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Abstract

In this paper we consider the optimal stopping problem for general dynamic monetary utility
functionals. Sufficient conditions for the Bellman principle and the existence of optimal stopping times
are provided. Particular attention is paid to representations which allow for a numerical treatment
in real situations. To this aim, generalizations of standard evaluation methods like policy iteration,
dual and consumption based approaches are developed in the context of general dynamic monetary
utility functionals. As a result, it turns out that the possibility of a particular generalization depends
on specific properties of the utility functional under consideration.

1 Introduction

Dynamic monetary utility functionals, or DMU functionals for short, can be seen as generalizations of
the ordinary conditional expectation, the usual functional which is to be maximized in standard stopping
problems, which occur for instance in the theory of pricing of American (Bermudan) options in a complete
market. It is well known that in an incomplete market the price of an American option is determined
by the so called upper and lower Snell envelope which in turn are obtained via optimal stopping of the
reward process with respect to two particular mutually conjugate DMU functionals (cf. e.g. [17]). From an
economic point of view, dynamic monetary utility functionals may be seen as representations of dynamic
preferences in terms of utilities of financial investors.
By changing sign, a DMU functionals becomes a dynamic risk measure (e.g. in [25]) which represents
preferences in terms of losses instead of utilities in fact. Therefore, technically, the study of DMU func-
tionals is basically equivalent to the study of dynamic risk measures which became an increasing research
field in the last years. A realistic dynamic risk assessment of financial positions should allow for updating
as time evolves, taking into account new information. The notion of dynamic risk measures has been
established to provide a proper framework (cf. e.g. [3], [10], [12], [13], [16]). It is based on an axiomatic
characterization extending the classical axioms for the concept of one-period risk measures in [2] to the
dynamic multiperiod setting. From the very beginning one crucial issue was to find reasonable conditions
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of mutual relationships between the risk functionals, so-called dynamic consistency, leading to different
concepts (cf. e.g. [3], [10], [12], [13], [34], [35], [38], [39]). The mostly used one is often called strong time
consistency, and it is linked with a technical condition for dynamic risk measures known as recursiveness.
This condition will play an important technical role in our investigations.
Recently, dynamic monetary utility functionals (as being dynamic risk measures with changed sign) have
been incorporated into different topics such as, for example, the dynamics of indifference prices (see [25],
[11]), and the pricing of derivatives in incomplete financial markets (cf. e.g. [34], [17], [32]). In this respect
we want to emphasize the contributions in [17] and [32] as being the starting point of this paper. There the
superhedging of American options is analyzed as solutions of optimal stopping problems in the context of
coherent dynamic monetary utility functionals. We want to extend these considerations to more general
monetary utility functionals. For instance, we will not necessarily assume translation invariance which
has been recently questioned as a suitable condition for risk assessment since it tacitly supposes certainty
on discounting factors by the investors (cf. [15]).
Within a time discrete setting we shall look for a set of conditions for dynamic monetary utility functionals
which is as minimal as possible in a sense, while keeping the presentation compact and such that solutions
for the related optimal stopping problems may be guaranteed. For classical stopping problems with
respect to ordinary conditional expectations the starting point for any solution representation is the
Bellman principle. This suggests to investigate when the Bellman principle holds for the general optimal
stopping problems. The above mentioned condition of recursiveness in connection with a specific regularity
condition will turn out to be sufficient.
Beyond the considerations of the general optimal stopping, the main contribution of this paper is the
development of iterative methods and other representations for solving them. Based on these methods we
naturally construct simulation based solution algorithms which allow for solving such stopping problems
in practice. In contrast to meanwhile industrial standard approaches for Bermudan options, hence the
ordinary stopping problem in discrete time (among others, [1], [8], [26], [28], [37]), we have not seen yet a
comprehensive generic approach for treating generalized optimal stopping problems numerically. In this
respect this paper intends to be a first step in this direction.
The paper is organized as follows. In Section 2 the concept of dynamic monetary utility functionals
is introduced. In Section 3 we investigate the Bellman principle and the existence of optimal stopping
strategies. In Section 4 a generalization of the policy iteration method of [26] is presented. Section 5,
Section 6, and Section 7 generalize, respectively, the additive dual method of [33]-[20], the multiplicative
dual of [23], and the consumption based approach in [4]-[5]. In Section 8 we shall provide a simulation
setting to utilize the results of sections 4-7 to construct approximations of the optimal values of the
investigated stopping problems. More technical proofs are given in Appendix A.

2 Dynamic monetary utility functionals

Let
(
Ω, (Ft)t∈{0,...,T},F , P

)
be a filtered probability space with {0, 1}−valued P |F0, and let X be a real

vector subspace of L0(Ω,F , P) containing the indicator mappings 1A of subsets A ∈ F . It is assumed that
for any X ∈ X and A ∈ F it holds 1AX ∈ X. Moreover, X ∧ Y ∈ X and X ∨ Y ∈ X is valid for any
X, Y ∈ X. Hence in particular X is a vector lattice.
A family of mappings Φ := (Φt)t∈{0,...,T} with Φt : X → X ∩ L0(Ω,Ft, P) being monotone, i.e. Φt(X) ≤
Φt(Y ) for X, Y ∈ X with X ≤ Y P−a.s.. is called a dynamic monetary utility functional or shortly
DMU functional.
We shall say that (Φt)t∈{0,...,T} is recursively generated if there is some family (Ψt)t∈{0,...,T} of mappings
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Ψt : X ∩ L0(Ω,Ft+1, P) → X ∩ L0(Ω,Ft, P) with FT+1 := F such that

ΨT = ΦT , and Φt = Ψt ◦ Φt+1 for t = 0, ..., T − 1.

In this case the mappings Ψt will be given the name generators of (Φt)t∈{0,...,T} .
Let us introduce some further notations. Henceforth Tt will stand for the set of the finite stopping times
τ with τ ≥ t P−a.s., whereas H will denote the set of adapted processes Z := (Zt)t∈{0,...,T} such that
Zt ∈ X ∩ L0(Ω,Ft, P) for t ∈ {0, ..., T}.
The following conditions on (Φt)t∈{0,..,T} will play an important role in the context of optimal stopping
of DMU functionals studied later on.

(C1) Φt(X) ≤ Φt(Y ) P−a.s. for t ∈ {0, ..., T − 1}, X, Y ∈ X with Φt+1(X) ≤ Φt+1(Y ) P−a.s. (time
consistency).

(C2) Φt(1AX) = 1AΦt(X) P−a.s. for t ∈ {0, ..., T}, A ∈ Ft, and X ∈ X (regularity).

(C3) Φt(X + Y ) = Φt(X) + Y P−a.s. for t ∈ {0, ...T}, and X, Y ∈ X with Y being Ft−measurable
(conditional translation invariance).

(C4) Φt = Φt ◦ Φt+1 P−a.s. for t ∈ {0, ..., T − 1} (recursiveness).

(C5) Φt(0) = 0 P−a.s. for t ∈ {0, ..., T} (normalization).

(C6) Φt(Y X) = Y Φt(X) P−a.s. for t ∈ {0, ..., T}, X ∈ X and Y ∈ X ∩ L0(Ω,Ft, P) with Y ≥ 0 P−a.s.
as well as XY ∈ X (conditional positive homogeneity)

(C7) For each X ∈ X with X ≥ 0 P−a.s. there exist a function g : [0,∞) → R+ such that limε↓0 g(ε) = 0,
and

Φt (X ∨ ε) ≤ Φt (X) + g(ε) for t ∈ {0, ..., T}. (1)

Remark 2.1 The construction of DMU functionals via generators opens up the possibility to obtain
functionals with desired properties by just imposing them on the generators.
In this paper we frequently use one of the following implications. Their proofs are simple and therefore
omitted.

• Recursiveness implies that (Φt)t∈{0,..,T} is recursively generated, where the generators are the re-
strictions Φt|X ∩ L0(Ω,Ft+1, P) for t = 0, ..., T.

• Let (Φt)t∈{0,..,T} be recursively generated by (Ψt)t∈{0,..,T}. Then,

– If Φt(X) = X P−a.s. for t ∈ {0, ..., T} and X ∈ X∩L0(Ω,Ft, P), then (Φt)t∈{0,..,T} is recursive.

– If Ψt(X) = X P−a.s. for t ∈ {0, ..., T} and X ∈ X ∩ L0(Ω,Ft, P), then (Φt)t∈{0,..,T} is
recursive.

– If for any X ∈ X and A ∈ Ft it holds Ψt(1AX) = 1AΨt(X), then Φ is regular.

Example 2.2 The functional Φ given by the conditional expectations Φt := E[· | Ft], defined on X :=
L1(Ω,F , P), is a basic example for a DMU functional. It satisfies all the conditions (C1)-(C7).
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It is natural to generalize the usual martingale concept to the notion of ”Φ−martingale” for a given DMU
functional Φ as defined below. The notion of Φ−martingales will be used for different representations of
optimal stopping problems in Sections 5,6.

Definition 2.3 M := (Mt)t∈{0,...,T} ∈ H is said to be a Φ−martingale if Φt(Mt+1) = Mt P−a.s. for
every t ∈ {0, ..., T − 1}. Note that for recursive Φ, M ∈ H is a Φ−martingale if and only if Φt(Ms) =
Mt P−a.s. for every s, t ∈ {0, ..., T − 1} with s > t.

Let us discuss some further examples of DMU functionals. First of all we want to consider the relationship
with the so called dynamic risk measures.

Remark 2.4 DMU functionals may be viewed as generalizations of dynamic risk measures. Recall, a
family (ρt)t∈{0,...,T} is a dynamic risk measure if and only if (−ρt)t∈{0,...,T} is a conditionally translation
invariant monetary utility functional. The property of translation invariance suggests to restrict consider-
ations to normalized functionals because for a translation invariant Φ we have Φt(X −Φt(X)) = 0. In the
normalized case it then holds Φt(Y ) = Y P−a.s. for every t ∈ {0, ..., T} and any Y ∈ X ∩ L0(Ω,Ft, P),
and in view of Remark 2.1 Φ is recursively generated if and only if it is recursive.
We shall call a normalized conditional translation invariant Φ to be convex/concave if the mappings
Φt (t ∈ {0, ..., T}) are simultaneously convex/concave. If Φ is convex/concave, then

Φt : X → X ∩ L0(Ω,Ft, P), X 7→ −Φt(−X)

defines a concave/convex normalized conditional translation invariant DMU functional called the conju-
gate of Φ. The conditions of recursiveness and regularity are satisfied by Φ if and only its conjugate Φ
fulfills them. Conditional translation invariance of convex/concave Φ implies the regularity condition for
the restriction of Φ to X∩L∞(Ω,F , P) (cf. [25], where this restriction is essential for the proof). Moreover,
regularity is even valid on the entire space X if lim

n→∞
Φt ((X − n)+) = 0 P−a.s. for every t ∈ {0, ..., T}

and any nonnegative X ∈ X. Indeed, one may conclude from Lemma 6.5 along with Proposition 6.6 in
[27] that

Φt(X) = ess inf
m∈N

ess sup
n∈N

Φt(X+ ∧ n−X− ∧m)

holds for t ∈ {0, ..., T} and X ∈ X.
In the context of dynamic risk measures the property of recursiveness plays an important role. On the
one hand it is intimately linked with the property of time consistency which has a specific meaning in
expressing dynamic preferences of investors. For a thorough study the reader may consult e.g. [16] or
[3]. On the other hand optimal stopping with dynamic risk measures may be related to specific financial
applications.

In the following we shall give some examples of recursive regular DMU functionals. Let us start with
DMU functionals related to time consistent coherent dynamic risk measures.

Example 2.5 (DMU functionals related to time consistent coherent dynamic risk measures)
A large class of convex, regular, and recursive conditional translation invariant DMU functionals is pro-
vided by

Φt(X) := ess sup
Q∈Q

EQ[X|Ft],

where Q denotes a set of probability measure which are equivalent with P, and Q should be stable in the
sense of [17]. In order to keep the presentation compact we here assume for simplicity that such DMU
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functional Φ is defined on X := L∞(Ω,F , P) (cf. Theorem 6.53 in [17]). Extensions to functionals defined
on suitable sets of unbounded random variables may be found in [32] or [17], and a combination of both
results might yield further refinements.
Notice that in addition Φ fulfills conditional positive homogeneity, which means that ρ(X) := Φt(−X)
defines a so called coherent dynamic risk measure (ρt)t∈{0,...,T}, which is time consistent.

We may extend the class of time consistent coherent dynamic risk measures to convex ones.

Example 2.6 (DMU functionals related to time consistent convex dynamic risk measures)
Let Q be a set of probability measures which are equivalent with P, and let (αt)t∈{0,...,T} be a family
of mappings αt from Q into the space of Ft− measurable random variables with values in R ∪ {∞}
fulfilling ess inf

Q∈Q
αt(Q) = 0 P−a.s.. Then we may define on X := L∞(Ω,F , P) a DMU functional Φ via the

generators (Ψt)t∈{0,...,T} of the following form

Ψt(X) := ess sup
Q∈Q

(EQ[X|Ft]− αt(Q)) . (2)

The obtaining DMU functional is normalized, convex and conditionally translation invariant, therefore
regular (see Remark 2.4) as well as recursive (cf. Remark 2.1). Moreover, it defines a time consistent
convex dynamic risk measure (ρt)t∈{0,...,T} by ρt(X) := Φt(−X). Notice furthermore that by a standard
argument (see the proof of Theorem 1 in [13]) every generator Ψt of the form (2) satisfies Ψt(Xn) ↗ Ψt(X)
whenever Xn ↗ X P−a.s.. From this we may conclude by routine backward induction that every Φt

fulfills Φt(Xn) ↗ Φt(X) for Xn ↗ X P−a.s., and then in view of Theorem 2.3 from [16] we have the
following representation of Φ

Φt(X) = ess sup
Q∈Qt

(EQ[X|Ft]− αmin
t (Q)) .

Here Qt denotes the set of all probability measures on F which are absolutely continuous w.r.t. P and
coincide with P on Ft, and αmin

t is a certain mapping from Qt into the space of Ft− measurable random
variables with values in R ∪ {∞}, which may generally differ from the initial αt in the representation
of the generator (2). In particular the DMU functional Φ does not have the same representation as its
generators in general.

A prominent special case is obtained by using conditional relative entropies as a choice for the mappings
αt, i.e. Q consists of all probability measures Q with some strictly positive P−Radon Nikodym derivative
d Q
d P satisfying EP

[
d Q
d P ln

(
d Q
d P

)]
< ∞, and

αt(Q) :=

{
1
γ EP

[
d Q
d P ln

(
d Q
d P

) ∣∣Ft

]
: Q |Ft = P |Ft

∞ : otherwise
for some γ > 0.

This leads to the so called entropic DMU functional Φ with

Φt(X) :=
1
γ

ln
(

E[ exp(γX) | Ft ]
)

(see [13] along with Th. 4.5 in [16]). The entropic DMU functional is not conditionally positive homoge-
neous like the ones in Example 2.5.
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The next large class of DMU functionals concerns the so called g-expectations. They are prominent
examples of nonlinear functionals satisfying martingale type properties like recursiveness but need not to
be conditionally translation invariant as the examples before.

Example 2.7 Let (Gs)s≥0 be the augmented filtration on Ω associated with the filtration generated
by a standard d−dimensional Brownian motion (Bs)s≥0 with B0 := 0, and let for S > 0 the function
g : Ω× [0, S]×R×Rd → R satisfy some certain technical conditions such that it can be used as driver of
a backward stochastic differential equation (abbreviated: BSDE)

Ys = X +

S∫
s

g(·, r, Yr, Zr) dr −
S∫

s

Zr dBr for s ∈ [0, S],

where X ∈ L2(Ω,GS , P) (cf. [29]). Moreover, there always exists a unique couple
(
Y X

s

)
s∈[0,S]

and(
ZX

s

)
s∈[0,S]

of adapted respectively 1− and d−dimensional processes with square integrable paths solving
the BSDE ( [29] again). Now it is natural to define the family (Eg[·|Gs])s∈[0,S] via

Eg[· | Gs] : L2(Ω,GS , P) → L2(Ω,Gs, P), X 7→ Y X
s ,

known as (a family of) conditional g-expectations, where Eg[· | G0] is just called g-expectation.
For g ≡ 0 we retrieve the usual (conditional) expectation of a square integrable random variable. For
applications of conditional g-expectations in finance the reader is referred to [14] and [30].
Let us now pick some observation times 0 =: s0 < s1 < ... < sT := S, and define

(
Ω, (Ft)t∈{0,...,T},F , P

)
and Φ := (Φt)t∈{0,...,T} by Ft := Gst ,F := FT , and Φt := Eg[· | Gst ]. Drawing on basic properties of
conditional g-expectation as derived by Peng in [29], Φ is always a regular recursive DMU functional
fulfilling Φt(X) = X P−a.s. for t ∈ {0, ..., T} and Ft−measurable X.
Furthermore Φ is conditional translation invariant if and only if g(ω, s, ·, z) is constant for every ω ∈
Ω, s ∈ [0, S] and z ∈ Rd (for the if part see [29], for the only if part cf. [22]). In this case Φ is even a
convex normalized conditionally translation invariant DMU functional if and only if in addition

g(·, ·, ·, λz1 + (1− λ)z2) ≤ λg(·, ·, ·, z1) + (1− λ)g(·, ·, ·, z2) P⊗dt− a.s.

for z1, z2 ∈ Rd and λ ∈ [0, 1] (cf. [22]). Note that ρt(X) := Φt(−X) defines a convex dynamic risk
measure (ρt)t∈{0,...,T}. The relationship between g−expectations and convex dynamic risk measures has
been observed in [36] too.

We shall finish the section with some simple nonstandard examples.

Examples 2.8 Let X = L∞(Ω,F , P), and let Q1, ...,QK denote probability measures which are equivalent
with P .

1. For strictly increasing U1, ..., UK : R → R with U1(0) = ... = UK(0) = 0 and positive α1, ..., αK , let
Φ be recursively generated with generators (Ψt)t∈{0,...,T} defined by

Ψt(X) :=
K∑

k=1

αkU−1
k

(
EQk

[Uk(X) | Ft]
)

for t ∈ {0, ..., T} and X ∈ L∞(Ω,Ft+1, P).
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Obviously the functional Φ is regular. Moreover, if
K∑

k=1

αk = 1, it satisfies Φt(X) = X P−a.s. for

X ∈ L∞(Ω,Ft, P), t ∈ {0, ..., T}, hence Φ is recursive. In the case of K = α1 = 1, Φt is defined in
literally the same way as its generator Ψt leading to a so called conditional certainty equivalent
(cf. [18]) which may be viewed as a dynamic version of a premium principle for insurance contracts
known as mean value premium principle (cf. e.g. [24]). We note that Φ is not conditionally
translation invariant in general.

2. For nondecreasing U1, ..., UK : R → R with U1(0) = ... = UK(0) = 0 and positive α1, ..., αK let Φ be
recursively generated with generators (Ψt)t∈{0,...,T} defined by

Ψt(X) :=
K∑

k=1

αk EQk
[Uk(X) | Ft] for t ∈ {0, ..., T} and X ∈ L∞(Ω,Ft+1, P).

In general, this Φ will be neither recursive nor conditionally translation invariant, but still regular.

3 The optimal stopping problem

We will study the following stopping problem

Y ∗
t := ess sup

τ∈Tt

Φt(Zτ ), t ∈ {0, ..., T}, (3)

for Z ∈ H. We refer to the process Y ∗ as the (Φ−)Snell envelope of Z. Below we consider two important
aspects. Firstly, we investigate the existence of optimal stopping times and secondly, we try to find
Bellman principles. The crucial step to guarantee optimal stopping times is provided by the following
Lemma.

Lemma 3.1 Let Z := (Zt)t∈{0,...,T} ∈ H, let for some fixed t ∈ {0, ..., T − 1} some τ∗t+1 ∈ Tt+1 exist

such that Φt+1(Zτ∗t+1
) = ess sup

τ∈Tt+1

Φt+1(Zτ ). Defining the event Bt :=
[
Φt(Zt)− Φt(Zτ∗t+1

) ≥ 0
]

and τ∗t :=

t1Bt
+ τ∗t+11Ω\Bt

, we obtain Bt ∈ Ft, τ∗t ∈ Tt, and under the conditions of time consistency and regularity

Φt(Zτ∗t
) = ess sup

τ∈Tt

Φt(Zτ ) = Φt(Zt) ∨ Φt(Zτ∗t+1
).

Proof:
Bt ∈ Ft, τ∗t ∈ Tt follows from Ft−measurability of the outcomes of Φt. Furthermore we may observe
Zτ∗t

= 1Bt
Zt + 1Ω\Bt

Zτ∗i+1
. Then the application of (C2) yields

Φt(Zτ∗t
) = 1BtΦt(Zτ∗t

) + 1Ω\Bt
Φt(Zτ∗t

)
(C2)
= Φ(1BtZt) + Φ(1Ω\Bt

Zτ∗t+1
)

(C2)
= 1BtΦt(Zt) + 1Ω\Bt

Φt(Zτ∗t+1
)

= Φt(Zt) ∨ Φt(Zτ∗t+1
).

Next let us define the mapping σ : Tt → Tt+1 by σ(τ) := (t + 1)1[τ=t] + τ1[τ>t]. Then we obtain for τ ∈ Tt

Φt(Zτ ) = Φt(1[τ=t]Zt + 1[τ>t]Zσ(τ))
(C2)
= 1[τ=t]Φt(Zt) + 1[τ>t]Φt(Zσ(τ)) ≤ Φt(Zt) ∨ Φt(Zσ(τ)).
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By assumption Φt+1(Zσ(τ)) ≤ Φt+1(Zτ∗t+1
) P−a.s. so that condition (C1) implies

Φt(Zτ ) ≤ Φt(Zt) ∨ Φt(Zσ(τ))
P
≤ Φt(Zt) ∨ Φt(Zτ∗t+1

) = Φt(Zτ∗t
),

which completes the proof.

Since τ :≡ T is always the optimal stopping time in FT , we may apply sequentially Lemma 3.1 to obtain
the following result concerning the existence of optimal stopping times.

Theorem 3.2 Let Z := (Zt)t∈{0,...,T} ∈ H. Then under conditions of time consistency and regularity
there exists for any t ∈ {0, ..., T} some τ∗t ∈ Tt such that

Φt(Zτ∗t
) = ess sup

τ∈Tt

Φt(Zτ ).

The sequence (τ∗t )t∈{0,...,T} of optimal stopping times may be chosen such that τ∗T = T, and

1[τ∗t >t]τ
∗
t = 1[τ∗t >t]τ

∗
t+1 for any t ∈ {0, ..., T − 1}.

From now on we consider exclusively recursively generated DMU functionals. The following Theorem
gathers the main results concerning optimal stopping w.r.t. such functionals for our purposes later on.

Theorem 3.3 Let (Φt)t∈{0,...,T} be regular and recursively generated with generators satisfying the prop-
erty Ψt(X) ≤ Ψt(Y ) P−a.s. for t ∈ {0, ..., T − 1} and X, Y ∈ X ∩ L0(Ω,Ft+1, P) with X ≤ Y P−a.s.
Then Theorem 3.2 may be restated, and we have the Bellman principle which means that

ess sup
τ∈Tt

Φt(Zτ ) = Φt(Zt) ∨Ψt

(
ess sup
σ∈Tt+1

Φt+1(Zσ)

)

is valid for any Z ∈ H and every t ∈ {0, ..., T − 1}. If moreover Φ is recursive, then it holds

ess sup
τ∈Tt

Φt(Zτ ) = Φt(Zt) ∨ Φt

(
ess sup
σ∈Tt+1

Φt+1(Zσ)

)

for arbitrary Z ∈ H and t ∈ {0, ..., T − 1}.

Proof:
The assumptions on the generators (Ψt)t∈{0,...,T} imply condition (C1) so that we may apply Theorem 3.2
immediately, whereas we may conclude directly from Lemma 3.1 that the Bellman principle holds. The
last statement of Theorem 3.3 is an easy consequence of the observation that in case of recursive Φ the
generators are just the restrictions Φt|X ∩ L0(Ω,Ft+1, P) for t ∈ {0, ..., T − 1}.

Example 3.4 Let us consider the optimal stopping problem for the regular and recursively generated
DMU functionals from Remark 2.4. There so exist a family (τ∗t )t∈{0,...,T} of optimal stopping times as
in Theorem 3.2, and the Bellman principle is fulfilled due to Theorem 3.3. In particular this applies to
functionals from Example 2.6, as well as to the functional

Φt : X → X ∩ L0(Ω,Ft, P), X 7→ ess sup
Q∈Q

EQ[X | Ft],
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and its conjugate Φ
Φt(X) = ess inf

Q∈Q
EQ[X | Ft],

where Q is a stable set of probability measures which are equivalent w.r.t. P, and X := L∞(Ω,F , P) (cf.
Example 2.5).
As a special case let Q denote the set of equivalent martingale measures of an arbitrage free incomplete
financial market with reference measure P . It is known that Q is stable (cf. [17], Theorem 6.45) so
that Φ and Φ are recursive. Both DMU functionals play a key role for the issue of pricing and hedging
American contingent claims in the following sense: For any nonnegative Z ∈ H the stopping problems
(3) according to Φ and Φ correspond to the upper and lower Snell envelopes of Z w.r.t. Q respectively.
Moreover, the initial value of the lower and upper snell envelope are just the lower and upper hedging
price, respectively. Further, the optimal stopping time according to the lower hedging prices corresponds
to an optimal exercise strategy for the buyer of the option. For details see for example [17], Theorems
7.13, 7.14.

Example 3.5 Let Φ be a finite subfamily of conditional g-expectations. Then in view of Example 2.7
combined with Theorem 3.3 we may find for any Z ∈ H some family (τ∗t )t∈{0,...,T} of stopping times
τ∗t ∈ Tt satisfying τ∗T = T as well as 1[τ∗t >t]τ

∗
t = 1[τ∗t >t]τ

∗
t+1, and

Φt(Zτ∗t
) = ess sup

τ∈Tt

Φt(Zτ ) = Φt(Zt) ∨ Φt

(
ess sup
τ∈Tt+1

Φt+1(Zτ )

)
= Φt(Zt) ∨ Φt(Zτ∗t+1

)

for t ∈ {0, ..., T − 1}.

Example 3.6 The DMU functionals introduced in Examples 2.8 admit families of optimal stopping times
as in Theorem 3.2 and satisfy the Bellman principle due to Theorem 3.3.

Remark 3.7 Stopping problems for certain specific DMU functionals has been already studied in the
literature. Let us give a short review and comment.

Existence of optimal stopping families and the verification of the Bellman principle has been obtained for
recursive DMU functionals Φ of the form Φt(X) := ess sup

Q∈Q
EQ[X | Ft] or Φt(X) := ess inf

Q∈Q
EQ[X | Ft],

where Q is some stable set of probability measures which are equivalent with P (e.g. [17], [32]). In view
of Example 3.4 these results may be extended to a considerably larger class of conditionally translation
invariant DMU functionals.

Recently, Bayraktar and Shao ([6]) solved the optimal stopping problem for recursive conditionally trans-
lation invariant DMU functionals within a time continuous setting w.r.t. a Brownian filtration. In [7] the
studies have been detailed for DMU functionals which are additionally concave.

Theorem 3.3 applies to DMU functionals which are not necessarily conditionally translation invariant,
or even not recursive, see Example 3.5 and Example 3.6. We may thus avoid conditions like conditional
translation invariance and recursiveness, which are questioned in the literature anyway (see e.g. [15], and
e.g. [16], [35],[38], [39], respectively).
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4 Iterative solution of optimal stopping problems

In this section we develop an iterative procedure for solving the optimal stopping problem. In fact we shall
generalize the policy iteration method in [26] for classical optimal stopping with conditional expectations
to optimal stopping of regular recursively generated DMU functionals. As such we obtain a procedure for
approximating the optimal stopping time, hence the optimal value from below.

Throughout we fix a recursively generated regular DMU functional (Φt)t∈{0,...,T} with generators
(Ψt)t∈{0,...,T} satisfying the conditions in Theorem 3.3. So, for any Z ∈ H there exists a family (τ∗t )t∈{0,...,T}
of optimal stopping times τ∗t ∈ Tt satisfying

τ∗T = T, and 1[τ∗t >t]τ
∗
t = 1[τ∗t >t]τ

∗
t+1 for any t ∈ {0, ..., T − 1}, (4)

and
Y ∗

t = ess sup
τ∈Tt

Φt(Zτ ) = Φt(Zτ∗t
) for every t ∈ {0, ..., T}. (5)

Let us define (τt)t∈{0,...,T} to be a time consistent stopping family if

τt ∈ Tt, τT = T, and 1[τt>t]τt = 1[τt>t]τt+1 for t ∈ {0, ..., T − 1}.

The policy iteration step starts with any time consistent stopping family (τt)t∈{0,...,T} and corresponding
process (Yt)t∈{0,...,T} with Yt := Φt(Zτt), being an approximation of (Y ∗

t )t∈{0,...,T} . In order to improve

this approximation we consider the process
(
Ỹt

)
t∈{0,...,T}

defined by Ỹt := maxt≤s≤T Φt(Zτs
), and the

new stopping family

τ̂T := T, τ̂t := inf{s ∈ {t, ..., T} | Φs(Zs) ≥ max
s+1≤u≤T

Φs(Zτu)}, 0 ≤ t ≤ T − 1. (6)

Obviously, the stopping family (τ̂t)t∈{0,...,T} is also time consistent . By the next theorem, a generalization

of Theorem 3.1 in [26] in fact, the process
(
Ŷt

)
t∈{0,...,T}

, defined by Ŷt := Φt(Zτ̂t
), improves the initial

approximation (Yt)t∈{0,...,T} of (5).

Theorem 4.1 We have the inequalities

Yt ≤ Ỹt ≤ Ŷt ≤ Y ∗
t , t ∈ {0, ..., T}.

The proof of Theorem 4.1 is similar to the proof in [26]. However, it has to be focussed that it is sufficient
that the DMU functional under consideration is regular and recursively generated. For the convenience
of the reader the proof is therefore provided in Appendix A (while also comprising the structure of
argumentation in [26] slightly).
In view of Theorem 4.1 the idea is to construct recursively a sequence of pairs(

(τ (m)
t )t∈{0,...,T}, (Y

(m)
t )t∈{0,...,T}

)
m∈N0

where (τ (m)
t )t∈{0,...,T} is a time consistent stopping family for any m ∈ N0 such that Y

(m)
t = Φt(Zτ

(m)
t

),

and τ
(m+1)
t = inf{s ∈ {t, ..., T} | Φs(Zs) ≥ max

s+1≤u≤T
Φs(Zτ

(m)
u

)} for t ∈ {0, ..., T − 1}.
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Next we start with some time consistent stopping family (τ (0)
t )t∈{0,...,T}, for example, a canonical choice

is τ
(0)
t := t. Then due to Theorem 4.1, we have

Y
(0)
t ≤ Y

(m)
t ≤ Ỹ

(m+1)
t ≤ Y

(m+1)
t ≤ Y ∗

t for m ∈ N0, t ∈ {0, ..., T}, (7)

where Ỹ
(m+1)
t := max

t≤s≤T
Φt(Zτ

(m)
s

).

The iteration procedure may be stopped after at most T iterations, yielding an optimal stopping family.

Proposition 4.2 For t ∈ {0, ..., T} we have

Y
(m)
t = Y ∗

t if m ≥ T − t.

Hence τ
(m)
t is an optimal stopping time for the corresponding stopping problem at time t, if m ≥ T − t,

and in particular (τ (m)
t )t∈{0,...,T} is an optimal stopping family for m ≥ T.

Proof:
The proof may be done by adapting the proof of Proposition 4.4 in [26] in a similar way as is done for
proving Theorem 4.1 and therefore omitted. Indeed, a closer inspection of the proof of Proposition 4.4 (in
[26]) shows that only regularity, the fact that the DMU functional is recursively generated by a monotonic
system (Ψt), and the Bellman principle (see Theorem 3.3) is essential.

Examples 4.3

1. Referring to Example 3.4, Proposition 4.2 guarantees that the proposed iteration method provides
a scheme to calculate super hedging prices and optimal exercises of discounted American options.

2. In view of Example 2.7 and Examples 2.8 the associated stopping problems may be solved iteratively
by the introduced method. In particular we have a numerical scheme for optimal stopping with g-
expectations.

5 Additive dual upper bounds

In this section a method for approximating the optimal value of the stopping problem from above will
be developed for DMU functionals Φ which are regular, conditional translation invariant, and recur-
sive. For such a Φ we propose an additive dual representation for the stopping problem (3), in terms of
Φ−martingales introduced in Definition 2.3. As such this generalization may be seen as a generalization
of the representation of [33], and [20] for the standard stopping problem. We first extend the classical
additive Doob decomposition theorem.

Lemma 5.1 Let Φ be a conditional translation invariant DMU functional. Then for any stochastic process
Z := (Zt)t∈{0,...,T} ∈ H there exists a unique pair (M,A) ∈ H×H of a Φ−martingale M and a predictable
process A, such that M0 = A0 = 0, and

Zt = Z0 + Mt + At for t ∈ {0, ..., T}, P−a.s. (8)

11



Proof:
Define A recursively by A0 := 0, and At+1 := At + Φt(Zt+1) − Zt for t ∈ {0, ..., T − 1}. Then of course
A ∈ H and A is predictable. Next define M ∈ H via Mt := Zt − Z0 − At for t ∈ {0, ..., T}. Obviously
M0 = 0, and by conditional translation invariance (property (C3)),

Φt(Mt+1)
(C3)
= Φt(Zt+1)− Z0 −At+1 = Φt(Zt+1)− Z0 − (At + Φt(Zt+1)− Zt) = Zt − Z0 −At = Mt.

So M is a Φ−martingale and (8) holds. Now let (M ′, A′) ∈ H × H be another pair as stated. Then for
t ∈ {0, ..., T − 1} we may conclude by conditional translation invariance,

0 = Φt(M ′
t+1 −M ′

t) = Φt(Zt+1)− Zt + A′t −A′t+1,

in particular A′t+1 = A′t + Φt(Zt+1)− Zt. Hence by induction A′ = A, and so M ′ = M.

Remark 5.2 The additive Doob decomposition has already been shown for the functional Φ from Ex-
ample 3.4 (cf. [32]).

The next lemma may be regarded as a generalization of Doob’s optional sampling theorem. It is proved
in Appendix A.

Lemma 5.3 Let Φ be a regular, conditional translation invariant, and recursive DMU functional, and let
M be any Φ−martingale. Then for every Z := (Zt)t∈{0,...,T} ∈ H, each t ∈ {0, ..., T}, and each stopping
time τ ∈ Tt, we have

Φt(Zτ ) = Φt(Zτ + MT −Mτ ).

Remark 5.4 Under the assumptions of Lemma 5.3 the statement

Φt(Zτ ) = Φt(Zτ + Mτ )−Mt,

that one might expect at a first glance, does not hold.

The Doob type Lemmas 5.1,5.3, and the Bellman principle Theorem 3.3, provide the ingredients to
establish the following additive dual representation. recursive. In the case of K = α1 = 1, Φt is defined
in literally the same way as its generator Ψt leading to

Theorem 5.5 Let Φ be a regular, conditional translation invariant, and recursive DMU functional, and
MΦ

0 be the set of all Φ−martingales M with M0 = 0. For Z := (Zt)t∈{0,...,T} ∈ H let M∗ ∈ MΦ
0 be the

Φ−martingale of the decomposition of Y ∗ in (3) according to Lemma 5.1. Then

Y ∗
t = ess sup

τ∈Tt

Φt(Zτ ) = ess inf
M∈MΦ

0

Φt

(
max

t≤j≤T
(Zj −Mj + MT )

)
= Φt

(
max

t≤j≤T
(Zj −M∗

j + M∗
T )
)

for t ∈ {0, ..., T}.
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Proof:
Let A∗ := (A∗t )t∈{0,...,T} denote the predictable part of the decomposition of Y ∗ according to Lemma 5.1.
Since M∗ is a Φ−martingale, we have for t ∈ {0, ..., T}

0 = Φt(M∗
t+1)−M∗

t

(C3)
= Φt(M∗

t+1 −M∗
t )

(C3)
= Φt(Y ∗

t+1)− Y ∗
t −

(
A∗t+1 −A∗t

)
.

This implies A∗t+1 − A∗t = Φt(Y ∗
t+1)− Y ∗

t ≤ 0 due to the Bellman principle. Hence A∗ has nonincreasing
paths. Furthermore, by the Bellman principle Φt(Zt) = Zt ≤ Y ∗

t holds for every t ∈ {0, ..., T}. We thus
have

Zt −M∗
t + M∗

T = Zt + Y ∗
T − Y ∗

t + A∗t −A∗T ≤ Y ∗
T + A∗t −A∗T for t ∈ {0, ....T}.

Since A∗ is nonincreasing, Φ is conditional translation invariant and recursive, and M∗ is a Φ−martingale,
it follows that

Φt

(
max

t≤j≤T
(Zj −M∗

j + M∗
T )
)

(C3)

≤ Φt (Y ∗
T −A∗T ) + A∗t

(C3)
= Y ∗

0 + Φt(M∗
T ) + A∗t = Y ∗

0 + M∗
t + A∗t = Y ∗

t (9)

for t ∈ {0, ..., T}. Finally, using Lemma 5.3 and (9) we have for any t ∈ {0, ..., T} and M ∈MΦ
0 ,

Y ∗
t = ess sup

τ∈Tt

Φt(Zτ + MT −Mτ ) ≤ ess inf
M∈MΦ

0

Φt

(
max

t≤j≤T
(Zj −Mj + MT )

)
≤ Φt

(
max

t≤j≤T
(Zj −M∗

j + M∗
T )
)
≤ Y ∗

t .

Remark 5.6 Let us emphasize that the structure of the generalized dual representation in Theorem 5.5
cannot be obtained by simply replacing conditional expectations with DMU functionals in the standard
dual representation of [33], and [20]. This remark applies to the generalized sampling Lemma 5.1 as well.

Example 5.7 Let Q denote the set of equivalent martingale measures w.r.t. some arbitrage-free financial
market, and let X := L∞(Ω,F , P). Fix any nonnegative Z := (Zt)t∈{0,...,T} ∈ H. It may be viewed
as a discounted American Option. Then the DMU functionals Φ and Φ from Example 3.4 meet the
requirements of Theorem 5.5, and thus the superhedging price and the lowest arbitrage-free price of Z
may be represented by

inf
X∈X0

Φ0

[
max

t∈{0,...,T}
(Zt − Φt(X) + X)

]
and inf

X∈X0
Φ0

[
max

t∈{0,...,T}
(Zt − Φt(X) + X)

]
,

respectively. Here X0 := {X ∈ X | sup
Q∈Q

EQ[X] = 0}.

Examples 5.8 Theorem 5.5 may be applied immediately to the following regular, conditional translation
invariant, and recursive functionals (see also Remark 2.1).

1. Any family of g-expectations as in Example 2.7 with driver g : Ω × [0, S] × R × Rd → R such that
g(ω, s, ·, z) is constant for (ω, s, z) ∈ Ω× [0, S]× Rd.

2. The DMU functional Φ recursively defined as in Example 2.6.
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6 Multiplicative dual upper bounds

The additive dual representation for constructing upper bounds for the standard stopping problem has a
multiplicative version which is due to [23]. We will develop in this section a multiplicative dual represen-
tation for the stopping problem (3) when the DMU functional Φ is recursive and positively homogeneous.
Note that from any positively homogeneous recursively generated DMU functional we may obtain a re-
cursive one, by multiplication with a constant.

To our aim we need an extension of the multiplicative Doob decomposition theorem. As we do not want
to burden the presentation with too much technicalities, we restrict ourselves in this section to the case
where X = L∞(Ω,F , P).

Lemma 6.1 Let Φ := (Φt)t∈{0,...,T} be a positively homogeneous recursive DMU functional. Let δ > 0,

and Z := (Zt)t∈{0,...,T} ∈ H with Zt ≥ δ P−a.s. for any t ∈ {0, ..., T}. Then there exists a unique pair
(N, U) ∈ H ×H of some Φ−martingale N and a predictable process U such that N0 = U0 = 1 and

Zt = Z0NtUt P a.s.

for t ∈ {0, ..., T}.

Proof:
Define processes U and N recursively by U0 := N0 := 1 and

Ut+1 := Ut
Φt(Zt+1)

Zt
, Nt+1 := Nt

Zt+1

Φt(Zt+1)
for t ∈ {0, ..., T − 1}.

Observe that U and N are well defined since by assumption Φt(Zt) ≥ Φt(δ) = δ due to monotonicity of
Φ. Obviously, U is predictable, N is a Φ−martingale, and it follows easily by induction that Zt = Z0NtUt

for all t ∈ {0, ..., T}.
Now let (N ′, U ′) ∈ H × H be another pair as stated. We will show that N ′

t = Nt, U
′
t = Ut P−a.s. for

t ∈ {0, ..., T} by induction. The case t = 0 is trivial. So let t ∈ {0, ..., T − 1} such that N ′
t = Nt, U

′
t =

Ut P−a.s.. Firstly, Φt(Nt+1) = Nt = N ′
t = Φt(N ′

t+1) P−a.s. since N, N ′ are Φ−martingales. Therefore
by conditional positive homogeneity (C6)

Z0Ut+1Nt = Z0Ut+1Φt(Nt+1)
(C6)
= Φt(Zt+1)

(C6)
= Z0U

′
t+1Φt(N ′

t+1) = Z0U
′
t+1Nt.

Thus U ′
t+1 = Ut+1 P−a.s. due to Z0Nt > 0 P−a.s., and

Z0Ut+1Nt+1 = Zt+1 = Z0U
′
t+1N

′
t+1 = Z0Ut+1N

′
t+1 P−a.s..

Since Z0Ut+1 > 0 P−a.s. we have Nt+1 = N ′
t+1 P−a.s.

The next Lemma is a multiplicative version of Lemma 5.3. For a proof see Appendix A.

Lemma 6.2 Let Φ := (Φt)t∈{0,...,T} be a positively homogeneous recursive DMU functional, and let Z :=
(Zt)t∈{0,...,T} ∈ H with Zt ≥ 0 P−a.s. for any t ∈ {0, ..., T}. If N := (Nt)t∈{0,...,T} denotes any
Φ−martingale satisfying Nt > 0 P−a.s., then

Φt(Zτ ) = Φt

(
ZτNT

Nτ

)
for t ∈ {0, ..., T} and τ ∈ Tt.
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Obviously, under the assumptions of this section Φ satisfies the Bellman principle (see Theorem 3.3),
which allows us to establish a multiplicative dual representation for the stopping problem (3).

Theorem 6.3 Let the DMU functional Φ be as in Lemma 6.1, let MΦ
+1 be the set of all Φ−martingales

N with N > 0 and N0 = 1, and let Z ∈ H with Z ≥ 0. We then may state for every t ∈ {0, ..., T} the
following:

(i)

Y ∗
t = ess sup

τ∈Tt

Φt(Zτ ) ≤ inf
N∈MΦ

+1

Φt

(
max

t≤j≤T

ZjNT

Nj

)
.

(ii) If Φ satisfies in addition condition (C7), we have

Y ∗
t = ess inf

N∈MΦ
+1

Φt

(
max

t≤j≤T

ZjNT

Nj

)
.

(iii) If Z is as in Lemma 6.1 we have

Y ∗
t = ess inf

N∈MΦ
+1

Φt

(
max

t≤j≤T

ZjNT

Nj

)
= Φt

(
max

t≤j≤T

ZjN
∗
T

N∗
j

)
,

where N∗ ∈MΦ
0 is the Φ−martingale in the multiplicative decomposition of Y ∗ in Lemma 6.1.

Proof:
Statement (i) is an immediate consequence of Lemma 6.2.
For the proof of statement (ii) let us consider an arbitrary ε > 0. The process Zε, defined by Zε

t := Zt ∨ ε
induces the process Y ε∗ via Y ε∗

t := ess sup
τ∈Tt

Φt(Zε
τ ) which fulfills the assumptions of Lemma 6.1. Therefore

we may find a pair (Uε, Nε) consisting of a predictable process Uε and a Φ−martingale Nε ∈ MΦ
+1

satisfying
Y ε∗

t = Y ε∗
0 Nε

t Uε
t P a.s. for t ∈ {0, ..., T}.

Due to conditional positive homogeneity of Φ, the predictability of Uε, and since Nε is a Φ−martingale
we may conclude

1 = Φt

(
Nε

t+1

Nε
t

)
= Φt

(
Y ε∗

t+1U
ε
t

Y ε∗
t Uε

t+1

)
=

Uε
t

Uε
t+1

Φt(Y ε∗
t+1)

Y ε∗
t

for t ∈ {0, ..., T − 1}.

In view of the Bellman principle this implies

Uε
t+1

Uε
t

=
Φt(Y ε∗

t+1)
Y ε∗

t

≤ 1 for t ∈ {0, ..., T − 1}.

Hence Uε has nonincreasing paths. Furthermore Zε
t = Φt(Zε

t ) and so in particular, Zε
t ≤ Y ε∗

t due to the
Bellman principle. Combining, we obtain for t ∈ {0, ..., T},

Φt

(
max

t≤j≤T

Zε
j Nε

T

Nε
j

)
≤ Φt

(
max

t≤j≤T

Y ε∗
j Nε

T

Nε
j

)
= Φt

(
max

t≤j≤T

Y ε∗
T Uε

j

Uε
T

)
≤ Uε

t Φt

(
Y ε∗

T

Uε
T

)
= Uε

t Φt (Y ε∗
0 Nε

T ) = Uε
t Y ε∗

0 Φt (Nε
T ) = Y ε∗

t . (10)
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Now let a common function g satisfy (1) in condition (C7) for all Zε
j , j = 0, ..., T. By regularity and

condition (C7) it then holds

Y ε∗
t := ess sup

τ∈Tt

T∑
j=t

1[τ=j]Φt(Zε
τ ) = ess sup

τ∈Tt

T∑
j=t

1[τ=j]Φt(Zε
j )

≤ ess sup
τ∈Tt

T∑
j=t

1[τ=j] (Φt(Zj) + g(ε)) = Y ∗
t + g(ε).

Hence with (10) we obtain

Y ∗
t + g(ε) ≥ ess inf

N∈MΦ
+1

Φt

(
max

t≤j≤T

ZjNT

Nj

)
(i)

≥ Y ∗
t for every t ∈ {0, ..., T}.

The proof of (ii) is completed by sending ε → 0.
Now let Z and δ > 0 be as in Lemma 6.1 and take ε such that 0 < ε < δ. We so have Zε = Z and then
statement (iii) follows from statement (i) and using (10) in the proof of (ii) (which holds independently
of condition (C7)).

Examples 6.4 Theorem 6.3 may be applied in the following situations.

1. Let Q denote the set of equivalent martingale measures w.r.t. some arbitrage-free financial market,
and let Z := (Zt)t∈{0,...,T} be a nonnegative adapted process of P−essentially bounded random
variables. The process Z may be viewed as a discounted American Option with respect to the recur-
sive conditional positive homogeneous DMU functional Φt(·) := ess sup

Q∈Q
EQ[· | Ft] on L∞(Ω,F , P).

Furthermore, let us denote by X+1 the set of X ∈ L∞(Ω,FT , P) with X > 0 P−a.s. such that
sup
Q∈Q

EQ[X] = 1. Then the superhedging price and the lowest arbitrage-free price of Z may be

represented by

inf
X∈X+1

Φ0

(
max

t∈{0,...,T}

ZtX

Φt(X)

)
and inf

X∈X+1
Φ0

(
max

t∈{0,...,T}

ZtX

Φt(X)

)
,

respectively (see also Example 5.7).

2. Any family of g-expectations as in Example 2.7 with driver g : Ω × [0, S] × R × Rd → R such that
g(ω, s, ·, ·) is homogeneous of degree one for each (ω, s) ∈ Ω× [0, S] (cf. [22]).

7 Consumption based representation

We now propose a representation for the optimal stopping problem (3) which can be seen as a generalization
of the consumption upper bound approach in [4] and [5]. By this method one may infer from lower
approximations upper approximations, and vice versa. In this context, we assume that Φ is a regular
conditional translation invariant recursive DMU functional.

Using the Bellman principle we may proof the following theorem.
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Theorem 7.1 For any Z ∈ H we have

Y ∗
t := ess sup

τ∈Tt

Φt(Zτ ) = Φt

ZT +
T−1∑
j=t

(Zj − Φj(Y ∗
j+1))

+

 , t ∈ {0, ..., T},

with empty sums being defined zero.

Proof:
We shall proceed by backward induction over t. The case t = T is trivial. So let us assume for any

t ∈ {1, ..., T} that Y ∗
t = Φt

(
ZT +

T−1∑
j=t

(Zj − Φj(Y ∗
j+1))

+

)
is valid. Then due to Bellman principle Y ∗

t−1 =

(Zt−1 − Φt−1(Y ∗
t ))+ + Φt−1 (Y ∗

t ) , which implies by assumption and recursiveness property (C4)

Y ∗
t−1 = (Zt−1 − Φt−1(Y ∗

t ))+ + Φt−1

Φt

ZT +
T−1∑
j=t

(Zj − Φj(Y ∗
j+1))

+


= (Zt−1 − Φt−1(Y ∗

t ))+ + Φt−1

ZT +
T−1∑
j=t

(Zj − Φj(Y ∗
j+1))

+


Then the application of conditional translation invariance yields

Y ∗
t−1 = Φt−1

(Zt−1 − Φt−1(Y ∗
t ))+ + ZT +

T−1∑
j=t

(Zj − Φj(Y ∗
j+1))

+


= Φt−1

ZT +
T−1∑

j=t−1

(Zj − Φj(Y ∗
j+1))

+

 .

The interesting feature of the representation in Theorem 7.1 is that if we replace Y ∗ on the right-hand-side
by a lower (upper) approximation we obtain an upper (lower) bound for Y ∗ on the left-hand-side.

8 Numerical approaches for optimal stopping of some specific
DMU functionals

In this section we sketch how the different representations developed in Sections 4-7 may be utilized
for constructing (upper and/or lower) approximations of the of the optimal value of stopping problem
(3). In order to enable a feasible algorithm or simulation procedure for optimal stopping of a particular
DMU functional we naturally presume that we have a feasible algorithm or simulation procedure for the
functional itself at hand. In this respect we underline that numerical (simulation) methods for specific
DMU functionals is an interesting issue in it’s own right but considered to be beyond the scope of this
article. Another natural assumption is that we have some underlying process with some kind of Markovian
structure which can be simulated straightforwardly. More specifically, we assume that we are in the
following setting.
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Setting for solving general optimal stopping problems by simulation

i) The filtration (Ft)t∈{0,...,T} is generated by some underlying stochastic process S := (St)t∈{0,...,T}
in some multi-dimensional state space, e.g. Rd.

ii) The process Z := (Zt)t∈{0,...,T} under consideration satisfies Zt = h(t, St) for some known nonnega-
tive measurable function h. For ease of exposition, h is assumed to be bounded.

iii) The DMU functional Φ = (Φt)t∈{0,...,T} is regular, recursively generated by (Ψt)t∈{0,...,T} with
generators satisfying Ψt(X) = X if X ∈ Ft, for any t ∈ {0, ..., T}. Hence in particular Φ is recursive
with Φt(X) = X of X ∈ Ft for t ∈ {0, ..., T}.

iv) For any t ∈ {0, ..., T} we have Φt(X) being σ{St}−measurable if X is σ{St, ...ST }−measurable (We
might think of S being Markovian w.r.t. the functional Φ). This condition is e.g. guaranteed in the
case that for any u, t ∈ {0, ..., T} with u ≤ t we have Ψt(X) is σ{Su, ..., St}−measurable whenever
X is σ{Su, ..., St+1}−measurable.

v) For any t ∈ {0, ..., T}, we may compute Φt(X) ∈ σ{St} if X ∈ σ{St, ...ST } by some kind of simulation
method.

In the standard case, where Φ represents the ordinary conditional expectation and S is Markovian in
the ordinary sense, iii), iv), and v) are obviously fulfilled. A canonical way of evaluating conditional
expectations is (Monte Carlo) simulation from a particular state (t, St) (particularly in higher dimensions).
In general there are many interesting examples, for instance, within the class of g−expectations:

Example 8.1 Let Φ be a family of g−expectations as in example 2.7 with Brownian motion B = (Bs)s≥0

and driver g : Ω×[0, S]×R×Rn → R being of the form g(ω, s, y, z) := f(Ss, y, z). Here f : Rn×R×Rd → R
is any Lipschitz function with f(·, 0) ≡ 0, and (Ss)s≥0 is an n−dimensional diffusion process with dynamics
given by the SDE,

dSs = µ(Ss) dt + σ(Ss) dBs.

Under some further conditions of regularity for µ, σ and f, it may be verified that Φ satisfies assumption
iv) (cf. [21], Theorem 6.2). Furthermore simulation algorithms as required in assumption v) are already
available (see e.g. [19], [31]).
Moreover, if f does not depend on y, and is sublinear in z, then there is some set Q of probability measures
which are absolutely continuous w.r.t. P such that Φ admits the following robust representation

Φt(X) = ess sup
Q∈Q

EQ [X | σ{S1, ..., St}] ,

where the essential supremum is attained (see [9], proof of Theorem 3.1).

Below we will outline the implementation of the above simulation setting for different solution represen-
tations proposed in Sections 4-7.

Policy iteration

The policy iteration method in Section 4 may be readily applied if the time consistent stopping family
(τt) we start with is such that {τt = t} ∈ σ{St}. For example we just take the trivial family τt = t,
t ∈ {0, ..., T}. Then the iteration procedure will be analogue to the one spelled out in [26]. In short, given
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an input stopping family (τt), simulate a set of N (outer) trajectories S(n), n = 1, ..., N, from t = 0 to T.
Determine on each outer trajectory S(n), the improved stopping time τ̂0. For this, one needs to simulate for
each time s = 0, 1, .. a set of M (inner) trajectories (mS

(n)
u )u=s,...,T , m = 1, ...,M to check by simulation

whether the event {
Φs(Zs) ≥ max

s+1≤u≤T
Φs(Zτu

)
}

in (6) is true. If s(n) is the first time where (5) is valid, we put τ̂
(n)
0 = s(n) on trajectory n. Finally we

compute Φ0(Zbτ0) from the sample Z
(n)bτ0

, n = 1, ..., N.

Dual upper bounds

We consider the construction of an additive dual upper bound for a regular, recursive DMU functional,
which is translation invariant. Let us assume that we are given a proxy Yt = U(t, St) of the Snell envelope
Y ∗

t = U∗(t, St). Note that the Snell envelope is indeed of this form due to assumptions i), ii), and iv).
For instance, for the DMU functional in Example 3.4, a proxy may be constructed by approximating the
Snell envelope with respect to a more simple functional, replacing the representing set Q of probability
measures by a smaller subset or even a singleton. Let MY be the Doob Φ-martingale of Y and consider
the upper bound

Y up
0 = Φ0( max

0≤t≤T

(
Zt + MY

T −MY
t

)
)

= Φ0

(
max

0≤t≤T

(
h(t, St) +

T−1∑
s=t

[U(s + 1, Ss+1)− Φs (U(s + 1, Ss+1))]

))
.

Similar as in [1] we are going to construct an approximation of this upper bound by a nested simulation.
We simulate N (outer) trajectories S(n), n = 1, ..., N, from t = 0 to T, and for each outer trajectory n,

and time s, s < T, a set of M (inner) two step trajectories (mS
(n)
u )u=s,s+1, m = 1, ...,M. On a fixed

outer trajectory S(n) we then construct for each s an approximation of Φ(n)
s (U(s + 1, Ss+1)) by the inner

sample U(s + 1, 1S
(n)
s+1), ..., U(s + 1, MS

(n)
s+1), and next determine

ζ(n) := max
0≤t≤T

(
h(t, S(n)

t ) +
T−1∑
s=t

[
U(s + 1, S

(n)
s+1)− Φ(n)

s (U(s + 1, Ss+1))
])

.

We thus end up with the sample ζ(1), ..., ζ(N) of the random variable ζ := max
0≤t≤T

(
Zt + MY

T −MY
t

)
, from

which finally Y up
0 = Φ0(ζ) may be estimated.

Multiplicative and consumption upper bounds

From the simulation methods sketched above it will be clear in principle how to construct a multiplicative
upper bound for a positively homogeneous DMU functional, and how to construct an upper (lower) bound
due to the consumption representation in Theorem 7.1 for a translation invariant functional when a lower
(upper) bound of the Snell envelope is given.
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Concluding remark

In this article different representations for the optimal stopping problem with respect to general DMU
functionals are presented. It is shown that these representations allow for a numerical treatment of the
generalized stopping problem. A detailed analysis of the numerical algorithms sketched in Section8, which
will depend on particular properties of the functional under consideration, remains to be done in future
work.

A Appendix

Proof of Theorem 4.1:
The inequalities Yt ≤ Ỹt and Ŷt ≤ Y ∗

t are obvious for any t ∈ {0, ..., T}. So inequality Ỹt ≤ Ŷt is left to
show. We shall use backward use induction.
Due to the definition of Ỹ and Ŷ , we have ỸT = ŶT = ΦT (ZT ). Suppose that Ỹt ≤ Ŷt holds for any
t ∈ {1, ..., T}. We then have to show that Ỹt−1 ≤ Ŷt−1. For this we first show sequentially

(1) 1[τ̂t−1=t−1]Ŷt−1 = 1[τ̂t−1=t−1]Φt−1(Zt−1).

(2) 1[τ̂t−1>t−1]Ŷt−1 ≥ 1[τ̂t−1>t−1] max
t≤s≤T

Φt−1(Zτs
).

(3) Φt−1(Zτt−1) ≤ max
{

Φt−1(Zt−1), max
t≤s≤T

Φt−1(Zτs
)
}

.

Due to the definition of τ̂t−1 we have on the set {τ̂t−1 = t − 1}, Φt−1(Zt−1) ≥ max
t≤s≤T

Φt−1(Zτs
), and on

the set {τ̂t−1 > t− 1}, Φt−1(Zt−1) < max
t≤s≤T

Φt−1(Zτs
). Thus we may conclude immediately from (1)-(3)

Ŷt−1 ≥ max
{

Φt−1(Zt−1), max
t≤s≤T

Φt−1(Zτs
)
}
≥ max

{
Φt−1(Zτt−1), max

t≤s≤T
Φt−1(Zτs

)
}

= Ỹt−1,

as required.

proof of (1):
By regularity condition (C2) we may find sequentially

1[τ̂t−1=t−1]Ŷt−1 = Φt−1(1[τ̂t−1=t−1]Zτ̂t−1) = Φt−1(1[τ̂t−1=t−1]Zt−1) = 1[τ̂t−1=t−1]Φt−1(Zt−1),

which proves (1).

proof of (2):
1[τ̂t−1>t−1]Zτ̂t−1 = 1[τ̂t−1>t−1]Zτ̂t

due to time consistency of (τ̂t)t∈{0,...,T}. Hence the regularity condition
implies

1[τ̂t−1>t−1]Ŷt−1 = Φt−1(1[τ̂t−1>t−1]Zτ̂t−1) = Φt−1(1[τ̂t−1>t−1]Zτ̂t) = 1[τ̂t−1>t−1]Φt−1(Zτ̂t
)

= 1[τ̂t−1>t−1]Ψt−1(Ŷt).

By the induction hypothesis we have Ŷt ≥ Ỹt, so we may conclude by monotonicity of Ψt−1,

1[τ̂t−1>t−1]Ŷt−1 ≥ 1[τ̂t−1>t−1]Ψt−1(Ỹt) ≥ 1[τ̂t−1>t−1] max
t≤s≤T

Ψt−1(Φt(Zτs)) = 1[τ̂t−1>t−1] max
t≤s≤T

Φt−1(Zτs).
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Thus (2) is shown.

proof of (3):
Using regularity condition (C2) we obtain

Φt−1(Zτt−1) = 1[τt−1=t−1]Φt−1(Zτt−1) + 1[τt−1>t−1]Φt−1(Zτt−1)
= Φt−1(1[τt−1=t−1]Zt−1) + Φt−1(1[τt−1>t−1]Zτt−1).

1[τt−1>t−1]Zτt−1 = 1[τt−1>t−1]Zτt
due to time consistency of (τt)t∈{0,...,T}. Hence the application of regu-

larity again yields

Φt−1(Zτt−1) = sdarticleΦt−1(1[τt−1=t−1]Zt−1) + Φt−1(1[τt−1>t−1]Zτt
)

= 1[τt−1=t−1]Φt−1(Zt−1) + 1[τt−1>t−1]Φt−1(Zτt
),

obviously implying (3), and hence completing the proof.

Proof of Lemma 5.3:
We shall show the statement of Lemma 5.3 via backward induction. The case t = T is trivial since
TT = {T}. So let us assume that for any t ∈ {1, ..., T}, we have Φt(Zσ) = Φt(Zσ + MT −Mσ) for every
σ ∈ Tt. Let us fix an arbitrary τ ∈ Tt−1, and define σ(τ) := t1[τ=t−1] +τ1[τ>t−1] ∈ Tt. Then by assumption
Φt(Zσ(τ)) = Φt(Zσ(τ) + MT −Mσ(τ)), which implies via regularity and recursiveness,

1[τ>t−1]Φt−1(Zτ ) = 1[τ>t−1]Φt−1(Zσ(τ)) = 1[τ>t−1]Φt−1 ◦ Φt(Zσ(τ))

= 1[τ>t−1]Φt−1

(
Φt(Zσ(τ) + MT −Mσ(τ))

)
= 1[τ>t−1]Φt−1(Zσ(τ) + MT −Mσ(τ))

(C2)
= 1[τ>t−1]Φt−1(Zτ + MT −Mτ ).

Moreover, by regularity, conditional translation invariance, and the Φ−martingale property of M we have,

1[τ=t−1]Φt−1(Zτ + MT −Mτ )
(C2)
= 1[τ=t−1]Φt−1(Zt−1 + MT −Mt−1)

(C3)
= 1[τ=t−1] (Zt−1 −Mt−1 + Φt−1(MT ))
= 1[τ=t−1]Zt−1 = 1[τ=t−1]Φt−1(Zt−1).

which completes the proof.

Proof of Lemma 6.2:
We shall show the statement of the lemma by backward induction. The case t = T is trivial since

TT = {T}. Let us assume that for t ∈ {1, ..., T} the equality Φt(Zτ ) = Φt

(
ZτNT

Nτ

)
is valid for every

τ ∈ Tt.
Consider an arbitrary τ ∈ Tt−1, and define σ(τ) := 1τ=t−1t + 1τ>t−1τ ∈ Tt. By the induction assumption

we have Φt

(
Zσ(τ)NT

Nσ(τ)

)
= Φt(Zσ(τ)), so that regularity condition (C2) and recursiveness imply

1[τ>t−1]Φt−1

(
ZτNT

Nτ

)
(C2)
= 1[τ>t−1]Φt−1

(
Zσ(τ)NT

Nσ(τ)

)
= 1[τ>t−1]Φt−1

(
Φt

(
Zσ(τ)NT

Nσ(τ)

))

= 1[τ>t−1]Φt−1

(
Φt

(
Zσ(τ)

))
= 1[τ>t−1]Φt−1

(
Zσ(τ)

) (C2)
= 1[τ>t−1]Φt−1 (Zτ ) .
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Moreover, by regularity (C2), conditional positive homogeneity (C6), and the fact that N is a Φ−mar-
tingale, it holds

1[τ=t−1]Φt−1

(
ZτNT

Nτ

)
(C2)
= 1[τ=t−1]Φt−1

(
Zt−1NT

Nt−1

)
(C6)
= 1[τ=t−1]

Zt−1

Nt−1
Φt−1(NT ) = 1[τ=t−1]Zt−1 = 1[τ=t−1]Φt−1(Zτ ).
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[17] Föllmer, H. and A. Schied, Stochastic Finance, de Gruyter, Berlin and New York, 2004 (2nd ed.).

[18] Frittelli, M. and M. Maggis, Conditional certainty equivalent, forthcoming in International Journal
of Theoretical and Applied Finance.

[19] Gobet, E., Lemor, J. P. and X. Warin, Rate of convergence of an empirical regression method for
solving generalized backward stochastic differential equations, Bernoulli 12 (2006), 889-916.

[20] Haugh, M. B., and L. Kogan, Pricing American Options: A Duality Approach, Operations Research
52 (2004), 258–270.

[21] Hu, Y. and J. Ma, Nonlinear Feynman-Kac formula and discrete-functional-type BSDEs with con-
tinuous coefficients, Stochastic Processes and their Applications 112 (2004), 23-51.

[22] Jiang, L., Convexity, translation invariance and subadditivity for g-expectations and related risk
measures, Ann. Appl. Prob. 18 (2008), 245-258.

[23] Jamshidian, F. (2007) The duality of optimal exercise and domineering claims: A Doob-Meyer de-
composition approach to the Snell envelope, Stochastics 79 (2007), 27–60.

[24] Kaas, R., Goovaerts, M., Dhaene, J. and M. Denuit, Modern Actuarial Risk Theory, Springer, Berlin
and Heidelberg, 2008 (2nd ed.).
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