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Abstract. We study balanced model reduction for stable bilinear systems

in the limit of partly vanishing Hankel singular values. We show that the
dynamics admit a splitting into fast and slow subspaces and prove an averaging

principle for the slow dynamics. We illustrate our method with an example

from stochastic control (density evolution of a dragged Brownian particle) and
discuss issues of structure preservation and positivity.

1. Introduction

Modelling of chemical, physical or biological phenomena often leads to high-
dimensional systems of differential equations, resulting from semi-discretized partial
differential equations. Examples involve stochastic control problems [1], dissipative
quantum dynamics [2], or metabolic networks [3].

For linear systems, balanced model reduction going back to [4] provides a rational
basis for various approximation techniques that include easily computable error
bounds [5]; see also [6, 7] and the references given there. The general idea of balanced
model reduction is to restrict the system onto the subspace of easily controllable and
observable states which can be determined by the Hankel singular values associated
with the system. For bilinear systems, however, neither a comprehensive theory
nor the corresponding numerical algorithms for efficiently solving the corresponding
generalized Lyapunov equations are available, at least not to same extend as in the
linear case (cf., e.g., [8, 9, 10, 11, 12]). This article is supposed to contribute to the
theoretical aspects, where only little attention is given to the numerics; regarding
numerical issues we refer to, e.g, [13, 14].

For a certain class of bilinear systems, namely, stable ones, we derive balanced
reduced-order models by studying the limit of vanishing Hankel singular values.
To the best of our knowledge a systematic multiscale analysis of the equations of
motion in the limit of vanishing Hankel singular values is new; see, e.g., [15] for
a similar approach or [16, 17, 18] for approaches in which low-rank perturbative
approximations of transfer functions of linear systems are sought. Our approach re-
sembles the well-known averaging method (see, e.g., [19] and the references therein)
where the Hankel singular values serve to identify suitable small parameters. By
sending the small parameters in the bilinear system to zero, we obtain an averaged
lower-dimensional equation that inherits many properties of the original one.

The structure of the article is as follows: In Section 2 we briefly review controlla-
bility and observability for bilinear systems. Section 3 states the averaging problem
and contains the main result, Theorem 3.2. Two numericals examples of positive
systems and the problem of structure-preservation are discussed in Section 4. In
Appendix A we propose an alternative approach to compute the solutions of gen-
eralized Lyapunov equations as the covariance matrix of a Markov process.
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2. Bilinear control systems

We consider bilinear control systems of the form

(2.1)
ẋ = Ax+

m∑
k=1

Nkxuk +Bu , x(0) = x0

y = Cx

where x ∈ Rn is the state vector, u ∈ L2(R,Rm) is the control and y ∈ Rl denotes
vector of outputs. The matrices A,B,C and Nk ∈ Rn×n, k = 1, . . . ,m are of appro-
priate dimensions. We suppose that the matrix A is Hurwitz, i.e., all eigenvalues of
A have strictly negative real part.

2.1. Controllability and observability. We follow the work of Scherpen [20] on
balancing of nonlinear systems and define controllability and observability of a state
x ∈ Rn in the terms of energy norms:

Definition 2.1. The controllability and observability functions associated with the
bilinear system (2.1) are defined as

(2.2) Ec(x0) = inf
u∈L2

{∫ 0

−∞
|u(t)|2 dt : x(0) = x0, x(−∞) = 0

}
and

(2.3) Eo(x0) =

{∫ ∞
0

|y(t)|2 dt : x(0) = x0, u = 0

}
.

The function Ec measures the minimum control effort needed to steer the system
from the zero state at t = −∞ to a prescribed state x0 ∈ Rn at t = 0; note that Ec
may be infinite if a state is uncontrollable. Conversely Eo measures the control-free
output generated by a particular initial state x0 ∈ Rn. It can be readily seen that

(2.4) Eo(x) = 〈x,Wox〉

with 〈x, z〉 = x∗z denoting the inner product between vectors and the observability
Gramian Wo being the unique and symmetric solution of the Lyapunov equation

(2.5) A∗Wo +WoA+ C∗C = 0 .

In principle, the controllability function Ec can be computed as the solution to some
Hamilton-Jacobi PDE (see, e.g., [20]) which is not very handy for high-dimensional
problems though. To avoid this problem we introduce the controllability Gramian
as the solution to the generalized Lyapunov equation

(2.6) AWc +WcA
∗ +

m∑
k=1

NkWcN
∗
k +BB∗ = 0

that has the property

(2.7) Ec(x) >
〈
x,W−1c x

〉
, x 6= 0 .

Inequality (2.7) holds true in a sufficiently small open neighbourhood of x = 0 in
which Ec is analytic [9]. In our case it serves as a worst-case-scenario to identify
hardly controllable states, for it bounds the controllability function from below.

Remark 2.2. The choice of controllability and observability function is not unique,
nor is their approximation by quadratic forms as in (2.7). Ideally the choice of what
well controllable and observable means should depend upon the underlying problem;
cf, e.g., [9, 21, 22]. We see this flexibility as a strength of our approach, for what is
going to follow does not depend on how this choice is made.
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3. Balanced model reduction

Let us come back to our system (2.1). Consider a coordinate transformation
x 7→ T−1x under which the Gramians transform according to

T−1WcT
−∗ , T ∗WoT .

Suppose that the symmetric Gramians Wc,Wo are both positive definite. Then T
can be chosen in such a way that

T−1WcT
−∗ =

(
Σ1 0
0 Σ2

)
= T ∗WoT .

As in the linear case the Hankel singular values (HSV) σi, i.e., the diagonal entries
of Σ = (Σ1,Σ2), are the square roots of the eigenvalues of the product WcWo.
Hence they are independent of the choice of coordinates.

The rationale behind the balancing approach is that all states x ∈ Rn for which
Ec(x) is large and Eo(x) is small do not contribute much to the system’s overall
input-output behaviour. Therefore, in the balanced representation [4, 5]

(A,B,Nk, C) 7→ (T−1AT, T−1B, T−1NkT,CT ) , k = 1, . . . ,m ,

we may expect that we can safely neglect all those variables corresponding to the
invariant subspace of the smallest singular values Σ2 � Σ1.

Small parameters. We shall now explain, starting from a balanced representation,
how to derive a dimension-reduced version of our bilinear system (2.1). By positive
definiteness we may decompose the two Gramians according to

Wc = XX∗ , Wo = Y Y ∗

and do a singular value decomposition of the full-rank matrix Y ∗X, i.e.,

(3.1) Y ∗X = UΣV ∗ =
(
U1 U2

)( Σ1 0
0 Σ2

)(
V ∗1
V ∗2

)
.

The partitioning Σ1 = diag(σ1, . . . , σd) and Σ2 = diag(σd+1, . . . , σn) indicates which
singular values are important and which are negligible. The remaining matrices
satisfy U∗1U1 = V ∗1 V1 = Id×d and U∗2U2 = V ∗2 V2 = Ir×r with r = n− d. In terms of
the SVD the balancing transformation T and its inverse S = T−1 read

(3.2) T = XV Σ−1/2 , S = Σ−1/2U∗Y ∗

as can be readily verified.
Now suppose σd+1 � σd. As HSV are coordinate invariants, the σd+1, . . . , σn > 0

may serve a dimensionless small parameters. Upon replacing Σ2 by εΣ2 in equation
(3.2) and changing coordinates x 7→ Sx tells us where the small parameters Σ2

enter the equations. Partitioning the thus obtained balancing matrices accordingly
then yields

S(ε) =

(
S11 S12

ε−1/2S21 ε−1/2S22

)
, T (ε) =

(
T11 ε−1/2T12
T21 ε−1/2T22

)
.

In terms of the balanced variables z = S(ε)x with z = (z1, z2) our bilinear system
(2.1) turns into the following singularly perturbed system of equations

ż1 = A11z1 +
1√
ε
A12z2 +

(
N11z1 +

1√
ε
N12z2 +B1

)
u

√
εż2 = A21z1 +

1√
ε
A22z2 +

(
N21z1 +

1√
ε
N22z2 +B2

)
u

y = C1z1 +
1√
ε
C2z2

(3.3)



4 C. HARTMANN, A. ZUEVA, AND B. SCHÄFER-BUNG

where without loss of generality we have set m = 1, thereby omitting the summation
over the bilinear terms. (The partitioning of the balanced matrices A,B,N,C is
evidently in accordance with the splitting into large and small HSV.)

Remark 3.1. In general we cannot be sure that the system is minimal, in which
case the Gramians are only semidefinite and the balancing transformation becomes

T−1WcT
−∗ =


Σ1 0 0 0
0 Σ2 0 0
0 0 0 0
0 0 0 0

 , T ∗WoT =


Σ1 0 0 0
0 0 0 0
0 0 Σ3 0
0 0 0 0


with Σ1,Σ2,Σ3 invertible and positive definite [7]. To save the previous scaling
argument we may resort to some kind of regularization approach and replace the
zero HSV by entries of order εs with s > 1. This will introduce an additional scale
in equation (3.3) that must be taken into account. For the sake of clarity of the
presentation, however, we refrain from treating the problem is such generality and
assume throughout that our system (2.1) is minimal.

3.1. An averaging principle: adiabatic approximation. We now want to
study the limit ε → 0 of vanishing small HSV. Assuming that the solutions stay
bounded for all u ∈ L2(R,Rm) and for all ε > 0 we may expect that z2 → 0
as ε → 0 while z2/

√
ε = O(1). It is therefore convenient to introduce the scaled

variables z2 7→
√
εz2 by which (3.3) becomes

(3.4)

ż1 = A11z1 +A12z2 + (N11z1 +N12z2 +B1)u

εż2 = A21z1 +A22z2 + (N21z1 +N22z2 +B2)u

y = C1z1 + C2z2 .

Equation (3.4) is an instance of a slow-fast system with z1 being the slow variable
and z2 being fast. Hence, for non-pathological controls u, the averaging principle
applies [24]. The associated (fast) system for frozen slow variable z1 = ζ reads1

(3.5) ż2 = A21ζ +A22z2 + (N21ζ +N22z2 +B2)u .

The idea of the averaging principle now is to view the state space of the associated
system as a fibre over the state space of the slow one. As we speed up the fast
motion, i.e., as we let ε → 0 the influence of the fast motion on the slow one is
effectively given by its stationary state (provided that it exists).

More precisely, if we denote by ϕtζ(z2) := ϕt,t0ζ (z2) for fixed t0 = 0 the solution

of (3.5) for frozen slow variable z1 = ζ, then the averaging principle asserts that in
(3.4) we may replace z2 by its asymptotic value given by

m(ζ) = lim
t→∞

ϕtζ(z2) .

Note that in general m(ζ) may depend on both the control u and the initial value
z2 = ϕ0

ζ(z2). But since u is square integrable it follows that u → 0 asympto-

tically which, by stability of A, entails m(ζ) = −A−122 A21ζ; for details regarding the
convergence of z2 to the invariant subspace we refer to in the appendix.

The adiabatic approximation of (3.4) then consists in substituting m(z1) for z2
which yields a closed equation for z1 and the output variable y. We have:

Theorem 3.2. Let yε(t) be the observed solution of the system (3.4). Further let
ȳ(t) = y0(t) be the output of the averaged or reduced system

(3.6)
ζ̇ = Āζ(t) +

(
N̄ζ +B1

)
u , ζ(0) = ζ0

ȳ = C̄ζ

1The associated system can be constructed from the coupled system (3.4) by rescaling time
according to t 7→ t/ε and then sending ε to zero.
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with the coefficients

Ā = A11 −A12A
−1
22 A21 , N̄ = N11 −N12A

−1
22 A21 , C̄ = C1 − C2A

−1
22 A21 .

Then

lim
ε→0
|yε(t)− ȳ(t)| = 0

uniformly for t ∈ [0, T ] and for all initial conditions (z1(0), z2(0)) with z1(0) = ζ0.

Comparison with balanced truncation. The reader may wonder how the adi-
abatic approximation relates to the usual method of balanced truncation. Roughly
speaking balanced truncation amounts to setting z2 = 0 in the balanced equations
(3.4), whereas singular perturbation methods seek a closure of the equations by
arguing that ż2 ≈ 0 (see, e.g., [16]). Clearly, our approach belongs to the second
category as we use that ż2 → 0 in the limit of vanishing small HSV (cf. [24]). In
case of linear systems, both truncation and singular perturbation approximation can
be shown to yield reduced systems that preserve stability and that obey the usual
H∞ error bound [5]. Although we strongly believe that a similar result may hold
for bilinear systems, it is clear that proving such a result would require completely
different mathematical techniques which is beyond the scope of this article.

Remark 3.3. It is interesting to note that the limiting equations (3.6) resemble
the result of the Schur complement method that is employed for solving partial dif-
ferential equations on complicated domains (see, e.g., [25]). In the language of our
approach this is to say that we decompose our system’s state space (i.e., the com-
putational domain) into controllable/observable and hardly controllable/observable
subspaces and restrict the solution to the first one where the latter enters the problem
in form of stationary boundary terms.

3.2. Proof of the averaging principle. For the proof of Theorem 3.2 is suffices
to prove convergence for the state space variables z1, z2, ignoring the output y. Let
us assume that the system (3.4) is completely controllable, i.e., its controllability
function (2.2) is finite. For the sake of convenience, we write the first two equations
in (3.4) as the abstract system of equations

(3.7)
ż1 = f(z1, z2, u)

εż2 = g(z1, z2, u)

with (z1, z2) ∈ Rd × Rn−d and 0 < ε � 1 and (z1, z2) = (0, 0) being a globally
asymptotically stable fixed-point.

We prove that in the limit ε → 0 and for u being square-integrable on the real
line, the slow component z1 converges uniformly to ζ that is governed by

ζ̇ = f(ζ,m(ζ), u)

where z2 = m(ζ) is the graph representation of the limiting invariant subspace

M =
{

(ζ, z2) ∈ Rd × Rn−d : g(ζ, z2, 0) = 0
}
⊂ Rn

that the fast dynamics approach as ε→ 0.

Contractivity and admissible controls. Suppose that z1 = ζ is fixed. By
asymptotic stability of the global fixed-point (0, 0) ∈ Rd×Rn−d the fast subsystem
has a stable fixed-point too if u decays as t→∞ (recall that u is assumed to be in

L2). That is, for all ζ ∈ Rd fixed, the solution ϕtζ(z2) := ϕt,t0ζ (z2) of the associated

system (here and in the following we set t0 = 0)

ż2 = g(ζ, z2, u)

has a unique exponentially attracting fixed point, i.e.,

lim
t→∞

ϕtζ(z2) = m(ζ)
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uniformly in ζ and ε > 0 and independently of the initial condition ϕ0
ζ(z2) = z2. For

this purpose, we note that g(ζ,m(ζ), 0) = 0 where g meets the following contractivity
condition: for any ζ ∈ Rd and z2, z̃2 ∈ Rn−d there exist α, δ > 0 such that

(3.8) 〈g(ζ, z2, u)− g(ζ, z̃2, u), z2 − z̃2〉 ≤ −α |z2 − z̃2|2 .

for all admissible controls u with |u| ≤ δ.
The convergence of the fast dynamics to their fixed-point on finite time intervals

(with respect to the time scale of the slow variables) requires to impose further
restrictions on the control. Recall that the balancing method assumes that u is in
L2, hence u→ 0 as t→∞. Furthermore, in the argument above, we have assumed
that the controls are still active on the time scale of the fast variables. Specifically,
we restrict u to the class of relatively slow controls that has been introduced by
Gaitsgory [26]; see also [27]. Roughly speaking we assume that as ε→ 0 the control
law has the asymptotic form u(t/εγ) with 0 < γ < 1, so that the controls act on an
intermediate time scale between the slow and the fast variables.

Convergence to the invariant subspace. We implement the following standing
assumptions that are justified by the non-explosiveness of the solutions to (3.7) on
any finite time interval [0, T ]: we suppose that there exists a uniform Lipschitz
constant L > 0 and an open set U × V ⊂ Rd × Rn−d such that

|f(z1, z2, u)| ≤ L ∀(z1, z2) ∈ U × V
|∇f(z1, z2, u)| ≤ L ∀(z1, z2) ∈ U × V

|∇m(z1)| ≤ L ∀z1 ∈ U .

for a suitable class of admissible controls, e.g., u ∈ L2(R,Rm) ∩ L∞(R,Rm) with
|u| < δ. We further assume that

|g(z1,m(z1), u)| ≤ Lu ∀(z1, z2) ∈ U × V

and define the deviations of the fast variable from the invariant manifold by

η = z2 −m(ζ) .

As a first step we estimate the rate at which η goes to zero as ε→ 0. Since

η̇ = ż2 −∇m(ζ)ζ̇ ,

the augmented set of variables (ζ, η, z2) is governed by the joint system of equations

ζ̇ = f(ζ,m(ζ) + η, u)

η̇ =
1

ε
g(ζ,m(ζ) + η, u)−∇m(ζ)f(ζ,m(ζ), u)

ż2 =
1

ε
g(ζ,m(ζ) + η, u)

that is equivalent to (3.7). By adding zero, the second equation can be recast as

η̇ =
1

ε
(g(ζ,m(ζ) + η, u)− g(ζ,m(ζ), u) + g(ζ,m(ζ), u))−∇m(ζ)f(ζ,m(ζ), u) .

Lipschitz continuity of f, g and m and the Cauchy-Schwarz inequality entail

g(ζ,m(ζ), u) ≤ Lu , 〈∇m(ζ)f(ζ,m(ζ), u), η〉 ≤ L2 |η| .

Using further equation (3.8), i.e.,

〈g(ζ,m(ζ) + η, u)− g(ζ,m(ζ), u), η〉 ≤ −α |η|2 ,
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we obtain the following differential inequality for η:

1

2

d

dt
|η|2 = 〈η, η̇〉

=
1

ε
〈g(ζ,m(ζ) + η, u), η〉 −

〈
∇m(X)f̄(X), η

〉
≤ −α

ε
|η|2 +M |η| .

with M = L2 + Lu/ε. Completing the square yields

1

2

(
δM − |η|

δ

)2

> 0 ⇒ 1

2

(
δ2M2 +

|η|2

δ2

)
> L |η|

for any δ ∈ R. Setting δ =
√
ε/α, we therefore find

1

2

d

dt
|η|2 ≤ −α

ε
|η|2 +

1

2

(
δ2M2 +

|η|2

δ2

)
≤ − α

2ε
|η|2 +

ε

2α
M2 .

Thus Gronwall’s Lemma gives the bound

|η|2 ≤ exp
(
− α

2ε
t
)(
|η(0)|2 +

ε

2α

∫ t

0

exp
( α

2ε
s
)
M2
s ds

)
where the subscript Ms indicates the time dependence of M through u. If we set
û = max{u(t/εγ) : t ∈ [0, T ]} the integral can be bounded from above by

(3.9) |η|2 ≤ exp
(
− α

2ε
t
)
|η(0)|2 +

ε2M̂2

α2

(
1− exp

(
− α

2ε
t
))

.

with ε2M̂2 = ε2L4 + 2εL3u+L2û2. Since u ∼ u(t/εγ) as ε→ 0 and therefore û→ 0
we conclude that

lim
ε→0
|η(t)|2 = 0

for all t ∈ [0, T ] which implies η → 0. This completes the first part of the proof.

Convergence of solutions. In order to show that convergence of the fast dynam-
ics to the invariant subspace implies uniform convergence z1 → ζ, we note that

ż1 = f(ζ,m(ζ) + η, u)

by definition of η, and
ζ̇ = f(ζ,m(ζ), u) .

Using Cauchy-Schwarz and Lipschitz continuity of f , it readily follows that

1

2

d

dt
|z1 − ζ|2 = 〈z1 − ζ, f(ζ,m(ζ) + η, u)− f(ζ,m(ζ), u)〉

≤ |z1 − ζ| |f(ζ,m(ζ) + η, u)− f(ζ,m(ζ), u)|
≤ L |z1 − ζ| |η| .

By completing the square we obtain the inhomogeneous differential inequality

d

dt
|z1 − ζ|2 ≤ L2 |z1 − ζ|2 + |η|2

with |η|2 as given by (3.9) above. For z1(0) = ζ(0), Gronwall’s Lemma yields

|z1 − ζ|2 ≤
∫ t

0

exp(L(t− s)) |η(s)|2 ds .

The assertion that z1 → ζ uniformly on [0, T ] follows upon inserting (3.9) in the
last inequality and integrating, viz.,

(3.10) |z1 − ζ|2 ≤ CeLt
(
ε |η(0)|2 + εγ

)
.
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1.5 1 0.5 0 0.5 1 1.5
2

1

0

1

2

3

4

5

6

x

W
,V

 

 

∆W

Figure 1. The optical tweezer acting with force u tilts the original
double well W potential (solid line) to V = W − ux (dashed line).

In equation (3.4), y is a linear transformation of the state variables z1 and z2 =
η +m(z1). Hence (3.10) implies convergence y → ȳ which proves Theorem 3.2. �

Remark 3.4. We should mention a similar result that is due to Watbled [28].
Therein the author proves uniform convergence of the slow process on the interval
[0, T ] for all T > 0 to the solutions of a differential inclusion. The proof relies on
the construction of a suitable Lyapunov functional by which convergence of the fast
dynamics to an invariant manifold can be shown. Although the result is far more
involved than ours, it does not give convergence rates for ε→ 0.

Upon inspecting (3.10) we see that our error bound consist of two parts the first
of which depends on the deviation of the initial condition z2(0) from the invariant
subspace m(z1(0)). That is, the first term is due to the initial relaxation of the
fast dynamics to the steady state, whereas the second term describes the actual ap-
proximation error that arises from replacing f(z1, z2, u) by f(z1,m(z1), u). Further
notice that the upper bound for the error grows exponentially like exp(Lt), i.e., for
t = O(− ln ε) the upper bound becomes essentially of order 1.

4. Applications and numerical illustration

We shall now illustrate the balanced model reduction approach with an example
from stochastic control: a semi-discretized Fokker-Planck equation with external
forcing.

As the Fokker-Planck equation describes the evolution of probability distribu-
tions associated with stochastic differential equations, the state variables are non-
negative. Moreover, the system comes with a simple eigenvalue zero that corre-
sponds to the stationary distribution of the system, i.e., the system is not asymp-
totically stable.

4.1. Dragged Brownian particle. Consider a stochastic particle on the real line
assuming states x ∈ R that is confined by a double-well potential

W (x) =
(
x2 − 1

)2
.

Suppose, initially, the particle is in the left well and we want to drag it to the right
well; even without external forcing the particle will eventually hop to the right well,
but on a time scale that is of the order exp(∆W/σ) where ∆W = W (0) denotes
the energy barrier that the particle has to overcome and σ > 0 is the temperature
of the system [29]; in typical application scenarios σ is small, so by dragging the
particle over the barrier the transition rate can be considerably augmented.
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Situations of this kind arise, e.g., in atomic force microscopy [30, 31] or single-
molecule pulling experiments [32, 33] in which the system is typically manipulated
by an optical tweezer. To lowest order, a reasonably good model for the interaction
with the particle with an optical tweezer is

φ(x;u) = −ux

where u denotes the force exerted on the particle (see Figure 1). The motion of the
particle is then governed by the stochastic differential equation

(4.1) dXt = −∇V (Xt, t)dt+
√

2σdWt , X0 in the left well, e.g., X0 = −1

with 0 < σ < 1/2 and V (x, t) = W (x) +φ(x, ut). Equivalently, the dynamics of the
particle can be described in terms of its probability distribution function

ρ(x, t)dx = P [Xt ∈ [x, x+ dx)]

that is governed by the Fokker-Planck equation

(4.2)
∂ρ

∂t
= σ∆ρ+∇ · (ρ∇V ) , ρ(x, 0) = ρ0(x) .

Here ρ0 denotes a smooth probability distribution that concentrates in the left
potential well. For u = 0 and for smooth potentials W that grow at least quadrat-
ically (as in our case) all solutions converge exponentially fast to the Boltzmann
distribution ρ∞ ∝ exp(−W/σ) that is the unique solution of the elliptic equation

σ∆ρ+∇ · (ρ∇V ) = 0 .

Discrete Fokker-Planck equation. Now let us discretize the parabolic problem
on a finite spatial domain I ⊂ R, say, I = [a, b]. Conservation of probability then
requires that the (outwards) probability flux

J(ρ) = σ∇ρ+ ρ∇V

vanishes at the boundaries a and b, so that (4.2) assumes the form

(4.3)

∂ρ

∂t
= σ∆ρ+∇ · (ρ∇V ) (x, t) ∈ (a, b)× (0, T ]

0 = σ∇ρ+ ρ∇V (x, t) ∈ {a, b} × [0, T ]

ρ0 = ρ (x, t) ∈ (a, b)× {0} .

As we are not interested in particularly sophisticated spatial discretization schemes
we choose the simplest finite difference scheme to illustrate the basic idea: given a
grid {x1 = a, x2 = a+ h, x3 = a+ 2h, . . . , xn = b} and defining ρi(t) = ρ(xi, t) the
finite difference discretization of the initial boundary value problem (4.3) reads

ρ̇i =
σ

h2
(ρi+1 − 2ρi + ρi−1) +

W ′(xi)− u
2h

(ρi+1 − ρi−1) +W ′′(xi)ρi .

for i = 2, . . . , n− 1. At the boundaries x1 = a and xn = b we have

ρ̇1 =
2σ

h2
(ρ2 − ρ1) +

(
2W ′(a)

h
− (W ′(a))2

σ
+W ′′(a) +

uW ′(a)

σ

)
ρ1

and

ρ̇n =
2σ

h2
(ρn−1 − ρn) +

(
−2W ′(b)

h
− (W ′(b))2

σ
+W ′′(b) +

uW ′(b)

σ

)
ρn .

The initial value is given by the vector with the non-negative entries ρi(0) = ρ0(xi).
In matrix-vector notation, the last equations can be compactly written as

(4.4) ρ̇ = Aρ+Nρu , ρ(0) = ρ0

where −A ∈ Rn×n is an M -matrix with a simple eigenvalue 0 that corresponds to
the discretized stationary distribution exp(−W/σ) on I ⊂ R. Since the diffusion
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Figure 2. Controlled Fokker-Planck equation: the first 15 HSV
(left panel) and the approximant of degree d = 10 (right panel).
The blue curve shows the probability in the left well whereas the
red curve shows how the right well is populated.

process (4.1) is reversible, i.e., satisfies detailed balance, it follows moreover that A
has only real eigenvalues (provided that the discretization is sufficiently fine).

We augment (4.4) by an output equation. To this end, we introduce the observ-
able y = (y1, y2) with yi ≥ 0 denoting the probabilities to be in the left well or the
right well which yields the homogeneous system

(4.5)
ρ̇ = Aρ+Nρu

y = Cρ

The observation matrix C ∈ R2×n is given by C = (PL, PR) where PL, PR ∈ Rn
denote the discrete characteristic functions of left and right potential well.

We suppose that the discrete Fokker-Planck equation (4.5) is already in balanced
form, i.e., we assume that Gramians, HSV and balancing transforms have been
computed (see Section 4.3 below for the details). In partitioned form (4.5) reads

(4.6)

ρ̇1 = A11ρ1 +A12ρ2 + (N11ρ1 +N12ρ2)u

ερ̇2 = A21ρ1 +A22ρ2 + (N21ρ1 +N22ρ2)u

y = C1ρ1 + C2ρ2 .

where we have inserted the scaling parameter ε > 0 for the sake of clearness.
Since the stationary distribution, i.e., the kernel of A is easily controllable and ob-

servable, we may assume the system the weakly controllable and observable modes
lie in the complementary subspace. Hence we may assume that A22 is Hurwitz
(which can be easily checked numerically) so that the dominant subspace is asymp-
totically stable as we have assumed in the proof of Theorem 3.2. Then, as ε → 0,
the dynamics converge to the solutions of the averaged system

(4.7)
ρ̇1 =

(
A11 −A12A

−1
22 A21

)
ρ1 +

(
N11 −N12A

−1
22 A21

)
ρ1u

y =
(
C1 − C2A

−1
22 A21

)
ρ1 .

Averaged dynamics. Notice that ε in equation (4.6) is a fake parameter, i.e., it
does not appear in the actual equations of motion. Nonetheless it marks where
the negligible HSV enter the equations which is why we can expect (4.7) to yield a
reasonable approximation whenever the negligible HSV are small compared to the
dominant ones.

By the M -matrix property of A that is preserved by the balancing transformation
and by the Schur complement, Ā = A11 −A12A

−1
22 A21 is a singular M -matrix with

a simple eigenvalue zero (see [34] and the references therein). As a consequence
the reduced system is positivity-preserving provided that the initial value remains
positive upon balancing (which need not be the case). By the approximation result,
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Figure 3. Contractivity of the invariant subspace: the left panel
shows the largest 10 eigenvalues of the matrix A22 that are re-
sponsible for the fast relaxation of the dynamics to the invariant
subspace as the right plot shows (here d = 10).

however, we know that when the singular values decay sufficiently fast, the output
variable y = (y1, y2) will remain non-negative. If the balanced variables stay positive
the vector v̄ solving Āv̄ = 0 can moreover be interpreted as the marginal equilibrium
distribution of the dominant variables (again a simple computation that exploits
the fact that Ā is the Schur complement of the A22 block of A).

For comparing (4.5) and (4.7) we consider the following scenario: we discretize the
Fokker-Planck equation (4.2) on the domain I = [−2, 2] using n = 400 grid points.
As initial value we choose ρ0(x) ∝ χL(x) where χL is the characteristic function of
the set L ⊂ R and L = [−1.2,−0.8] is symmetric around the left potential minimum
at x = −1. The forcing u is given by the mollified step function

u(t) =
1

2
(tanh(t− π)− 1) ,

that goes to zero as t grows large. For the time-discretization we use a simple
forward Euler scheme with constant step size ∆t = 5 · 10−5. The temperature
was set to σ = 1/2. The dominant Hankel SV and the 400-dimensional reference
trajectory together with its approximant of dimension d = 10 are shown in Figure
2.2 The blue curve is the probability in the left well whereas the red curve depicts
how the right well is populated; observe that the population maximum is reached
about t ≈ π slightly before the control is turned down. Once the control is switched
off, the populations of left and right well start approaching their equilibrium values.

Note that the initial values in the right panel of Figure 2 have not been projected
to the invariant subspace; in point of fact starting from the invariant subspace
would require that u(0) = 0. But if the initial values do not lie in the invariant
subspace of the fast dynamics then the dynamics have to relax to the invariant
subspace before the averaged dynamics yields a good approximation (see also the
discussion below). The relaxation to the invariant subspace is demonstrated in the
right panel of Figure 3. It can be seen that for sufficiently small HSV (i.e., small
ε) the relaxation occurs quickly; notice that the fast dynamics relaxes even though
the control force is still of order 1. The latter is due to the fact that the invariant
subspace is contractive whenever u is not too large (compare Section 3.2). The
contraction condition is further justified by noting all the eigenvalues of A22 in
equation (3.4) are strictly negative (see left panel).

4.2. Non-decaying control force and positivity. The second example is to
illustrate some of the subtleties and pitfalls of the method. To this end we consider

2The balancing transformation was computed doing first a state transformation to the zero
state and then stabilizing A by shifting A 7→ A− αI with α = 10−3; see Section 4.3 below.
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Figure 4. Skew potential Ws: Hankel singular values (the first 15
are shown) and the time evolution of the population of the right
well for various approximants (d = 11, 12, 20).

a skew double well potential defined by

Ws(x) = (x2 − 1)2 + x .

In comparison with the symmetric potential, the left potential well is lowered and
therefore carries the overall statistical weight if the system is in equilibrium.

Suppose that initially at t = 0 the system is in the stationary state ρ0 given by the
eigenvector ρ0 of A to the simple eigenvalue zero. Apart from the modified potential,
the discretization is essentially the same as before with I = [−2, 2], n = 400, σ = 1/2
and zero-flux boundary conditions. In contrast to the previous example and in
violation of the theoretical assumptions that underly the averaging result we choose
an external force that is non-decaying. More precisely we set

u(t) = 2(1− exp(−2t))

which is clearly not square integrable over the real line. As a consequence, the
effective potential V (x, u) = Ws(x)−ux converges to W−s = (x2−1)2−x as t→∞
which is exactly the reverse of Ws with the right well lowered.

As observable we choose the population of the right potential well, i.e., C = PR
with PR denoting again the discrete characteristic function of the right well. The
initial populations in the left and right wells are ρ0,L = 0.9685 and ρ0,R = 0.0315.
We integrate the system up to the final time T = 10 at which W (x, u) ≈ W−s (x)
and the population are ρL = 0.0404 and ρR = 0.9596.

Balancing and averaging is performed after a change of variables ρ→ ρ− ρ0 and
shifting A → A − αI with α = 10−3 or, likewise, after splitting off the stationary
state; the results are found not to depend on this choice. In order to obtain a
converged controllability Gramian Wc, N and B are scaled by µ = 1/2 (for details
see Section 4.3 below). Singular values and the time evolution of the observable
y = PRρ for various orders of approximation, d, are shown in Figure 4. Apparently
the dynamics are well reproduced for d ≥ 12 (see right panel of the figure).

But as usual the devil is in the details: Closer inspection reveals that the state
variables other than the observables do not remain positive when d is too small.
Figure 5 shows an instance for d = 12; it can be seen that the both initial and
final state ρ(0) and ρ(T ) assume negative values in regions of low density (here:
in the left well). The negative outliers disappear for d ≥ 20. This behaviour is
well in accordance with the limit result: Firstly, the M -matrix property of A or
Ā, respectively, preserves positivity of the solution provided that the initial values
are positive. This however does not need to be the case, because the balanced
and truncated initial value is not necessarily positive. Secondly, the limit result
essentially asserts that the approximation error is of the order of the negligible
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imant of order d = 12 (cf. left panel of Figure 4). The complete
spatio-temporal density evolution for is depicted in the right panel.

HSV, so it does not come as a surprise that the negative values appear in regions
of low density; as d is increased the outliers vanish which is in agreement with the
numerical findings. Thirdly, the projection to the invariant subspace may produce
initial values that are no longer non-negative; the same is true for the observables
although the balancing transformation itself leaves the output variable invariant.

Remark 4.1. For the sake of completeness we computed also the truncated version
of (4.5), i.e., the reduced system that is obtained from (4.6) by setting ρ2 = 0 and
compared the solutions to the averaged ones (cf. [12]). In terms of the output vari-
ables y both methods yielded almost equally accurate approximants. However, other
than the Schur complement, truncation does not preserve the M -matrix property
with the simple eigenvalue zero. As a consequence, the truncated system may not
admit a stationary distribution.

4.3. Numerical issues. Consider the generalized Lyapunov equation

AWc +WcA
∗ +

m∑
k=1

NkWcN
∗
k +BB∗ = 0

and recall that if A is Hurwitz there are constants λ, µ > 0, such that ‖ exp(At)‖ ≤
λ exp(−µt) where ‖ · ‖ is any suitable matrix norm. If moreover

(4.8)
λ2

2µ

m∑
k=1

‖Nk‖2 < 1

the controllability Gramian Wc exist [9]. If the pair (A,B) is completely control-
lable, i.e., if rank(BABA2B . . . An−1B) = n, then Wc is positive definite [36].

Since direct methods for solving generalized Lyapunov equations have a numer-
ical complexity O(n6) computing Gramians is challenging even for medium-sized
systems. For A Hurwitz, the obvious iterative scheme is (see, e.g., [37])

(4.9) AXj+1 +Xj+1A
∗ = −

m∑
k=1

NkXjN
∗
k −BB∗ , X0 = 0

which requires the solution of a standard Lyapunov equation in each step. Conver-
gence Xj →Wc is guarenteed by the following result that is to Damm [14].

Lemma 4.2. Let the linear operator LA : Rn×n → Rn×n be defined by LA(X) =
AX + XA∗ and let Π: Rn×n → Rn×n be nonnegative in the sense that Π(X) > 0
for X > 0. Further assume that the spectrum of LA is contained in the closed
left half-plane (including the imaginary axis) and for a given Y > 0 there exists a
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nonnegative definite matrix X̂ > 0 such that (LA + Π)X̂ 6 −Y . Then there exists
a minimal nonnegative definite solution X− with satisfying

(1) X− > 0 and (LA + Π)X− = −Y
(2) If X̂ > 0 such that (LA + Π)X̂ 6 −Y , then X̂ > X−.
(3) Xj → X−, where Xj for j = 0, 1, 2, . . . is defined via

Xj+1 = −L−1A−αI(Π(Xj) + 2αXj + Y ), X0 = 0, α > 0

Setting Π(X) =
∑m
k=1NkXN

∗
k and α = 0 Lemma 4.2 implies that (4.9) converges

to Wc if the solvability condition (4.8) is met (cf. [12]).

Unstable systems I. In both of the previous numerical examples the matrix A
has a simple eigenvalue zero and B = 0. However we may exploit the fact that A
has a nontrivial kernel and transform the homogeneous equation

ρ̇ = Aρ+

m∑
k=1

Nkρuk , ρ(0) = ρ0 ,

by doing a change of variables ρ 7→ ρ+ v with Av = 0 . This yields

ρ̇ = Aρ+

m∑
k=1

Nkρuk +Bu , ρ(0) = ρ0 + v

with B = −(N1v, . . . , Nmv). The difference between the homogeneous and the
inhomogeneous system is that the latter has ρ = v as stationary state whereas the
other one has the stationary state ρ = 0.

Clearly the Gramians do not exists if A is not Hurwitz. In accordance with
Lemma 4.2 we may enforce stability by shifting the matrix A according to A 7→
A − αI for a suitable α > 0; cf. also [35]. Physically, shifting amounts to a
constant killing rate α in the Fokker-Planck equation and makes the zero state
ρ = 0 the unique asymptotically stable fixed point. Alternatively one may split off
the stationary state x = v and balance only the orthogonal complement in which
the dynamics are asymptotically stable. This approach has the advantage that it
preserves the stationary state and that the computed Gramians are the Gramians
associated with the true dynamics. In both of our examples neither method turned
out to be better than the other one in terms of the approximation quality of the
reduced systems.

Unstable systems II. Now suppose that (4.8) does not hold while A is Hurwitz.
In this case we may replace the control by the scaled control u 7→ u/µ for 0 < µ < 1.
Invariance of (2.1) or (4.5) then requires that the coefficients scale according to
B 7→ µB and Nk 7→ µNk whereupon the system is altered according to

ρ̇ = Aρ+

m∑
k=1

(µNk)ρ
uk
µ

+ (µB)
u

µ
, ρ(0) = ρ0

y = Cρ

and the generalized Lyapunov equation has to be replaced by

AWc +WcA
∗ + µ2

m∑
k=1

NkWcN
∗
k + µ2BB∗ = 0.

The scaling as such clearly changes the Gramian Wc. Roughly speaking, we may
expect that the HSV decay faster as µ becomes small (for µ→ 0 the system becomes
completely uncontrollable). But since the nullspace of Wc is not affected by the
scaling we may still expect that, to lowest order, the ordering of the HSV is not
changed as long as µ is not too small.
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Appendix A. Sampling the controllability Gramian

Instead of solving the generalized Lyapunov equation (2.6) directly, we may com-
pute Wc as the covariance matrix of a continuous-time Markov process that is gov-
erned by the following stochastic differential equation

(A.1) dXt = AXtdt+

m∑
k=1

NkXtdWk,t +BdWt , X0 = 0 .

that is the stochastic analog of the deterministic control system

(A.2) ẋ = Ax+

m∑
k=1

Nkxuk +Bu , x(0) = 0

Here Wt denotes standard Brownian motion in Rm. To see this, it is helpful to note
that EXt = 0 as following from the first Itô isometry [23]. By Itô’s formula,

d (XtX
∗
t ) = XtdX

∗
t + dXtX

∗
t +

m∑
k=1

(NkXt + bk)(NkXt + bk)∗

with the bk ∈ Rn denoting the columns of the matrix B, i.e., B = (b1, . . . , bm). Now
set St = EXtX

∗
t . Inserting the differential equation for dXt, taking the expectation,

and interchanging expectation and differentiation, it follows that

(A.3) Ṡt = ASt + StA
∗ +

m∑
k=1

NkStN
∗
k +BB∗ .

Recall that the existence of the Gramian Wc in (2.6) follows from (4.8). Equivalently
the solvability condition (4.8) guarantees that the solutions of (A.1) are mean-square
stable, i.e., for B = 0, we have E|Xt|2 → 0 as t → ∞ (see, e.g., [38] and the

references therein). For B 6= 0 it therefore follows that Ṡt → 0 which entails

Wc = lim
t→∞

St .
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[10] L. Zhang and J. Lam. On H2 model reduction of bilinear systems. Automatica 38:205–216,

2002.

[11] S. Djennoune and M. Bettayeb. On the structure of energy functions of singularly perturbed
bilinear systems. J. Robust Nonlinear Control 15:601–618, 2005.

[12] P. Benner, T. Damm. Lyapunov equations, energy functionals, and model order reduction.

Submitted to SIAM J. Control Optim., 2009.
[13] P. Benner, J.-R. Li, and T. Penzl. Numerical solution of large-scale Lyapunov equations, Ric-

cati equations, and linear-quadratic optimal control problems. Numer. Linear Algebra Appl.,

15:755–777, 2008.
[14] T. Damm, Direct methods and ADI-preconditioned Krylov subspace methods for generalized

Lyapunov equations. Numer. Linear Algebra Appl. 15:853–871, 2008.
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