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Abstract

The classical valuation of an uncertain cash flow in discrete time consists in taking the expectation

of the sum of the discounted future payoffs under a fixed probability measure, which is assumed to be

known. Here we discuss the valuation problem in the context of Knightian uncertainty. Using results

from the theory of convex risk measures, but without assuming the existence of a global reference

measure, we derive a robust representation of concave valuations with an infinite time horizon, which

specifies the interplay between model uncertainty and uncertainty about the time value of money.

1 Introduction

For an uncertain nonnegative cash flow (C̃t)t=0,1,..., for a risk free interest rate r > 0, and at any time t,
the classical risk neutral valuation of the future cash flow takes the form

Ṽt := EP

[ ∞∑
s=t

C̃s
(1 + r)s−t

∣∣Ft]. (1)

Here Ft denotes the information available at time t, and P is a given probability measure assumed to be
known. Passing to the discounted quantities

Vt :=
Ṽt

(1 + r)t
and Ct :=

C̃t
(1 + r)t

,

the valuation formula (1) takes the simpler form

Vt = EP

[ ∞∑
s=t

Cs
∣∣Ft]. (2)

In this paper we discuss the valuation problem in a situation of “Knightian uncertainty”, or model
ambiguity, where there is no canonical choice of an underlying probability measure P . A systematic
approach to such situations has been developed in the theory of coherent and, more generally, convex risk
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measures; cf. [3, 4, 9, 10, 13, 14, 15, 11]. This suggests to focus on concave monetary valuations defined
in terms of convex risk measure on the space of bounded adapted processes; cf. [7, 8, 5, 16, 18, 1]. From
this general point of view, the valuation formula (2) turns out to be a special case of the robust valuation
formula

Vt(C) = min
Q,D

(
EQ

[ ∞∑
s=t

CsDs|Ft
]

+ αt(Q,D)

)
(3)

in terms of a whole class of probability measures Q, a class of predictable discounting processes D =
(Dt)t=0,1,..., and a penalty function αt. Such a representation involves both model ambiguity, as reflected
in the multiplicity of Q, and discounting ambiguity, as described by different discounting processes D,
which come on top of the classical discounting by the money market account.

In Section 3 we focus on the unconditional case at the initial time 0. Here the valuation V := V0 takes
the form

V (C) = U(X) := −ρ(X),

where X = (Xt)t=0,1,... is the cumulated cash flow associated to C = (Ct)t=0,1,... by Xt =
∑t
s=0 Cs,

and where ρ is a convex risk measure on the space of bounded processes which are adapted to the given
filtration. Our aim is to derive the valuation formula (3) under full model uncertainty. This means that,
in contrast to the closely related representation results in [1], we do not assume the existence of a global
reference measure P which fixes the class of null sets, and thus allows one to use the standard techniques of
risk measures on L∞ as in [9, 10, 14, 15, 11, 6, 12, 8, 2, 7, 1]. Under a regularity assumption which is weaker
than global continuity from below, we prove the representation (3) for the concave monetary valuation
V , viewed as a functional on a suitable class of discounted cash flows. This involves a careful look at a
class of finitely additive probability measures on the optional σ-field, and in particular a decomposition
theorem for the corresponding σ-additive probability measures on an enlarged product space.

In Section 4 we sketch the extension to dynamic valuations. Using results from [1, 12, 2], we discuss
the characterization of time consistency by supermartingale properties of the penalty processes arising
in the robust representation (3). In this context we identify two potential sources of “bubbles”. The first
source is the penalization process (αt(Q,D))t=0,1,.... Time consistency implies that it can be decomposed
into a potential and into an additional martingale which may be viewed as an excessive neglect of the
model (Q,D), and which may introduce a component of “exuberance” in the valuation. The second source
already appears in the classical case, where we have fixed a probability model P . It consists in taking
into account the option to sell the cash flow at some future time, and this may create a bubble on top of
the fundamental “buy and hold” valuation in (2) and (3).

2 Preliminaries

Consider a filtration (Ft)t=0,1,... on some measurable space (Ω,F), such that F0 = {∅,Ω} and

F = F∞ := σ

( ∞⋃
t=0

Ft

)
.

Note that we do not fix a reference measure P on (Ω,F).
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Let X denote the space of all adapted processes X = (Xt)t=0,1,... such that

‖X‖ := sup
ω,t
|Xt(ω)| <∞.

We also consider the subspaces

Xt :=
{
X ∈ X

∣∣ Xs = Xt ∀ s ≥ t
}
, t = 0, 1, . . .

and
X∞ :=

{
X ∈ X

∣∣ ∃ X∞(ω) := lim
t→∞

Xt(ω) ∀ω ∈ Ω
}
.

The processes in X are regarded as cumulated discounted cash flows. Via

Ct := Xt −Xt−1, Xt :=
t∑

s=0

Cs,

the space X∞ can be identified with the space

C :=

{
C = (Ct)t=0,1,... ∈ X

∣∣ ∃ ∞∑
t=0

Ct(ω) ∀ω ∈ Ω

}
of discounted cash flows whose sum converges pointwise. As explained in the following remark, any
bounded adapted cash flow discounted by a suitable numéraire is in fact an element of C.

Remark 1. Assume that there is a money market account

Nt :=
t∏

s=1

(1 + rs) t = 0, 1, . . .

generated by a predictable process (rt)t=0,1,... of nonnegative short rates bounded away from zero by some
constant δ > 0. Consider an uncertain adapted cash flow C̃ = (C̃t)t=0,1,... such that ‖C̃‖ < ∞. Using
N = (Nt)t=0,1,... as a numéraire, the discounted cash flow C = (Ct)t=0,1,... defined by

Ct = N−1
t C̃t

satisfies
∞∑
t=0

‖Ct‖ ≤
1
δ
‖C̃‖ <∞,

and hence belongs to the space C.

We focus on the valuation of a cumulated cash flow at the initial time t = 0, using the notation
U(X) := V (C), where X ∈ X is the cumulated cash flow associated to C.

Definition 2. A map U : X → R is called a concave monetary valuation if U is

• cash invariant, i.e.,
U(X +m1{0,1,...}) = U(X) +m

for all m ∈ R;
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• monotone, i.e.,
X ≤ Y ⇒ U(X) ≤ U(Y );

• concave, i.e.,
U(λX + (1− λ)Y ) ≥ λU(X) + (1− λ)U(Y )

for X,Y ∈ X and λ ∈ [0, 1];

• normalized, i.e., U(0I{0,1,...}) = 0.

The concave set
A :=

{
X ∈ X

∣∣ U(X) ≥ 0
}

is called the acceptance set of U .

Let us fix a concave monetary valuation U on X . Note that X can be identified with the Banach space
of all bounded measurable functions on the product space

Ω̄ = Ω× {0, 1, . . .}

endowed with the optional σ-field

F̄ = σ(X ) = σ({At × {t}
∣∣ At ∈ Ft, t = 0, 1, . . .),

and that the functional ρ := −U can be viewed as a convex risk measure on this Banach space; cf. [14,
Sections 4.1, 4.2]. Applying the representation theorem [14, Theorem 4.15], and denoting by M̄1,f the
class of finitely additive probability measures on (Ω̄, F̄), we obtain the following representation of U :

Proposition 3. For any X ∈ X we have

U(X) = min
Q̄∈M̄1,f

(
EQ̄[X] + α(Q̄)

)
, (4)

where the penalty function α : M̄1,f → (−∞,∞] is given by

α(Q̄) = sup
X∈A

EQ̄[−X] = sup
X∈X

(
EQ̄[−X] + U(X)

)
. (5)

Our aim is to clarify the probabilistic structure of this representation if U is regarded as a functional
on the subspace X∞, or, equivalently, as a functional V on the space C. To this end we introduce the
following

Assumption 4. The filtration (Ft)t=0,1,... is a standard system in the sense of Parthasarathy [20], i.e.,

i) Each σ-field Ft is σ-isomorphic to the Borel σ-field on some complete separable metric space,

ii) Any decreasing sequence of atoms At ∈ Ft, t = 0, 1, . . . has a non-void intersection.

This assumption guarantees that any consistent sequence of probability measures Qt on (Ω,Ft),
t = 0, 1, . . ., has a (unique) extension to a probability measure Q on (Ω,F); cf. Parthasarathy [20,
Theorem 4.1].
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Example 5. Consider the path space Ω = S{1,2,...}, where S is a Polish state space, and where Ft is
generated by the coordinate maps ω → ω(s), s = 1, . . . , t. Then (Ft)t=0,1,... is indeed a standard system,
and Parthasarathy’s extension theorem reduces to the classical extension theorem of Kolmogorov.

3 Robust representation of concave monetary valuations on X∞
Let M1 denote the class of probability measures on (Ω,F). For any Q ∈ M1, we denote by Γ(Q) the
class of all optional random measures γ on the extended time axis {0, . . . ,∞} which are normalized under
Q, i.e., γ = (γt)t=0,...,∞ is an adapted process such that γt ≥ 0 and

∞∑
t=0

γt + γ∞ = 1 Q-a.s..

Via

Dt := 1−
t−1∑
s=0

γs, γt := Dt −Dt+1, t = 0, 1, . . . , D∞ := γ∞, (6)

the class Γ(Q) can be identified with the class D(Q) of predictable discounting processes D = (Dt)t=0,...,∞

under Q, i.e., D is a predictable process such that D0 = 1 and Dt ≥ Dt+1 ≥ 0 Q-a.s.. Note that

D∞ = lim
t→∞

Dt = γ∞ Q-a.s.,

and that the “integration by parts” formula
∞∑
s=0

γsXs + γ∞X∞ =
∞∑
s=0

Ds(Xs −Xs−1) Q-a.s. (7)

holds, where we put X−1 := 0.
Let U be a concave monetary utility valuation on X .

Definition 6. Let us say that U is regular on X∞ if

U(X) = lim
n→∞

U(Xn),

whenever (Xn)n=0,1,... is a sequence in X∞ which increases to X ∈ X∞ uniformly in t in the sense that

lim
n→∞

sup
t

(X −Xn)t(ω) = 0 ∀ω ∈ Ω.

Remark 7. Regularity on X∞ is a relaxed version of continuity from below. Note that it implies local
continuity from below, i.e., continuity from below on the subspace Xt for any finite t. On the other hand,
it is weaker than global continuity from below on X . By [14, Proposition 4.21], the latter condition would
immediately allow us to replace the finitely additive measures in (4) by σ-additive probability measures on
(Ω̄, F̄). It turns out, however, that this would be too restrictive. For example, as explained in [1, Example
48], global continuity from below (or even from above) would not allow to calibrate the valuation to a given
term structure. The point is that finitely additive measures such as Banach limits play an important role
by creating mass at infinity. As a result, our representation theorem will involve probability measures on
the extended product space (Ω̃, F̃) introduced below.
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The following representation of U , viewed as a functional on the subspace X∞, is the main result of
this paper. It describes the interplay of model ambiguity, as specified by the measures Q ∈ M1, and of
discounting ambiguity, as specified by the discounting processes D ∈ D(Q). In contrast to [1, Theorem
3.8], we neither assume the existence of a global reference measure P on (Ω,F), nor a global continuity
condition on X .

Theorem 8. Suppose that U is regular on X∞. Then, for each X ∈ X∞, the valuation U takes the form

U(X) = min
Q∈M1

min
γ∈Γ(Q)

(
EQ

[ ∞∑
t=0

Xtγt +X∞γ∞

]
+ α(Q, γ)

)
, (8)

where

α(Q, γ) := sup
X∈X∞

(
EQ

[
−
∞∑
t=0

Xtγt −X∞γ∞
]

+ U(X)

)
. (9)

Alternatively, replacing X ∈ X∞ by the corresponding discounted cash flow C ∈ C, the valuation V (C) :=
U(X) takes the form

V (C) = min
Q∈M1

min
D∈D(Q)

(
EQ

[ ∞∑
t=0

CtDt

]
+ α(Q,D)

)
, (10)

where

α(Q,D) := sup
X∈C

(
EQ

[
−
∞∑
t=0

CtDt

]
+ V (C)

)
.

The proof will be given in several steps. In the first step, we are going to show that each finitely
additive measure Q̄ ∈ M̄1,f , which is relevant for the representation (4), can be replaced by a σ-additive
probability measure on the extended product space

Ω̃ := Ω× {0, . . . ,∞},

endowed with the σ-field

F̃ := σ
({
At × {t, . . . ,∞}

∣∣ At ∈ Ft, t = 0, 1, . . .
})
.

Let M̃1 denote the class of σ-additive probability measures on (Ω̃, F̃).

Proposition 9. For each Q̄ ∈ M̄1,f such that α(Q̄) < ∞, there exists a probability measure Q̃ ∈ M̃1,
such that

EQ̄[X] = EQ̃[X̃],

for any X ∈ X∞, where X̃ denotes the measurable bounded function on (Ω̃, F̃) corresponding to X via
X̃(ω, s) := Xs(ω) for s = 0, 1, . . ., and X̃(ω,∞) := X∞(ω) := lims→∞Xs(ω).

Proof. 1. Our assumption α(Q̄) <∞ clearly implies

αt(Q̄) := sup
X∈Xt

(
EQ̄[−X] + U(X)

)
≤ α(Q̄) <∞.
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Note that αt(Q̄) is the minimal penalty function in the robust representation of the convex risk
measure ρt, defined as the restriction of −U to Xt. Note also that Xt can be identified with the
Banach space of bounded measurable functions on (Ω̄, F̄t), where

F̄t := σ
({
As × {s, s+ 1, . . .}

∣∣ As ∈ Fs, s ≤ t}) ,
and that our assumption on U implies that ρt is continuous from below. By [14, Proposition 4.21],
we can conclude that the restriction of Q̄ to F̄t is σ-additive.

2. We introduce the optional filtration (F̃t)t=0,1,... on (Ω̃, F̃), where

F̃t := σ
({
As × {s, . . . ,∞}

∣∣ As ∈ Fs, s ≤ t}) .
Define Q̃ consistently on each σ-field F̃t by

Q̃[As × {s}] = Q̄[As × {s}] for s < t, and Q̃[At × {t, . . . ,∞}] = Q̄[At × {t, t+ 1, . . .}].

Due to 1), Q̃ is σ-additive on each F̃t. Since (Ft)t=0,1,... is assumed to be a standard system, it
follows that (F̃t)t=0,1,... is also a standard system. In particular, any decreasing sequence of atoms
Ãt = At × {t, . . . ,∞} ∈ F̃t, t = 0, 1, . . ., has a non-void intersection of the form ∩tAt × {∞}. Due
to Parthasarathy’s extension theorem [20, Theorem 4.1], there exists exactly one extension of Q̃ to
the σ-field

F̃ := F̃∞ = σ

( ∞⋃
t=0

F̃t

)
such that

EQ̃[X̃] = EQ̄[X]

for any X ∈ Xt. Now take X ∈ X∞, and note that the functions Xn ∈ Xn defined by Xn
t := Xt

for t < n and Xn
t = Xn for t ≥ n, converge to X uniformly in t. Applying Lebesgue’s convergence

theorem for Q̃ in the last step, we obtain

EQ̄[X] = lim
n→∞

EQ̄[Xn] = lim
n→∞

EQ̃[X̃n] = EQ̃[X̃].

In order to justify the first step, define Zn := supk≥n |Xk − X| ∈ X∞. Since Zn decreases to 0
uniformly in t, regularity of U implies that U(−λZn) converges to 0 for any λ > 0. But

|EQ̄[Xn]− EQ̄[X]| ≤ EQ̄[Zn] ≤ λ−1
(
α(Q̄)− U(−λZn)

)
due to Proposition 3. Passing to∞ first with n and then with λ, we obtain the desired convergence
of EQ̄[Xn] to EQ̄[X].

Our next step consists in representing any probability measure on (Ω̃, F̃) in terms of a probability
measure on (Ω,F) and a predictable discounting process; for a related decomposition in continuous time
cf. Kardaras [19].
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Proposition 10. Any probability measure Q̃ ∈ M̃1 admits a decomposition

Q̃ = Q⊗ γ = Q⊗D,

where Q is a probability measure on (Ω,F), γ ∈ Γ(Q), and D ∈ D(Q) corresponds to γ via (6). More
precisely,

EQ̃[X̃] = EQ⊗γ [X̃] := EQ

[ ∞∑
t=0

X̃tγt + X̃∞γ∞

]
(11)

for any bounded measurable function X̃ on (Ω̃, F̃), and we can also write

EQ̃[X̃] = EQ⊗D[X̃] := EQ

[ ∞∑
t=0

Dt(X̃t − X̃t−1)
]
, (12)

if X̃∞ = limt→∞ X̃t.

The proof is similar to the proof of [1, Theorem 3.4], but here we do not have a reference measure P
as in [1]. For the convenience of the reader we sketch the argument.

Proof. For each t ∈ {0, . . . ,∞}, the restriction of Q̃ to Ω×{t} is of the form Qt⊗δt for some subprobability
measure Qt on Ft such that

∑∞
t=1Qt(Ω) +Q∞(Ω) = 1. Choose some extension of Qt to F , take

R :=
∞∑
t=1

Qt +Q∞

as a reference measure on (Ω,F), and denote by Zt the density of Qt with respect to R. Then

∞∑
t=0

Zt + Z∞ = 1 R-a.s.,

and

St := ER

[ ∞∑
s=t

Zs + Z∞|Ft
]
, t = 0, . . . ,∞,

defines an R-supermartingale S = (St)t=0,...,∞ such that S0 = 1 and

S∞ = lim
t→∞

St = Z∞ R-a.s..

Now consider the Itô-Watanabe factorization

St = MtDt, t = 0, 1, . . . ,

where M = (Mt) is a nonnegative R-martingale with M0 = 1, and D = (Dt) is a nonnegative predictable
decreasing process with D0 = 1.; cf. [1, Proposition A.1]. The martingale M induces a unique probability
measure Q on (Ω,F∞), due to Parthasarathy’s extension theorem [20, Theorem 4.1]. The limits M∞ :=
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limt→∞Mt and D∞ := limt→∞Dt exist and satisfy S∞ = M∞D∞, both R- and Q-a.s.. We define the
process γ = (γt)t∈T via (6). Now take X ∈ X∞ with X ≥ 0. By monotone convergence,

EQ̄[X] = ER

[ ∞∑
t=0

XtZt + Z∞X∞

]
=
∞∑
t=0

ER

[
XtER[St − St+1|Ft]

]
+ ER[S∞X∞]

=
∞∑
t=0

ER

[
Xt(MtDt −Mt+1Dt+1)

]
+ ER[M∞D∞X∞]

= EQ

[ ∞∑
t=0

Xtγt

]
+ ER[M∞D∞X∞]. (13)

Using the Lebesgue decomposition

Q[A] = ER[IAM∞] +Q[A ∩ {M∞ =∞}], A ∈ F∞

of Q with respect to R on (Ω,F∞) (cf.,e.g., [21, Theorem VII.6.1]), (13) takes the form

EQ̄[X] = EQ

[ ∞∑
t=0

Xtγt

]
+ EQ[X∞γ∞]− EQ[γ∞X∞I{M∞=∞}]. (14)

For X = 1 this yields

1 = EQ̄[1] = EQ

[ ∞∑
t=0

γt + γ∞

]
− EQ[γ∞I{M∞=∞}]

= 1− EQ[γ∞I{M∞=∞}].

Thus γ∞ = 0 Q-a.s. on {M∞ =∞}, and (14) reduces to (11).

We are now ready to conclude the proof of Theorem 8.

Proof of Theorem 8. Recall the representation (4), and take any Q̄ ∈ M̄1,f such that α(Q̄) < ∞. Let
Q̃ ∈ M̃1 be the probability measure on (Ω̃, F̃) associated to Q̄ via Proposition 9, and consider the
decomposition Q̃ = Q ⊗ γ with Q ∈ M1 and γ ∈ Γ(Q) as in Proposition 10. For any X ∈ X∞, we can
thus write

EQ̄[X] = EQ̃[X̃] = EQ

[ ∞∑
t=0

Xtγt +X∞γ∞

]
, (15)

Note that, in view of (5) and (9),

α(Q, γ) = sup
X∈X∞

(
EQ̄[−X] + U(X)

)
≤ α(Q̄). (16)

Now fix X ∈ X∞. Since
α(Q, γ) ≥ EQ̃[−X] + U(X)

for any Q̃ = Q⊗ γ ∈ M̃1, we obtain

U(X) ≤ inf
Q̃=Q⊗γ∈M̃1

(
EQ̃[X̃] + α(Q, γ)

)
. (17)
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On the other hand, take Q̄X such that the minimum in (4) is attained. The corresponding probability
measure Q̃X = QX ⊗ γX satisfies

U(X) = EQ̃X [X̃] + α(Q̄) ≥ EQ̃X [X̃] + α(QX , γX),

due to (16). In view of (15) and (17), this implies the representation (8). Alternatively, using the pre-
dictable discounting process D = (Dt) ∈ D(Q) induced by γ and the integration by parts formula (7),
we can write

EQ̃[X̃] = EQ

[ ∞∑
t=0

Dt(Xt −Xt−1)
]

for any X ∈ X∞, and this yields the valuation formula (10) for the cash flow C = (Ct) associated to X
via Ct := Xt −Xt−1.

4 Time consistency and the appearance of bubbles

In this section we sketch the extension to dynamic valuations, adapting results from [1, 12, 2] to our
present context of Knightian uncertainty. In order to simplify the discussion we assume that we are in the
situation of Example 5 with a countable state space S; a more thorough analysis will appear elsewhere.

At a given time t, the valuation of a future cash flow should be based on the information available
at that time. Using the obvious conditional formulation of the properties in Section 2, we obtain the
notion of a conditional concave monetary valuation Ut at time t, defined as a map from X to the space of
bounded measurable functions on (Ω,Ft). Adding the condition of regularity on X∞, and repeating the
construction of Section 3 on each atom of Ft, we obtain the following conditional valuation formula for
a cumulated cash flow X ∈ X∞:

Ut(X) = min
Q∈M1

min
γ∈Γ(Q)

(
EQ

[ ∞∑
s=t

Xs
γs
Dt

+X∞
γ∞
Dt

∣∣ Ft]+ αt(Q, γ)

)
, (18)

where

αt(Q, γ) = sup
X∈X∞

(
EQ

[
−
∞∑
s=t

Xs
γs
Dt
−X∞

γ∞
Dt

∣∣ Ft]+ Ut(X)

)
,

and Dt = 1−
∑t−1
s=0 γs; cf. [1, Theorem 3.8], where the formula is derived for the conditional risk measure

ρt := −Ut, but under different assumptions.
Translating the conditional valuation formula for Ut(X) to the level of cash flows C ∈ C and using

the integration by parts formula (7), we obtain the following result:

Theorem 11. For any C ∈ C, the conditional valuation at time t of the future cash flow defined by

Vt(C) := Ut(X)−Xt−1,

where X ∈ X∞ is the cumulated cash flow induced by C, takes the form

Vt(C) = min
Q∈M1

min
D∈D(Q)

(
EQ

[ ∞∑
s=t

Cs
Ds

Dt

∣∣ Ft]+ αt(Q,D)

)
, (19)
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where

αt(Q,D) = sup
C∈C

(
EQ

[
−
∞∑
s=t

Cs
Ds

Dt

∣∣ Ft]+ Vt(C)

)
,

The sequence (Ut)t=0,1,..., and also the corresponding sequence (Vt)t=0,1,... on the level of cash flows,
will be called a dynamic concave valuation.

Definition 12. A dynamic concave valuation (Vt)t=0,1,... is called (strongly) time consistent if it satisfies
the recursion

Vt(C) = Ct + Vt
(
Vt+1(C)I{t+1}

)
, t = 0, 1, . . . (20)

for any C ∈ C.

From now on we assume that (Vt) is time consistent. In order to focus on the supermartingale aspects
of time consistency, let us introduce the subspace

Ct,t+1 :=
{
C ∈ C

∣∣ Cs = 0 for s /∈ {t, t+ 1}
}

and the corresponding one-step penalty function

αt,t+1(Q,D) = sup
C∈Ct,t+1

(
EQ

[
− Ct −

Dt+1

Dt
Ct+1

∣∣ Ft]+ Vt(C)
)
. (21)

A straightforward translation of [1, Theorem 4.2] yields the following result.

Proposition 13. Time consistency of (Vt)t=0,1,... implies, for any Q ∈M1 and any D ∈ D(Q),

Dtαt(Q,D) = Dtαt,t+1(Q,D) + EQ[Dt+1αt+1(Q,D)
∣∣ Ft] Q-a.s. (22)

and
EQ[Dt+1(Vt(C)− αt+1(Q,D))

∣∣ Ft] ≥ Dt(Vt(C)− Ct − αt(Q,D)) Q-a.s..

for t = 0, 1, . . ..

For any Q⊗D such that α0(Q,D) <∞, Proposition 13 shows that the process

DtVt(C) +
t−1∑
s=0

DsCs −Dtαt(Q,D), t = 0, 1, . . .

is a Q-submartingale, and that the process (Dtαt(Q,D))t=0,1,... is a nonnegative Q-supermartingale.
Moreover, (22) yields the Doob decomposition

Dtαt(Q,D) = MQ,D
t −AQ,Dt , t = 0, 1, . . .

into a nonnegative Q-martingale (MQ,D
t ) and the predictable increasing process

AQ,Dt :=
t−1∑
k=0

Dkαk,k+1(Q,D), t = 0, 1, . . . .
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Splitting the martingale
MQ,D
t = EQ

[
AQ,D∞ |Ft

]
+BQ,Dt

into the “fundamental” component generated by the one-step penalties and into an additional nonnegative
martingale BQ,D, we obtain the Riesz decomposition

Dtαt(Q,D) = EQ

[
AQ,D∞ −AQ,Dt |Ft

]
+BQ,Dt , t = 0, 1, . . . .

into the potential generated by the process AQ,D and into a non-negative martingale. The martingale
(BQ,Dt ) may be viewed as a “bubble” in the penalization of the model (Q,D): It comes on top of the
fundamental component in the Riesz decomposition of the penalty process, and may thus lead to an
excessive neglect of that model; cf. the discussion in [1, Section 4.3], and in particular [1, Theorem 4.8],
where it is shown that the appearance of a bubble (BQ,Dt ) amounts to a breakdown of asymptotic safety
of the valuation procedure under the model (Q,D).

There is, of course, an additional source of “bubbles” which appears already in the classical case under
a fixed probability model P . So far, we have discussed the valuation of the future cash flow under the
assumption that the cash flow will be held indefinitely (“buy and hold”). If we take into account the
option to sell the cash flow at some future time, it is plausible to replace the classical valuation

Vt(C) = EP

[ ∞∑
k=t

Ck|Ft
]

by

V̄t(C) = sup
τ≥t

EP

[ τ−1∑
k=t

Ck + πτ (C)I{τ<∞}
∣∣ Ft], (23)

where the supremum is taken over all stopping times τ ≥ t, and where πτ (C) is the uncertain price of
the future cash flow at time τ (usually assumed to satisfy the equilibrium condition πτ (C) = V̄τ (C); cf.,
e.g., [17]). The difference

Bt(C) := V̄t(C)− Vt(C), t = 0, 1, . . . ,

is often called a bubble. Clearly, the same kind of bubble may appear in our setting of Knightian uncer-
tainty if we replace (23) by

V̄t(C) = sup
τ≥t

min
Q∈M1

min
D∈D(Q)

(
EQ

[ τ−1∑
k=t

Ck
Dk

Dt
+ πτ (C)I{τ<∞}

∣∣ Ft]− αt(Q,D)

)
.

A detailed analysis of these two sources of bubbles and of their interplay will appear elsewhere.

Acknowledgments: We thank two anonymous referees for their comments which helped us to im-
prove the presentation of this paper.
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