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Abstract

In this Note we consider a Lipschitz backward stochastic differential equation (BSDE)

driven by a continuous martingale M . We prove (in Theorem 3.2) that if M is a strong

Markov process and if the BSDE has the form (2.2) with regular data then the unique

solution (Y,Z,N) of the BSDE is reduced to (Y,Z), i.e. the orthogonal martingale N

is equal to zero, showing that in a Markovian setting the ”usual” solution (Y, Z) (of a

BSDE with regular data) has not to be completed by a strongly orthogonal component

even if M does not enjoy the martingale representation property.

1 Introduction

Since the seminal papers [1, 8, 4], a lot of interest has been given to the study of backward

stochastic differential equations (BSDEs) especially for their use in applications like Finance

or stochastic control theory. Roughly speaking, a BSDE can be seen as a generalization of

the martingale representation property. Indeed, given a martingale M defined on a filtered
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probability space (Ω,FT , (Ft)t∈[0,T ],P) enjoying the martingale representation property, a

random variable ζ can be represented as

ζ = IE[ζ] +
∫ T

0
ZsdMs

where Z is a predictable process. More precisely, the martingale Yt := IE[ζ|Ft] can be

written as

Yt = ζ −
∫ T

t
ZsdMs, t ∈ [0, T ]. (1.1)

The pair of adapted processes (Y, Z) is said to satisfy the BSDE (1.1) with terminal condition

YT = ζ. The ”usual” formulation of a BSDE consists in adding an additional component so

that the equation (1.1) is replaced by

Yt = ζ −
∫ T

t
ZsdMs +

∫ T

t
f(r, Yr, Zr)d〈M,M〉r, t ∈ [0, T ] (1.2)

where f is a given predictable function. The key ingredient for solving such an equation

is once again the martingale representation property. If this property fails, one cannot a

priori hope to find a solution to equation (1.2), and one has to consider the more general

equation (1.3) given by

Yt = ζ −
∫ T

t
ZsdMs +

∫ T

t
f(r, Yr, Zr)d〈M,M〉r −

∫ T

t
dNr, t ∈ [0, T ] (1.3)

whose solution is a triple (Y,Z,N) where (Y, Z) is as before a pair of adapted processes and

N is a martingale strongly orthogonal to M .

The surprising fact of this Note is to show that in a continuous Markovian setting (that is

M is a continuous strong Markov martingale on a continuous filtration and (1.3) has the

form of a forward-backward system (FBSDE) (2.1)-(2.2)) then the orthogonal component

vanishes or more precisely Ns = N0 for all s. Thus dN = 0 and so the component N
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disappears in the equation (2.2). In this sense, by abuse of notation we will write that N

is equal to zero meaning that N is constant equal to N0. After a draft version of this Note

was finished we realized that this surprising phenomenon had been somehow observed in

the paper [6] where the authors showed that a random variable of the form F (MT ) can be

represented without orthogonal component when M is a Markov process which is allowed

to have jumps. However the conditions put by the authors on the function F do not really

fit with the setting of BSDEs with non-zero driver. The reader will find a short discussion

about this point in the Section 4.

We proceed as follows. First in the next section, we introduce our setting. Then in Section

3 we present our main result: Theorem 3.2. Finally in Section 4 we discuss the result and

some extensions under consideration in a work in preparation.

2 Preliminaries

Let M := (Mt)t∈[0,T ] be a real-valued continuous square integrable martingale with re-

spect to a continuous filtration (Ft)t∈[0,T ] both defined on a probability space (Ω,F ,P).

Assume that M is a strong Markov process with respect to (Ft)t∈[0,T ]. For (t,m) in

[0, T ] × R we denote by M t,m the process M starting at m at time t defined as M t,m
s :=

m + Ms −Mt, s ∈ [t, T ]. On this filtered probability space we also consider a stochas-

tic process Xt,x,m := (Xt,x,m
s )s∈[t,T ] defined as the unique strong solution of the following

one-dimensional stochastic differential equation

Xt,x,m
s = x+

∫ s

t
σ(r,Xt,x,m

r ,M t,m
r )dMr+

∫ s

t
b(r,Xt,x,m

r ,M t,m
r )d〈M,M〉r, s ∈ [t, T ], t ∈ [0, T ]

(2.1)

where σ, b : [0, T ]×R2 → R are deterministic functions of class C0,2([0, T ]×R2) with locally

Lipschitz partial derivatives and such that there exists a positive constant k satisfying

|σ(t, x1,m1)− σ(t, x2,m2)|+ |b(t, x1,m1)− b(t, x2,m2)|
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≤ k(|x1 − x2|+ |m1 −m2|), ∀(t, x1, x2,m1,m2) ∈ [0, T ]× R4.

Let us finally introduce the object of interest of this Note that is the following backward

stochastic differential equation (BSDE) coupled with the forward process Xt,x,m as

Y t,x,m
s =F (Xt,x,m

T ,M t,m
T )−

∫ T

t
Zt,x,m

r dMr +
∫ T

t
f(r,Xt,x,m

r ,M t,m
r , Y t,x,m

r , Zt,x,m
r )d〈M,M〉r

−
∫ T

t
dN t,x,m

r , (2.2)

where F : R2 → R is a bounded deterministic function regular enough and the generator

f : [0, T ]× R4 → R is assumed to be B([0, T ])⊗ B(R4)-measurable where B(R) denotes the

Borel σ-filed on R (so that f(r, x,m, y, z) is deterministic for non-random (r, x,m, y, z) in

[0, T ]× R4). In our main result we will make use of the assumptions below.

(L): There exists a constant K > 0 such that for all (x,m) in R2 and for all (yi, zi) in

R2 (i = 1, 2) we have

|f(s, x,m, y1, z1)− f(s, x,m, y2, z2)| ≤ K(|y1 − y2|+ |z1 − z2|)

and there exists a positive constant a such that
∫ T
0 |f(s, x,m, 0, 0)|d〈M,M〉s ≤ a for all

(x,m) in R2.

(D1): The function F : R2 → R is twice differentiable with locally Lipschitz partial deriva-

tives in x and m uniformly in time.

(D2): The driver f is differentiable in (x,m, y, z) and there exists a positive constant

α such that

|∂if(s, x1,m1, y1, z1)−∂if(s, x2,m2, y2, z2)| ≤ α(|x1−x2|+ |m1−m2|+ |y1−y2|+ |z1− z2|),
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for all (s, x,m, y, z) ∈ [0, T ]× R4, and i = 2, . . . , 5.

Given an arbitrary non-negative progressively measurable process ψ, for t in [0, T ], we

let Ψt :=
∫ t
0 ψsd〈M,M〉s. We recall that under assumption (L), it is shown in [3] that

there exist a positive constant β large enough and an unique triple (Y t,x,m, Zt,x,m, N t,x,m) ∈

S2
β×H2

β×M2 solution of (2.2) where S2
β is the space of continuous adapted processes φ such

that IE[supt∈[0,T ] e
βΨt |φt|2] <∞; H2

β denotes the space of predictable processes φ such that

IE[
∫ T
0 eβΨt |φt|2d〈M,M〉t] < ∞ and M2 the space of square integrable martingales N t,x,m

strongly orthogonal to M (i.e. 〈M,N t,x,m〉 = 0).

We finally denote by c a constant which can differ from one line to another. We recall

below an important fact about Markov processes.

Theorem 2.1. ([2, Theorem (8.11)] or [9, V. Theorem 35]) The process (Xt,x,m
s ,M t,m

s )s∈[t,T ]

is a strong Markov process for the filtration (Ft)t∈[0,T ]. If in addition M is assumed to have

independent increments then the stochastic process (Xt,x,m
s )s∈[t,T ] is a strong Markov process.

The Markov property of the pair (Xt,x,m
s ,M t,m

s )s∈[t,T ] transfers to the solution of (2.2).

Theorem 2.2. ([5, Proposition 3.2]) There exist two deterministic functions u, v : [0, T ]×

R2 → R, B([0, T ])⊗ Be(R2) such that (Y t,x,m, Zt,x,m) in (2.2) satisfy:

Y t,x,m
s = u(s,Xt,x,m

s ,M t,m
s ), Zt,x,m

s = v(s,Xt,x,m
s ,M t,m

s ), s ∈ [t, T ]

where Be(R2) is the σ-field on R2 generated by the functions (x,m) 7→ IE
[
φ(s,Xt,x,m

s ,M t,m
s )d〈M,M〉s

]
with φ : Ω× [0, T ]× R2 → R a continuous bounded function.
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3 Main result

We will use the following 1property for the solution of the BSDE (2.2).

Proposition 3.1. (Particular case of [5, Proposition 4.7]) Assume that the assumptions

(L), (D1)-(D2) are in force. Then the function u given in Theorem 2.2 satisfy:

(i) The map (x,m) 7→ u(t, x,m) is of class C1(R2) for all t ∈ [0, T ].

(ii) There exists two constants ζ1 and ζ2 depending only ‖F‖∞ and on the Lipschitz con-

stant K of f such that

ζ1 ≤ u(t, x,m) ≤ ζ2, ∀(t, x,m) ∈ [0, T ]× R2.

(iii) The maps (t, x,m) 7→ ∂iu(t, x,m) (i = 2, 3) are continuous.

We are now ready to state and prove the main result of this Note.

Theorem 3.2. Assume that F and f satisfy the assumptions (L) and (D1)-(D2). Then

N t,x,m in (2.2) is equal to zero and equation (2.2) becomes

Y t,x,m
s = F (Xt,x,m

T )−
∫ T

t
Zt,x,m

r dMr +
∫ T

t
f(r, Y t,x,m

r , Zt,x,m
r )d〈M,M〉r.

Proof. In [3], the existence of an unique solution (Y t,x,m, Zt,x,m, N t,x,m) under our hypothe-

ses was obtained. By Theorem 2.2 there exists a deterministic function u such that

Y t,x,m
s = u(s,Xt,x,m

s ,M t,m
s ), ∀s ∈ [t, T ].

1Note that this result has been proved under an additional technical assumption called (MRP) with f a
quadratic generator and when the BSDE (2.2) is replaced by the more general BSDE

Y t,x,m
s = F (Xt,x,m

T , M t,m
T )−

Z T

t

Zt,x,m
r dMr +

Z T

t

f(r, Xt,x,m
r , M t,m

r , Y t,x,m
r , Zt,x,m

r )d〈M, M〉r −
Z T

t

dN t,x,m
r

+ κ

Z T

t

d〈N t,x,m, N t,x,m〉r. (3.1)

However when κ is equal to zero the assumption (MRP) is not needed anymore. The full proof of this fact
will be presented in a paper in preparation.
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In addition, Proposition 3.1 applied to (2.2) gives that the application (x,m) 7→ u(t, x,m) is

of class C1(R2) for every t. We mimic a technique given in [5] and compute 〈Y t,x,m, N t,x,m〉s

for s ≥ t. Let π(n) := {t = t
(n)
0 ≤ t

(n)
1 ≤ · · · ≤ t

(n)
N = T} be a sequence of subdivisions of

[t, T ] whose mesh |π(n)| tends to zero as n goes to the infinity such that

lim
n→∞

sup
t≤s≤T

∣∣∣∣∣∣〈Y t,x,m, N t,x,m〉s −
ϕs−1∑
j=0

(u(t(n)
j+1, X

t,x,m

t
(n)
j+1

,M t,x,m

t
(n)
j+1

)− u(t(n)
j , Xt,x,m

tj(n) ,M
t,x,m

t
(n)
j

))∆jN
t,x,m

∣∣∣∣∣∣ = 0

(3.2)

where the limit is understood in probability with respect to P, ∆jN
t,x,m := N t,x,m

t
(n)
j+1

−N t,x,m

t
(n)
j

and ϕs = j(n) such that t(n)
j ≤ s < t

(n)
j+1. For simplicity we will drop the superscripts (n)

in the rest of the proof. In addition, by choosing a subsequence (also denoted (π(n))), the

previous limit holds P-a.s.. We will show that 〈Y t,x,m, N t,x,m〉s = 0 for all s, P-a.s.. Hence,

together with relation (2.2) we will have that 〈Y t,x,m, N t,x,m〉s = 〈N t,x,m, N t,x,m〉s = 0 for

all s, P-a.s. and thus N t,x,m
s = N t,x,m

0 for all s, which will conclude the proof. We have that

ϕs−1∑
j=0

(u(tj+1, X
t,x,m
tj+1

,M t,x,m
tj+1

)− u(tj , X
t,x,m
tj

,M t,x,m
tj

))∆jN
t,x,m

=
ϕs−1∑
j=0

[
(u(tj+1, X

t,x,m
tj

,M t,x,m
tj

)− u(tj , X
t,x,m
tj

,M t,x,m
tj

))∆jN
t,x,m

+
ϕs−1∑
j=0

(u(tj+1, X
t,x,m
tj+1

,M t,x,m
tj+1

)− u(tj+1, X
t,x,m
tj

,M t,x,m
tj

))∆jN
t,x,m

]
=: A

(n)
s,1 +A

(n)
s,2 . (3.3)

We consider the two summands above separately. Assume first that the following result

holds true

lim
n→∞

sup
t≤s≤T

A
(n)
s,2 = 0, P− a.s.. (3.4)

Then (3.2) and (3.3) entail that

lim
n→∞

sup
t≤s≤T

|A(n)
s,1 − 〈Y

t,x,m, N t,x,m〉s| = 0, P− a.s.
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and so

lim
n→∞

sup
t≤s≤T

|A(n)
s,1 − 〈N

t,x,m, N t,x,m〉s| = 0, P− a.s..

We will prove that P := 〈N t,x,m, N t,x,m〉 is a martingale, since it is by definition of finite

variation this will show that 〈N t,x,m, N t,x,m〉s = 0 for all s in [t, T ]. We know that

IE[|〈N t,x,m, N t,x,m〉s|] <∞, ∀s ∈ [t, T ].

Now fix t ≤ s1 ≤ s2 ≤ T . For an element tj of the subdivisions considered above we let

δju := u(tj+1, X
t,x,m
tj

,M t,x,m
tj

)− u(tj , X
t,x,m
tj

,M t,x,m
tj

) We have that

IE[Ps2 |Fs1 ]

= IE

 lim
n→∞

ϕs2−1∑
j=0

δju ∆jN
t,x,m|Fs1


= IE

 lim
n→∞

ϕs2−1∑
j=0

δju ∆jN
t,x,m + (N t,x,m

s2
−N t,x,m

tϕs2
)|Fs1

 (3.5)

where the last equality is a consequence of the continuity of the martingale N t,x,m. In

addition the sequence of random variables
(∑ϕs2−1

j=0 δju ∆jN
t,x,m + (N t,x,m

s2 −N t,x,m
tϕs2

)
)

n
is

uniformly integrable. Indeed, since the function u is bounded (by Proposition 3.1 (ii)) we

have that

IE

∣∣∣∣∣∣
ϕs2−1∑
j=0

δju ∆jN
t,x,m + (N t,x,m

s2
−N t,x,m

tϕs2
)

∣∣∣∣∣∣
2

=
ϕs2−1∑
j=0

IE
[
|δju|2|∆jN

t,x,m|2 + |(N t,x,m
s2

−N t,x,m
tϕs2

)|2
]

≤ c

ϕs2−1∑
j=0

IE
[
|∆jN

t,x,m|2 + |(N t,x,m
s2

−N t,x,m
tϕs2

)|2
]

≤ c

ϕs2−1∑
j=0

IE
[
|N t,x,m

tj+1
|2 − |N t,x,m

tj
|2 + |N t,x,m

s2
|2 − |N t,x,m

tϕs2
|2
]
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= c(IE[|N t,x,m
s2

|2]− |N t,x,m
t |2),

thus supn IE
[∣∣∣∑ϕs2−1

j=0 δju ∆jN
t,x,m + (N t,x,m

s2 −N t,x,m
ϕs2

)
∣∣∣2] ≤ c(IE[|N t,x,m

s2 |2] − |N t,x,m
t |2) <

∞. Applying Lebesgue’s dominated convergence Theorem in (3.5) we get

IE[Ps2 |Fs1 ]

= lim
n→∞

IE

ϕs2−1∑
j=0

δju ∆jN
t,x,m + (N t,x,m

s2
−N t,x,m

tϕs2
)|Fs1


= lim

n→∞

( ϕs1−1∑
j=0

δju ∆jN
t,x,m + IE[(δϕs1

u) ∆ϕs1
N t,x,m|Fs1 ]

+ IE

[ ϕs2−1∑
j=ϕs1+1

δju ∆jN
t,x,m + (N t,x,m

s2
−N t,x,m

tϕs2
)|Fs1

])

= Ps1 + lim
n→∞

(
(δϕs1

u) (N t,x,m
s1

−N t,x,m
tϕs1

)
)

= Ps1

where for the last equality we have used the fact that u is bounded and that the martingale

N t,x,m is continuous. Thus P is a martingale which by definition has finite variations so

〈N t,x,m, N t,x,m〉s = 〈N t,x,m, N t,x,m〉t = 0, for all s ∈ [t, T ], P− a.s.

which entails that N t,x,m
s = N t,x,m

t , for all s ∈ [t, T ], P-a.s..

It remains to prove (3.4). For this we also follow a technique used in [5]. Let M̄j (re-

spectively X̄j) below a random point between M t,x,m
tj

and M t,x,m
tj+1

(resp. Xt,x,m
tj

and Xt,x,m
tj+1

)

in the computations below. We have

A
(n)
s,2 =

ϕs−1∑
j=0

(u(tj+1, X
t,x,m
tj+1

,M t,x,m
tj+1

)− u(tj+1, X
t,x,m
tj

,M t,x,m
tj

))∆jN
t,x,m
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=
ϕs−1∑
j=0

(u(tj+1, X
t,x,m
tj+1

,M t,x,m
tj+1

)− u(tj+1, X
t,x,m
tj

,M t,x,m
tj+1

))∆jN
t,x,m

+
ϕs−1∑
j=0

(u(tj+1, X
t,x,m
tj

,M t,x,m
tj+1

)− u(tj+1, X
t,x,m
tj

,M t,x,m
tj

))∆jN
t,x,m

=
ϕs−1∑
j=0

[
∂2u(tj , X

t,x,m
tj

,M t,x,m
tj

)∆jX∆jN
t,x,m + ∂3u(tj , X

t,x,m
tj

,M t,x,m
tj

)∆jM∆jN
t,x,m

+Rs,j,n

]
(3.6)

where Rs,j,n is defined as

Rs,j,n := (∂2u(tj+1, X̄j ,M
t,x,m
tj+1

− ∂2u(tj , X
t,x,m
tj

,M t,x,m
tj

))∆jX∆jN
t,x,m

+(∂3u(tj+1, X
t,x,m
tj

, M̄j)− ∂3u(tj , X
t,x,m
tj

,M t,x,m
tj

))∆jM∆jN
t,x,m.

Property (iii) of Proposition 3.1 implies that the remainder term
∑n

j=0Rs,j,n vanishes as

n goes to infinity (we refer to [5, Proof of (5.13)] for the complete justifications). Then it

follows using (3.6) that

lim
n→∞

ϕs−1∑
j=0

(u(tj , X
t,x,m
tj+1

,M t,x,m
tj+1

)− u(tj , X
t,x,m
tj

,M t,x,m
tj

))∆jN
t,x,m

=
∫ s

t

(
∂2u(r,Xt,x,m

r ,M t,x,m
r )σ(r,Xt,x,m

r ,M t,x,m
r ) + ∂3u(r,Xt,x,m

r ,M t,x,m
r )

)
d〈M,N t,x,m〉s = 0

by strong orthogonality between M and N t,x,m which shows (3.4).

Remark 3.3. The assumptions (D1) and (D2) are not necessary in Theorem 3.2. In fact

only the conclusion of Proposition 3.1 is used in the proof of Theorem 3.2. In other words

if one can prove that the function u satisfy (i)-(iii) of Proposition 3.1 then the conclusion

of Theorem 3.2 holds true.
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4 Comments

In this section we make a comment about the relation between our main result and the

literature and we discuss possible extension under consideration in a work in preparation.

As mentioned in the introduction, our main result shares some similarities with the [6,

Theorem 2.4]. This result corresponds to the case where our driver f = 0 and M is a strong

Markov process which is a semimartingale eventually with jumps. One of the assumption

in [6, Theorem 2.4] is that the deterministic function t 7→ u(t, x,m) in Proposition 3.1 is

differentiable for all (x,m) in R2. As shown in Proposition 3.1 the function u is quite regular

in space and one can expect it to be continuous in time but it seems to much to ask to be

differentiable in time especially in the case where the quadratic variation 〈M,M〉 is not

absolutely continuous with respect to the Lebesgue measure.

In this Note we have considered a quite simple BSDE just to exhibit that the orthogo-

nal component of the solution of the BSDE vanishes. In particular, the assumptions that

we have made on our BSDE are quite restrictive especially the condition (D2). However we

believe that Theorem 3.2 can be extended to a BSDE of the form (3.1) (see the footnote

in Section 3) with quadratic driver (the case of a quadratic driver with κ = 0 in (3.1) is

a straightforwrad extension of the results presented in this Note). The setting of (3.1) is

very interesting since it relates to the utility maximization problem for exponential utility

function in incomplete market (see [5, Section 6]). This program is under consideration in

a paper in preparation. Finally, we have considered the case where all the processes are in

dimension one. The multi-dimensional case can be obtained in the same way.
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