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Abstract

We study the risk assessment of uncertain cash flows in terms of dynamic convex risk measures

for processes as introduced in Cheridito, Delbaen, and Kupper [10]. These risk measures take into

account not only the amounts but also the timing of a cash flow. We discuss their robust representation

in terms of suitably penalized probability measures on the optional σ-field. This yields an explicit

analysis both of model and discounting ambiguity. We focus on supermartingale criteria for time

consistency. In particular we show how “bubbles” may appear in the dynamic penalization, and how

they cause a breakdown of asymptotic safety of the risk assessment procedure.
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1 Introduction

The classical assessment of an uncertain cash flow takes the sum of the discounted future payments and
computes its expectation with respect to a given probability measure. Both the probabilistic model and
the discounting factors are assumed to be known. In reality, however, one is usually confronted both with
model uncertainty and with uncertainty about the time value of money. The purpose of this paper is to
deal with this problem by using concepts and methods from the theory of convex risk measures.

In a situation where financial positions are described by random variables on some probability space,
a convex risk measure can usually be represented as the worst expected loss over a class of suitably
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penalized probabilistic models; see Artzner, Delbaen, Eber, and Heath [2, 3], Delbaen [12, 13] for the
coherent case, and Föllmer and Schied [22, 23], Frittelli and Rosazza Gianin [24] for the general convex
case. This can be seen as a robust method which deals explicitly with the problem of model uncertainty.
In the dynamical setting of a filtered probability space, the risk assessment at a given time should depend
on the available information. This is specified by a dynamic risk measure, i.e., by a sequence (ρt) of
conditional convex risk measures adapted to the filtration. On the level of random variables, and under
an additional requirement of time consistency, the structure of such dynamic risk measures is now well
understood; cf., e.g, [4, 37, 16, 14, 40, 30, 6, 20, 11, 39, 34, 15, 1], and references therein.

There is also a growing literature on dynamic risk measures applied to cash flows that are described
as adapted stochastic processes on the given filtered probability space; cf. Artzner, Delbaen, Eber, Heath,
and Ku [4], Cheridito, Delbaen, and Kupper [10], and also [35, 8, 9, 11, 25, 28]. In this context, not only
the amount of a payment matters, but also its timing. In particular, the risk is reduced by having positive
payments earlier and negative ones later. This is expressed by the property of cash subadditivity, which
was introduced by El Karoui and Ravanelli [18] in the context of risk measures for random variables in
order to account for discounting ambiguity. Convex risk measures for processes have that property, and
so they provide a natural framework to capture both model uncertainty and uncertainty about the time
value of money.

In this paper we study dynamic convex risk measures for bounded adapted processes, as introduced in
[10]. Any such process can be viewed as a bounded measurable function on the product space Ω̄ = Ω×T
endowed with the optional σ-field. It is thus natural to use results from the theory of risk measures
for random variables and to apply them on product space. This idea already appears in [4] in a static
setting, and even earlier in Epstein and Schneider [19] in the context of dynamic preferences. Here we
use it for dynamic risk measures, and we take a more probabilistic approach. This involves a careful
study of absolutely continuous probability measures Q̄ on the optional σ-field. In particular, we derive a
decomposition Q̄ = Q⊗D, where Q is a locally absolutely continuous probability measure on the original
space, and D is a predictable discounting process. The probabilistic approach has two advantages. In
the first place, it allows us to make explicit the joint role of model uncertainty, as expressed by the
measures Q, and of discounting uncertainty, as described by the discounting processes D, in the robust
representation of conditional risk measures. Moreover, it is crucial for our analysis of the supermartingale
aspects of time consistency.

Time consistency is a key issue in the analysis of dynamic risk measures; see [4, 14, 16, 30, 10,
6, 20, 11, 15] and references therein. We characterize time consistency by supermartingale properties
of the discounted penalty and risk processes, in analogy to various results for random variables from
[4, 14, 6, 20, 34, 7]. These characterizations allow us to apply martingale arguments to prove maximal
inequalities and convergence results for the risk assessment procedure. In particular, we show that the
appearance of a martingale component in the Riesz decomposition of the discounted penalty process
amounts to a breakdown of asymptotic safety. Such a martingale can be seen as a “bubble”, which
appears on the top of the “fundamental” penalization and thus causes an excessive neglect of the model
under consideration.

The paper is organized as follows. In Section 3 we clarify the probabilistic structure of conditional
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convex risk measures for processes. To this end, we introduce the appropriate product space in Subsec-
tion 3.1 and state a decomposition theorem for probability measures on the optional σ-field; its proof
is given in Appendix B. In Subsection 3.2 risk measures for processes are identified with risk measures
for random variables on the product space. Under an assumption of global continuity from above, this
allows us to obtain a robust representation of risk measures for processes in Subsection 3.3, which involves
both model ambiguity and discounting ambiguity. Section 4 characterizes time consistency of dynamic
risk measures, with special emphasis on the corresponding supermartingale properties. We focus on the
strong notion of time consistency introduced in [4]. In Subsection 4.1 we state several equivalent crite-
ria, and we use them in Subsection 4.2 to derive the Doob and the Riesz decomposition of the penalty
processes. In Subsection 4.3 we discuss asymptotic properties such as asymptotic safety and asymptotic
precision, and we relate them to the appearance of “bubbles” in the Riesz decomposition. Subsection 4.4
states a maximal inequality for the excess of the capital requirement over the penalized expected loss
computed for a specific model. The coherent case is discussed in Subsection 4.5. In Section 5 we discuss
cash subadditivity of risk measures for processes, and we characterize their calibration with respect to
some numéraire following [18]. If a time consistent dynamic risk measure is calibrated to a term structure
specified by the prices of zero coupon bonds, then discounting ambiguity is completely resolved, and we
are only left with model ambiguity. In Section 6 our analysis is illustrated by some examples, including
entropic risk measures and variants of Average Value at Risk for processes.

2 Preliminaries

We consider a discrete-time setting with time horizon T ∈ N ∪ {∞}. We denote by T the set of time
points, i.e., T := {0, . . . , T} if T <∞, and in case T = ∞ we distinguish between the two cases T := N0

and T := N0 ∪ {∞}. We use the notation Tt := {s ∈ T | s ≥ t} for t ∈ T.
We fix a filtered probability space (Ω,F , (Ft)t∈T∩N0 , P ), with F0 = {∅,Ω}, and F = F∞ := σ(∪t∈N0Ft)

for T = ∞. For t ∈ T, we use the notation

L∞t := L∞(Ω,Ft, P ), L∞t,+ := {X ∈ L∞t
∣∣ X ≥ 0},

and L∞ := L∞(Ω,FT , P ). All equalities and inequalities between random variables and between sets are
understood to hold P -almost surely, unless stated otherwise.

We denote by M(P ) (resp. by Mloc(P )) the set of all probability measures Q on (Ω,F) which are
absolutely continuous with respect to P (resp. locally absolutely continuous with respect to P in the
sense that Q¿ P on Ft for each t ∈ T∩N0), and by Me(P ) (resp. by Me

loc(P )) the set of all probability
measures on (Ω,F) which are equivalent (resp. locally equivalent) to P . Note that M(P ) coincides with
Mloc(P ) if T <∞.

Let R∞ denote the space of adapted stochastic processes X = (Xt)t∈T on (Ω,F , (Ft)t∈T, P ) such that

‖X‖∞ := inf
{
x ∈ R

∣∣ sup
t∈T

|Xt| ≤ x

}
<∞. (1)
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For T = N0 ∪ {∞} we also consider the subspace

X∞ :=
{
X ∈ R∞

∣∣ X∞ = lim
t→∞

Xt P -a.s.
}
.

For 0 ≤ t ≤ s ≤ T , we define the projection πt,s : R∞ → R∞ as

πt,s(X)r = 1{t≤r}Xr∧s, r ∈ T,

and use the notation R∞t,s := πt,s(R∞) and R∞t := πt,T (R∞). The spaces X∞t,s and X∞t are defined
accordingly.

On the one hand, a process X ∈ R∞ can be interpreted as a value process, which might model the
evolution of some financial value such as the market value of a firm’s equity or of an investment portfolio.
On the other hand, X can be seen as a cumulated cash flow, as explained in Remark 1 and in Example 2.

Remark 1. An adapted cash flow C = (Ct)t∈T∩N0 yielding an uncertain amount Ct ∈ L∞t at time t
induces a cumulated cash flow X = (Xt)t∈T∩N0 with

Xt =
t∑

s=0

Ct.

If T <∞, or if T = ∞ and
∑

t∈T∩N0
‖Ct‖∞ <∞, the process X belongs to R∞, and even to X∞, with

X∞ :=
∑∞

s=0 Ct. Conversely, each process X ∈ R∞ induces an adapted cash flow

Ct := ∆Xt := Xt −Xt−1, t ∈ T ∩ N0, (2)

where we use the convention X−1 := 0.

Example 2. Assume that there is a money market account (Bt)t∈T∩N0 of the form

Bt =
t∏

s=1

(1 + rs)

with some adapted (or even predictable) process (rt)t∈T∩N0 of nonnegative short rates. For a given (undis-
counted) adapted cash flow (C̃t)t∈T∩N0 ∈ R∞ consider the discounted cash flow C = (Ct)t∈T∩N0 defined
by Ct = B−1

t C̃t. If T = ∞ and the short rates are bounded away from zero by some constant δ > 0, then
the cumulated discounted cash flow X with X∞ :=

∑∞
t=0 Ct belongs to R∞, and even to X∞, since

∞∑
t=0

‖Ct‖∞ ≤ 1
δ
‖C̃‖∞ <∞.

Here the norm in the first term is the usual essential supremum norm on random variables, and that in
the second term is the norm on processes defined in (1).

In the preceding example, the value X∞ arises naturally as the limiting value of a cumulated cash
flow. More generally, for X ∈ R∞ with T = N0 ∪{∞}, the value X∞ can be seen as a terminal payment.
In this way, dynamic risk measures for random variables with infinite time horizon as considered in [20]
can be included into our framework; cf. Remark 39.
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Considering the interpretation in terms of cash flows, our results will be formulated both for X and
for the underlying cash flow C given by (2). On a technical level, however, our main focus will be on
cumulated cash flows X ∈ R∞. This will allow us to apply in a straightforward manner standard results
for convex risk measures defined on bounded random variables.

3 Conditional risk measures

At each time the risk of a future cumulative cash flow will be assessed by a conditional risk measure
based on the information available at that time. The following definition was introduced in [10].

Definition 3. A map ρt : R∞t → L∞t for t ∈ T ∩ N0 is called a conditional convex risk measure (for
processes) if it satisfies the following properties for all X,Y ∈ R∞t

• Conditional cash invariance: for all m ∈ L∞t ,

ρt(X +m1Tt) = ρt(X)−m;

• Monotonicity: ρt(X) ≥ ρt(Y ) if X ≤ Y componentwise;

• Conditional convexity: for all λ ∈ L∞t with 0 ≤ λ ≤ 1,

ρt(λX + (1− λ)Y ) ≤ λρt(X) + (1− λ)ρt(Y );

• Normalization: ρt(0) = 0.

A conditional convex risk measure is called a conditional coherent risk measure (for processes) if it has
in addition the following property:

• Conditional positive homogeneity: for all λ ∈ L∞t with λ ≥ 0,

ρt(λX) = λρt(X).

A sequence (ρt)t∈T∩N0 is called a dynamic convex risk measure (for processes) if, for each t, ρt : R∞t →
L∞t is a conditional convex risk measure (for processes).

Definition 3 is analogous to the definition of risk measures for random variables given in [16]. Note,
however, that conditional cash invariance in the context of processes takes into account the timing of the
cash payment; the consequences will be discussed in more detail in Section 5.

Conditional cash invariance and convexity could also be formulated in terms of cash flows C as in
Remark 1 rather than in terms of cumulated cash flows X. Note, however, that monotonicity with respect
to X is stronger than monotonicity with respect to C. This stronger condition is natural since it reflects
the time value of money; cf. Section 5.
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3.1 Optional filtration and predictable discounting

In their study of dynamic preferences for consumption processes, Epstein and Schneider [19] derive a
numerical representation by applying results from Gilboa and Schmeidler [26] on the appropriate product
space endowed with the optional filtration. In the same spirit, Artzner et al. [4] identify static risk measures
for processes with risk measures for random variables on product space. Here we extend this idea to the
dynamic setting, and we focus on the probabilistic structure of the resulting robust representation in
terms of probability measures on the optional σ-field.

Consider the product space (Ω̄, F̄ , P̄ ) defined by

Ω̄ = Ω× T, F̄ = σ({At × {t}
∣∣ At ∈ Ft, t ∈ T), P̄ = P ⊗ µ,

where µ = (µt)t∈T is some adapted reference process such that
∑

t∈T µt = 1 and µt > 0 ∀t ∈ T, and
where

EP⊗µ[X] := EP

[∑
t∈T

Xtµt

]
for any bounded measurable function X on (Ω̄, F̄).

Note that F̄ coincides with the optional σ-field generated by all adapted processes. Every adapted
process can be identified with a random variable on (Ω̄, F̄ , P̄ ), and in particular we have

R∞ = L̄∞ := L∞(Ω̄, F̄ , P̄ ).

We also introduce the optional filtration (F̄t)t∈T on (Ω̄, F̄) given by

F̄t = σ
(
{Aj × {j}, At × Tt

∣∣ Aj ∈ Fj , j < t, At ∈ Ft}
)
, t ∈ T.

A random variable X = (Xs)s∈T on (Ω̄, F̄ , P̄ ) is F̄t-measurable if and only if Xs is Fs-measurable for all
s = 0, . . . , t and Xs = Xt ∀s > t. In particular,

R∞0,t = L̄∞t := L∞(Ω̄, F̄t, P̄ ).

The set R∞0,0 of all constant processes will be identified with R.
For T = ∞ we will use the Lebesgue decomposition of a measure Q ∈Mloc(P ) with respect to P . Let

M = (Mt)t∈N0 denote the density process of Q with respect to P . The limit M∞ := limt→∞Mt exists
P -a.s., since M is a nonnegative P -martingale. By [38, Theorem VII.6.1] M∞ exists also Q-a.s., and Q

admits the Lebesgue decomposition

Q[A] = EP [1AM∞] +Q[A ∩ {M∞ = ∞}], A ∈ F∞ (3)

into the absolutely continuous and the singular part with respect to P on (Ω,F∞).
For a measure Q ∈ Mloc(P ) we introduce the set Γ(Q) of optional random measures γ = (γt)t∈T on

T which are normalized with respect to Q. More precisely, γ ∈ Γ(Q) is a nonnegative adapted process,
such that ∑

t∈T
γt = 1 Q-a.s.,
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with the additional property that

γ∞ = 0 Q-a.s. on {M∞ = ∞}, if T = N0 ∪ {∞}.

We also consider the following set D(Q) of predictable discounting processes: D = (Dt)t∈T ∈ D(Q) is
a predictable non-increasing process with D0 = 1, and D∞ = limt→∞Dt Q-a.s. for T = ∞, where

D∞ = 0 Q-a.s. for T = N0,

and
D∞ = 0 Q-a.s. on {M∞ = ∞} for T = N0 ∪ {∞}.

For T <∞ we define DT+1 := 0.

Lemma 4. For any probability measure Q ∈ Mloc(P ), the set Γ(Q) can be identified with D(Q). More
precisely, to each γ in Γ(Q) we can associate a process D ∈ D(Q) given by

Dt := 1−
t−1∑
s=0

γs, t ∈ T ∩ N0, and D∞ := γ∞ for T = N0 ∪ {∞}. (4)

In particular we have
Dt =

∑
s∈Tt

γs Q-a.s. ∀t ∈ T. (5)

Conversely, every process D ∈ D(Q) defines an optional random measure γ ∈ Γ(Q) via

γt := Dt −Dt+1, t ∈ T ∩ N0, and γ∞ := D∞ for T = N0 ∪ {∞}. (6)

Moreover, for any pair γ ∈ Γ(Q) and D ∈ D(Q) related to each other via (5) and (6), the “integration
by parts” formula ∑

s∈Tt

γsXs =
T∑

s=t

Ds(Xs −Xs−1) Q-a.s., t ∈ T, (7)

holds for any X ∈ R∞t if T <∞ or if T = N0, and for X ∈ X∞t if T = N0 ∪ {∞}.

Proof. It is obvious that the process D defined by (4) belongs to D(Q) and satisfies (5), and that γ
defined by (6) belongs to Γ(Q). To prove (7), note that

t∑
s=0

γsXs =
t∑

s=0

Ds(Xs −Xs−1)−Dt+1Xt (8)

for all t ∈ T ∩N0. Thus (7) is obvious for T <∞, and it also holds if T = N0 for all X ∈ R∞t , since X is
bounded and Dt ↘ 0 Q-a.s.. For T = N0∪{∞} and for any X ∈ X∞t , the limit D∞X∞ = limt→∞Dt+1Xt

exists Q-a.s., since Dt ↘ 0 Q-a.s. on the singular part of Q with respect to P , and so (7) follows again
from (8).

From now on we use the following assumption which allows us to apply an extension result of
Parthasarathy [33] for consistent sequences of measures. This will be needed in the proof of Theorem 6.
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Assumption 5. In the case T = ∞, we assume that for each t ∈ T ∩ N0 the σ-field Ft is σ-isomorphic
to the Borel σ-field on some complete separable metric space, and that ∩nAn 6= ∅ for any decreasing
sequence (An)n∈N0 such that An is an atom of Fn.

We denote byM(P̄ ) the set of all probability measures on (Ω̄, F̄) which are absolutely continuous with
respect to P̄ . The next theorem shows that each probability measure Q̄ in M(P̄ ) admits a decomposition
Q̄(dω, dt) = Q(dw) ⊗ γ(w, dt) for some probability measure Q on (Ω,FT ) and some optional random
measure γ on T such that Q ∈Mloc(P ) and γ ∈ Γ(Q).

Theorem 6. For any probability measure Q̄ ∈M(P̄ ) there exist a probability measure Q ∈Mloc(P ) and
an optional random measure γ ∈ Γ(Q) (resp. a predictable discounting factor D ∈ D(Q)) such that

EQ̄[X] = EQ

[∑
t∈T

γtXt

]
(9)

= EQ

[
T∑

t=0

Dt(Xt −Xt−1)

]
, (10)

where (9) holds for all X ∈ R∞, whereas (10) holds for all X ∈ R∞ if T < ∞ or if T = N0, and only
for X ∈ X∞ if T = N0 ∪ {∞}.

Conversely, any Q ∈ Mloc(P ) and any γ ∈ Γ(Q) (resp. any D ∈ D(Q)) define a probability measure
Q̄ ∈M(P̄ ) such that (9) and (10) hold.

We write
Q̄ = Q⊗ γ = Q⊗D

to denote the decomposition of Q in the sense of (9) and (10).

The proof is postponed to Appendix B.

Remark 7. A continuous time analogue to Theorem 6 appears independently in Kardaras [29, Theorem
2.1]. While we make use of the Itô-Watanabe decomposition in discrete time (cf. Proposition 48) and of
a measure theoretic extension, [29, Theorem 2.1] gives a direct construction of a discounting process and
a local martingale, but without relating the latter to a probability measure Q in the general case.

3.2 Conditional risk measures viewed on the optional filtration

In the previous section we have identified processes in R∞ with random variables in L̄∞. This induces a
one-to-one correspondence between conditional risk measures for processes and conditional risk measures
for random variables on the optional σ-field:

Proposition 8. Any conditional convex risk measure for processes ρt : R∞t → L∞t for t ∈ T ∩ N0

defines a conditional convex risk measure for random variables ρ̄t : L̄∞ → L̄∞t via

ρ̄t(X) = −X01{0} − . . .−Xt−11{t−1} + ρt(X)1Tt
, X ∈ R∞, (11)

where we use the notation
ρt(X) := ρt ◦ πt,T (X) for X ∈ R∞.
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Conversely, any conditional convex risk measure on random variables ρ̄t : L̄∞ → L̄∞t is of the form
(11) with some conditional convex risk measure on processes ρt : R∞t → L∞t .

Proof. Clearly, ρ̄t defined via (11) is a conditional convex risk measure in the sense of [16]. To see,
e.g., conditional cash invariance, let m ∈ L̄∞t , i.e. m = (m0, . . . ,mt−1,mt,mt, . . .) with mi ∈ L∞i for
i = 0, . . . , t. Then

ρ̄t(X +m) = (−X0 −m0, . . . ,−Xt−1 −mt−1, ρt(X +m), ρt(X +m), . . .)

= ρ̄t(X)−m

by conditional cash invariance of ρt.
To prove the converse implication, let ρ̄t : L̄∞ → L̄∞t be a conditional convex risk measure for random
variables. Since At := Ω×{0, . . . , t−1} ∈ F̄t, the local property (cf., e.g., [16, Proposition 2]), conditional
cash invariance and normalization of ρ̄t imply

ρ̄t(X) = 1At
ρ̄t(1At

X) + 1Ac
t
ρ̄t(1Ac

t
X)

= −X01{0} − · · · −Xt−11{t−1} + ρ̄t(X1Tt)1Tt .

Finally, it is easy to see that ρt : R∞t → L∞t defined by ρt(X) := (ρ̄t(X))t is a conditional convex risk
measure for processes in the sense of Definition 3.

Let ρt : R∞t → L∞t be a conditional convex risk measure for processes, and consider the correspond-
ing acceptance set

At = {X ∈ R∞t
∣∣ ρt(X) ≤ 0}.

Then the acceptance set of ρ̄t related to ρt via (11) is given by

Āt =
{
X ∈ L̄∞

∣∣ ρ̄t(X) ≤ 0 P̄ -a.s.
}

=
{
X ∈ R∞

∣∣ Xs ≥ 0 ∀s = 0, . . . , t− 1, ρt(X) ≤ 0 P -a.s.
}

= At + (L∞0,+ × . . .× L∞t−1,+ × {0} × . . .). (12)

For each Q̄ ∈M(P̄ ), the minimal penalty function of ρ̄t is given by

ᾱt(Q̄) = Q̄-ess sup
X∈Āt

EQ̄[−X | F̄t ].

Due to (12) and Corollary 52, this takes the form

ᾱt(Q̄) = αt(Q̄)1Tt
, (13)

where αt(Q̄) denotes the minimal penalty function of ρt and is given by

αt(Q⊗ γ) = αt(Q⊗D) = Q-ess sup
X∈At

EQ

[
−
∑
s∈Tt

γs

Dt
Xs

∣∣ Ft

]
(14)

= Q-ess sup
X∈R∞

(
EQ

[
−
∑
s∈Tt

γs

Dt
Xs

∣∣ Ft

]
− ρt(X)

)
.

Here Q⊗D = Q⊗ γ denotes the decomposition of the measure Q̄ in the sense of Theorem 6. Note that
αt(Q⊗ γ) is well defined Q-a.s. on {Dt > 0}; cf. Corollary 52.

9



3.3 Robust representations

In this section we derive a robust representation of a conditional convex risk measure for processes which
expresses explicitly the combined role of model ambiguity and discounting ambiguity. Our proof will
consist in combining the robust representation of risk measures for random variables as stated in [16],
[5], [7], [30], [20], and [1], with our Decomposition Theorem 6 for measures on the optional σ-field.

The following continuity property was introduced in [10, Definition 3.15].

Definition 9. A conditional convex risk measure ρt : R∞t → L∞t for processes is called continuous
from above if

ρt(Xn) ↗ ρt(X) P -a.s with n→∞

for any decreasing sequence (Xn)n ⊆ R∞ and X ∈ R∞ such that Xn
s ↘ Xs P -a.s. for all s ∈ Tt.

Theorem 10. A conditional convex risk measure for processes ρt is continuous from above if and only
if it admits the following robust representation:

ρt(X) = ess sup
Q∈Qloc

t

ess sup
γ∈Γt(Q)

(
EQ

[
−
∑
s∈Tt

γsXs

∣∣ Ft

]
− αt(Q⊗ γ)

)
, X ∈ R∞t (15)

where αt is defined in (14),

Qloc
t :=

{
Q ∈Mloc(P )

∣∣ Q = P on Ft

}
,

and
Γt(Q) :=

{
γ ∈ Γ(Q)

∣∣ γs = 0 ∀ s < t
}
.

Proof. It is easy to check that ρt is continuous from above if and only if the conditional risk measure ρ̄t

defined in (11) is continuous from above. By [16, Theorem 1], continuity from above of ρ̄t is equivalent
to the robust representation

ρ̄t(X) = ess sup
Q̄∈Q̄t

(
EQ̄

[
−X

∣∣ F̄t

]
− ᾱt(Q̄)

)
,

where
Q̄t :=

{
Q̄ ∈M(P̄ )

∣∣ Q̄ = P̄ on F̄t

}
. (16)

Using Corollary 52, this takes the form

ρ̄t(X) =−X01{0} − . . .−Xt−11{t−1}

+ ess sup
Q⊗γ∈Q̄t

(
EQ

[
−
∑
s∈Tt

γs

Dt
Xs

∣∣ Ft

]
− αt(Q⊗ γ)

)
1Tt

, (17)

where D is related to γ via (4). Lemma 54 implies that Q ⊗ γ ∈ Q̄t if and only if Q ∈ Qloc
t , and

γs = µs for s = 0, . . . , t− 1; in particular Dt =
∑

s∈Tt
µs > 0. For each Q ∈ Qloc

t we can identify the set
{( γs

Dt
)s∈Tt

∣∣ Q⊗ γ ∈ Q̄t} with Γt(Q), and so the representation (15) follows from (17) due to (11).
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Using the integration by parts formula (7) we can rewrite (15) as follows.

Corollary 11. In terms of discounting factors, the representation (15) takes the following form for
X ∈ R∞t if T <∞ or if T = N0, and for X ∈ X∞t if T = N0 ∪ {∞}:

ρt(X) = ess sup
Q∈Qloc

t

ess sup
D∈Dt(Q)

(
EQ

[
−

T∑
s=t

Ds∆Xs

∣∣ Ft

]
− αt(Q⊗D)

)
, (18)

where
Dt(Q) =

{
D ∈ D(Q)

∣∣ Ds = 1 ∀ s ≤ t
}
.

Remark 12. In [10] Cheridito, Delbaen, and Kupper consider the cases T <∞ and T = N0. They work
on the space R∞ equipped with the dual space

A1 :=

{
a = (at)t∈T

∣∣ a adapted, EP

[∑
t∈T

|at − at−1|

]
<∞

}
,

where a−1 := 0. The robust representation of conditional convex risk measures in [10] is formulated in
terms of the set

D0,T :=

{
a ∈ A1

∣∣ at ≥ at−1 for all t ∈ T, EP

[∑
t∈T

(at − at−1)

]
= 1

}
;

cf. [10, Theorem 3.16]. Note that D0,T can be identified with the set M(P̄ ). Indeed, every a ∈ D0,T defines
a density Z̄ of Q̄ ∈M(P̄ ) via

Ztµt = at − at−1, t ∈ T,

and vice versa. By emphasizing M(P̄ ) rather than D0,T we take a more probabilistic approach. In partic-
ular, we exploit the decomposition Q̄ = Q⊗ γ = Q⊗D of probability measures in M(P̄ ). We have

EP

[∑
s∈Tt

Xs∆as|Ft

]
= EQ

[∑
s∈Tt

Xsγs|Ft

]
= EQ

[∑
s∈Tt

∆XsDs|Ft

]

for all t ∈ T and all X ∈ R∞t . The representation on the right hand side has two advantages. In the first
place it allows us to make explicit the joint role of model uncertainty, as expressed by the measures Q ∈
Mloc(P ), and of discounting uncertainty, as described by the discounting processes D ∈ D(Q). Moreover,
the probabilistic approach allows us to discuss the case T = ∞ in terms of a measure theoretic extension
problem, and it will be crucial for our analysis of the supermartingale aspects of time consistency.

As a special case, our representation (18) applied for T = 1 at t = 0 to the process (0, XT ) with
XT ∈ L∞, yields the representation (4.5) in [18, Corollary 4.4] in the static context of cash subadditive
risk measures for random variables; cf. also Remark 30.

In analogy to the proof of Theorem 10, the results in [20, Corollary 2.4], [1, Corollary 11] and [20,
Lemma 3.5] translate into robust representations in our context which use a smaller set of measures:

Corollary 13. A conditional convex risk measure on processes ρt is continuous from above if and only
if any of the following representations hold:

11



1. ρt is of the form (15), where the essential supremum is taken over the set{
Q⊗ γ

∣∣ Q ∈ Qloc
t , γ ∈ Γt(Q), EQ

[( ∑
s∈Tt

µs

)
αt(Q⊗ γ)

]
<∞

}
.

2. for all Q̄ = Q⊗D ∈M(P̄ ) and X ∈ R∞t we have

ρt(X) = Q-ess sup
R⊗ξ∈Q̄t(Q̄)

(
1
Dt
ER

[
−
∑
s∈Tt

ξsXs

∣∣ Ft

]
− αt(R⊗ ξ)

)

Q-a.s. on {Dt > 0}, where

Q̄t(Q̄) :=
{
R̄ ∈M(P̄ )

∣∣ R̄ = Q̄|F̄t

}
.

Moreover, if there exists a probability measure P̄ ∗ ≈ P̄ on (Ω̄, F̄) such that αt(P̄ ∗) <∞, then continuity
from above is also equivalent to a representation of the form (15) as an essential supremum over the set

{Q⊗ γ
∣∣ Q ∈Me

loc(P ), γ ∈ Γe(Q)},

where
Γe(Q) :=

{
γ ∈ Γ(Q)

∣∣ γt > 0 P -a.s. for all t ∈ T
}
.

4 Supermartingale criteria for time consistency

In this section we consider time consistency, derive corresponding criteria in terms of supermartingales,
and discuss some of the consequences, in particular conditions for asymptotic safety.

4.1 Strong time consistency and its characterization

A strong notion of time consistency for risk measures for processes was introduced and characterized in
[10] and [11]. Here we adopt the definition from [10], cf. [10, Definition 4.2, Proposition 4.4, Proposition
4.5].

Definition 14. A dynamic convex risk measure for processes (ρt)t∈T∩N0 on R∞ is called (strongly) time
consistent if for all t in T such that t < T and for all X,Y ∈ R∞

Xt = Yt and ρt+1(X) ≤ ρt+1(Y ) =⇒ ρt(X) ≤ ρt(Y ). (19)

Note that a dynamic risk measure for processes (ρt)t∈T∩N0 is time consistent if and only if the cor-
responding dynamic convex risk measure for random variables (ρ̄t)t∈T∩N0 on L̄∞ defined by (11) is time
consistent, that is, if ρ̄t+1(X) ≤ ρ̄t+1(Y ) implies ρ̄t(X) ≤ ρ̄t(Y ) for all X,Y ∈ L̄∞ and all t ∈ T, t < T .
Criteria for time consistency of risk measures for random variables were studied intensively in the lit-
erature, see, e.g., [16], [30], [4], [20], [6], [7], [1] and the references therein. Using Proposition 8 we can
translate these criteria into our present framework.
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By [20, Proposition 4.2] applied to ρ̄, time consistency (19) of ρ is equivalent to recursiveness, that is

ρt(X) = ρt(Xt1{t} − ρt+1(X)1Tt+1) (20)

= −Xt + ρt(−ρt+1(X −Xt)1Tt+1).

If we restrict the conditional convex risk measure ρ̄t to the space L∞(F̄t+1), the acceptance set is
given by

Āt,t+1 :=
{
X ∈ L∞(Ω̄, F̄t+1, P̄ )

∣∣ ρ̄t(X) ≤ 0 P̄ -a.s.
}

= At,t+1 + (L∞0,+ × . . .× L∞t−1,+ × {0} × . . .),

where
At,t+1 := {X ∈ R∞t,t+1

∣∣ ρt(X) ≤ 0}, t ∈ T, t < T,

denotes the acceptance set of the risk measure for processes ρt restricted to R∞t,t+1. The corresponding
one-step minimal penalty function for ρ̄t takes the form

ᾱt,t+1(Q̄) := Q̄-ess sup
X∈Āt,t+1

EQ̄[−X | F̄t ] = αt,t+1(Q̄)Tt, Q̄ ∈M(P̄ ),

where the function αt,t+1(Q̄) is given for Q̄ = Q⊗D = Q⊗ γ ∈M(P̄ ) by

αt,t+1(Q⊗D) =
1
Dt

Q-ess sup
X∈At,t+1

EQ

[
−γtXt −Dt+1Xt+1

∣∣ Ft

]
, t ∈ T, t < T,

due to Corollary 52. Note that the penalty functions αt(Q⊗D) and αt,t+1(Q⊗D) are only defined Q-a.s.
on {Dt > 0}. In the following we define for Q⊗D ∈M(P̄ )

αt(Q⊗D) := ∞, αt,t+s(Q⊗D) := ∞ Q-a.s. on {Dt = 0}

for all t, s ≥ 0, and use henceforth the convention 0 · ∞ := 0.
The following result characterizes time consistency in terms of a splitting property of the acceptance

sets and in terms of supermartingale properties of the penalty process and the dynamic risk measure. It
translates [20, Theorem 4.5] and [1, Theorem 20] to our present framework.

Theorem 15. Let (ρt)t∈T∩N0 be a dynamic convex risk measure on R∞ such that each ρt is continuous
from above. Then the following conditions are equivalent:

(i) (ρt)t∈T∩N0 is time consistent;

(ii) At = At,t+1 +At+1 for all t ∈ T, t < T ;

(iii) for all t ∈ T, t < T and Q̄ = Q⊗D ∈M(P̄ )

Dtαt(Q⊗D) = Dtαt,t+1(Q⊗D) + EQ[Dt+1αt+1(Q⊗D)
∣∣ Ft] Q-a.s.;

(iv) for all X ∈ R∞, t ∈ T, t < T , and Q̄ = Q⊗D ∈M(P̄ )

EQ[Dt+1(Xt + ρt+1(X) + αt+1(Q⊗D))
∣∣ Ft] ≤ Dt(Xt + ρt(X) + αt(Q⊗D))

Q-a.s..

13



Moreover, if there exists a probability measure P̄ ∗ ≈ P̄ on (Ω̄, F̄) such that α0(P̄ ∗) < ∞, condition (iv)
stated only for the measures

Q̄∗ :=
{
Q̄ ∈Me(P̄ )

∣∣ α0(Q̄) <∞
}

(21)

=
{
Q⊗ γ

∣∣ Q ∈Me
loc(P ), γ ∈ Γe(Q), α0(Q⊗ γ) <∞

}
already implies time consistency, and the robust representation (15) of ρt also holds if the essential
supremum is taken only over the set Q̄∗.

Proof. Follows from [1, Theorem 20] and [20, Theorem 4.5] applied to ρ̄t defined in (11) using Corollary 52.

Remark 16. Equivalence of time consistency and (ii) of Theorem 15 holds without assuming continuity
from above and was already proved in [10, Theorem 4.6]. Characterizations of time consistency in terms
of penalty functions as in condition (iii) are given in [10, Theorem 4.19, Theorem 4.22]. However, the
latter results use neither the decomposition of Q̄ into a measure Q and a discounting factor D, nor the
one-step penalty functions αt,t+1. The role of αt,t+1 in condition (iii) is analogous to the corresponding
characterization of time consistency of risk measures for random variables in [6, Theorem 2.5] and [20,
Theorem 4.5]. In the same way, the supermartingale characterization (iv) of time consistency translates
the corresponding criterion from [20, Theorem 4.5] into our present framework.

In the following we use the notation

Q̄0 :=
{
Q⊗D ∈M(P̄ )

∣∣ α0(Q⊗D) <∞
}
.

Corollary 17. Let (ρt)t∈T∩N0 be a time consistent dynamic convex risk measure on R∞ such that each
ρt is continuous from above. Then

1. For any Q̄ = Q ⊗ D ∈ Q̄0, the discounted penalty process (Dtαt(Q ⊗ D))t∈T∩N0 is a nonnegative
Q-supermartingale. Its Doob decomposition is given by the predictable process

AQ,D
t :=

t−1∑
k=0

Dkαk,k+1(Q⊗D), t ∈ T ∩ N0,

i.e.,
MQ,D

t := Dtαt(Q⊗D) +AQ,D
t , t ∈ T ∩ N0, (22)

is a Q-martingale.

2. For all X ∈ R∞ and all Q̄ ∈ Q̄0, the process

WQ,D
t (X) := Dtρt(X −Xt1Tt

) +
t∑

s=0

Ds(−∆Xs) +Dtαt(Q⊗D), t ∈ T ∩ N0, (23)

is a Q-supermartingale.

Remark 18. In the same way as in Theorem 15, we can translate the weaker concepts of time consistency
from [40, 4, 39, 36, 34, 17, 1] into our present framework, and obtain results analogous to [1, Theorem
31, Proposition 33, Proposition 37].
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4.2 Riesz decomposition of the penalty process and the appearance of bub-

bles

The following proposition characterizes the martingale MQ,D in the Doob decomposition of the Q-
supermartingale (Dtαt(Q⊗D))t∈T∩N0 from Corollary 17; it translates [1, Proposition 24] and [34, Propo-
sition 2.3.2] into our present context.

Proposition 19. The martingale MQ,D in (22) is of the form

MQ,D
t = EQ

[
T−1∑
k=0

Dkαk,k+1(Q⊗D)
∣∣ Ft

]
+NQ,D

t Q-a.s., t ∈ T ∩ N0,

where

NQ,D
t :=

{
0 if T <∞

lim
s→∞

EQ [Dsαs(Q⊗D) | Ft ] if T = ∞ Q-a.s., t ∈ T ∩ N0,

is a nonnegative Q-martingale. Thus the Riesz decomposition of the Q-super-
martingale (Dtαt(Q⊗D)) into a potential and a martingale takes the form

Dtαt(Q⊗D) = EQ

[
T−1∑
k=t

Dkαk,k+1(Q⊗D)
∣∣Ft

]
+NQ,D

t Q-a.s., t ∈ T ∩ N0. (24)

Proof. Property (iii) of Theorem 15 yields

Dtαt(Q̄) = EQ

[
t+s−1∑

k=t

Dkαk,k+1(Q̄)
∣∣Ft

]
+ EQ[Dt+sαt+s(Q̄) | Ft ] Q-a.s. (25)

for all t, s ∈ N0 s.t. t+s ∈ T and all Q̄ ∈M(P̄ ). For T <∞ the claim is obvious, since αT (Q̄) = 0 P -a.s..
For T = ∞, by monotonicity there exists the limit

SQ,D
t = lim

s→∞
EQ

[
s∑

k=t

Dkαk,k+1(Q̄)
∣∣Ft

]

= EQ

[ ∞∑
k=t

Dkαk,k+1(Q̄)
∣∣Ft

]
Q-a.s.

for all t ∈ T ∩ N0, where we have used the monotone convergence theorem for the second equality. Thus
(25) implies existence of

NQ,D
t = lim

s→∞
EQ[Dt+sαt+s(Q̄) | Ft ] Q-a.s., t ∈ T ∩ N0

and
Dtαt(Q̄) = SQ,D

t +NQ,D
t Q-a.s., t ∈ T ∩ N0.

The process (SQ,D
t ) is a Q-potential. Indeed,

EQ[SQ,D
t ] ≤ EQ

[ ∞∑
k=0

Dkαk,k+1(Q̄)
∣∣Ft

]
≤ α0(Q̄) <∞
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and EQ[SQ,D
t+1 | Ft ] ≤ SQ,D

t Q-a.s. for all t ∈ T ∩ N0 by definition. Moreover, monotone convergence
implies

lim
t→∞

EQ[SQ,D
t ] = EQ

[
lim

t→∞

∞∑
k=t

Dkαk,k+1(Q̄)

]
= 0 Q-a.s..

The process (NQ,D
t ) is a nonnegative Q-martingale, since

EQ[NQ,D
t+1 −NQ,D

t |Ft] = Dtαt,t+1(Q̄)−Dtαt,t+1(Q̄) = 0 Q-a.s.

for all t ∈ T ∩ N0 by property (iii) of Theorem 15 and the definition of (SQ,D
t ).

The nonnegative martingale NQ,D, which may appear in the decomposition (24) of the penalty process
for T = ∞, plays the role of a “bubble”. Indeed, it appears on top of the “fundamental” component which
is given by the potential SQ,D generated by the one-step penalties, and this additional penalization causes
an excessive neglect of the model Q⊗D in assessing the risk. As a result, asymptotic safety breaks down
under the model Q⊗D, as explained in the next section.

4.3 Asymptotic safety and asymptotic precision

In this section we discuss the asymptotic properties of dynamic convex risk measures for processes.
Throughout this section we consider the case T = N0 ∪ {∞}. In the case T = N0 our assumption of
global continuity from above implies that there is “no mass at infinity”, i.e., D∞ = 0 Q-a.s. for all
Q⊗D ∈M(P̄ ), and the discussion below reduces to the trivial case. A systematic discussion of the case
T = N0, but without assuming the existence of a global reference measure P and global continuity from
above, appears in Föllmer and Penner [21].

Consider a time consistent dynamic convex risk measure for processes (ρt)t∈N0 . As before, (ρ̄t)t∈N0

denotes the corresponding time consistent dynamic convex risk measure for random variables on product
space given by (11). Let Q̄ = Q⊗ γ = Q⊗D ∈ Q̄0, and let us focus on the behavior of (ρ̄t)t∈N0 under Q̄.
The measure Q̄ will now play the same role as the reference measure P in [20, Section 5]. In particular,
the assumption Q∗ 6= ∅ from [20, Section 5] is satisfied for Q̄, since Q̄ ∈ Q̄0.

The results in [20] imply the existence of the limits

ᾱ∞(Q̄) := lim
t→∞

ᾱt(Q̄) and ρ̄∞(X) := lim
t→∞

ρ̄t(X) Q̄-a.s.

for all X ∈ R∞. Due to (11) and (13), we have

ρ̄∞(X) = −X1N0 + ρ∞(X)1{∞} and ᾱ∞(Q̄) = α∞(Q̄)1{∞} Q̄-a.s., (26)

where
ρ∞(X) := lim

t→∞
ρt(X) and α∞(Q̄) = lim

t→∞
αt(Q̄) Q-a.s. on {D∞ > 0}

by 3 of Remark 51.
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Definition 20. We call a dynamic convex risk measure for processes (ρt)t∈N0 asymptotically safe under
the model Q̄ = Q⊗D if the limiting capital requirement ρ∞(X) covers the final loss −X∞, i.e.

ρ∞(X) ≥ −X∞ Q-a.s. on {D∞ > 0}

for any X ∈ R∞.

Note that due to (26) asymptotic safety of (ρt)t∈N0 is equivalent to the condition

ρ̄∞(X) ≥ −X Q̄-a.s.,

i.e., to asymptotic safety of (ρ̄t)t∈N0 in the sense of [20, Definition 5.2].
The following result translates [20, Theorem 5.4] and [34, Corollary 3.1.5] to our present setting. It

characterizes asymptotic safety by the absence of bubbles in the penalty process. This is plausible since,
as we saw in Subsection 4.2, such bubbles reflect an excessive neglect of models which may be relevant
for the risk assessment.

Theorem 21. Let (ρt)t∈N0 be a time consistent dynamic convex risk measure such that each ρt is con-
tinuous from above. Then for any model Q̄ = Q⊗D ∈ Q̄0, the following conditions are equivalent:

1. (ρt) is asymptotically safe under the model Q̄;

2. the model Q̄ has no bubble, i.e., the martingale NQ,D in the Riesz decomposition (24) of the dis-
counted penalty process (Dtαt(Q̄))t∈N0 vanishes;

3. the discounted penalty process (Dtαt(Q̄))t∈N0 is a Q-potential;

4. no model R̄¿ Q̄ with α0(R̄) <∞ admits bubbles.

Proof. Properties 2 and 3 are equivalent by (24), and obviously 4 implies 2.
To prove 1 ⇔ 2 we use [20, Theorem 5.4]. There it was shown that (ρ̄t) is asymptotically safe under Q̄ if
and only if ᾱ∞(Q̄) = 0 Q̄-a.s. and in L1(Q̄). By Corollary 52, (13), and (5) we have

EQ̄[ᾱt(Q̄)] = EQ

[∑
s∈Tt

γsαt(Q̄)

]
= EQ

[
Dtαt(Q̄)

]
.

Thus ᾱt(Q̄) → 0 in L1(Q̄) if and only if Dtαt(Q̄) → 0 in L1(Q). This is equivalent to NQ,D ≡ 0, since
the bubble NQ,D = (NQ,D

t )t∈N0 is a nonnegative Q-martingale with NQ,D
0 = limt→∞EQ

[
Dtαt(Q̄)

]
. Due

to (24), NQ,D ≡ 0 also implies α∞(Q̄) = 0 Q-a.s. on {D∞ > 0}, thus ᾱ∞(Q̄) = 0 Q̄-a.s. by (26).
To prove 2 ⇒ 4 note that asymptotic safety under Q̄ implies asymptotic safety under any model R̄¿ Q̄

with α0(R̄) <∞, thus no model R̄ admits bubbles by the same reasoning as above.

Definition 22. We call a dynamic convex risk measure for processes (ρt)t∈N0 asymptotically precise
under the model Q̄ = Q⊗D ∈ Q̄0 if

ρ∞(X) = −X∞ Q-a.s. on {D∞ > 0}

for any X ∈ R∞.
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By (26), asymptotic precision of (ρt) is equivalent to asymptotic precision of (ρ̄t) in the sense of [20,
Definition 5.9]. The following corresponds to [32, Lemma 2.7].

Lemma 23. A time consistent dynamic convex risk measure (ρt)t∈N0 such that each ρt is continuous
from above is asymptotically precise under the model Q̄ = Q⊗D ∈ Q̄0 if and only if

ρ∞(X) ≤ −X∞ Q-a.s on {D∞ > 0} for all X ∈ R∞.

Proof. By [20, Lemma 5.1] the functional ρ̄∞ is convex and normalized. This implies

ρ̄∞(X) ≥ −ρ̄∞(−X) for all X ∈ R∞.

Thus we obtain
−X ≥ ρ̄∞(X) ≥ −ρ̄∞(−X) ≥ −X Q̄-a.s for all X ∈ R∞,

which is equivalent to ρ∞(X) = X∞ Q-a.s. on {D∞ > 0} by (26).

The following result translates [20, Proposition 5.11] to our present setting.

Proposition 24. Let (ρt)t∈N0 be a time consistent dynamic convex risk measure such that each ρt is
continuous from above, and assume that for each X ∈ R∞ the supremum in the robust representation
(15) of ρ0(X) is attained by some “worst case” measure QX ⊗ γX = Q̄X , such that Q̄X ≈ Q̄. Then
(ρt)t∈N0 is asymptotically precise under Q̄.

Proof. Since ρ0(X) = ρ̄0(X), Q̄X is also a worst case measure for ρ̄0(X). By [1, Proposition 21], the
measure Q̄X is then a worst case measure for X at all times t ∈ N0, i.e.,

ρ̄t(X) = EQ̄X

[
−X|F̄t

]
− ᾱt(Q̄X) Q̄-a.s. ∀ t ∈ N0,

and in particular Q̄X ∈ Q̄0. By martingale convergence,

ρ̄∞(X) = −X − ᾱ∞(Q̄X) Q̄-a.s.,

which is equivalent to
ρ∞(X) = −X∞ − α∞(Q̄X) Q-a.s. on {D∞ > 0}

due to (26). Asymptotic precision of (ρt) now follows from Lemma 23, since α∞(Q̄X) ≥ 0 Q-a.s. on
{D∞ > 0}.

4.4 A maximal inequality for the capital requirements

For X ∈ R∞ and Q⊗D ∈M(P̄ ), we can interpret

FQ,D
t (X) := EQ

[
−
∑
s∈Tt

γs

Dt
Xs

∣∣ Ft

]
− αt(Q⊗ γ) on {Dt > 0}

as a risk evaluation of the cash flow X at time t ∈ T ∩ N0, using the specific model Q and the specific
discounting process D. The next proposition provides, from the point of view of the model Q, a maximal
inequality for the excess of the required capital ρt(X) over the risk evaluation FQ,D

t (X).
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Proposition 25. Let (ρt)t∈T∩N0 be a time consistent dynamic convex risk measure such that each ρt is
continuous from above. Then for Q⊗D ∈M(P̄ ), X ∈ R∞, and c > 0 we have

Q

(
sup

t∈T∩N0

{
Dt

(
ρt(X)− FQ,D

t (X)
)}

≥ c

)
≤ ρ0(X)− FQ,D

0 (X)
c

. (27)

Proof. Fix Q ⊗ D ∈ M(P̄ ). If α0(Q ⊗ D) = ∞, then the inequality (27) holds trivially. Assume that
α0(Q⊗D) <∞. By 2) of Corollary 13 we have

ρt(X) ≥ EQ

[
−
∑
s∈Tt

γs

Dt
Xs

∣∣ Ft

]
− αt(Q⊗ γ) = FQ,D

t (X) Q-a.s. on {Dt > 0}.

Thus the Q-supermartingale WQ,D(X) defined in (23) satisfies

WQ,D
t (X) ≥ −EQ

[∑
s∈T

γsXs

∣∣ Ft

]
Q-a.s. on {Dt > 0}.

On {Dt = 0} = {Ds = 0 ∀s ∈ Tt}, we have WQ,D
t (X) = −

∑t−1
s=0Ds∆Xs. Therefore, the process

Y Q,D
t (X) := Dt

(
ρt(X)− FQ,D

t (X)
)

= WQ,D
t (X) + EQ

[∑
s∈T

γsXs

∣∣ Ft

]
, t ∈ T ∩ N0,

is a nonnegative Q-supermartingale, and (27) follows by a classical maximal inequality; cf., e.g., [38,
Theorem VII.3.1].

4.5 The coherent case

Due to positive homogeneity of a coherent risk measure, the penalty function can only take values 0 or
∞, and thus a coherent risk measure for processes ρt is continuous from above if and only if it admits
the robust representation

ρt(X) = ess sup
Q⊗γ∈Q0

t

EQ

[
−
∑
s∈Tt

γsXs

∣∣ Ft

]
, X ∈ R∞t , (28)

where
Q0

t :=
{
Q̄ ∈ Q̄t

∣∣ αt(Q̄) = 0
}
.

In this subsection we reformulate properties (iii) and (iv) of Theorem 15 in the coherent case. This
involves a translation of the notions of pasting of measures and stability of sets as used in [4], [14], [20]
in context of coherent risk measures for random variables to our present framework.

For Q̄1, Q̄2 ∈M(P̄ ) such that Q̄1 ¿ Q̄2 on F̄t and for B ∈ F̄t we denote by Q̄1 ⊕t
B Q̄2 the pasting of

Q̄1 and Q̄2 in t via B, i.e., the probability measure on (Ω̄, F̄) defined by

Q̄1 ⊕t
B Q̄2(A) = EQ̄1

[
EQ̄2 [1A|F̄t]1B + 1Bc1A

]
, A ∈ F̄ .
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Theorem 6 yields the decomposition Q̄i = Qi ⊗Di, i = 1, 2 with Q1 ¿ Q2 on Ft. Then

Q̄1 ⊕t
B Q̄2 = Q0 ⊗D0,

where Bt = {ω|(ω, t) ∈ B} ∈ Ft, and Q0 = Q1 ⊕t
Bt
Q2, i.e.

Q0(A) = EQ1

[
EQ2 [1A|Ft]1Bt

+ 1Bc
t
1A

]
, A ∈ FT ,

and

γ0
u =

 γ1
u u = 0, . . . , t− 1

D1
t

γ2
u

D2
t

1{D2
t >0}1Bt

+ γ1
u1Bc

t
u ∈ Tt.

Here γi and Di are related to each other via (4) and (6) for i = 0, 1, 2. Note that Q0 ∈ Mloc(P ), D0 ∈
D(Q0), in other words, the pasting of Q1 ⊗D1 with Q2 ⊗D2 admits a decomposition with the pasting
of Q1 with Q2 and the pasting of D1 with D2.

Definition 26. We call a set Q̄ ⊆ M(P̄ ) stable if, whenever Q̄1, Q̄2 ∈ Q̄ and Q̄1 ¿ Q̄2 on F̄t, the
pasting of Q̄1 and Q̄2 in t via B belongs to Q̄ for every B ∈ F̄t and all t ∈ T ∩ N0.

We associate to any Q̄ ∈M(P̄ ) the sets

Q0
t (Q̄) =

{
R̄ ∈M(P̄ )

∣∣ R̄ = Q̄|F̄t
, ᾱt(R̄) = 0 Q̄-a.s.

}
,

and
Q0

t,t+s(Q̄) =
{
R̄¿ P̄ |F̄t+s

∣∣ R̄ = Q̄|Ft
, ᾱt,t+s(R̄) = 0 Q̄-a.s.

}
.

The notion of pasting corresponds to concatenation defined in [10, Definition 4.10] on A1, and the
following corollary is corresponds to [10, Theorem 4.13, Corollary 4.14].

Theorem 27. Suppose that the dynamic risk measure (ρt)t∈T∩N0 is coherent, and that each ρt is contin-
uous from above. Then the following conditions are equivalent:

1. (ρt)t∈T∩N0 is time consistent

2. For all t ∈ T, t < T and Q̄ ∈M(P̄ ),

Q0
t (Q̄) =

{
Q̄1 ⊕t+1

Ω Q̄2
∣∣ Q̄1 ∈ Q0

t,t+1(Q̄), Q̄2 ∈ Q0
t+1(Q̄

1)
}
.

3. For all t ∈ T, t < T , X ∈ R∞ and Q̄ = Q⊗D ∈M(P̄ ) such that αt(Q̄) = 0 Q-a.s. on {Dt > 0},

EQ[Dt+1(Xt + ρt+1(X)) | Ft] ≤ Dt(Xt + ρt(X))

and αt+1(Q̄) = 0 Q-a.s. on {Dt+1 > 0}.

Moreover, if the set Q̄∗ defined in (21) is not empty, then time consistency is equivalent to each of the
following conditions:
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4. The set Q̄∗ is stable, and ρt has the representation

ρt(X) = ess sup
Q⊗Dγ∈Q̄∗

1
Dt
EQ

[
−
∑
s∈Tt

γsXs

∣∣ Ft

]
(29)

for all X ∈ R∞ and t ∈ T ∩ N0.

5. The representation (29) holds for all t ∈ T ∩ N0 and all X ∈ R∞, and the process

Dtρt(X −Xt1Tt
)−

t∑
s=0

Ds∆Xs, t ∈ T ∩ N0

is a Q-supermartingale for all Q̄ = Q⊗D ∈ Q̄∗.

Proof. Follows by applying [1, Corollary 26] and [20, Corollary 4.12] to ρ̄ defined in (11) and using
Corollary 52.

Coherence implies that the risk measure is asymptotically safe under any model Q̄ = Q ⊗ D ∈ Q0
0.

Indeed, by 1 of Corollary 17, (Dtαt(Q̄))t∈N0 is a nonnegative Q-supermartingale beginning at 0, and hence
it vanishes. In particular, there are no bubbles in the coherent case, and so asymptotic safety follows from
Theorem 21.

5 Cash subadditivity and calibration to numéraires

As noted after Definition 3, cash invariance of risk measures for processes differs from the corresponding
property of risk measures for random variables, since it takes into account the timing of the payment.
This aspect can be made precise using the notion of cash subadditivity. Cash subadditivity was intro-
duced by El Karoui and Ravanelli [18] in the context of risk measures for random variables in order to
account for discounting ambiguity. It will be shown in Proposition 29, and it also follows from the robust
representation given in Subsection 3.3, that every risk measure for processes is cash subadditive. Thus
risk measures for processes provide a natural framework to capture uncertainty about the time value of
money, and a systematic approach to the issue of discounting ambiguity.

5.1 Cash subadditivity

Definition 28. A conditional convex risk measure for processes ρt is called

• cash subadditive if

ρt(X +m1Tt+s
) ≥ ρt(X)−m, ∀ s > 0, ∀ m ∈ L∞t , m ≥ 0; (30)

• cash additive at time t+ s, with s > 0 and t+ s ∈ T, if

ρt(X +m1Tt+s
) = ρt(X)−m, ∀ m ∈ L∞t ,
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• cash additive if it is cash additive at all times s ∈ Tt+1.

Note that (30) is equivalent to

ρt(X +m1Tt+s
) ≤ ρt(X)−m, ∀ s > 0, ∀ m ∈ L∞t , m ≤ 0,

since ρt(X) = ρt(X +m1Tt+s −m1Tt+s).
Cash subadditive risk measures account for the timing of the payment in the sense that the risk is

reduced by having positive inflows earlier and negative ones later. Other equivalent characterizations of
cash subadditivity can be found in [18, Section 3.1].

As noted in [11] in the time consistent case, cash subadditivity is an immediate consequence of the
basic properties of a conditional risk measure for processes.

Proposition 29. Every conditional convex risk measure for processes ρt is cash subadditive.

Proof. Cash subadditivity follows straightforward from monotonicity and cash invariance of ρt:

ρt(X)−m = ρt(X +m1Tt
) ≤ ρt(X +m1Tt+s

), ∀s > 0, ∀ m ∈ L∞t , m ≥ 0.

Cash subadditivity of risk measures for processes is also apparent from the robust representation given
in Subsection 3.3 due to the appearance of the discounting factors.

Remark 30. In particular, for T <∞ or T = N0 ∪ {∞}, every risk measure for processes restricted to
the space {X ∈ R∞|Xt = 0, t < T} defines a cash subadditive risk measure on L∞ in the sense of [18,
Definition 3.1].

Remark 31. For T = N0, a conditional convex risk measure for processes ρt that is continuous from
above cannot be cash additive. Indeed, if ρt is cash additive at t + s for all s > 0, continuity from above
implies for X ∈ R∞ and m ∈ L∞t ,m > 0,

−m+ ρt(X) = ρt(X +m1Tt+s) ↗ ρt(X) with s→∞,

which is absurd. The interpretation of this result is clear: If we are indifferent between having an amount
of money today or tomorrow or at any future time, then any payment can be shifted from one date to the
next, and so it would never appear.

The following proposition describes the interplay between time consistency and cash additivity.

Proposition 32. Let (ρt)t∈T∩N0 be a time consistent dynamic convex risk measure on R∞ such that
each ρt is cash additive at time t+ 1. Then each ρt is cash additive.

Proof. Follows by induction using one-step cash additivity and recursiveness (20).

In view of Proposition 32 and Remark 31 we obtain the following result.
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Corollary 33. For T = N0, a dynamic convex risk measure (ρt)t∈N0 on R∞ such that each ρt is contin-
uous from above and cash additive at time t+ 1 cannot be time consistent.

Remark 34. Corollary 33 and Remark 31 heavily depend on the assumption of continuity from above,
which was formulated as a global property. For T = N0, the corollary in fact suggests to replace global
continuity from above by a local version; this is done in [21].

5.2 Calibration to numéraires

Cash additivity can be seen as additivity with respect to the numéraire 1. In this section we discuss
additivity with respect to other possible numéraires. To this end we formulate conditional versions of
some results from [18].

As usual, we denote by αt the minimal penalty function of ρt, and for t ∈ T ∩ N0 we define

Qα
t :=

{
Q ∈ Qt

∣∣ αt(Q) <∞
}
, Q̄α

t :=
{
Q̄ ∈ Q̄t

∣∣ αt(Q̄) <∞
}
,

where
Qt :=

{
Q ∈M(P )

∣∣ Q = P on Ft

}
,

and Q̄t is defined in (16).
The following lemma is a conditional version of [18, Lemma 2.3].

Lemma 35. Let ρt : L∞ → L∞t be a conditional convex risk measure for random variables that is
continuous from above, and let N ∈ L∞. Then the following conditions are equivalent:

(i) ρt(λtN) = λtρt(N) for all λt ∈ L∞t ;

(ii) EQ[−N | Ft ] = ρt(N) for all Q ∈ Qα
t ;

(iii) ρt(X + λtN) = ρt(X) + λtρt(N) for all X ∈ L∞ and all λt ∈ L∞t .

Proof. (i) ⇒ (ii). (i) and [20, Corollary 2.4] imply for each λt ∈ L∞t and Q ∈ Qt

λtρt(N) = ρt(λtN) ≥ λtEQ[−N |Ft]− αt(Q).

If αt(Q) <∞, we have αt(Q) ≥ −λt(EQ[N |Ft] + ρt(N)) for any λt ∈ L∞t , thus ρt(N) = EQ[−N |Ft].
(ii) ⇒ (iii) follows from [20, Corollary 2.4], and (iii) ⇒ (i) from normalization.

Due to (i) of Lemma 35, we can assume without loss of generality that the random variable N satisfies
the condition ρt(N) = −1. Then condition (ii) of Lemma 35 means that the conditional expectation of
the “numéraire” N is unique under all relevant probability measures, and condition (iii) can be viewed
as additivity with respect to the numéraire N :

ρt(X + λtN) = ρt(X)− λt ∀X ∈ L∞, ∀λt ∈ L∞t .

The following lemma translates Lemma 35 to the framework of risk measures for processes.
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Lemma 36. Let ρt : R∞t → L∞t be a conditional convex risk measure for processes such that each ρt is
continuous from above, and let Ns ∈ L∞s for some s ∈ Tt+1. Then the following conditions are equivalent:

(i) ρt(λtNs1Ts
) = λtρt(Ns1Ts

) for all λt ∈ L∞t ;

(ii) EQ

[
−Ns

Ds

Dt

∣∣∣Ft

]
= ρt(Ns1Ts

) for all Q̄ = Q⊗D ∈ Q̄α
t

(iii) for all X ∈ R∞t and λt ∈ L∞t

ρt(X + λtNs1Ts
) = ρt(X) + λtρt(Ns1Ts

).

Proof. Consider the conditional convex risk measure ρ̄t : L̄∞ → L̄∞t associated to ρt via (11). The
linearity condition (i) for ρt is equivalent to

ρ̄t(λtNs1Ts
) = λtρ̄t(Ns1Ts

) ∀λt ∈ L∞t ,

i.e., ρ̄t is linear on {ΛtNs1Ts
|Λt ∈ L̄∞t }. By Lemma 35 and (11) this is equivalent to

EQ̄[−Ns1Ts | F̄t ] = ρt(Ns1Ts)1Tt Q̄-a.s. ∀Q̄ = Q⊗D ∈ Q̄α
t ,

and this is equivalent to (ii) by Corollary 52. In the same way, Lemma 35 and (11) imply that (i) is
equivalent to (iii).

Since each D ∈ Dt(Q) is non-decreasing, Lemma 36 applied to Ns = 1 for some s > t yields the
following characterization of cash additivity:

Corollary 37. A conditional convex risk measure for processes ρt : R∞t → L∞t such that each ρt is
continuous from above, is cash additive at time s ∈ Tt+1 if and only if

Dt = Dt+1 = . . . = Ds Q-a.s.

for all Q̄ = Q⊗D ∈ Q̄α
t .

In other words, cash additivity at time s > t means that there is no discounting between t and s in
all the relevant models. In particular we have the following proposition.

Proposition 38. A conditional convex risk measure for processes ρt is continuous from above and cash
additive at time s ∈ Tt+1 if and only if it admits the robust representation

ρt(X) = ess sup
Q∈Qloc

t

ess sup
γ∈Γs(Q)

(
EQ

[
−
∑
k∈Ts

γkXk

∣∣ Ft

]
− αt(Q⊗ γ)

)
, X ∈ R∞t . (31)

In this case ρt is cash additive up to s, i.e., at all times t+ 1, . . . , s.
In particular, if T < ∞ or if T = N0 ∪ {∞}, a risk measure for processes ρt that is continuous from

above is cash additive if and only if it reduces to a risk measure on L∞:

ρt(X) = ess sup
Q∈Qt

(EQ[−XT |Ft]− βt(Q)) , (32)

where βt(Q) := αt(Q⊗ δ{T}), and δ{T} denotes the Dirac measure at T .
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Proof. Obviously, representation (31) implies continuity from above and cash additivity up to time s.
The converse follows from 1) of Corollary 13 and Corollary 37. To prove the last part of the assertion,
note that ΓT (Q) = {δ{T}} if T <∞ or T = N0 ∪ {∞}. Moreover, we have Q¿ P for any Q ∈ Qloc

t such
that Q ⊗ δ{T} ∈ Q̄α

t . This is obvious for T < ∞, and it follows from Lemma 53 if T = N0 ∪ {∞}, since
γ∞ = 1 Q-a.s. in this case. Thus the representation (32) follows from (31).

Remark 39. In particular, in the cash additive case and for T < ∞ or T = N0 ∪ {∞}, the results of
Section 4 reduce to the corresponding results for risk measures for random variables from [20, 1].

The following example extends [18, Proposition 2.4] to our present framework.

Example 40. Let ρt : R∞t → L∞t be a conditional convex risk measure for processes that is continuous
from above. Assume that there is a money market account (Bt)t∈T∩N0 as in Example 2, and that zero
coupon bonds for all maturities k > t, k ∈ T ∩ N0 are available at prices Bt,k, respectively.

Suppose that ρt satisfies the following calibration condition:

ρt(λt
Bt

Bk
1Tk

) = −λtBt,k ∀λt ∈ L∞t , ∀k ∈ Tt ∩ N0. (33)

Lemma 36 applied to Nk =
Bt

Bk
implies that the calibration condition (33) is equivalent to

ρt

(
X + λt

Bt

Bk
1Tk

)
= ρt(X)− λtBt,k ∀X ∈ R∞t , ∀λt ∈ L∞t , ∀k ∈ Tt ∩ N0,

and also to
EQ

[
Bt

Bk

Dk

Dt

∣∣∣Ft

]
= Bt,k ∀k ∈ Tt ∩ N0, ∀Q̄ = Q⊗D ∈ Q̄α

t . (34)

Using (34), the robust representation from part 1 of Corollary 13, and monotone convergence for T = ∞,
it can be seen that the calibration condition (33) is equivalent to the following one, that may seem stronger
at first sight:

ρt

(
T∑

k=t+1

λk
Bt

Bk
1Tk

)
= −

T∑
k=t+1

λkBt,k ∀λk ∈ L∞t .

Moreover, if the short rate process (rt), and hence also the money market account (Bs)s∈T∩N0 is
predictable, then (34) implies

Bt

Bt+1

Dt+1

Dt
= Bt,t+1,

and thus Dt+1 = Dt for all Q̄ = Q ⊗ D ∈ Q̄α
t , since Bt,t+1 = (1 + rt+1)−1 by a standard no arbitrage

argument. Hence ρt is cash additive at time t + 1 by Corollary 37. In particular, if a dynamic convex
risk measure (ρt) is time consistent, and if each ρt is continuous from above and satisfies the calibration
condition (33) with a predictable money market account, then each ρt is cash additive by Proposition 32.
In view of Remark 31, a time consistent dynamic convex risk measure that is continuous from above
cannot satisfy condition (33) for all t ∈ T if T = N0.
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6 Examples

In this section we illustrate our analysis by discussing some examples, in particular analogues to classical
risk measures for random variables such as the entropic risk measure and Average Value at Risk. Another
class of examples is obtained by separating model and discounting ambiguity in the robust representations
of Subsection 3.3.

6.1 Entropic risk measures

In this section we introduce entropic risk measures for processes. As a first variant we simply take the
usual conditional entropic risk measure on product space, that is the map ρ̄t : L̄∞ → L̄∞t defined by

ρ̄t(X) =
1
Rt

logEP̄

[
e−RtX

∣∣ F̄t

]
with risk aversion parameter Rt = (r0, . . . , rt−1, rt, rt, . . .) ∈ L̄∞t , where rs > 0 and r−1

s ∈ L∞s for all
s = 0, . . . , t, and e−RtX = (e−rsXs)s∈T.

For an optional probability measure ν = (νs)s∈T on T, we denote by νt the normalized restriction to
Tt, i.e.

νt
s =


νs∑

j∈Tt
νj
, on

{∑
j∈Tt

νj > 0
}
,

0, otherwise

for s ∈ Tt.

Proposition 41. The conditional entropic risk measure for processes ρt : R∞t → L∞t associated to ρ̄t

via (11) takes the form
ρt(X) = ρP,rt

t

(
−ρµ(ω),rt(ω)

t (X.(ω))
)
. (35)

Here ρP,rt

t : L∞ → L∞t denotes the usual conditional entropic risk measure for random variables with
risk aversion parameter rt:

ρP,rt

t (Y ) =
1
rt

logEP

[
e−rtY

∣∣ Ft

]
, Y ∈ L∞.

On the other hand, ρν,r
t : RT

b → R is the entropic risk measure “with respect to time”, defined on the set
of sequences RT

b = {x = (xs)s∈T|xs ∈ R ∀ s, sups∈T xs <∞} by

ρν,r
t (x) =

1
r

log

(∑
s∈Tt

e−rxsνt
s

)
for a given probability measure ν on T and a risk aversion parameter r ∈ R, r > 0.

The minimal penalty function αt of ρt is given for Q⊗ γ ∈M(P̄ ) by

αt(Q⊗ γ) =
1
rt
EQ

[∑
s∈Tt

γt
s log

Ms

Mt

∣∣ Ft

]
+

1
rt
EQ[H(γt(·)|µt(·))|Ft], (36)

where H(·|·) is the usual relative entropy for probability measures on Tt, Ms = dQ
dP |Fs

, s ∈ T ∩ N0, and
M∞ = limt→∞Mt P -a.s. if T = N0 ∪ {∞}.
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Proof. Using Corollary 52 we obtain

ρ̄t(X) = −X1{0,...,t−1} +
1
rt

logE

[∑
s∈Tt

e−rtXsµt
s

∣∣ Ft

]
1Tt

= −X1{0,...,t−1} + ρP,rt

t

(
− 1
rt

log

(∑
s∈Tt

e−rtXsµt
s

))
1Tt

= −X1{0,...,t−1} + ρP,rt

t

(
−ρµ(ω),rt(ω)

t (X.(ω))
)

1Tt .

To prove the second part of the claim, note that the minimal penalty function ᾱt of ρ̄t on M(P̄ ) takes
the form

ᾱt(Q̄) =
1
Rt
Ht(Q̄|P̄ ),

where Ht(Q̄|P̄ ) = EQ̄[log ZT

Zt
|F̄t] is the conditional relative entropy of Q̄ with respect to P̄ , and Zs

denotes the density of Q̄ with respect to P̄ on F̄s; see, e.g., [16, Proposition 4]. Using Theorem 6, (47),
Corollary 52, and (48) we obtain for each Q̄ = Q⊗ γ ∈M(P̄ ),

ᾱt(Q⊗ γ) =
1
rt
EQ

[∑
s∈Tt

γt
s log

(
γt

sMs

µt
sMt

) ∣∣ Ft

]
1Tt

.

Hence the minimal penalty function αt of ρt on M(P̄ ) is given by

αt(Q⊗ γ) =
1
rt
EQ

[∑
s∈Tt

γt
s log

Ms

Mt

∣∣ Ft

]
+

1
rt
EQ

[∑
s∈Tt

γt
s log

(
γt

s

µt
s

) ∣∣ Ft

]

=
1
rt
EQ

[∑
s∈Tt

γt
s log

Ms

Mt

∣∣ Ft

]
+

1
rt
EQ[H(γt(·)|µt(·))|Ft].

One can characterize time consistency properties of the dynamic entropic risk measure for processes
(ρt)t∈T∩N0 , where each ρt is given by (35), using the corresponding results for (ρ̄t)t∈T∩N0 . In particular, by
[1, Proposition 43] (cf. also [34, Proposition 4.1.4]), the entropic risk measure (ρt)t∈T∩N0 is time consistent
if the risk aversion parameter is constant, i.e., rt = r0 for all t ∈ T∩N0, and (ρt)t∈T∩N0 is rejection (resp.
acceptance) consistent if rt ≥ rt+1 (resp. rt ≤ rt+1) for all t ∈ T ∩ N0.

Remark 42. A time consistent dynamic entropic risk measure (ρt)t∈T∩N0 is asymptotically precise under
the reference measure P̄ , and hence under each Q̄ ∈ M(P̄ ), due to Proposition 24. Indeed, for each
X ∈ R∞ the supremum in the robust representation (15) of ρ0(X) is attained by a “worst case” measure
Q̄X ≈ P̄ for each X ∈ R∞; cf., e.g., [23, Example 4.33].

Formula (36) for the entropic penalty suggests to introduce a simplified version of the entropic risk
measure, where the interaction between Q and γ in the penalty is reduced as follows: For ut, vt > 0 such
that ut, vt, u

−1
t , v−1

t ∈ L∞t , define

α̂t(Q⊗ γ) :=


1
ut
Ht(Q|P ) +

1
vt
EQ[H(γ(·)|µt(·))|Ft], if Q ∈ Qt, γ ∈ Γt(P ),

∞, otherwise.
(37)
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This induces a new conditional convex risk measure ρ̂t : R∞t → L∞t via

ρ̂t(X) := ess sup
Q∈Qt,γ∈Γt(P )

(
EQ

[
−
∑
s∈Tt

γsXs

∣∣ Ft

]
− α̂t(Q⊗ γ)

)

= ess sup
γ∈Γt(P )

ρP,ut

t

(∑
s∈Tt

γsXs +
1
vt
H(γ(·)|µt(·))

)
.

Proposition 43. The conditional convex risk measure ρ̂t satisfies

ρ̂t(X) ≤ ρP,ut

t

(
−ρµ(ω),vt(ω)

t (X.(ω))
)
. (38)

In particular, for ut = vt = rt we have

ρ̂t(X) ≤ ρt(X) for all X ∈ R∞t , (39)

i.e., ρ̂t is less conservative than the entropic risk measure ρt in (35).

Proof. Inequality (38) holds since for any probability measure ν on T

ρν,vt

t (x) = sup
y

{
−
∑
s∈Tt

ysxs −
1
vt
H(y|νt)

}
,

where the supremum is taken over all probability measures y = (ys)s∈Tt
on Tt.

Remark 44. Inequality (39) implies the converse relation for the respective minimal penalty functions
of ρ̂t and ρt, and thus (37) and (36) yield

Ht(Q|P ) ≥ EQ

[∑
s∈Tt

γs logMs

∣∣ Ft

]

for all Q ∈ Qt and γ ∈ Γt(P ).

6.2 Average Value at Risk

For a given level Λt = (λ0, . . . , λt−1, λt, λt, . . .) ∈ L̄∞t such that λs ∈ (0, 1] for all s = 0, . . . , t we define
the conditional Average Value at Risk ρ̄t : L̄∞ → L̄∞t on the product space in the usual way as

ρ̄t(X) = ess sup{EQ̄[−X|F̄t]
∣∣ Q̄ ∈ Q̄t, dQ̄/dP̄ ≤ Λ−1

t }.

Proposition 45. The conditional coherent risk measure for processes associated to ρ̄t via (11) depends
only on λt, and is given by

ρλt
t (X) = ess sup

{
EQ

[
−
∑
s∈Tt

Xsγs

∣∣ Ft

] ∣∣ Q ∈ Qloc
t , γ ∈ Γt(Q),

γsMs

µt
s

≤ λ−1
t , s ∈ Tt

}
, (40)

where Ms = dQ
dP |Fs

, s ∈ T ∩ N0, and M∞ = limt→∞Mt P -a.s. if T = N0 ∪ {∞}.
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Proof. This is an immediate consequence of (47) and Corollary 52.

Note that a probability measure Q and an optional measure γ in the robust representation of ρt are
penalized simultaneously. As a simpler alternative, we can consider a “decoupled” version of conditional
Average Value at Risk, defined by

ρλ1,λ2
t (X) := ess sup

γ∈Γ
λ1
t

AV@Rλ2
t

(∑
s∈Tt

Xsγs

)
, X ∈ R∞t .

Here, λ1 and λ2 are Ft-measurable random variables with values in (0, 1],

AV@Rλ2
t (X) = ess sup

{
EQ[−X|Ft]

∣∣ Q ∈ Qt,
dQ

dP
≤ 1
λ2

}
, X ∈ L∞,

is the usual Average Value at Risk for random variables, and

Γλ1
t =

{
γ ∈ Γt(P )

∣∣ γs

µs
≤ 1
λ1
, s ∈ Tt

}
.

Note that ρλ1,λ2
t is an example of a “decoupled” risk measure of the form (42), which will be discussed

in Subsection 6.3.

Proposition 46. The conditional coherent risk measure ρλ1,λ2
t satisfies

ρλ1,λ2
t (X) ≤ ρλ1λ2

t (X) ∀ X ∈ R∞.

In other words, the decoupled version is less conservative than the conditional Average Value at Risk
defined in (40) with λt = λ1λ2.

Proof. Follows immediately from the definition of ρλ1,λ2
t .

Recall that the dynamic Average Value at Risk for random variables is not time consistent; cf. e.g.
[4]. Thus neither the dynamic Average Value at Risk for processes (ρλt

t )t∈T∩N0 defined in (40), nor its
decoupled version (ρλ1,λ2

t )t∈T∩N0 will be time consistent in general. However, if the time horizon is finite,
backward recursive construction of time consistent dynamic risk measures introduced in [10, Section 4.2]
(see also [11, Sections 3.1, 4.1], [1, Section 4.4]) can be applied in order to obtain time consistent versions
of Average Value at Risk for processes and of its decoupled version. This can be done either on the
product space using the construction from [11, Sections 3.1] or directly for risk measures for processes
as in [11, Sections 4.1]. Indeed, it can be easily seen that if (ρ̄t)t∈T∩N0 and (ρt)t∈T∩N0 are associated
to each other via (11), the corresponding time consistent dynamic risk measures obtained by recursive
construction will be also associated to each other via (11).

6.3 Separation of model and discounting uncertainty

If the time horizon T is finite, we can replace Γt(Q) by Γt(P ) due to Remark 50, and the robust repre-
sentation (15) in Theorem 10 can be rewritten in the following form:

ρt(X) = ess sup
γ∈Γt(P )

ψγ
t

( T∑
s=t

Xsγs

)
, X ∈ R∞t . (41)
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Here
ψγ

t (Y ) = ess sup
Q∈Qt

(EQ[−Y |Ft]− αt(Q⊗ γ)) , Y ∈ L∞

is a conditional convex risk measure for random variables (see, e.g., [16, Theorem 1]), that depends on
the discounting factor γ through its penalty function βγ

t (Q) := αt(Q⊗ γ).
The representation (41) suggests to consider a simple class of conditional convex risk measures for

processes, both for T < ∞ and T = ∞, where the dependence of Q and γ is separated in the following
manner: One begins with some conditional convex risk measure for random variables ψt : L∞ → L∞t ,
specifies some set of discounting factors Gt ⊆ Γt(P ), and defines

ρt(X) = ess sup
γ∈Gt

ψt

(∑
s∈Tt

Xsγs

)
, X ∈ R∞. (42)

It is easy to see that (42) defines a conditional convex risk measure ρt for processes, and that ρt is
continuous from above if and only if ψt is continuous from above.

For example, for Gt = {δ{s}} for some s ∈ Tt, formula (42) reduces to

ρt(X) = ψt(Xs), X ∈ R∞,

i.e., ρt is a conditional convex risk measure on L∞s . More generally, one can fix, as in [11, Example 4.3.2],
an optional measure γ ∈ Γt(P ), and define Gt = {γ}. In this case there is no ambiguity regarding the
discounting process. For T < ∞ and X ∈ R∞t , or for T = N0 ∪ {∞} and X ∈ X∞t , we can switch to
discounted terms by associating to X a process Y defined via

Y0 := X0, ∆Ys := Ds∆Xs, s ∈ T ∩ N0, Y∞ := lim
t→∞

Yt for T = N0 ∪ {∞},

where D is related to γ via (4). Then the risk measure ρt defined by (42) reduces to a risk measure for
random variables:

ρt(X) = ψt

( T∑
s=t

Ds∆Xs

)
= ψt

( T∑
s=t

∆Ys

)
= ψt(YT ).

Remark 47. In the case of unambiguous exponential discounting Ds = βs−t for s ≥ t and some β ∈
(0, 1), the representation (42) reduces to

ρt(X) = ess sup
Q∈Qloc

t

(
EQ

[
−

T∑
s=t

βs−t∆Xs

∣∣ Ft

]
− αt(Q)

)
.

This corresponds to the numerical representation of dynamic variational preferences (4) in Maccheroni
et al. [31] and, in the coherent case, to (3.6) in Epstein and Schneider [19]. In this context the charac-
terization (iii) of time consistency in our Theorem 15 corresponds to condition (11) of [31, Theorem 1],
and stability in our Theorem 27 coincides with rectangularity in [19, Theorem 3.2].

A further example of a risk measure of the form (42) is given in [11, Example 4.3.3]; cf. also [28,
Example 4.2]. In that case ρt is the maximal risk which arises by stopping the process (ψt(Xs))s∈Tt

in
the least favorable way, i.e.,

ρt(X) = ess sup
τ∈Θt

ψt(Xτ ),
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where Θt denotes the set of all stopping times with values in Tt. In our context this amounts to the
representation (42) with Gt =

{
(1{τ=s})s∈Tt

∣∣ τ ∈ Θt

}
.

A Discrete Itô-Watanabe decomposition

In this section we state a discrete time version of the Itô-Watanabe factorization of a nonnegative super-
martingale; cf. [27].

Proposition 48. Let U = (Ut)t∈T∩N0 be a nonnegative P -supermartingale on some probability space
(Ω,F , (Ft)t∈T∩N0 , P ) with U0 = 1. Then there exist a nonnegative P -martingale M = (Mt)t∈T∩N0 and a
predictable non-increasing process D = (Dt)t∈T∩N0 such that M0 = D0 = 1 and

Ut = MtDt, t ∈ T ∩ N0. (43)

Moreover such a decomposition is unique on {t < τ0}, where τ0 := inf{t > 0 |Ut = 0}.

Proof. We first assume that there exists a decomposition of U as in (43) and prove its uniqueness on
{t < τ0}. Indeed, on {t < τ0} = {Ut > 0} = {Mt > 0} ∩ {Dt > 0} we have

EP [Ut+1|Ft]
Ut

=
Dt+1

Dt

EP [Mt+1|Ft]
Mt

=
Dt+1

Dt
,

and hence the process D in the decomposition (43) is uniquely determined on {t ≤ τ0} by

Dt =
t−1∏
s=0

EP [Us+1|Fs]
Us

, 0 ≤ t ≤ τ0.

Moreover, on {Dt > 0},

Mt =
Ut

Dt
,

and thus also the process M in the decomposition (43) is uniquely determined on {Dt > 0} ⊇ {t < τ0}.
To prove the existence of a decomposition as in (43), define the processes D and M via

Dt =


t−1∏
s=0

EP [Us+1|Fs]
Us

, for 0 ≤ t ≤ τ0,

0, otherwise

and

Mt =


Ut

Dt
, on {Dt > 0},

Mt−1, on {Dt = 0}.

Clearly, D is predictable and non-increasing with D0 = 1 and Dt ≥ 0 for all t, and M is adapted with
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M0 = 1 and Mt ≥ 0 for all t. It remains to show that M is a martingale. Indeed,

EP [Mt+1|Ft] = EP [Mt+11{Dt+1=0}|Ft] + EP [Mt+11{Dt+1>0}|Ft]

= Mt1{Dt+1=0} +
1

Dt+1
EP [Mt+1Dt+1|Ft]1{Dt+1>0}

= Mt1{Dt+1=0} +
1

Dt+1

EP [Ut+1|Ft]
Ut

Ut1{Dt+1>0}

= Mt1{Dt+1=0} +
1

Dt+1

Dt+1

Dt
Ut1{Dt+1>0}

= Mt,

where we have used that Ut > 0 on {Dt+1 > 0}.

Remark 49. Since U is a nonnegative supermartingale, the following equivalence holds on {τ0 = t}:

Dt = 0 ⇐⇒ EP [Ut|Ft−1] = 0 ⇐⇒ P [Ut = 0|Ft−1] = 1.

Thus Dt = 0 on the event {τ0 = t} if this event is sure at time t− 1. On the other hand, we have Mt = 0
on {Dt > 0}∩{τ0 = t} = {EP [Ut|Ft−1] > 0, Ut = 0} = {P [Ut = 0|Ft−1] < 1, Ut = 0}, i.e., M is uniquely
determined also at time τ0 if τ0 is is not predicted one step ahead.

B Disintegration of measures on the optional σ-field

In this section we prove Theorem 6. Recall that we use Assumption 5. It guarantees that any consistent
sequence of probability measures Qt on Ft, t ∈ T∩N0, admits a unique extension to a probability measure
on F∞ = σ(∪t∈T∩N0Ft), cf. [33, Theorem 4.1]. In particular, any martingale (Mt)t∈T∩N0 with M0 = 1
induces a unique probability measure Q on (Ω,F∞) such that

Mt =
dQ

dP

∣∣∣
Ft

, t ∈ T. (44)

Proof of Theorem 6. Let Q̄ ∈ M(P̄ ) with the density
dQ̄

dP̄
=: Z̄ = (Zt)t∈T. We first prove (9) for T =

N0 ∪ {∞}. To this end, consider the supermartingale U = (Ut)t∈T defined by

Ut := EP

[∑
s∈Tt

µsZs|Ft

]
≥ 0, t ∈ T. (45)

By Proposition 48, U admits a decomposition

Ut = MtDt, t ∈ N0,

where M = (Mt)t∈N0 is a nonnegative P -martingale with M0 = 1, and D = (Dt)t∈N0 is a nonnegative
predictable non-increasing process with D0 = 1. The martingale M induces a unique probability measure
Q on (Ω,F∞) via (44), with Q ∈ Mloc(P ). Let M∞ := limt→∞Mt P -a.s., D∞ := limt→∞Dt P - and
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Q-a.s., and note that Z∞µ∞ = U∞ = limt→∞ Ut = M∞D∞ P -a.s.. We define the process γ = (γt)t∈T

via (6). Then for X ∈ R∞ with X ≥ 0 we have by monotone convergence and (45)

EQ̄[X] = EP

[∑
t∈T

XtµtZt

]
=

∞∑
t=0

EP [XtEP [Ut − Ut+1|Ft]] + EP [M∞D∞X∞]

=
∞∑

t=0

EP [Xt(MtDt −Mt+1Dt+1)] + EP [M∞D∞X∞]

=
∞∑

t=0

EQ[Xtγt] + EP [M∞D∞X∞]

= EQ

[ ∞∑
t=0

Xtγt

]
+ EP [M∞D∞X∞].

Using (3) this takes the form

EQ̄[X] = EQ

[ ∞∑
t=0

Xtγt

]
+ EQ[X∞γ∞]− EQ[γ∞X∞1{M∞=∞}]. (46)

Plugging X = 1 into (46) yields

1 = EQ̄[1] = EQ

[ ∞∑
t=0

γt + γ∞

]
− EQ[γ∞1{M∞=∞}]

= 1− EQ[γ∞1{M∞=∞}].

Thus γ∞ = 0 Q-a.s. on {M∞ = ∞}, i.e., γ ∈ Γ(Q), and (46) reduces to (9).
To prove (9) for T = N0, note that every measure Q̄ on (Ω×N0, F̄) can be extended to a measure Q̃

on (Ω× (N0 ∪ {∞}), F̄) by setting Q̃[Ω× {∞}] = 0. Thus the first part of the proof yields

EQ̃[X] = EQ

[ ∞∑
t=0

Xtγt

]
+ EQ[X∞γ∞]

with some probability measure Q ∈ Mloc(P ) and some optional measure γ such that
∑∞

t=0 γt + γ∞ = 1
Q-a.s.. Moreover, since

EQ[γ∞] = EQ̃[1{∞}] = 0,

we have γ∞ = 0 Q-a.s., i.e., γ ∈ Γ(Q) for T = N0, and (9) holds.
Similarly, we can embed the case T = {0, . . . , T} into the setting of T = N0∪{∞}, by setting Ft := FT

for all t > T , and extending any measure Q̄ on (Ω×{0, . . . , T}, F̄) to a measure Q̃ on (Ω×(N0∪{∞}), F̄)
by setting Q̃[Ω×TT+1] = 0. The same reasoning as above yields a probability measure Q ∈Mloc(P ), in
particular Q¿ P on FT , and an optional measure γ such that γs = 0 Q-a.s. for all s > t, i.e., γ ∈ Γ(Q)
for T = {0, . . . , T}, and (9) holds.

The equality (10) follows from (9) due to integration by parts formula (7).
To prove the converse implication of the theorem, note that each pair (Q, γ), with Q ∈Mloc(P ) and

γ ∈ Γ(Q), defines a density Z̄ = (Zt)t∈T of a probability measure Q̄ ∈M(P̄ ) via

Zt =
Mtγt

µt
, t ∈ T, (47)
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where Mt denotes the density of Q with respect to P on Ft for each t ∈ T ∩ N0, and, if T = N0 ∪ {∞},
M∞ = limt→∞Mt P -a.s.. Clearly, (9) and (10) hold for Q̄.

Remark 50. For T < ∞, and for T = N0, one can also prove Theorem 6 directly, defining the super-
martingale U via (45) and using the Itô-Watanabe decomposition of U as above. For T <∞, one obtains
in this way the additional property γ ∈ Γ(P ) in the decomposition Q̄ = Q⊗ γ of any Q̄ ∈M(P̄ ), and so
we can replace the set Γ(Q) by Γ(P ) in the representation (15) and in all further results.

Remark 51. Let Q̄ ∈ M(P̄ ) with decomposition Q ⊗ γ = Q ⊗ D in the sense of (9) and (10), let
Z̄ = (Zt)t∈T denote the density of Q̄ with respect to P̄ , M = (Mt)t∈T∩N0 the density process of Q with
respect to P , and M∞ = limt→∞Mt P -a.s. for T = N0 ∪ {∞}.

1. The density Z̄ takes the form (47). Indeed, for all X ∈ R∞, X ≥ 0 we have

EQ̄[X] = EQ

[∑
t∈T

Xtγt

]
= EP

[∑
t∈T

XtγtMt

]
,

where, for T = ∞, the last equality holds due to monotone convergence, and, for T = N0 ∪ {∞},
we use (3) and γ∞ = 0 Q-a.s. on {M∞ = ∞}.

2. In order to clarify to which extent the decomposition (9) is unique, we note that the Itô-Watanabe
decomposition of the supermartingale U defined in (45) is determined by the density process M and
the discounting process D. Indeed,

Ut =
∑
s∈Tt

EP [γsMs|Ft] =
∑
s∈Tt

EQ [γs|Ft]Mt1{Mt>0}

= MtEQ

[∑
s∈Tt

γs

∣∣ Ft

]
1{Mt>0} = MtDt, t ∈ T,

where we have used (47), (5), and monotone convergence for T = ∞. In particular, if Q̄ ∈ M(P̄ )
admits two decompositions Q̄ = Q1⊗D1 = Q2⊗D2, the uniqueness stated in Proposition 48 yields

M1
t = M2

t and D1
t = D2

t on {t < τ0},

where τ0 = inf{t > 0 |Ut = 0}. Moreover, since Z̄ > 0 Q̄-a.s., we have Q̄[{(ω, t)|t ≥ τ0(ω)}] = 0,
and hence the processes M and D are uniquely determined and strictly positive Q̄-a.s..

3. Equality Q̄-almost surely between two processes X,Y ∈ R∞ can be characterized as follows in terms
of Q and γ:

X = Y Q̄-a.s. ⇐⇒ 1 = EQ̄[1{X=Y }] = EQ

[∑
t∈T

γt1{Xt=Yt}

]
⇐⇒ Xt = Yt Q-a.s. on {γt > 0} ∀ t ∈ T,

where the last equivalence follows since
∑

t∈T γt = 1Q-a.s.. In particular, an F̄t-measurable random
variable X = (Xt)t∈T is well defined Q̄-a.s. if and only if Xi is well defined Q-a.s. on {γi > 0} for
i = 0, . . . , t− 1, and Xt is well defined Q-a.s. on {

∑
s∈Tt

γs > 0} = {Dt > 0}.

34



Corollary 52. For Q̄ ∈ M(P̄ ) with decomposition Q̄ = Q ⊗ γ = Q ⊗ D, the conditional expectation
given F̄t takes the form

EQ̄[X | F̄t ] = X01{0} + . . .+Xt−11{t−1} + EQ

[∑
s∈Tt

γs

Dt
Xs

∣∣ Ft

]
1Tt

, X ∈ R∞,

where the last term on the right-hand-side is well defined Q-a.s. on {Dt > 0}.

Lemma 53. Let T = N0 ∪ {∞}. For Q̄ = Q ⊗ γ ∈ M(P̄ ) with the density process (Mt)t∈N0 of Q with
respect to P , and M∞ = limt→∞Mt P -a.s., we have

γ∞ > 0 Q-a.s. ⇔ Q ∈M(P ) and γ∞ > 0 P -a.s. on {M∞ > 0}.

Proof. We have

Q[γ∞ > 0] = EQ

[
γ∞
γ∞

1{γ∞>0}

]
= EQ̄

[
1
γ∞

1{γ∞>0}1{∞}

]
= EP̄

[
Z∞
γ∞

1{γ∞>0}1{∞}

]
= EP

[
Z∞µ∞
γ∞

1{γ∞>0}

]
= EP

[
M∞1{γ∞>0}

]
,

where we have used (9) and (47). The claim follows by noting that Q ¿ P if and only if EP [M∞] = 1
for Q ∈Mloc(P ) due to (3).

Our robust representation of a conditional convex risk measure ρt involves probability measures Q̄ =
Q⊗ γ which coincide on the σ-field F̄t. This can be characterized as follows in terms of Q and γ.

Lemma 54. Let Q̄1, Q̄2 ∈ M(P̄ ) with the decompositions Q̄i = Qi ⊗ γi = Qi ⊗Di, i = 1, 2. Then the
following relation holds for all t ∈ T

Q̄1 = Q̄2 on F̄t ⇐⇒ Q1 = Q2 on Ft ∩ {D1
t > 0} and γ1

s = γ2
s Q1-a.s. ∀ s < t.

Proof. We denote by Z̄i = (Zi
t)t∈T the density of Q̄i with respect to P̄ , by (M i

t )t∈T∩N0 the density process
of Qi with respect to P , and M i

∞ = limt→∞M i
t P -a.s. if T = N0 ∪ {∞}, i = 1, 2. Assume that Q̄1 = Q̄2

on F̄t for some t ∈ T, i.e., EP̄ [Z̄1|F̄t] = EP̄ [Z̄2|F̄t], where

EP̄ [Z̄i|F̄t] = Zi
01{0} + . . .+ Zi

t−11{t−1} +
1∑

s∈Tt
µs
EP

[∑
s∈Tt

Zi
sµs

∣∣ Ft

]
1Tt

=
γi
0M

i
0

µ0
1{0} + . . .+

γi
t−1M

i
t−1

µt−1
1{t−1} +

Di
tM

i
t∑

s∈Tt
µs

1Tt , i = 1, 2 (48)

by (47) and Corollary 52. This implies

M1
s γ

1
s = M2

s γ
2
s ∀ s < t and M1

t D
1
t = M2

t D
2
t . (49)

Hence for any A ∈ Ft−1 we obtain

EP

[
t−1∑
s=0

γ1
sM

1
s 1A

]
= EP

[
M1

t−1

t−1∑
s=0

γ1
s1A

]
= EP

[
M1

t−1(1−D1
t )1A

]
= Q1(A)− Q̄1(A× Tt)

= Q1(A)− Q̄2(A× Tt),
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where the last equality follows since A× Tt ∈ F̄t and Q̄1 = Q̄2 on F̄t. In the same way we get

E

[
t−1∑
s=0

γ2
sM

2
s 1A

]
= Q2(A)− Q̄2(A× Tt).

Therefore Q1 = Q2 on Ft−1, and by (49) γ1
s = γ2

s Q
1-a.s. for all s < t. In particular D1

t = D2
t Q

1- and
Q2-a.s., which in turn implies Q1 = Q2 on Ft ∩ {D1

t > 0} due to (49).
The proof of the inverse implication works in the same way.

We thank two anonymous referees for their constructive comments. We also thank Claudia Klüppelberg
for arranging a joint visit at TU München, where a part of this work was completed.
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