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We revisit the problem of the linear response of a constrained mechanical system. In doing so we show that
the standard expressions of Green and Kubo carry over to the constrained case without any alteration. The
argument is based on the appropriate definition of constrained expectations by means of which Liouville’s
theorem and the Green-Kubo relations naturally follow.
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Linear response theory as originally formulated by
Green1 and Kubo2,3 provides a tool to describe the re-
sponse of a mechanical systems to a small external per-
turbation. The typical derivation of the linear response is
based on the Hamiltonian function generating the under-
lying dynamics4. In many instances, however, the equa-
tions of motion are only available in a non-Hamiltonian
form, although the system is of mechanical origin. One
such case is a constrained mechanical system in Carte-
sian (ambient-space) coordinates with explicit Lagrange
multipliers in which case a Hamiltonian formulation is
not obvious5.

Steps towards a formulation of constrained systems in
the framework of non-Hamiltonian statistical mechanics
have been taken in Ref. 6. Therein the authors demon-
strate that it is still possible to derive a response re-
sult that has the familiar form, while involving additional
terms that are hard to interpret and which are attributed
to an apparent nonzero phase space compressibility.

In this communication we argue that in the presence
of constraints the standard linear response result does in
fact hold — unambigously and without any alteration
from the unconstrained case. Our reasoning is based on
an appropriate definition of constrained expectation val-
ues that gives rise to the standard Liouville equation for
probability densities and Liouville’s theorem. The linear
response result of Green and Kubo then naturally follows
from these ingredients.

I. CONSTRAINED DYNAMICS

Consider a particle of unit mass assuming states x ∈
Rn with potential energy V (x). The dynamics are con-
fined to a hypersurface S ⊂ Rn that is defined by

S = {x ∈ Rn : ϕ(x) = 0}
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with a scalar function ϕ and |∇ϕ| 6= 0 everywhere on S.
Newton’s equations for the particle read

ẍt = −∇V (xt)− λ∇ϕ(xt)
0 = ϕ(xt)

(1)

with initial values x0 = x and ẋ0 = v satisfying

ϕ(x) = 0 , v · ∇ϕ(x) = 0 . (2)

Here and in the following we use the notation x · y =
xT y and A : B = tr(AB) to denote the inner products
between vectors x and y or the double contraction of
second-order tensors A and B.

In (1), we may easily eliminate the Lagrange multiplier
λ by differentiating the constraint ϕ(xt) = 0 twice with
respect to time. This yields

ẍt · ∇ϕ(xt) + ẋt ⊗ ẋt : ∇∇ϕ(xt) = 0

where we use the notation ∇∇ = ∇ ⊗ ∇ to denote the
matrix of second derivatives. Hence, with (1),

λ∇ϕ(x) = −(∇V (x))⊥ + II(ẋ, ẋ)

with the abbreviations

(∇V )⊥ =
∇ϕ · ∇V
|∇ϕ|2

∇ϕ , II(v, v) =
v ⊗ v : ∇∇ϕ
|∇ϕ|2

∇ϕ .

Inserting the expression for the constraint force into
the equations of motion (1) then gives

ẍt = −(P∇V )(xt)− II(ẋt, ẋt) . (3)

with the notation PX = X − X⊥. Eq. (3) is called
an ambient-space formulation of the differential-algebraic
system (1) as it is formulated in terms of the ambient-
space coordinates (x, v) on R2n rather than generalized
coordinates, and it does not involve Lagrange multipliers.
Introducing the new variable v = ẋ it can be recast as

ẋt = vt

v̇t = −(P∇V )(xt)− II(vt, vt) .
(4)

Given initial values satisfying (2) its solution automati-
cally stays on the set

M =
{

(x, v) ∈ R2n : ϕ(x) = 0, v · ∇ϕ(x) = 0
}
.
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II. LIOUVILLE EQUATION

Obviously (4) is not Hamiltonian although it can be
shown to be equivalent to a Hamiltonian system (e.g.,
by using generalized coordinates). Nonetheless its flow
shares basic properties of a Hamiltonian system such as
being volume-preserving. First of all, note that

dµ(z) = |∇ϕ(z)|2 δ(ϕ(z))δ(ϕ̇(z))dz (5)

is the natural Liouville measure onM expressed in terms
of the ambient-space coordinates z = (x, v); see Ref. 7 for
details. Now, given an observable f(z), we call

〈f〉ρ =
∫
R2n

f(z)ρ(z, t) dµ(z)

the expectation of f with respect to the (possibly time-
dependent) probability density ρ. It is convenient to
write (4) as the differential equation

żt = B(zt) (6)

with the vector field B = (v,−P∇V − II)T and the so-
lution zt = zt(z), z0 = z. The Liouville operator corre-
sponding to (6) then assumes the standard form

L = B(z) · ∇ (7)

where as before and unless noted otherwise, ∇ denotes
the derivative with respect to the argument (here: z).

A. Stationary distribution

Before we can state Liouville’s theorem, we have to say
what we mean by an invariant distribution. We employ
what is known as the Heisenberg picture in quantum me-
chanics and call a distribution ρ invariant under (6) if
the expectation of an observable at time t,

f(zt) = exp(Lt)f(z) ,

is stationary, i.e., if

〈f(zt)〉ρ = 〈f(z0)〉ρ , (8)

where the average is understood over the initial values.
By construction, f solves the differential equation

d

dt
f(zt) = Lf(zt)

f(z0) = f ,
(9)

so stationarity of expectation values is equivalent to say
that ρ is a stationary solution of the Liouville equation

∂

∂t
ρ(z, t) = L∗ρ(z, t)

ρ(z, 0) = ρ0(z) .
(10)

Here ρ0 is understood as a probability density with re-
spect to the constrained Liouville measure µ, i.e.,

∫
R2n

ρ0 dµ = 1 ,

and the adjoint L∗ is defined by means of the duality re-
lation (Lf, g) = (f, L∗g) with the natural scalar product
(f, g) = 〈fg〉ρ=1 between functions f and g.

The Liouville equation (10) is in fact the usual one, for
(Lf, g) = −(f, Lg) or L∗ = −L, respectively. To see this,
it is helpful to note that (cf. Ref. 6, p. 750)

∫
R2n

(Lf)g |∇ϕ|2dz = −
∫
R2n

(Lg)f |∇ϕ|2dz

which can be seen upon expanding the Liouvillian term
by term and integrating by parts:

∫
R2n

(Lf)g |∇ϕ|2dz =
∫
R2n

(v · ∇xf − (P∇V + II) · ∇vf) g |∇ϕ|2dz

=−
∫
R2n

(
v · ∇xg − 2

g

|∇ϕ|2
v ⊗∇ϕ : ∇∇ϕ− g∇v · II − (P∇V + II) · ∇vg

)
f |∇ϕ|2dz

=−
∫
R2n

(v · ∇xg − (P∇V + II) · ∇vg) f |∇ϕ|2dx

=−
∫
R2n

(Lg)f |∇ϕ|2dz

where in the third line we have used that |∇ϕ|2∇v · II = 2v ⊗∇ϕ : ∇∇ϕ.
Hence it follows that ∫

R2n
(Lf)g dµ = −

∫
R2n

(Lg)f dµ+
∫
R2n

(L{δ(ϕ)δ(ϕ̇)}) fg|∇ϕ|2 dz
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with ∫
R2n

(L{δ(ϕ)δ(ϕ̇)}) fg|∇ϕ|2 dz

=
∫
R2n

(v · ∇x{δ(ϕ)δ(ϕ̇)} − (P∇V + II) · ∇v{δ(ϕ)δ(ϕ̇)}) fg|∇ϕ|2dz

=
∫
R2n

(v · ∇ϕ δ′(ϕ)δ(ϕ̇) + v ⊗ v : ∇∇ϕ δ(ϕ)δ′(ϕ̇)− (P∇V + II) · ∇ϕ δ(ϕ)δ′(ϕ̇)) fg|∇ϕ|2 dz

=
∫
R2n

(v · ∇ϕ δ′(ϕ)δ(ϕ̇)− (P∇V ) · ∇ϕ δ(ϕ)δ′(ϕ̇)) fg|∇ϕ|2 dz .

Here the second equality follows from II · ∇ϕ = v ⊗ v :
∇∇ϕ. Finally ϕ̇ = v·∇ϕ with ϕ̇ = 0 and (P∇V )·∇ϕ = 0,
so the last integral vanishes which proves that∫

R2n
(Lf)g dµ = −

∫
R2n

(Lg)f dµ (11)

or, in other words L∗ = −L.

B. Liouville’s theorem

Now Liouville’s theorem readily follows: Let A 6= ∅ be
any compact subset of M. Then

µ(A) =
∫
R2n

χA dµ with χA(z) =
{

1 if z ∈ A
0 if z /∈ A

is the phase space volume of A, and we have to show that
dµ(A)/dt = 0 under the flow of (6).

To this end we choose f = χA as initial condition in
(9) and take the time derivative of (8) with ρ = 1. Since
f solves (9), it remains to show that∫

R2n
Lf dµ = 0 .

But the integral equals (Lf,1) = −(f, L1) where L1 = 0.
Hence the integral vanishes and, since A is arbitrary, we
have proved conservation of volume.

Before we come to the formulation of the linear re-
sponse, a final remark is in order: it is a common fal-
lacy that the system (6) were not volume-preserving be-
cause its ambient-space divergence is not zero. Indeed,

a vector field B is volume-preserving if and only if it
is divergence-free8. But here the solutions generated by
the vector field B live on the constrained phase space
M ⊂ R2n, so the appropriate notion of divergence is
the divergence on M, whereas the (unconstrained) di-
vergence in the ambient-space variables does not tell us
much about volume-preservation.

III. LINEAR RESPONSE

To (6) we add a small perturbation in the way that

żεt = B(zεt ) + εG(zεt )ut , ε� 1 (12)
where u is a time-dependent scalar forcing (not necessar-
ily smooth) and G is a Hamiltonian vector field compat-
ible with the constraint (in other words, the form of G
resembles that of B). Now set

Leq = B(z) · ∇ , Lt = utG(z) · ∇ .

The Liouville equation associated with (12) then reads

∂

∂t
ρε(z, t) = (L∗eq + εL∗t )ρ

ε(z, t)

ρε(z, 0) = ρ0(z) .

with L∗eq = −Leq and L∗t = −Lt; the latter follows
mutatis mutandis from Eq. (11). Applying variation
of constants or Dyson’s formula yields the formal solution

ρε(z, t) = exp(tL∗eq)ρ0(z) + ε

∫ t

0

exp((t− s)L∗eq)L∗sρ
ε(z, s) ds

for which we seek a perturbative expansion of the form

ρε = ρ0 + ερ1 + ε2ρ2 + . . . . (13)

Let us suppose that the initial distribution ρ(z, 0) =
ρ0(z) is independent of ε and is invariant under the unper-

turbed dynamics, i.e., L∗eqρ0 = 0. By plugging the ansatz
(13) into the Liouville equation and equating equal pow-
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ers of ε, we recover the O(ε)-approximation

ρε(z, t) ≈ ρ0(z) + ε

∫ t

0

exp((t− s)L∗eq)L∗sρ0(z) ds .

Now let

H : R2n → R , H =
1
2
|v|2 + V

denote the Hamiltonian of the unperturbed system.
Clearly, H is preserved for ε = 0. The perturbed sys-
tem (12) for ε > 0 obeys the energy balance

d

dt
H(zεt ) = −ε ut J(zεt ) (14)

with zεt = zεt (z) denoting the solution of (12) and J(z) =
G(z) · ∇H(z) being the dissipative flux.

A. Green-Kubo relations

We come to our main result that generalizes the classi-
cal result of Green1 and Kubo2,3 for Hamiltonian systems
to non-Hamiltonian systems of the form (1).

In Eq. (12), suppose that ut = δ(t), i.e., the perturba-
tion is impulsive at t = 0, and the initial values zε0 = z
are drawn from the canonical distribution

ρ0(z) ∝ exp(−βH(z)) ,
∫
R2n

ρ0(z) dµ(z) = 1 .

Let moreover

〈f〉ρε =
∫
R2n

f(z)ρε(z, t)dµ(z)

denote the expectation with respect to the probability
distribution ρε. By replacing ρε in the last equation by
its O(ε)-approximation we find

〈f〉ρε ≈ 〈f〉ρ0 + ε

∫
R2n

∫ t

0

f exp((t− s)L∗eq)L∗sρ0 ds dµ .

Using that ut = δ(t) in the expression for L∗t = −Lt,
the double integral can be recast as∫

R2n

∫ t

0

f exp((t− s)L∗eq)L∗sρ0 ds dµ

= −
∫
R2n

∫ t

0

f exp((t− s)L∗eq)Lsρ0 ds dµ

= −
∫
R2n

∫ t

0

(exp((t− s)Leq)f)(G · ∇ρ0)δ(s) ds dµ

= −
∫
R2n

(exp(tLeq)f)(G · ∇ρ0) dµ

= β

∫
R2n

f(zt)(G · ∇H)ρ0 dµ

where last equality is due to ρ0 ∝ exp(−βH). Em-
ploying the definition of the dissipative flux J(z) =
−G(z) · ∇H(z), it follows that∫

R2n
f(G · ∇H)ρ0 dµ = −〈Jf(zt)〉ρ0

with zt = zt(z) denoting the solution to the unperturbed
problem. As a consequence we recover the classical linear
response result of Green and Kubo, viz.,

〈f〉ρε ≈ 〈f〉ρ0 − εβ〈Jf(zt)〉ρ0 . (15)

IV. CONCLUSIONS

In this communication we have demonstrated that the
common practice, namely, employing the standard linear
response result by Green and Kubo in case of a system
with holonomic constraints is indeed justified, although
some articles that can be found in the literature sug-
gest otherwise (e.g., Ref. 9). Although there has been no
doubt that, in principle, Hamiltonian systems that are
subject to holonomic constraints behave like any other
natural mechanical system from the viewpoint of statis-
tical mechanics (which is certainly not true for nonholo-
nomic systems), the result closes a loophole in the sta-
tistical mechanics of constrained systems involving La-
grange multipliers. Consequently the reader using linear
response theory should not worry as to whether his sys-
tem is subject to constraints or not.

This clearly raises the question whether the result
carries over to systems that are either inherently non-
Hamiltonian or which involve non-Hamiltonian pertur-
bations. A typical representative of the first class is
Nosé-Hoover dynamics while the SLLOD equations of
motion belong to the second category. We stress that
the ingredients we have employed to derive the Green-
Kubo relations are relatively simple and are not at all
tied to a Hamiltonian framework: a perturbation consis-
tent with the equations of motion (e.g., divergence-free),
a preserved measure that induces an inner product via
an expectation and a formal expansion of the evolution
equation for the corresponding probability densities. Ad-
dressing general dynamical systems with arbitrary non-
Hamiltonian perturbations, however, is beyond the scope
of this communication.

In the course of the derivation we have also revis-
ited the misleading statement (see, e.g., Refs. 10,11) that
flows of constrained systems with non-vanishing ambient-
space compressibility do not conserve volume. This, in
fact wrong, statement is based on the misconception of
taking the ambient-space divergence of a constrained vec-
tor field as indicative of being volume-preserving. The
reader should also not worry about this issue.

Last but not least all the results in this paper easily
generalize to the case of multiple constraints, non-trivial
mass matrices or more complicated types of perturba-
tions (clearly, being compatible with the constraints).
For the sake of readability we refrain from presenting
our results in such generality and leave it to the inter-
ested reader to fill this gap.
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