programming equations for some risk averse
problems with risk measures taken from this class. We then detailed a stochastic dual dynamic
programming algorithm for approximating the corresponding risk averse recourse functions for some
stochastic linear programs. In particular, conditions were given to guarantee convergence. The
developments of Sections 4 and 5 can be easily adapted if the recourse functions are approximated
using other sampling-based decomposition algorithms such as AND (Birge and Donohue [BD01])
and DOASA (Philpott and Guan [PG08]).

A forthcoming work will assess the proposed approach on a mid-term multistage production
management problem [GS].
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