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Abstract

In this paper we will consider first-order linear systems with quadratic cost
or energy functionals. For such systems we will show that (under some con-
trollability assumptions) dissipativity is equivalent to the solvability of a certain
linear matrix inequality.
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1 Introduction

Let CZ, denote the set of infinitely often differentiable functions z : R — C?. In this
paper we will consider systems of the form

Fi(t) + G(t) = 0, (1)

where F,G € CP? are the system matrices, z € CZ is the trajectory, Z denotes the
derivative of z with respect to ¢, and the identity in (1) is assumed to hold for all
t € R. We call equation (1) a first-order linear system in behavior form. We also refer
to the tuple (F,G) as a linear system. In the following we will drop the dependence
of z on ¢ and simply write FZ + Gz = 0 instead of (1).

In addition to CZ, we will need the following three classes of functions. By C¢ we
denote the elements of CZ, which have compact support. Also, by Ci we denote all
z € C4, for which there exist a, 3 > 0 such that [[z(¢)|| < ae P for all ¢ € R, and
similarly by C% all z € CL, for which there exist «, 3 > 0 such that ||z(t)|| < ae’* for
all t € R. We say that the elements of C{ are right exponentially decaying and the
elements of C? are left exponentially decaying. Clearly, we have

ClccyccL.
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Definition 1. Let F,G € CP'?. Then we call
B(F,G):={z€CL|F:+Gz =0}
the behavior of (F,Q),
B (F,G):={z€ Cg’Fz + Gz =0}
the compact behavior of (F,G), and

B (F,G) = {ze€Cl|F:+Gz=0},
B_(F,G) = {z€Cl|Fi+Gz=0},

the right and left exponentially decaying behavior of (F,G), resp. We call the elements
of B(F,G), B.(F,G), BL(F,G), and B_(F,G) trajectories of (F,QG).

Clearly, B(F,G), BL(F,G), B_(F,G), and B.(F,G) are linear subspaces of CZ ,
€%, CL, and CY, resp., and we have

B.(F,G) C BL(F,G) C B(F,G).

Let H = H* € C%? be a matrix which measures the energy which is supplied to
the system (F,G) along a given trajectory z € B(F,G) in the time interval [to, ;]
through the term

t1
/ 2" (t)Hz(t)dt. (2)
to
One can also think of (2) to measure the cost that a given trajectory z € B(F,G)
causes over the time interval [tg,¢1], implying that energy causes cost.

Definition 2. Let F,G € CP? and H = H* € C?9. Then (F,G,H) is called
dissipative if the dissipation inequality

0< / T W Ht,

holds for all z € B.(F, G), i.e., for all trajectories of (F,G) with compact support.

In an informal way Definition 2 states that energy cannot be extracted from the
system (F,G) through a trajectory with compact support. One can also think of
dissipativity as semi-definiteness of H on the linear subspace given by B.(F, Q).

With this notation we are ready to vaguely state the main result of this paper. In
the main result Corollary 28 we will see that under some controllability assumptions
on the system (F,G) dissipativity of (F,G, H) is equivalent to the solvability of the
linear matrix inequality

F*Z = Z*F, @
0 < G'Z+Z*G+H,
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where Z € CP¢ is the unknown.
In the rest of this section we will see that solvability of the linear matrix inequality
(3) implies dissipativity. For this, let Z € CP'9 be a solution of (3) and define the
function © : C? — R through
O(2):=2"F*Zz. (4)

With this definition we observe that for any trajectory z € B(F, G) of the system we
have that

%@(z(i)) (25 (0)F" Z2(1)

= F()F*Zz(t) + 2" (1) 2" F4(t)

= "G Z2(t) — 2" (1) Z*G2(t)
)

< ZY(t)Hz(t).

Integrating this inequality from ¢ to ¢1 gives

t1

O(:(t)) — O(x(t) = | %@(z(t))dtg/t1z*(t)Hz(t)dt,

which leads to the following definition.

Definition 3. Let ;G € CP9, H = H* € C%%. Then we say that a function
0 : C? — RU{+xoo} is a storage function of (F, G, H) if the following properties hold:

1. © is continuous.
2. ©(0) =0.
3. ©(2(t)) e Rforallt € R and all z € B.(F,G).

4. The inequality

O (2(t1)) — O (2(to)) < / () Ha(t)dt (5)

to

holds for all tg < ¢; and all z € B.(F, G).

We have the following interpretation of Definition 3. A storage function © mea-
sures the amount of energy that is stored internally in the system. In particular, the
expression on the left hand side of (5) measures the gain in internally stored energy
which occurred from time point ¢ to ¢;. On the other hand, the right hand side of (5)
measures the amount of energy that has been supplied to the system. The existence of
a storage function thus guarantees that one can measure the internally stored energy
in a way such that never more energy is stored than the amount of energy supplied
to the system.

We have already seen that a solution Z € CP:9 of (3) induces a storage function
through (4). To see that the existence of a storage function implies dissipativity, let ©
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be any storage function and let z € B.(F,G) be a trajectory with compact support.
Then there exists an R > 0 such that z(¢) = 0 for all |¢| > R and thus we obtain that

0 < O(x(R) - 6(x(-R))
R
2" (t)Hz(t)dt

=

oo

2" (t)H z(t)dt,

I
— —

3

which shows dissipativity since z € B.(F, G) was arbitrary.

To recall, we have shown that if Z € CP*? is a solution of the linear matrix inequal-
ity (3), then ©(2) := 2*F*Z% is a storage function and that the existence of a storage
function implies dissipativity. Thus, the solvability of (3) implies dissipativity. The
reverse direction is considerably harder to show (and needs additional controllability
assumptions). The rest of the paper is devoted to obtain these conditions under which
also the reverse direction holds.

To achieve this, we introduce in Section 2 the available storage and the required
supply. Based on these definitions, relations to the notion of dissipativity will be
drawn, which are vastly inspired by [12]. Note that while in [12] more general systems
are considered, we will present the results here for linear systems with quadratic cost
term, because this makes the presentation easier. Another difference to [12] is that
we do not require storage functions to be positive semi-definite. Related with this we
have to introduce the available storage and required supply in a somewhat different
way.

In Section 3 we will see that the available storage and the required supply are
quadratic functions by employing an idea of [1]. Although in the literature it is
sometimes stated that this quadraticity is trivial (e.g., [2, p. 167]) the proof turns
out to be quite difficult. Having obtained this quadraticity we introduce two types of
linear matrix inequalities. The one type (called symmetrized linear matrix inequality
in this paper) has already been introduced in [11], but there the additional assumption
has been made, that the system is trim, i.e., that for every z € C9 there exists a
trajectory z € B(F,G) such that z(0) = 2. For the other type (simply called linear
matrix inequality in this paper) this assumption is not necessary.

In the third part (Sections 4 and 5) we will use the obtained results to derive
statements about deflating subspaces of a special matrix pencil, the spectral factor-
ization of a certain matrix function, and passivity of descriptor systems. The obtained
results will be used to derive a result which is a modification of a result in [5]. The
inequalities in [5] were the starting point of the work that lead to this paper.

For f,g € C{ we denote by (f, g)4+ the inner product on the positive half axis

—~

(frg)s = / T foe
and

Iflls ==/ 0y = / 2.
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Similar, for f,g € C% we denote by (f, g)_ the inner product on the negative half axis

0
(f.g)- = / g (0)f(D)dt

— 00

and

1l =) = / 1 £(8) |3t

2 Available storage and required supply

In this section we will introduce the concepts of available storage and required supply
and see how they relate to dissipativity. To give an informal definition, the available
storage is the maximum amount of energy that can be extracted from a system which
is currently in the state Z and the required supply is the minimum amount of energy
which has to be supplied to the system to put the system into the state Z.

Definition 4. Let F,G € CP? and let H = H* € C?%. Then we call the function
O4 : C? — RU{£oo} defined by

04(2) = sup 7/ 2" (t)Hz(t)dt
2€B | (F,G) 0
z(0)=2

- it /0 SO H()dt, (6)

2B (F.G)
z(0)=2

the available storage of (F,G, H) and the function ©_ : C? — RU {£o0} defined by

0
O (2)= _inf / (0 H=()dt, (7)
H(0)=2

the required supply of (F,G, H).

The available storage and the required supply can be determined via the solution
of an optimal control problem as shown in [4].

Remark 5. In the following we will frequently state inequalities in which one or
both sides are allowed to be co or —oo. Therefore we introduce the convention that
the inequalities co < 0o, —00 < —00, and —oco < oo are considered to be true but not
the inequalities co < 0o, —00 < —00, and oo < —oo. Of course, the inequality —oo <
a < oo is considered to be true for all ¢ € R. Also, a - 0o = 0o and a - (—o0) = (—00)
for all @ € R\ {0}. The expressions 0- oo and 0 (—oo) will not be used in this paper
and are considered to be undefined.
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Remark 6. If z; € B, (F,G), then the integral

/00 27 (t)H z (t)dt
0

exists. Thus we have ©4(z1(0)) > —oo, since then in (6) the infimum over a non-
empty set is taken.
If zo € B_(F,G), then the integral

0
/ 23 (1) H o (b dt

exists. Thus we have ©_(22(0)) < oo, since then in (7) the infimum over a non-empty
set is taken.

Definition 7. Let F,G € CP'? and consider the associated behavior. Then we call
R(F,G) := {2 € CY|3z € B(F,G) such that 2 = z(0)}
the reachable set of (F,G),
R.(F,G):={2¢€ (Cq‘ﬂz € B.(F,G) such that 2 = z(0)}
the compact reachable set of (F,G), and
R (F,G) = {z€C93z € B,(F G)such that 2 =2(0)},
R_(F,G) = {2€C%32z€B_(F,G) such that 2 =2(0)},
the right and left exponentially decaying reachable sets of (F,G), respectively.

Clearly R(F,G), R.(F,G), Ry (F,G), and R_(F,G) are linear subspaces of C?
and we have
R.(F,G) C R+(F,G) C R(F, Q).

Lemma 8. Let F,G € CP9 and let zy € B_(F,G), zo € B (F, Q) be such that
21(0) = 22(0).
Then for all € > 0 there exists a trajectory z € B (F,G) N B_(F,G) such that
IG = 20l + 1 = )l <

Proof. Employing the construction from [8, pp. 35-42 (esp. Corollary 2.4.12)] one
can easily construct the desired Zz. O

With this we derive the first condition which is equivalent to dissipativity.

Lemma 9. Let F,G € CP? and H = H* € C%4. Then (F,G, H) is dissipative if and

only if
04(2) <O_(%) (8)

for all 2 € R.(F,G).
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Proof. First, assume that (F, G, H) is dissipative. Assume to the contrary that there is
az € R.(F,G) such that ©,(2) > ©_(2). This implies that there exist z; € B_(F,G)
and zz € B, (F,G) such that z;(0) = 2 = 23(0) and

e} 0
- / 25 (t) Hzo(t)dt > / ZE(8)H ez (£)dt. (9)
0

Define 7 through
0 0o
0= / (O Ha (Hdt + / 23(t)Ha(t)dt < 0.
— 00 0

Then —g > 0 and thus there exists an ¢ > 0 such that

"
3| H ||+ + 2¢[ H |+ |22+ < —5

With this e, define the function z : R — C? from z; and z, through Lemma 8. This
implies that ||z — Z||+ < €. Since
(H(zo = 2), (22 — 2))
= (Hz,2), —2Re{(Hz,2), } + (HZ, %),

with the Cauchy-Schwarz inequality we obtain that

’<H22,22>+ — <H2,2>+’
= [(H(z2—2),(22 — %)), +2Re{(H22,%), }
—2(HZ,2), |

< [(H(z —2), (22— 2)) 4| +
2|Re {(Hz, %), — (HZ,%) }|

< [(H(za —2), (22 — 2)) | +2[(Hzo,2), — (HZ, %) |

< N Hll4llz2 = 213 + 20 H [+ 1122 = Zll+ 121+

< E|H| 1+ 2€| H| 1 [|(Z = 22) + 22|+

< E|H| 1+ 2e| HIl5 (112 = zall4 + [lz2ll+)
n

< 3 H |y + 2| Hl 424 < -

From this we deduce that
(Hzp,20), — (HZ,3), > g

Then from (9) and with the assumption of dissipativity we find that

n = <H21,Zl>_ + <HZ2722>+
= (HZ3) +(HZ3), +(Hz,2), — (H55),



Dissipativity and linear matrix inequalities 8

_ /_ T S OHO) L+ (He, ), — (HZ3),

(Hzy,25), — (HZ,3), > g

Y

which is a contradiction since 7 is negative.

For the converse assume that condition (8) is fulfilled and let Z € B.(F,G) be
arbitrary. Then, using Remark 6, we see that both the available storage ©,(2(0)) € R
and the required supply ©_(2(0)) € R are real numbers. Thus we obtain

0 < O_(2(0) - O, ((0))

= inf /0 2" (t)Hz(t)dt +

zeEB _(F,G) — 00
2(0)=2(0)
inf / (0 H()dt
€% (F,G)
2(0)=2(0)
0 0
< / (0 HE)dE + / (A
—00 0
= / Z*(t)HZ(t)dt,
and with this dissipativity follows. O

We recall the following result which is needed in the proof of the subsequent
theorem.

Theorem 10. Let F,G € CP, H = H* € C%9, and let (F,G,H) be dissipative.
Then we have

inf / SOH:(dt = inf / (O Ha(b)dt
e (F.6) J zemy (F.O) J
z(t)=%(t),t<0 2(0)=2(0)
= inf / 2" (t)Hz(t)dt.
zem(F.G) Jo

Fz(0)=F2(0)
for all Z € BL(F,G).
Proof. The proof can be found in [4, Theorem 33]. O

The following lemma is a modification of [12, Theorem 1].

Lemma 11. Let F,G € CPY and H = H* € C%¥. Let 1 € BL(F,G), 22 €
B_(F,G), and let to,t1 € R be such that tg < t;. Then we have

O4(a(t) < [14®Hnwﬁ+9Am%D7 (10)
O_(2(t)) < /t1z;(t)HZQ(t)dH@_(Z2(t0)). (11)
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Proof. Using Theorem 10 we find that
O (z1(to))
= — inf / 2" (t)Hz(t)dt
0

2eB (F,G)
2(0)=21(to)

— i /Ooz*(t)Hz(t)dt

e (R.O) Sy
z(to)=z1(to)
oo
> - inf / 2" (t)Hz(t)dt
2€B L (F,G) ‘

z(t)=z1(t),t<ts

t1 o0
= — inf / zf(t)Hzl(t)dtJr/ 2" (t)Hz(t)dt
2€B L (F,G) to th
z(t)=z1(t),t<ty

tl o0
= —/ 27 (t)Hz (t)dt — inf 2" (t)Hz(t)dt
to 2EB | (F.Q) t
z(t)=z1(t),t<ta
t1
= - [ sOHa@d 61 (aln),
to
from which (10) follows. Inequality (11) can be obtained analogously. O

The following theorem is a modification of [12, Theorem 2].

Theorem 12. Let F,G € CP? and H = H* € C%49. Then the following statements
hold:

1. If there exists a storage function, then (F,G,H) is dissipative.
2. Bvery storage function © fulfills
04+(2) £6(2) <0_(2),
for all Z € R.(F,G) and all t € R.

3. If (F,G, H) is dissipative, then the available storage and the required supply both
are storage functions.

Proof. First assume that © is a storage function and let 2 € B.(F,G) be arbitrary.
Choose R € RT such that z(¢) = 0 for all |t| > R. Then we have

0 = ©(0)-96(0) =6(z(R) - ©(2(—-R))
R 0o
/ () HE(t)dt = / () HE(t)dt,

—R —o00

IN

which means dissipativity and 1. is shown. To show 2., let 2 € R.(F,G) and Z €
B.(F,G) be such that zZ(0) = 2, which is possible, since B.(F, Q) is shift invariant.
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Then for every z € B, (F,G) with z(0) = 2(0), from the definition of the storage
function, we have that

—0(2(0)) = O(lim 2(f)) - 6(2(0)) = Jim O(z(t)) — ©(2(0))

t—o0
t
lim 2" (s)Hz(s)ds

t—o0 .o

_ / T (s) Ha(s)ds.

0

N

Since z € B (F, G) was allowed to be arbitrary this implies that

~0(3(0)) < inf /Oooz*(t)Hz(t)dt—@+(2(0)).

2€B 4 (F,G)
2(t)=2(0)

Analogously, we obtain that ©(2(0)) < ©_(2(0)).

For 3. assume that (F,G, H) is dissipative. Then from Remark 6 and Lemma
9 we see that for all trajectories Z € B.(F,G) we have that both ©_(2(0)) € R
and ©4(Z(0)) € R are real numbers. Thus the inequalities from Lemma 11 can be
transformed to match the inequality from Definition 3. Properties 1. and 2. of
Definition 3 follow since the available storage and the required supply are quadratic
functions, see Lemma A.6 in the appendix. O

Corollary 13. Dissipativity is equivalent to the existence of a storage function.

Proof. This follows from parts 1. and 3. of Theorem 12. U

3 Linear matrix inequalities

In the previous section we have seen that dissipativity is equivalent to the existence
of a storage function. To show that dissipativity implies the existence of a storage
function, we have proved that the available storage © and the required supply ©_ of
a dissipative system constitute storage functions. However, the functions © and ©_
have further interesting and useful properties which are summed up in the following
Theorem.

Theorem 14. Let F,G € CP? and H = H* € C%4. Let (F,G,H) be dissipative.
Then there erist matrices Zy € CP9 and Xy = X7 € C¥? such that F*Zy = Z1 F
and
0.(3) = FFZ.2
= FF*X,.F:
for all 2 € R.(F,G) and there exist matrices Z_ € CP? and X_ = X* € C%? such
that F*Z_ = Z* F and

O_(5) = #F'Z.3
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= Z'F"X_F:Z
forall z € R.(F, Q).
Proof. The proof can be found in Appendix A, see Theorem A.10. O

From Theorem 14 we conclude that dissipativity not only implies the existence of
a storage function but also the existence of a quadratic storage function.

Theorem 15. Let F,G € CP? and H = H* € C%4. Then the following statements
are equivalent:

1. (F,G, H) is dissipative.
2. There exists a storage function of (F,G, H).
3. There exists Z € CP9 such that Z*F = F*Z and

0<Z2H+Z'G+G" 7]z, (12)
for all 2 € R.(F,G).
4. There exists X = X* € CPP such that
0<Z2"[H+G'XF+ F"X{]z, (13)
for all 2 € R.(F,G).

Proof. The equivalence of 1. and 2. has already been shown in Corollary 13. To
show that 1. implies 3. and 4. first note that the available storage ©, is a storage
function, due to Theorem 12. Using Theorem 14 we deduce the existence of a matrix
Z € CP? guch that O, (2) = 2*F*Z% for all 2 € R.(F,G). Let z € B.(F,G) and let
t € R be arbitrary. Since ©, is a storage function, we see that for all h > 0 we have

t+h
0. (2(t+ 1)) — 04 (2(1)) < /t *(s)H2(s)ds.

Dividing by h, using the mean-value theorem, and taking h — 0 we obtain

d

26, (2(1) < 2 (H=(1),

for all z € B.(F,G) and t € R. Looking closer at the term -£©(z(t)) we find that

V

() Hz(t) %@(z(t)) =4 P Za)

dt
= ZO)F*Zz(t)+2"(t)Z"Fi(t) = =2"(t) (G*Z + Z*G) 2(t),

which implies that
0<z*(t)[H+ Z"G+ G*Z] 2(1),
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and thus (12) is shown. To show (13) the same argument can be applied since

d * *
(= (OF X F2(t)

= Z)F*XFz(t)+ 2" (t)F*XFz(t)
= —2*(t)G*XFz(t) — 2" (t)F* XGz(t).

d
L)

Thus, we have shown points 3. and 4.

To show that 4. implies 3. set Z := XF. To show that 3. implies 2. let there
exist a Z € CP? such that (12) holds. Define © through ©(2) := 2*Z*F% for all
Z € R.(F,G). Then we have

Co:() = (07 F)
P02 FAAt) + (02" F(1)
— FWOFZa() — 2 ()2°G(1)
= () (G Z+ Z7G) (1)

< ZM()Hz(t),

R

where we have used the shift invariance (with respect to the time t) of B.(F,G).
Integrating this inequality from ¢y to ¢; yields

d

O(:(t)) — O(x(t) = / Lot

< /t1 2" (t)H z(t)dt,

to

which shows that © is a storage function. O

In the following we show that under certain conditions the inequalities (12) and
(13) are equivalent to linear matrix inequalities which not only hold on the subspace
R.(F,G). To be more precise we introduce the following terms.

Definition 16. Let F,G € CP9 and H = H* € C%4. Then we call the system of
equations
F*Z Z*F

0 < H+2'G+G*Z (14)

a linear matriz inequality (where Z € CP? is the unknown) and the system of equa-

tions
X X*

0 < H+4GXF+FXG (15)

a symmetrized linear matriz inequality (where X € CPP is the unknown).

From Theorem 15 it is immediately clear that if one of the linear matrix inequalities
(14) or (15) has a solution, then there exists a storage function and thus the system is
dissipative. The converse is not always true as one can see from the following example.
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Example 17.  With z(t) = [21(¢) zQ(t)]T consider the system

. L 0 1 21(f) 1 0 Zl(t) o
rext)+ G = o ol |20+ |6 1] [240)] -
Clearly, B = B, = {0} and thus the system is dissipative with respect to any H =

H* € C?1 by definition. Then the following questions arise:

1. Can we find Z € C?? such that FyZ =Z"Fy and 0 < G Z + Z*Gn + H for
any given H = H* € C?2?

2. Can we find X = X* € C%2 such that 0 < Gy XFy + I XGy + H for any
given H = H* € C?2?

For 1. and Z = [z;;] we see that the identity Fy-Z = Z*F) is equivalent to
0 0| [0 =z7
Z11 212 0 zi2)"

Thus, Z has to take the form

where r € R and 291,220 € C are allowed to be arbitrary. With H = [h,;] we can
rewrite the inequality 0 < G{ Z + Z*Gn + H as

0§|: 0 7‘+2’21:|+|:h11 h12:|’

T+ 291 222 + Z22 ha1 hao

which will not be possible if hj; < 0. For 2. and X = [z;;] we see that the identity
X = X* implies that X has to take the form

r xT
X = 12 ,
T12 S

with 7, s € Rand 212 € C. The inequality 0 < Gy X Fy +F3, X Gy + H then becomes
hu h12 + T T12 0 1 + 0 0 T Z12
ho1  hao Tiz2 s ||0 0 1 0| |z s
hll h12 0 r 0 0 h11 h12 0 T
= o |+ = + |,
[hm th {0 $12] [T 3312] {hm th L“ T2 + $12]

which will not be possible if h;; < 0.

o
IN

The problem in Example 17 is that the pencil AF' + G has an infinite eigenvalue
with index 2. To explain what that means, we introduce the Kronecker canonical
form in the following Theorem.

We denote by C[A] the set of polynomials with coefficients in C and by C[A]”? the
p-by-¢ matrices with polynomial entries.
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Theorem 18. Let F,G € CP1. Then there exist €, p,0,m,p,7,8,q € Ng and nonsin-
gular matrices P € CPP and Q) € C?9 such that

POF+G)Q = diag(L,J,N, M), (16)

where L € C]N\|“tP, J € C[NP*, N € C[]\]?, and M € C[N\"%" are first-order
matriz polynomials which can be further partitioned as

L =: diag (Lel,...,ﬁep) J =:diag (Tpys .-, Tp,.)
N =:diag (No,, ..., Ns,) M =: diag (M, ,..., M, ),

s

where e =€1+...+€, p=p1+...+p,0=01+... 405, andn=n1+ ...+ 1,
and the blocks Le,, J,;, No,, and M., have the following forms:

1. Every entry L, has the size €5 X (¢ + 1), €; € Ng and the form

0 1 1 0
Lo=A| el (17)

2. Every entry J,, has the size p; x pj, p; € N and the form

1 A1
o (N i=X| + o : (18)
o1
1 Aj
where \j € C.
3. Every entry Ny, has the size 0 x 0, 0; € N and the form
0 1 1
Ny (M) == A R e h . (19)
c. 1 c.
0 1

4. Bvery entry M, has the size (n; +1) x n;, n; € Ng and the form
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Proof. A proof can be found in [6, p. 37]. O

With the Kronecker canonical form we may introduce the notion of eigenvalues of
a matrix pencil in the following way.

Definition 19. Let F,G € CP9 and consider the Kronecker canonical form (16) of
AF' 4+ G. Then A\ € C is called a finite eigenvalue of N\F'+ G if there exists a block of
the form (18) with A; = Ag. We say that the system (F,G) is controllable if \F' + G
has no finite eigenvalues. We say that A\F'+ G has an infinite eigenvalue if there exists
a block of the form (19). We say that the infinite eigenvalues of the system (F,G)
have indez 1 if all blocks of the form (19) have the size o; = 1.

Lemma 20. Let F,G € CP'? and let the Kronecker canonical form of A\F'+G be given
by (16). For f € CL and e € Ny let A f(t) denote

ij)
4 r(t
s =| Y eex
(&) F(@)
Then the behavior of (F,G) is given by

qul(_t)
B(F,G):={ Q! Aepz;}(_t) |21,...,2, €C®, 2 €CF 3,

e~ 704

05+
and the compact behavior of (F,G) is given by
A, z1(—t)
BARG) =1Q7|

: }zl,...,zpeC;’O ,
Afpzp(_t)

Op+o+n

where for n € N the vector 0,, € C™ is the vector consisting of only zeros. Moreover,
the reachable set of (F,G) is given by

R(F,G) = {Q—l [O : ] ze (C5+p+”},

o+n

and the compact reachable set of (F, Q) is given by

]ée@”}.
pto+n

Rir6) = {7,
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Proof. To show the representation for B(F,G) and B.(F,G), it is sufficient to ex-
amine the (compact) behavior of each of the blocks in the Kronecker canonical from.
We start with the blocks of type (17). Thus, for j € {1,...,p} let z € CE’;) (R,C%) be
a solution of the system

0 1 I 1 0 1
0=| . Lo+ :
0 1 |Ze41 1 0] [®e;41
This is equivalent to the system of scalar equations ;41 +x; = 0 for i = 1,...¢;.
Hence z; = (fl)i’lm(li_l) fori = 1,...,¢; + 1 and thus one can write x in the form

A, (zj(—t)) by setting z;(t) := 21(—t) € C7;). For blocks of the type (18) we obtain
that B.(J,,) = {0} and

%@@)z{aaﬂwﬂ@ecm}

from the standard theory of ordinary differential equations [6, p. 115]. That B(N,,) =
B(M,,) = B(N,,) = B.(M,,) = {0} is trivial. For the statements about the
reachable set we note that e’ = I and that for every 2 € C%*! there exists a trajectory

with compact support z € C2° such that 2 = A, (2(0)). O

By splitting up the blocks of type (18) into eigenvalues with negative real part,
eigenvalues with positive real part, and eigenvalues with vanishing real part one can
also determine Ry (F,G) and R_(F,G) similar to Lemma 20.

Consider a matrix pencil in Kronecker canonical form where there is (for reasons
of simplicity) only one block of each type (17)-(19), i.e., let

Fr G

Fgq

AF+G =) ecre.  (21)

Fi Gy

Fam G m

Also assume that A\Fy + G has index 1, ie., let Fpy = 0 and Gy = I. This
makes sense, since we already saw in Example 17 that for higher index systems the
solvability of the linear matrix inequality can fail despite dissipativity. Partitioning a
matrix Z € CP9 according to the block structure in AF' + G as

Z =: , 22
Zz1 Zsa Zsz Zsa (22)
Zay Zaa Zaz Zaa
shows that the equation F*Z = Z*F can be written as
FrZy  FrZiy FpZyz FrZu ZHhFr Z3 0 ZjFam
Za1 Zao Za3 Zoy _ |4k Z5, 0 ZhFum (23)
0 0 0 0 ZisFr Zis 0 Zj3Fapm
FyZy FrgZiyo FrZaz Fi Zu ZigFe Z3, 0 ZiFam



Dissipativity and linear matrix inequalities 17

and we have

GZ+7°G (24)
ZnGr+GeZy 735G+ Giliy  Z3 +Gilrs  GiZia+ 235G
Z5Ge+ Gy Zn Z3,Gg+G5Zas  Zip+ Gy Gy Zos+ ZinG

Z14Gr + Z31 73,G 7 + Zsy Zi + Zs Zss + Z33Gpm
Z0Ge+ GiZa Z3.Gg+ GiyZus Ziy+ GiyZas GiyZas+ 234G

Assume that for some H = H* € C and the F', G from (21) we have that (F, G, H)
is dissipative. Partition H = [Hw] iiel,d analogously to (24). Since the definition of

dissipativity only makes a statement about all trajectories z € B.(F, G) with compact
support, we conclude from Lemma 20 and Theorem 15 that dissipativity of (F, G, H)
implies the existence of a Z as in (22) such that (23) holds and that

0<Z{\Gr+ GrZy1 + Hys.

From this the question arises if under the assumption of dissipativity we can construct
Z;j as in (24) such that 0 < G*Z+ Z*G + H while (23) still holds. The same question
can be asked for the symmetrized linear matrix inequality.

In the following we will see that blocks of the type (20) in the Kronecker canonical
form cause no trouble. To be more specific we state the following Lemmata.

Lemma 21. Consider matrices F,G € C"™ 17 of the form (20), i.e., let

and let a Hermitian matric H = H* € C"" be given. Then there exists a Hermitian
matriz X = X* € C1n+L sych that

0=F"XG+G'XF+H.
Further, by setting Z := XF € C"17 we obtain that

F*Z = Z'F,
0=G*2 + Z*G+H.

Proof. Let Hermitian matrix X be given in the form

x1,1 N T1,n4+1

X = = [xi’j]i,jzl,...,n-&-l = [m}i,jzl,...,n+1

Tn+1,1 o Tytln+l
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and the Hermitian matrix H in the form
hii .. hiy

H=": : = [hi»j]i,jzl,...,n = mi,j‘:L...,n'

hyi oo Py

Then we see that we are looking for an X such that

0 = F'XG+G'XF+H
_]. 0 T1,1 ‘e T1,n+1
— +(F*XG)* +H
L 1 0 Tn4+1,1 -+ Typ4ln+l ' SI-)
_331,2 e 212177,_;,_1 $172 N 567772 hl,l e hl,n
= | : A e
[Tn,2 -+ Tymtl Tim+l oo+ Tymtl by oo hag

(o5 )it T Tl + hisli
= [I@j+1‘F5§ZIT4’hLﬂiJ:1

= [Zigrr + @iy +higl o (25)

We construct such an X in the following recursive way. First, choose z;; = 0 for
i=1,...,n+ 1 and choose z;+1 = Tjt1, := h; eRforalli=1,...,n. With this
choice all z; ; with |i — j| <1 are fixed and all equations in (25) with |i — j| < 0 are
fulfilled.

As induction hypothesis, assume that for some k € {1,...,7— 1} we have that all
x;,; with |1 — j| < k are fixed and all equations in (25) with |i — j| < k—1 are fulfilled.

For the inductive step, note that all equations in (25) with |¢ — j| = k are given
by

0= 2jinjr1 + Tjrkt1,5 + Mytng
for 5 = 1,...,7 — k and their complex conjugate equations, which are not really
additional equations. Since |(j +k) — (j+1)| =k —1 < k, we know that all z; 1 ;11

are already fixed but not the ;4,41 4, since |(j +k+1) —j| = k+ 1 > k. Thus we
define

Tj ikt i= Tjtkt1,j '= ~ Tk, +1 — Rtk
for j =1,...,7— k and thus have fixed all z; ; with |i — j| < k+ 1 while at the same

time all equations in (25) with |i — j| < k are fulfilled. Thus the inductive argument
is finished and the claim is proved. O

Lemma 22. Consider the pencil

o [R 0], [G 0
)\F+G_/\[O FJJF{O GQ],
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where the sub-pencils \Fy + G; € ChHlm gnd AFy + Gy € C2HLm2 gre of the
form (20). Let an arbitrary H = H* € Cntm2m+n2 pe given. Then there exists a
Hermitian matrizc X = X* € Chm2+2m+m2+2 gch that

0=F'XG+G"XF+H.
Further, by setting Z := X F € Cntm2+2m+n2 ye obtain that
F*Z = Z'F,
0=G"Z + Z'G+H.
Proof. Partition the matrix X according to the partition of F' and G as

¥ — X1 X2 m +1
Xo1 Xoao My + 1
m+1 m+1

and observe that from X = X* we obtain that X2 = X3,, X11 = X{}, and X9 =
X35. Then we see that we are looking for an X such that

0 = F*XG+G*XF+H
_[Fr 0] [X11 Xi2] [Gr O X *
= |o FJ [sz XQJ [0 GJ +(FXG) + H

_ [FXuG Fi X6, GiXnkr GiXioF Hy Hio
F5 X1Gr F3X2Go G3 X0 F G5 Xy Hi; Hai

_ [FXuGi+ GiXu P+ Hu FyX1Go + G X2 F + Hio (26)
| F5 XToGr + G3XToF + Hiy F5X00Go + G5 Xoo b + Hoo|

Using Lemma 21 we immediately obtain X, and Xy such that F5 XooGa+G5Xa9 Fo+
H22 = 0 and Fl*XllGl + GTXIIFI + H11 = 0. Thus, we only need to find an
X1p € Cntlmtl gyuch that FyX12Ga + GiX12Fs + Hiz = 0, since the equation in
the (2,1)-block of (26) is the conjugate transpose and thus not really an additional
equation. For the matrix X5 we introduce the notation

T1,1 T1,ma+1

_ _ +1,m2+1
X9 = = [$i7j} i=1,...,m+1 € cm M2 R

J=1,... n2+1
Tm+1,1 oo Ttlna+l
and for the matrix Hio analogously
h171 . hl,nz
H12 == E ' - [hz’]} i=1,..., n S ((:771’772'

j=1,...,m2
h77171 s h"’hﬂ]z

Then we see that we are looking for an Xi5 such that

0 = F1*X12G2 + GTXlgFQ + H12
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~ [0
L0 T1 T1 941
L 0) [Zn+1a Ty +1m+1 (1)
0 Z1,1 L1,ma+1
+ . : + Hys
0 1] [#y 110 Ty 1,m41 L
0
1,2 L1541 T2, 2,7, hia b1,
= : : + : : + |
Tny,2 Ly ma+1 Tni41,1 Ty +1,m2 h'17171 s hﬁ17772
- I:xl J+1] 1,,.,,711 + [sz,»l‘j] i=1,...,m1 + [hzy‘]} i=1,...,m1
,,,,, n2 j=1,...,m2 Jj=1,...,m2
= [l’z j+1 + Tit1 N + h/z ]:| Q= 1 LM (27)

1,...,m2
We construct such an X5 in the following recursive way. First, choose z;; = 0 for
i =1,...,m + 1, choose ;2 := h;; for i = 1,...,1, and choose x,, 11, arbitrary.
Then all z; ; with j < 2 are fixed and all equations in (27) with j <1 are fulfilled.
As induction hypothesis, assume that for some k € {2,...,n2} we have that all
x;,; with j < k are fixed and all equations in (27) with j < k — 1 are fulfilled.
For the inductive step, note that all equations in (27) with j = k are given by

Ti k1 T Tit1, e + i =0

fori=1,...,m. Because of the induction hypothesis all ;11 are already fixed but
not the z; p41. Thus we define

Ti k1 = —Tig1k — hik,

for i = 1,...,m and choose x,, +1,r+1 arbitrary. Then all z; ; with 7 < k + 1 are
fixed and all equations in (27) with j < k are fulfilled. Thus the inductive argument
is finished and the claim is proved. O

Lemma 23. Let \F; + G, € Co“*L be of the form (17) and NFpq + G € CTHLT

be of the form (20). Let Hyy € CtY be arbitrary. Then there exist Z14 € C" and
Zy € CLetL such that

FZZ14 =

0=GrZ14

ZiFm
+ Z3;Gam+ Hyg.
Proof. Let the matrices Z14 and Z4; be given in the form

21,1 Z1,m



Dissipativity and linear matrix inequalities

211 e Zlet1
Zy =

Zntld e Zptledl

Then equation F:Z14 = Z) Faq can also be written as

0 _
21,1 NN Z1,m+1
0 1 .
14 0 _ _
Ze+1,1 cee Ze+1,n+1
i 1
Z1,1 21,
[Zet1,1 oo Zetig
or as
211 e Rl
£1 | . .
0 Zu]=| : S
Znl oo Zpet
which shows that Z4; takes the form
Z1,1
: *
Z41 = . Zl4
Zn,1
Z77+1,1 Zn+1,2 e zn+1,e+1

With this notation at hand we can verify that

G724+ Zj1Gm
1 _ _

211 ee Zn1 Zpy1
0o . Zn+1,2
= AVES .
1 Z14
0 Zn+1,e+1 |
21,1 .- Zlpy 2271 . 277,1 27,4_1,1
212 oo Pm o Ept12
= + .
Ze,l cee Zem
L 0 ce 0 Ze2 .-+ Zem  Ap+l,e+1]

21

—
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211+ 22,1 212+ 231 ... Zig-1t+Zp1 21t Zpg1

221+ 21,2 Z22+213 ... Zagp-1t2Z1y  Z2gt Zpti2

= |z1tzic12 Zigt+zic13 .. Zig—1t Zicin Zig T Zn+ls

Ze,l + Ze—1,2 Re2 + Ze—1,3 cee Ze,nfl + Zefl,n Ze,n + 2n+1,e

Ze2 Ze,2 e Zéﬂ7 Z,7+1,5+1. |

Finally using H = [h; ;] we construct the z; ; and Z; ; in the following way. First,
fix all z;; for i =1,...,€ to any arbitrary value. This fixes the first column of Z14.
Next, for i = 1,...,¢ — 1 choose all Zi.2 such that Zit1,1 + Zi2 + hi+171 = 0 and
Ze2 = —hep1,1. This also fixes the second column of Zi4. Iteratively continuing

this way, we can fix the complete matrix Z14 such that the lower-left e-by-n block of
equations in G5 Z14 + Z5;Gam + H = 0 is fulfilled. Since the Z; 1 for i =2,...,n+1
and the Z, 41 ; for j = 2,..., e+ 1 are still free we can choose them in a way that all
equations in G} Z14 + Z;,Gaq + H = 0 are fulfilled. O

Note that under the assumptions of Lemma 23 it is in general not always possible to
find X4 € Co", X4y € C"1¢ such that FiX14Fav = FpX5 Fa and G X14Fam +
F: X7 G+ Hig =0 as one can see from the following example.

Example 24. In Lemma 23 choose ¢ = 1 and 1 = 2. Then we consider the pencils

A+ Ge=X[0 1]+ [1 0

and
1 0 0 0
M +Gapq=X[0 1| +1]1 0O
0 0 0 1

The matrices Hq4, X14, and X, take the form

i hao u
Hyy = , Xig=[z1 22 3], and Xq1 = |42
ha1  has
Y3
and thus we are looking to solve the equation

1 0
F2X14FM = |:0:| [1’1 xTo {E3 |:0 1| = |:0 O:l

1 0 0

0 1 0
=FpXHFm = [J 7t 72 ) |01 7
0 0 y

which implies
X = [951 T2 %}
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together with

0 = G2X14FM + FEXLGM + Hyy

1 1 0 0 0 0
= |:0:| [ajl o .233] 0 1| + |:1:| [33‘1 T %] 1 0| +Hyy
0 0 0 1

Tl X9 0 0 hir hio
= + _ |+ :
{ 0 0 } [332 yz’l {hm h22]
which is never possible, once his # hag.

The previous example suggests that the linear matrix inequality (14) is preferable
to the symmetrized linear matrix inequality (15).

Lemma 25. Let AF.y + Gz € CP? be of the form (18) with A\j =: 1 and let A\Fxq +
Gam € C'17 be of the form (20). Let an arbitrary Hoy € CP be given. Then there
exist matrices Zoy € CP and Zyo € C'1P such that
F5 25 = ZjpFam
0= G}ZQ;; + ZZQGM + Hoy.

Proof. Let the matrices Zoy and Z4o be given in the form

21,1 .-+ 1y
224 = ’
Zpl e Zpim
21}1 . 217,7
Zyp =
[Znt11 e Zpp
Since F7 = I we see that
1
* * * 0
Zoy = F; 794 = ZjoFpg = Zj ,
1
0

which means that we have to find Zs4 and Z4o with

Z3y
Lo =

Zn+1,1 ‘e Zn+1,p
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Consequently, with the notation Z,41; =: 2; »4+1 we find that

0
Zn+1,1 1
* * _ * .
Zn+1,p
1
Hz1,1 :uzl,’r] 21,2 Z1,m M
Hz2,1 + 211 H22.q + 21, %2,2 22, Znt1,2
— | Hz31t 221 23+ 22,0 | 4 |%3,2 23, Zn+1,3
L HZp1 + Zp—1,1 Hzpm + Zp—1,9 Zp,2 Zom  Zn+lp

nz11 + 21,2
21,1+ pzo1 + 222
— | 221t w231+ 232

HZ1n-1 1 21
1p-1 1 p22g-1+ 22y
Zo;m—1t 123,n-1 T+ 23

K21y + 2141
Z1,n + P2, T 22,041
Zom T HZ3m T 2341

[2p—1,1 T H2p1 + 2p2 Zp—1m—1 T HZpnm—11 2pm  Zp—1n T HZpn + Zpnt1

Using Has = [h; ], we can choose 217 := 0 and 212 = hy ;. Defining 2 ; =
—hij—1 — pz1j—1 for j = 3,...,n + 1 recursively, we find that all z;; with i =
1,...,m+ 1 are fixed and that the first row of Hay + Zj5Gnm + G}ZM vanishes.
For an inductive argument assume that the first k rows of Hoy + Z;5G A + G}Z24
vanish and that all z;; with j < k are already fixed. Then in row k + 1 we find

the equations hyyi1; + 2k + 26413 + 21,41 = 0 for ¢ = 1,...,n. Again, set
2411 = 0, 2i41,2 = —hiy1,1—2k,1, and then define zp 1 11 = —hp 14— 2k, — 2011,
recursively for 7 = 2,...,n. This fixes all z;; with j < k 41 and the first £ 4 1 rows
of H24 + ZZ2G/\/[ + G}Z24 vanish. O

The following example shows that given A\F.+G € C[A|“T! A\F7+G 7 € C[\]P?,
and Hy, € CT1 in general one can not find matrices Z;5 € C? and Zy; € CPt!
such that F% Zyy = Z3; and 0 = Z§,Gy + G5 Z1s + Hya.

Example 26. Consider the pencil

0 A=1]=X[0 1]+[0 —1]

together with the Hermitian matrix H = H* € C?2 given by

hi1 hia
H=|— .
l:h12 h22]
Let Z = [zl 2’2] € C>! be such that F*Z = Z*F, i.e., let

Pz - H [ 2] =

1

0 0
zZ1 Z2
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be Hermitian. This implies that z; = 0 and 25 = Z3 € R is a real number. Thus Z
takes the form Z = [0 7] with r € R and the equation 0 = H 4+ G*Z 4 Z*G becomes

0 = H+{_OJ [0 r]+m [0 —1]:{21;

and the entry h15 can not be influenced by means of Z. Note, that (F, G) is dissipative
with respect to H if and only if hy; > 0.

h12
h22 —2r|’

After all these preparations we obtain the main theorem of this section.

Theorem 27. Let F,G € CP? and H = H* € C%. Assume that (F,G,H) is
dissipative, (F,G) is controllable, and the infinite eigenvalues of (F,G) have index 1.
Then there exists a solution Z € CP4 of the linear matriz inequality

F*Z Z*F,
0<G'Z + Z°G+H. (28)
Proof. Since (F, Q) is assumed to be controllable we have that R.(F,G) = R(F,G)
due to Lemma 20. Consider the Kronecker canonical form (16) of AF + G as in
Theorem 18. Then, using Z := Q~!2, we see that (12) is equivalent to

0 <

FQTFQY(H+G*P*P*Z+ Z*P'PG)QQ 2
FH+GZ+72°G)z

for all 2 € B(F,G), where H := Q*HQ, Z = P~*ZQ, and G := PGQ. Partition
Z = Zijlij=1,..4, H = [Hijlij=1,. 4, and Z = [zi]i=1, 4 With z; € CP, 2 €
CP, z3 € C7, and z4 € C" according to the block structure of P(AF + G)Q =
diag (£, J,N,M). Then we can rewrite (12) with Gnr = I (since we have assumed
that the infinite eigenvalues of (F, G) have index 1) as

*

Z1 Hyy Hip Hiz Hiy
0 < Zo Hy1  Hyp Hoz Hoy
EREE Hsy Hzz Hss Hsy
| 24 Hy Hyp Hyz Hug
GyZn  GpZie GpZis GpZu
|Gy % GyZn GyZa Gl
Z31 Z32 Z33 Z34
Gl GiZie GiZszs GiyZaa
Z1WGe Z5Gg Z5 ZHGm Z1
+ Z1,Gr Z5Gg  Zi ZiGm Zo
ZisGr  Z33Gyg  Z3y ZisGam Z3|’
21,Ge Z3,.Gg Z3y ZiGm Z4

for every Z = Q7'2 with 2 € B(F,G). Due to Lemma 20 we know that for every
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Z; € CtP and every Z € CP there exists a 2 € B(F, G) such that
Z1
1, |2
Q Z = 0
0

Using the assumption of dissipativity together with Theorem 15 implies that

Fl} : [Hn +GrZn +21,Gy Hip+GrZis+ 255Gy %1]
22

22 H21 + G}ZQ:[ + ZT2G£ H22 + G*jZQQ + Z§2Gj
= 2 (H+G'Z+2°CG)Q 'z
= ZH+GZ+7Z°G)z >0,

for arbitrary z1, Zo. This means that there exist Z11, Z12, Z21, and Zso such that

[Hu +GL 20+ Z21,Ge Hio +GrZ12 + Z§1GJ] >0 (29)

Hoyr + G5 2oy + Z15Gr Hoo + G 290 + Z3,G 7

To construct the remaining Z13, Z14, ... we first note that F*Z = Z*F with Fr =0
(due to the assumption that the infinite eigenvalues have index 1) and F'7 = I becomes

FiZy FiZi FiZis FiZu ZnFe 73 0 ZhFu
Zn Z22 Za3 Z24 _ | 4ife Z 0 ZpFm
0 0 0 0 ZiFr Z3y 0 ZisFa

FZyy P Zao FiZiz FjiyZas ZiJFe Z3, 0 Zj,Fam

For the (4,4)-block use Lemma 21 and Lemma 22 to construct a matrix Z4 (which
itself is composed of several block matrices, according to the A/-blocks in the Kro-
necker canonical form) such that Zj, Faq = FX(Zsq and 0 = Hyy + Z5,Gp + G Zaa.
For the (3,3)-block simply set Zs3 = —%H33.

For the (3,4)—b100k set Z43 =0 and 234 = —H34.

For the (2,3)-block set Zoz = 0 and Z35 = — Hss.

For the (1,3)-block set Z13 = 0 and Z3; = —Ha;.

For the (1,4)-block use Lemma 23 to construct matrices Z14 and Zy; such that
FiZiw=2Z5Fpmand 0= Hiy + G121 + Zj,G .

For the (2,4)-block use Lemma 25 to construct matrices Zay and Zzo such that
Zg4 = ZIZFM and 0 = H24 + G*jZ24 + ZZQGM

Thus, all in all we have constructed a matrix Z such that Z*F = F*Z and

H+G'Z+7*G
Hyy Hy, Hyz Hy G:Zn Grzyy GrpZiz GrpZi
_ Hy Hiy Hiyz Hyy + G20 G53Zr GYZa Gl
H3y H3zp Hzz Hsy Z31 Z32 Z33 Z34
Hy Hyp Hys Hy GZn G\ Zi Gy Zizs GiZaa
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Zilet: Z;lGJ Z§1 ZLGM
Z195Gr Z3:Gyg  Z3y ZijGam

+ * * * *
213G Z33Gg  Z33 ZisGm
ZﬁGﬁ Z§4GJ Z§4 ZZ4GM
Hu+GpZun+ 2Z31Ge Hia+GrZi2+ 725Gy 0 0
_ |Ha+GyZn+ 216G Hep+ GrZn+ 235G 0 01
0 0 0 0| — 7
0 0 0 0
and the assertion is shown. O

Corollary 28. Let F,G € CP? and H = H* € C%1. Assume that (F, Q) is con-
trollable and that the infinite eigenvalues of (F,G) have index 1. Then the following
statements are equivalent:

1. (F,G, H) is dissipative.
2. There exists a solution of the linear matriz inequality (28).

Proof. That 1. implies 2. follows from Theorem 27 even without the controllability
assumption. The other direction is a consequence of Theorem 15. O

The assumptions in Corollary 28 can be weakened as one can see, e.g., by consid-
ering Example 17 with hy; > 0.

4 Two applications

In this section we show two applications of the results that have been obtained in the
previous section. We need further notation. We denote by C(X) the set of rational
functions with coefficients in C and by C(\)P»? the rational matrices of size p-by-q.

Definition 29. Let R € C(A\)P? be a rational matrix. Then we call
R™(\) := R*(—))

the para-Hermitian of R. Also, if R~ = R we say that R is para-Hermitian or even.

4.1 Deflating subspaces

Let F,G € CP% and H = H* € C?? and form the matrix pencil
o 0 F 0 G p+a.p+a
N\ = A {—F* 0} + [G* H] € C[\ . (30)
It is easy to see that N = N~ is even. Even pencils are intimately connected to
problems that involve dissipativity, see [3,4].
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We say that V € CPT%* spans a deflating subspace of N with dimension s if
rank (V') = s and there exists a matrix pencil N = AN, + Ny € C[A]** and W € CP+es
such that

NV =WN(\).

The most simple case is that s = 1 and V is an eigenvector associated with the
eigenvalue \g, in which case one can choose N(\) = A — Ag. For further results about
the application of deflating subspaces to linear quadratic systems theory, see [7].

Lemma 30. Let F;G € CP? and H = H* € C%1. Let Z € CP? be a solution of
the linear matriz inequality (14). Denote the rank of the positive semi-definite matriz
from (14) by r := rank (H + Z*G + G*Z). Then positive semi-definiteness implies
the existence of a full rank Cholesky factor L € C™™ such that

L'L=H+Z7G+G Z (31)

Assume that r < g — p (this implies that ¢ > p). Then

QR ) 1 N A ]

i.e., [?] spans a deflating subspace of the para-Hermitian pencil (30).

Proof. We have

0 F 0 G|\ [z F G
Ol oele 5 = 2lrd ledin
] AF +G
T | -AZ'F+ 'L - Z*G
] AF+G

|—Z*(A\F + G) + L*L
[ 1 o][M\NF+G
- |-zr L* L |’

which proves the claim. O

Lemma 30 emphasizes the importance of solutions of the linear matrix inequality
(14) that minimize the rank r of (31). The linear matrix inequality (14) with this
rank minimizing requirement is called Lur’e equation, compare [9].

4.2 Spectral factorization

For a given rational matrix R € C(\)P9 by rankc(y) () we denote the rank of R over
the field of rational functions. Also, by D(R) we denote the domain of definition of R
by which we mean all Ay € C such that R(\g) € CP? is well-defined, i.e., no entry of
R has a pole at A\g. Note that D(R) is a finite set since a polynomial can only have
a finite number of zeros.
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Definition 31. Let F,G € CP9 and set 7 := rankc(y) (AF + G). Then the rational
matrix U € C(A)?97" and the polynomial matrix V' € C[A\]¢" are called kernel matriz
and co-kernel matriz of A\F' + G, if they fulfill the following properties

(A =

1. A\F+G)U
(AF+GV(N) =T,
(
(

2. rankc(/\)
3. ranke(y) (U) = rank (U(X)) = ¢ —r for all A € D(U),
4. ranke(y) (V) = rank (V()\)) =7 for all A € C,

5. [U V] is unimodular, i.e., there exists a non-zero constant ¢ € C\ {0} such
that
det [U(N) V(N)] =¢,

for all A € C.

The kernel matrix is closely related to the compact behavior of a system (F,G).
Assume that U is a polynomial kernel matrix. Then the compact behavior is given

by
rangeceo (U (51))

= {z € CX(R,CY |3 € C°(R,C977) such that 2 =U (i) a} )

B.(F,G)

as shown in [8] or [3, Lemma 18]. This is the reason why in [8] the matrix U is also
called image representation of the system (F,G).

Definition 32. Let II = II™ € C(\)™" be a para-Hermitian matrix. If there exist
m € N and K € C(\)™" such that

Il=K"K,

then we say that K is a spectral factor of II. Also we refer to the product K~ K as a
spectral factorization of II.

In the following we discuss special spectral factorizations.

Definition 33. Let F,G € C»? and H = H* € C%9. Let r := rankg(y) (AF + G)
and U € C(A\)?97" be a kernel matrix. Then the even rational matrix

I:=U~HU
is called a Popov function or a spectral density function of (F,G, H).

The following Theorem 34 shows that a spectral factorization of a Popov function
can be obtained with the results from the previous section.
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Theorem 34. Let F,G € CP9 and H = H* € C%9. Set r := ranke(y) (AF + G) and
let U € C(N\)?97" be a kernel matriz of \F + G. Let

II(\) :=U~(N)HU(N).
be the associated Popov function. Then we have the following:

1. If there exists a solution Z € CP? of the linear matriz inequality (14) and the
matriz L is a Cholesky factor of

0<G*Z+2*G+H=L"L,
then with K(X) := LU(\) we have K~K =11, i.e., K is a spectral factor of TI.

2. If on the other hand (F,G) is controllable, the infinite eigenvalues of (F,Q)
have index 1, and there exists a spectral factor of 11, i.e., if there exists a K €
C(N)™97" such that K~(AN)K(X) = TI(X\) for all X\ € D(K)ND(U), then the
linear matriz inequality (14) has a solution Z € CP9.

Proof. For 1. note that we have

KY(NKQ\) = K*(=)EK ()
(~DL LU
= U*( N [G*Z + Z2°G + HU(N)
U (=N HU(N) + U (=NG*ZU(N) + U* (=N Z*GU(N)
— U~WHU) + (GU(=N)" ZU) + U (=N Z* (GU(N))
= T\ + (AFU(=N)" ZU(A )+U*( NZ* (=AFU(\)
U(-

(A + )
= )+ AU (-NF*ZU\) = AU (=N Z"FU(X) = TI())

since (AF + G)U()\) = 0 implies GU()\) = —AFU()) and also GU(—\) = AFU(=\).
For part 2. first note that for all w € R for which K (iw) and U (iw) is well defined we

have

Miiw) = K"~ (iw)K(iw)
= K'(—iw)K(iw) = K*(iw)K (iw) > 0.

Using the continuity of II this implies that also II(iw) > 0 for all w € R such that
U(iw) is well defined. Using, e.g., [3, Theorem 36] this proves that (F, G, H) is dis-
sipative. Using Theorem 27 and the additional assumptions we deduce the existence
of a solution of the linear matrix inequalities. O

Corollary 35. Let F,G € CP? and H = H* € C?%9. Also, let (F,G) be controllable
and let all infinite eigenvalues of (F,G) have index 1. Set r := rankc(xy (A\F + G) and
let U € C(N)T97" be a kernel matriz of \F + G. Then the following are equivalent:

1. (F,G, H) is dissipative.



Dissipativity and linear matrix inequalities 31

2. There exists a solution of the linear matrixz inequality (14).
3. There exists a spectral factor of the Popov function Il := U~HU .

Proof. The proof follows directly from the proof of the previous Theorem 34. O

From Corollary 35 the question arises if condition (12) (i.e., dissipativity) is equiv-
alent to the existence of a spectral factor of II which has the form LU (\) without
further controllability assumptions.

Remark 36. Closely related to Corollary 35 is the result of the Youla factorization.
It states that for every para-Hermitian rational function which is positive semi-definite
along the imaginary axis there exists a spectral factorization [15, Theorem 2]. Also,
for every para-Hermitian polynomial function there even exists a polynomial spectral
factor [15, Corollary 2].

Lemma 37. Let F,G € C"? and H = H* € C¥9. Set r := rankc(y) (A\F' + G) and
let U € C(A\)977" be a kernel matriz of \F + G. Define the functions

() U~(NHU (M)
II(\) = U*(AHU(\).

(Note that 11 is the Popov function but not I1). Then for all w € R with iw € D(U)
we have ~
M(iw) = (iw).

Furthermore, if there exists a solution Z € CP9 of the linear matriz inequality (14)
such that F*Z > 0 then II(A) > 0 for all A € C*.

Proof. First we see that for w € R we have
M(iw) = U~ (iw)HU(iw) = U*(—iw)HU (iw)
= U*(iw)HU (iw) = O(iw).
To show the positive semi-definiteness of II in the right half plane, let Z be a solution

of the linear matrix inequality with F*Z > 0. Perform a Cholesky factorization of
0<H+G*Z+Z*G=L*L and set K(\) := LU(\). Then we have

K*V\K(\) = U*(\L*LU(\)
= U\ [H+G*Z+Z*G|U\)
= U'(WHUM) +(GU(A )" ZU(X) + (ZU(N))" GU(N)
= (A + (=AFUN)" ZUN) + (ZU(N)" (=AFU(N))
= TI(\) — 2Re {\}U*(NEF*ZU(N),

which implies that for all A € CT we have

M) = K*NK(\) +2Re{\} U EZUN) >0,
>0

and the claim is shown. O
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The converse of Lemma 37 is not true in general as the example in [13] shows. For
further work on the existence of a positive semi-definite solution of the linear matrix
inequality see [10] and also [14, Theorem 6.4].

5 Specialization to descriptor systems

Consider the state-space descriptor system

Ez(t) = Ax(t)+ Bu(t),

y(t) Cz(t) + Du(t)

where E, A € R, B e RP™ C € RP™ D € RP™ ¢ € C°(R,R™) is called the state,

u € C(R,R™) is called the input, and y € C°(R,RP) is called the output. In the

literature, see e.g. [2, Section 5.9], for such systems a supply function is frequently
introduced as a quadratic function s : RP x R™ — R of the form

w8 2B

where Q = QT € RPP, § ¢ RP™, and R = RT € R™™. Then system (32) is called
dissipative (compare Definition 2) if we have that

(32)

[ee]
0< / s(u(t), y(t))d,
— 00
for every (u,z,y) € C°(R,C™) x C(R,C™) x C°(R, CP) that fulfills (32).
Using the equation for y in (32) we can rewrite the supply to depend on the state
variables (instead of the output variables) via

sty ey = |“OLP “(ﬂr & [0
o R A ]
_ [x@®]"[  cTqe CTQD +CTS } [m(t)]
lu(t)| |[DTQC+ STC DTQD+ DTS+ STD+ R| |u(t)
- 18 Ao e

where Q@ = QT € R»", § € R*™, R € R™™ and § : R™ x R" — R. Clearly, with
this we can equivalently say that (32) is dissipative if

o< [ " (), 2(0)dt,

for every (u,z) € C°(R,C™) x C°(R,C") that fulfills i = Ax + Bu.
For quadratic E and A we state the following definition from [5, Definition 2].
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Definition 38. Let E, A € R™" with AE — A regular (as a matrix over C(\)) and
B € R™™. Then the triplet (E, A, B) is called completely controllable if

rank ([aE — A B])=n forall (o, 3) € C*\ {0,0}.

With the notation ¢ :=n + m,

F=[E 0], G=[-A -B], H;:[SQT ]*5;] andzzzm, (35)

we see that F,G € R*1, H = H* € R?9 and z € C*°(R,RY) and we can rewrite
system (32) as the behavior system FZ(t)+ Gz(t) = 0. Also the supply can be viewed
as a function of the form s : R — R with

s(2)=2TH3.
We have the following result.

Lemma 39. Let E;A € R™", B € R™™ AE — A be regular, and let the triplet
(E, A, B) be completely controllable. Then, with F and G as in (35), (F,G) is con-
trollable and the infinite eigenvalues of (F,G) have index 1.

Proof. To show that (F,G) has no finite eigenvalues, note that we have
n = ranke(y) (AE — A) < ranke(y) (AF +G) < n,
since AE — A is regular and thus n = rankc(y) (AF' + G). On the other hand we have

rank (\oF + G) = rank ([)\OE - A -B] {I —I])
= rank([/\oE —A B]) =n,
which we can see by choosing a = Ao and $ =1 in Definition 38. This shows that
rank (\oF' + G) = n = rankc() (AF + G),

for all A\g € C and thus we have shown that (F,G) has no finite eigenvalues which by
definition means that (F,G) is controllable.

To show that all infinite eigenvalues of (F, G) have index 1 assume to the contrary
that the Kronecker canonical form of (F, G) has a block of type (19) with size o > 1.
In this case, there exist invertible matrices W and V such that

W(A[E 0]+ [-4 —B]):()\{N RJJ{I RQDV’

where

N= T Jeco
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is a nilpotent Jordan block of size ¢ > 1. Define the vectors of := [0 ... 0 0 1]
andv3 :=[0 ... 0 1 0] and note that with this choice we have v{ N = 0 and
vI' N =v!'I. Introduce

wlT = [UIT On_a] W and w2T = [UQT On_o] w,
where 0,,_, € C1"~7 is a vector of only zeros, and observe that this implies
w{ [E 0] = [ 0h—] WI[E 0

N
A A e

and also
N
WI[E 0] = [f 0o WI[E 0= [l 0._0] { RJ v
1
= [N 00 ]V = FT 0ua] V= [ 0] [ RJ v
= [ 0pe]W[-4 -B]=wi{[-A4 -B].
All in all we have obtained that wy,ws # 0 with w!'E = 0, wl'E = —wT A, and

w! B = 0. This implies that also
w{ [E B] =0,

from which we deduce that rank ([E B]) < n, since wy # 0. This, however, is a
contradiction to the assumption of controllability as one can see by choosing a = 1
and § = 0 in Definition 38. O

Corollary 40. Consider the system (32) with p = n and let \E — A be regular.
Assume that (E, A, B) is completely controllable. Then the following statements are
equivalent:

1. The system (32) is dissipative.

2. The Popov function
_[OE-4)~"'B]"[Q S][AE-A)"'B
o= [T R

is positive semi-definite along the imaginary axis.
3. There exist X € R™™ and Y € R™"™ such that
{ATX+XTAQ ATY+XTBS]

BTX +YTA-ST BTY +YTB-R
ETX = XTE ETY = 0.

(36)
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Proof. That dissipativity is equivalent to the positive semi-definiteness of the Popov
function along the imaginary axis has been shown, e.g., in [3, Theorem 36].

To show that 1. implies 3. let F and G be given by (35). By Lemma 39 we
see that the controllability of (F, A, B) implies that (F,G) is controllable and all
infinite eigenvalues of (F,G) have index 1. Thus we can use Theorem 27 to deduce
the existence of a Z € C™"*™ such that (14) holds. Partitioning

Z::[X Y],

with X € C™»™ and Y € C™™, analogously to the partitioning of ' and G as given
in (35) we see than the linear matrix inequality reads

{EEX EZY] N {fﬂ (X V]=F'z=2"F= Ef;] (B 0] = [ii;g 8]

which implies ETX = XTFE and ETY =0 and
0 < G'z+7'G+H
—AT xT Q S
- T e e8]
_ [-ATX - XTA+Q -ATY -XTB+S
- |-BTX -YTA+ ST —-BTY -YTB+R|’

which proves the claim. O

5.1 Specialization to passive systems

Definition 41. A system of the form (32) is called passive if m = p and it is
dissipative with respect to the supply function

w2 510

We obtain the following result which is closely related to [5, Theorem 13 (i)].

compare (33).

Corollary 42. Consider the system (32) with p =n, m = p, and let \E—A be reqular.
Assume that (E, A, B) is completely controllable. Then the following statements are
equivalent:

1. The system (32) is passive.
2. The transfer function G(\) := C(AE — A)"'B + D fulfills
G(iw) + G*(iw) > 0 (37)

for all w € R such that iwFE — A is invertible.
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3. There exist X € R™"™ and Y € R™™ such that

ATX + XTA ATY + XTB - CT 0
BT'X+YTA-C BT'Y+YT'B-D-DT| = 7
ETX =XTFE Ely = o. (38)

Proof. In this case the Popov function is given by

R el F [
B [G(IA)]N [I?n £ } {G(I)\)} =G () +G),

and for imaginary values iw we have
G™ (iw) = G*(—iw) = G* (iw).

Also, note that for passivity we have Q@ = 0, R =0, and S = I we obtain that

Q = C"QC =0,
S = c'QD+CcTs=0C"7,
R DTQD+ DTS+ STD+R=DT + D,
which proves the claim. O

Note that Corollary 42 and [5, Theorem 13 (i)] differ in one major point. In [5,
Theorem 13 (i)] positive realness of the transfer function G is considered, i.e., that
G(Xo) is well defined and that G(A\g) + G*(\g) > 0 for all \g € C+. Well definiteness
of G(\g) for all Ay € C* implies that A\E — A is stable. In Corollary 42 we do not
assume that AE — A is stable and only consider positive semi-definiteness of G* + G
on the imaginary axis. Using Lemma 37 we see that if E*X > 0, we already obtain
that (37) is positive semi-definite in the closed right half plane. The author was not
able to generalize the result that positive semi-definiteness of (37) in the closed right
half plane implies the existence of an X such that E*X > 0 (unless using exactly the
same kind of proof that was used in [5], which would not be a generalization).

5.2 Specialization to regular differential equation systems

Consider the differential equation

=
—~

o~
~

Ax(t) + Bu(t),
Cx(t) + Du(t),

<
—~
~
~
\

with A € R™", B e R"™, C' € RP", and D € RP"™.
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Corollary 43. Consider system (39). Assume that (I, A, B) is completely control-
lable and assume that in the supply function (34) the matriz R is invertible.

Then (39) is dissipative with respect to (34) if and only if there exists an X =
XT € C™™ such that the algebraic Riccati inequality

0<Q-SrR'S"+ X (BR*S‘T - A) + (SR*BT - AT> X - XBR'BTX
has a solution.

Proof. We have to set £ = I in the linear matrix inequality (36), from which we
obtain that Y = 0 and X = X7 Thus, the linear matrix inequality in (36) becomes

(40)

0 < Q-ATX-XA S-XB|_[F G
= ST - BTX R | T |GT R|

Since R is invertible and positive semi-definite, it is also positive definite and there
exists a Cholesky factorization R = LL”T with L € C™" also begin invertible. Thus,

the matrix
I 0
K= |:RIGT LT]

is invertible and (40) is equivalent to

F G

< KT|: N
0 < K [GT R}K

_ [ -GRT|[F G|[ I 0
|0 L7t ||GT R||-R'GT LT
[ —GR Y [F-GR'GT GLT
~ o Lt 0 LT
_ [F-GR'GT 0
| 0 1]

This shows that (40) is equivalent to

0 < F-GR'G

— O-ATX - XA-— (S - XB) R! (ST - BTX)
— O-SR'ST4+x (Bé—léT _ A) n (SR_lBT _ AT) X — XBR'BTX,
and thus the claim is shown. O

Remark 44. To make a statement about the solvability of the algebraic Riccati
equation (instead of inequality in Lemma 43) one would have to move from solutions of
the linear matrix inequality to rank minimizing solutions, i.e., to solutions of the Lur’e
equation, see [9], to guarantee that the rank of the right hand side in the algebraic
Riccati inequality has rank 0.



Dissipativity and linear matrix inequalities 38

6 Conclusion

In this paper we have first explored some basic properties of the so called available
storage and the required supply of linear systems with quadratic supply term and
drawn connections to the problem of dissipativity. We have then shown that the
available storage and the required supply are quadratic functions and as such are
the solution of a linear matrix inequality (12) which is restricted to the reachable
set. Using the Kronecker canonical form, we have derived conditions under which the
solvability of the restricted linear matrix inequality implies the solution of an unre-
stricted /algebraic linear matrix inequality. The unrestricted linear matrix inequality
seems to be much easier to handle computationally, since a parameterization of the
reachable set will most often not be available. Finally, we have used the obtained
results to make statements about deflating subspaces of a para-Hermitian matrix
pencil, the spectral factorization of another para-Hermitian rational matrix (called
the Popov function or spectral density function), and about state-space descriptor
systems, which often occur in practice.
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A Quadraticity of the available storage and the re-
quired supply

Looking back at Definition 4 we see that the available storage © and the required
supply ©_ both are the solution of an optimal control problem with linear constraints.
This suggests that © and ©_ themself might be quadratic functions. In this section
we show that this is indeed the case.

Definition A.1. Let W C C™ be a vector space. Then the function
B:WxW —C

is called a sesquilinear form on W if the conditions

B(z,y) = B(y,z) (41)
B(z,y1 +y2) = B(z,p1)+ B(x,y2) (42)
B(z,ay) = aB(z,y) (43)

hold for all z,y,y1,y2 € W and all a € C.

Proposition A.2. Let W C C" be a vector space and let B : W x W — C be a
sesquilinear form on W. Then there exists a unique Hermitian matriz X = X* € C™"
such that

y* Xz = B(z,y) for all xz,y € W, (44)
Xz=0 forallx L W. (45)

In particular, the function © : W — R defined by O(z) := B(x,x) is quadratic.

Proof. To see the existence, let vq,...,v,, be an orthonormal basis of W. Set V :=
[v1,...,Vy] and define the matrix X = [z, ;] € C™"™ through z, ; = B(v;,v;). Let
x,y € V be arbitrary. Then there exist coordinate vectors «, 3 € C™ such that
z=Va=>3" v and y=V3=>", v, This implies that

B($7y> = Z B(Oéj’l}j,,@i’l)i)

ij=1

m
=Y a;BiB(vj,vi)
ij=1
m
= o;fixi;
ij=1

m m

> B> ajri
i=1  j=1
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D1 T

— [E,,m 6 Xa.

m . .
Zj:l QjTm,j

Set X := VXV*. Then, for the arbitrary =,y € W from above, we see that y* Xz =
OV VXV*Va=p*"Xa= B(x,y). Also, we see that for any z L W, i.e., any x € C"
with V*z = 0, we have that Xz =VXV*z=0.

To see the uniqueness let X; and X, be two matrices satisfying the properties (44)
and (45). Then, fori = 1,...,n the unit vector e; € C" can be written as e; = v; +w,
where v; € W and w; L W. Thus, for 7,5 € {1,...,n} and k = 1,2 we have

eff(kej = v;-f‘kaj + w;‘kaj + v:‘f(kwj + w;;"j(kwj
= v;‘)zkvj7
due to (45). Because of (44) this implies e} X1e; = vf X1v; = B(vj,v;) = v} Xov; =
6’{X2€j7 i.e., X1 = XQ. O

The following Lemma is an extension of [1, Lemma I1.2.2.] to the complex hermi-
tian case.

Lemma A.3. Let W C C" be a subspace and consider a function © : W — R. Then
there exists a unique Hermitian matriz X = X* € C™" such that

z* Xz = 0(x) forallz e W,

Xx=0 forallz L W,

if and only if for all « € C, p € RT\ {1} and all vectors x1,x2 € W we have

O(azy) = [af*O(x1), (46)
@(:171 + $2) + @(1‘1 — 1‘2) = 2@(1‘1) + 2@($2), (47)
O(x1 + pwe) — Oz — pxe) = pO(x1 + 22) — PO(T1 — T2). (48)

Proof. The ”only if” part is trivial. For the ”if” part let x1,x2,x3 € W be arbitrary
vectors. Then from (47) we obtain

@(l‘l =+ 3;‘2) + @(xl =+ .133) = % [@(2.131 —+ 2o + a:3) =+ @(.132 — xg)] ,
O(z1 — x3) + Oz — 22) = 1 [O(231 — 22 — x3) + O(22 — 23)].

Subtracting these two equations yields

O(z1 + x2) — O(x1 — 23) + O(z1 + 23) — O(z1 — 22)
= % [@(2%1 + x2 + 1’3) — @(2’1}1 — Xy — .Tg)] N

which with (46) (o = —1) and (48) (u = 2) is equivalent to

@(Il + 1’2) — @(Il — :L'3) + @(Il + Ig) — @(l’l — Ig)
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+0(x; — 29 — x3) — O(x1 + 22 + 23)
= 1[0z + 22+ x3) — 20(z1 + T2 + 23)
—0(2z1 — 22 — 23) +20(x1 — 22 — x3)]
= % [O(z2 + x5 + 221) — O(x2 + 23 — 2271)
—20(z2 + 3 + x1) + 20(x2 + 23 — 21)]
= 0.

Thus, we have shown that

@(l’l + 31‘2) - @(.’171 — .133) + @(1‘1 + .’L‘3) — @(1‘1 - 332) =

@(.’131 + 2o + .133) — @($1 — X — .’133). (49)

Define the function B: W x W — C by
B(z,y) =0z +y) - O(z —y) +i[O(z +iy) — Oz —iy)].
Then, using (49) we see that for all z,y,y1,y2 € W and all @ € C we have

Bz, +y2) = O@+y1+y2) — O —y1 —y2)
+i[O(x +iy1 +iy2) — Oz — iy1 — iy2)]
= Oxz+y1) —O(x—y2) +O(x+y2) —O(z — 1)
+i [0z +iy1) — O(x — iy2) + O(x +iy2) — O(x — iy1)]
= B(z,y1) + B(z,92).

Using (46) we see that

B(z,y) = O(x+y)—0(x—y)+i[O(x+iy) —O(x —iy)]
= Oly+a)— -1 Oy — ) +i [[i’ Oy — i) — |~il* Oy + iw)]
= O(y+2)— 6y — =) i[Oy +ir) - Oy — ix)]
= B(y,x).

Also, using (49) again, we see that condition (48) is equivalent to

O(z1 + Br2) — O(z1 — fu2)
= O(z1 + Re{f} zz +ilm {B} w2) — O(z1 — Re{f} x5 — ilm {5} )
= O(x; +Re{f}x2) — O(x1 —iIlm {F} z2)
+0(z1 +iIm {8} z2) — O(z1 — Re {S} x2)
= O(x1 +Re{f}z2) — O(r1 — Im{F} ix2)
+O(z1 +Im {SB}izs) — O(x1 — Re {0} x2)
= O(z1+Re{f}x2) —O(x1 — Re {8} z2)
+0(z1 +Im{B}izs) — O(x1 — Im {8} ixa)
= Re{f}O(x1 +22) —Re {8} O(z1 — x2)
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+Im {8} O(z1 + iz2) — Im {B} O(x1 — ix2)
= Re{B} (O(z1 + x2) — O(a1 — 22))
+Im {ﬂ} (@(171 -+ ZIZ’Q) — @(1'1 - Z.:I:'Q)a

for all 8 € C and all 1,25 € W. Thus, we see that

B(z,ay) Oz + ay) — O(z — ay) + i [O(z + iay) — O(x — iay))

Re{a} (©(z +y) —O(z —y)) + Im{a} (O(z +iy) — Oz —iy))

+ iRe{a} (O(z +iy) — O(x —iy)) +ilm{a} (O(x + iiy) — O(z — iiy))
= Re{a} (©(z +y) —O(x —y)) —ilm{a} (O(z +y) — Oz —y))
+ iRe{a} (O(z +1iy) — O(x —iy)) + Im {a} (O(x + iy) — O(z —iy))

= a0z +y) - O(x —y)) +id(O(x + iy) — O(z —iy)) = aB(z,y),

which shows that B is a sesquilinear form. With Proposition A.2 this proves the
existence of a unique X = X* € C™" such that B(z,y) = 4y* Xz for all z,y € W
and Xx =0 for all x L W. Thus for all x € W we have

v* Xz = 1B(z,z)=1(0(2z) —0(0) —i[O(z +iz) — Oz — iz)))
= 10(z)-0-i[O0(z +iz) — |i[?O(z — iz)]

= O)—i[O(x+iz)—06

O(z) —i[O(x+ix)—©

(i(x —iz))]
(ix + z))] = O(x),
where we used (46) extensively. This proves the claim. O

Proposition A.4. Let X = X* € C*" be a Hermitian matriz such that for all
x € C™ we have z*Xx = 0. Then X = 0.

Proof. With the notation X = [xi,j]i7j:1,.,,,n we first see by choosing = to be the i-th
unit vector e; that the diagonal elements vanish, i.e., that z;; =0 for¢ =1,...,n.
To show that the off diagonal elements vanish, let z := e + ¢; with k,l =1,...,n
Then we have

0 = 'Xex=uwpr+ Tk + T8+ 21y
= Tpo+ T = Re{ap,}

and analogously, by choosing x := ej, + ie; that

0 = 2"Xz= Tk k + ifﬂk,l — ixl,k — Ty

= Tp — Tk = Tk, — iTk
= Re {ixk,l} =—Im {xk,l} 5
which implies 23 ; = 0. This proves the claim. O

Lemma A.5. Let F,G € CP% and H = H* € C%1. Then the available storage and
the required supply of (F,G, H) satisfy the following properties:
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1. For all z1 € BL(F,G), t € R, and o € C\ {0} we have
0.4 (az1(t)) = |a]?04 (21(1)),
while at the same time for all zo € B_(F,G), t € R, and o € C\ {0} we have
O_(axn(t)) = a0 (=(1)),
(the case o =0 has to be excluded, since 0 - oo is undefined).
2. If (F,G) is dissipative then we have ©4(0) =0 and ©_(0) =0 .

Proof. First note that with a # 0 we also have that az; € B, (F,G) and thus

ZEB | (F,Q)
z(0)=az1(t)

O4(azi1(t)) = — inf /Oooz*(t)Hz(t)dt

~ inf /Ooo(az(t))*H(az(t))dt

azeB | (F.G)
az(0)=az (t)

~ inf |a|2/ () H ()t
ze%+(F,G) 0
z(0)=21(t)

= —|af* inf / 2" (t)Hz(t)dt
2B (F,G) J
2(0)==1()

lal?©4(21(t))

and analogously we find that ©_(az3(t)) = |a|?0_(22(t)).

To see the second part we first note that ©4(0) > 0 since the trivial trajectory 0 €
B (F,G) is exponentially decaying. Also we see that ©_(0) < 0 since 0 € B_(F,G).
Using Lemma 9 and the dissipativity this leads to

0<604(0)<6_(0) <0,
and thus the claim follows. O

The following Lemma A.6 is a modification of [1, Theorem II.2.1.].

Lemma A.6. Let F,G € CP% and H = H* € C?9. Let W be a linear subspace of
C? such that the available storage or the required supply is finite on W, i.e., assume
that for all 2 € W we have ©1(2) € R or ©_(%) € R. Then, there exists a matriz
X, = X} € C%9 such that

0,4 (%) = 2" X3,

for all 2 € W or a matriz X, = X € C9 such that
0_(2) = 2*X, 2,

for all Z € W, respectively.
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Proof. We show the three conditions from Lemma A.3. Condition (46) is fulfilled due
to Lemma A.5. To see condition (48) let 21,25 € W and p € R* with u # 1 be
arbitrary. Define the function 6, : B, — R through

0(z) = / 2" (t)Hz(t)dt.
0
For all z1, 20 € B we have
0+ (21 + p22) + pbi (21 — 22)

- /OOO (21(8) + pza ()" H (21(t) + pza(t)) dit+

u / (21(t) — 22())" H (21(t) — za(t)) dt

) [ (O Ha e+ (uf? + p) | s

Im{Awugﬁﬂhﬂﬂﬁ}m%{Amzﬂmeum%

oo

~(1+n) [ AOHa@Od+ (0P 4w [ 50 Ha (0
0 0
since p is assumed to be real. Analogously we obtain that
P4 (21 + 22) + 04 (21 — pzo)

:W/m%®+@®fH@@+@@MH
0

| )= a0 a1 6) = )
— = o 21 2 - z z2
e+ ) [ SO Od+ Guor ) [ 00
This shows that we have

O (214 pz2) + phyi(z1 — 22) (50)
= pbi(z1+ 22) + 04 (21 — pz2),

for all z1,29 € B,. Let € > 0 be arbitrary and choose z3,z4 € ‘B4 such that
23(0) = 21 + 22, Z4(O) = 21 - /14722, and

0:(2z3) < —O4(21+ %) +e, (51)
01 (z4) < —O4(21 —p2) +e. (52)

Set Z; = ﬁ(u@, + 2z4) and Zy := ﬁ(zg — 24). Then we have

- - 1
21+ 29 = m([i23+24)+1+u

(23 — 24) = 23,
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and also

1 1%
= ——(pz3+24) — 23 — Z4) = Z4,
14_M(/~L3 1) 1+M(3 1) =2
1 I 1
— + 0) = 23(0) + 24(0
4 20)) 0) = a0+ a0
B (54 22) b (81— piba) =
1+ 1 2 1+p 1~ H22) =21

This shows that using (51), (52) and (50) we can obtain

=04 (21 + pk2) —puO4 (51 — 22) <

For ¢ — 0 this gives

=04 (81 + p22) — 104 (51 — 22) < —pO 4 (21 + 22) — O4 (21 — p2a).

Let € > 0 again be arbitrary and

2’6(0) = 21 — 22, and

04 (21 +

0+ (z3)

IN

0+(25) <
04+(26) <
Setting 21 := ﬁ(% + pzg) and Zy 1= ﬁ(% —
21 + pz ! (z5 + )+
= z 2
21 T K22 11 p 5 T HZ6
5 — % ! (25 + pz6)
_ — P ) —
21 — 22 1+ 1 5 T HZ6
and also
21(0) ! (25 + pz6) ) (0)
A =
1 1+ 4 5 T 26
. . ]
= Z1+ p22) +
1+ (21 + pz2) 1+u
Z(0) = = Z5.

pZ2) + pby (21 — Z2)

104 (21 + 22) + 04 (21 — p22)

+ 04 (24)

(=04 (31 + 22) +€) — O (51 — o) +¢
—u@+(21 + 22) — @.;,.(2?1 — [1,2:’2) + (1 + u)e.

—O4 (21 + puza) +e,
—O, (21— 29) + e

26), we have

K (25 — 26) = 25,
1+p
1

Z5 —Z¢) = Z6-
1+‘u(5 6) 6

This shows that using (54), (55) and (50) we can obtain

=04 (21 — p22) — pO4 (21 + 22)

< 04 (21 — pZ2) + pby (21 + 22)

46

(53)

choose z5,26 € B such that 25(0) = 21 + po,



Dissipativity and linear matrix inequalities 47

POy (Z1 — Z2) + 01 (%1 + pzq)
10+ (26) + 01 (25)

S u(=O4(31— 22) +€) — O (21 + pda) + €
= —pO4 (5 — 22) — O (&1 + p2a) + (1 + pe.
For € — 0 this gives
=04 (81 — p22) — 04 (51 + 22) < —pO 4 (21 — 22) — O4 (21 + p2a). (56)

Combining (53) and (56) proves that
—O4 (51 — p22) — PO (21 + 22) = —puO (31 — 22) — O (21 + pza),

and thus condition (48) is fulfilled. To see condition (47) let 21, 25 € W be arbitrary.
Then the identity

04 (21 + 22) + 04 (21 — 22) = 204 (21) + 20,4 (22), (57)

can be shown for all z1, 2z € B as in (50). With this let € > 0 be arbitrary and let
23,24 € %_;,_ be such that 2’3(0) =Z1 + 22, 24(0) =Z1 — 22, and

04+(23) < =04 (51 + 22) + e, (58)
S —®+(,’2’1 — 22) +e. (59)

Set z; 1= 23'524 and Zp := #5*. Then we have

Z1+ 2o = 23,
21— 22 = 24,
as well as
21(0) = 323(0) +24(0) = 321 + 58+ 551 — 582 = 4
22(0) = %Zg(()) - 24(0) = %21 + %22 — %21 + %22 = 22.

This shows that using (58), (59) and (57) we have that

—204(21) —204(22) < 204(%1) + 204(%)

0+ (21 + 22) + 04(21 — 22)

= 04+(23) + 04 (24)
—O0,(31+2)+e—04(21—2) +e¢
O (1 + 22) — O (51 — 2) + 26

IN

For € — 0 this gives

—2@.;_(2?1) — 2@.;,.(2?2) < —@_;,_(2?1 + 22) — @+(2’1 — 2?2) (60)
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Let € > 0 again be arbitrary and let z5, zg be such that z5(0) = 21, z6(0) = 22, and

9+(Z5) S —®+(21) + €, (61)
0+(ZG) S 7@+(22) + €. (62)
Using (61), (62) and (50) we see that

—04(51+ %) =04 (81— 22) < 04(25 +26) + 04 (25 — 2)

20+ (25) + 204 (26)

S —2@+(21) + 2¢ — 2@+(22) + 2¢
S —2@4_(21) - 2@4,_(?:’2) + 4e.
For ¢ — 0 this gives
—®+(ZA’1 + 22) — 6+(21 — 7:’2) < —2@+(21) — 2@+(7:’2). (63)

Combining (60) and (63) proves that
=04 (81 + £2) — O4 (81 — £2) = =20, (21) — 20,4 (%),

and thus condition (47) is fulfilled. The proof for the required supply works analo-
gously. O

The above results show that the available storage and the required supply are
quadratic functions. In the rest of the section we will show that the quadratic matrix
X has a special form.

Definition A.7. Let FF € C™™ and let W C C™ be a subspace. Then a function
O : W — R is called F-neutral on W if it has the property

O(z +y) = O(x), (64)
for all x,y € W with y € kernel (F).

Lemma A.8. Let X = X* € C»", F € C™", and let W C C" be a linear subspace.
Consider the quadratic function O(z) := x*Xx. Assume that © is F-neutral on W
and assume that Xz = 0 for all z L W. Then, there exist matrices Z € C™™ and
X =X* € C™™ such that

X = F*Z=2F
= F*XF=F*X*F.

Proof. Let the columns of V3 € C™" form an orthonormal basis of the linear vector
space V) := cokernel (F)NW, let the columns of Vo € C™* form an orthonormal basis
of the linear vector space Vs := kernel (F)NW, and let V3 € C™! form an orthonormal
basis of the linear vector space V3 := W, It is easy to see that Vi, Vs, and Vs are
orthogonal to each other. Also one may verify that V; @& Vo & V3 = C™. Thus the
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matrix V := [Vl Vs Vg] € C™" is unitary and r 4+ s + ¢t = n. Since O is F-neutral
on W we obtain that
O(Viar + Vo) = ©(Viay),

for all a; € C” and s € C*. Since X V3 = 0 we also have

O(v+Vzaz) = (v+ Vzaz)* X (v + Vzaz)
= v Xv+ 0" XVsas + Vi Xv+ oV X Vsas
v* Xv = 0(v)

for all ag € C! and v € C™. This especially implies that

[05] a1 (05]
OV |a = OV ]| +Vzaz3 | =60 |V |as
Q3 0 0

g

= @(V1a1+‘/éa2)=@(‘/ia1)=@ V1910

0

Introducing the notation

B X1 X2 Xis
VXV = | Xo1 Xoo Xosz|,
X31 Xz Xas
with partitioning analogous to the partitioning of V', we deduce that

* *

o X1 X2 Xug| |aa oy X1 X2 Xuz| |aa
1% Xo1 Xoo Xoz| || =aj X111 =10 Xo1 Xoo Xoz| | 0],
Qg X311 X32 Xz3| o3 0 X31 Xzz Xz3| [0

which, with Proposition A.4, shows that

Since the vectors of V; span part of cokernel (F') there exists a matrix G € C™" such
that V7 = F*G. With this we have

) X1 0 0 2%
X =v|io o olvi=[wxu 0 0] V¥
0 00 Vi
== V1X11V1* - F* GX11V1* = F*Z,
———
=:Z

and also F*Z = Z*F' since X = X*. Finally, observe that with X := GX1:G* we
have X = F*XF and X = X* which finishes the proof. O



Dissipativity and linear matrix inequalities 50

Lemma A.9. Let F,G € CP? be a first-order matrix polynomial and let H = H* €
C%1. Then the available storage and the required supply are F-neutral on every sub-
space where they are finite.

Proof. Let W € C7 be a subspace where the available storage of the required supply
is finite. Using Theorem 10 we find that for all 2,y € W with § € kernel (F') we have
Fy =0 and thus

O.(+9) = — _nf /0 (0 H2(t)dt
z + y
2(0) =219
= - inf / 2" (t)Hz(t)dt
Z€B  (F.G)

Fz(0)=F2+Fj

. if /0 (0 H()dt

€W (F.C)

Fz(0)=F2
= — inf / 2 (t)Hz(t)dt = ©4(2),
z€B 4 (F.G) Jo
z(0)=2
which shows that © is F-neutral. The proof for ©_ works analogously. O

Theorem A.10. Let F,G € CP9 and H = H* € C%9. Let (F,G,H) be dissipative.
Then there exist matrices Z, € CP9 and X = X} € C%? such that F*Z, = Z7F
and
O4(21) = ZHF'Z %
= ZF"'X, Fz
for all 21 € R.(F,G) and there exist matrices Z_ € CP? and X_ = X* € C?? such
that F*Z_ = Z* F and
O©_(%2) = ZF'Z_%
= ZF*'X_Fz
for all z5 € R.(F, Q).
Proof. With Remark 6 and 9 we find that the available storage ©, and the required

supply ©_ are both finite on the compact reachable set R.(F,G). Using Lemma A.6
we conclude that there exist matrices X, X_ € C%? such that

*

N>

0.(2) =
O_

z) ):(+
3) = #X

W W

for all 2 € R.(F,G). With Lemma A.9 and Lemma A.8 we deduce the existence of
Z,,Z_ € CP4 as in the assertion. O



