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Abstract. This paper presents three different adaptive algorithms for eigen-
value problems associated with non-selfadjoint partial differential operators.

The basis for the developed algorithms is a homotopy method. The homo-

topy method starts from a well-understood selfadjoint problem, for which
well-established adaptive methods are available. Apart from the adaptive grid

refinement, the progress of the homotopy as well as the solution of the iter-

ative method are adapted to balance the contributions of the different error
sources. The first algorithm balances the homotopy, discretization and approx-

imation errors with respect to a fixed step-size τ in the homotopy. The second

algorithm combines the adaptive step-size control for the homotopy with an
adaptation in space that ensures an error below a fixed tolerance ε. The third

algorithm allows the complete adaptivity in space, homotopy step-size as well

as the iterative algebraic eigenvalue solver. All three algorithms are compared
in numerical examples.

September 3, 2010

1. Introduction

Non-selfadjoint eigenvalue problems associated with partial differential opera-
tors arise in a large number of applications, such as acoustic field computations
[ADRPR01], structural analysis of buildings or vehicles [HZS+04], electric and
magnetic field computation [BFGP99]. Today, in almost all applications the space
is discretized first which leads to a linear or nonlinear matrix eigenvalue prob-
lem. To solve these algebraic eigenvalue problems, classical eigenvalue methods
[BDD+00, GV96, LSY98, Par98] are used. Typically the problems are discretized
in space on very fine grids that lead to a high computational effort for the matrix
eigenvalue solver.

In recent years there have been tremendous research activities to design adaptive
eigenvalue methods that adapt the grid to the behavior of the eigenfunctions in
order to avoid unnecessarily fine grids. For selfadjoint elliptic problems the progress
in the analysis and computational methods has been substantial.

A priori error estimates for eigenvalues and eigenvectors of elliptic operators
and compact operators were developed , e.g., in [BO89, OB91, Cha83, Kny97,
RT83, SF73, XZ01]. All these approaches, although optimal, contain mesh size
restrictions, which cannot be verified or quantified, neither a priori nor a posteriori.
Verifiable a priori error estimates for symmetric eigenvalue problems were presented
in [AKPP08, KA10, KO06], see also [LT03, RT83]. A first approach on a posteriori
error analysis for symmetric second order elliptic eigenvalue problems can be found
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in [Ver96]. A combination of a posteriori and a priori analysis was used in [Lar00]
to prove reliable and efficient a posteriori estimates for H2 regular problems. For
non-smooth solutions a posteriori error estimators were given in [DPR03, MSZ06,
Ney02]. Recent results include [CG08, GMZ09, GG09, GO09, Sau10]. Surveys
about a posteriori error estimation can be found in [AO00, BS02, Ver96].

Almost all these results are for elliptic selfadjoint problems, an approach for
non-selfadjoint elliptic eigenvalue problems was presented in [HR01]. The difficulty
with non-selfadjoint PDE eigenvalue problems is multifold, eigenvalues may be
complex, or may have different algebraic and geometric multiplicity. The latter
property is a particular difficulty for the discretization methods because in the finite
dimensional approximation these properties may be destroyed, and even though the
approximation error is small the computed eigenvalues/eigenfunctions may have
much larger errors due to the ill-conditioning of the problem. Even when the
discretization retains the multiplicities of the eigenvalues, the algebraic eigensolvers
have difficulties with the ill-conditioning of multiple eigenvalues. At this stage
the adaptive solution of general non-selfadjoint eigenvalue problems remains a real
challenge.

In this paper we will study only the restricted class of convection-diffusion eigen-
value problems, where for the pure diffusion problem the discussed adaptive meth-
ods work nicely. To design an adaptive algorithm for the convection-diffusion prob-
lem we will employ a homotopy method. Homotopy methods are well established
for nonsymmetric matrix eigenvalue problems [LZ92, LZC92, LKK97, LZ99]. The
homotopy approach will be used not only on the matrix level but on the level of
the differential operator as well. In order to combine the adaptive homotopy with
mesh adaptivity and iterative matrix eigenvalue solvers, we have to deal with three
different types of errors. These are the discretization error η that arises when the
infinite dimensional variational problems is considered in a finite dimensional sub-
space [GC09, HR01], the homotopy error ν that arises because the diffusion problem
is slowly transferred to the convection-diffusion problem [BE03] and the approxi-
mation error µ that arises from the iterative matrix eigensolver in finite precision
arithmetic [BDD+00, Par98, SS90, HL06]. Since the goal is to design methods that
are both accurate and efficient we will develop algorithms that are able to provide
adaptivity in all three directions by a suitable balancing of all three errors.

As a model problem we consider the following convection-diffusion eigenvalue
problem:
Determine a non-trivial eigenpair (λ, u) ∈ C×H1

0 (Ω; C) ∩H2
loc(Ω; C) with

‖u‖L2(Ω;C) = 1 such that

(1.1) −∆u+ β · ∇u = λu in Ω and u = 0 on ∂Ω

for some bounded Lipschitz domain Ω ⊆ R2 and a constant coefficient vector β ∈ R2.

We will study the problem in its weak formulation:
For two complex Hilbert spaces V := H1

0 (Ω; C) with norm |||·||| := |·|H1(Ω;C) and
H := L2(Ω; C) with norm ‖·‖L2(Ω;C) determine a non-trivial eigenpair (λ, u) ∈ C×V
with b(u, u) = 1 such that

(1.2) a(u, v) + c(u, v) = λb(u, v) for all v ∈ V,

where

a(u, v) :=
∫

Ω

∇u∇vdx, c(u, v) :=
∫

Ω

v(β · ∇u)dx, b(u, v) :=
∫

Ω

uvdx,

and (.) denotes complex conjugation.
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As β ∈ R2 it is straightforward that β is divergence free. Therefore, the Gauss
theorem shows that∫

Ω

(β · ∇v)v dx = −
∫

Ω

v(β · ∇v) dx for all v ∈ V,

and hence Re(a(v, v) + c(v, v)) = Re(a(v, v)) = |||v|||2. This implies that the bi-
linear form a(·, ·) + c(·, ·) is elliptic, with ellipticity constant 1 independent of β
and continuous in V, since |β| is bounded. The bilinear form b(·, ·) is continuous,
symmetric and positive definite, and hence induces a norm ‖·‖ := b(·, ·)1/2 on H.
For this model problem |||·||| = a(·, ·)1/2 and ‖·‖ = ‖·‖L2(Ω;C).

For the analysis and the adaptive method of this non-selfadjoint eigenvalue prob-
lems it is necessary to consider also the dual eigenvalue problem:
Determine a non-trivial dual eigenpair (λ?, u?) ∈ C × V with b(u?, u?) = 1 such
that

(1.3) a(w, u?) + c(w, u?) = λ?b(w, u?) for all w ∈ V.

Note that the primal and dual eigenvalues are connected via λ = λ?.

For a finite dimensional subspace V` ⊆ V the discretized primal and dual prob-
lems read:
Determine non-trivial primal and dual eigenpairs (λ`, u`) ∈ C × V` and (λ?` , u

?
` ) ∈

C× V` such that

a(u`, v`) + c(u`, v`) = λ`b(u`, v`) for all v` ∈ V`,(1.4)

a(w`, u?` ) + c(w`, u?` ) = λ?`b(w`, u
?
` ) for all w` ∈ V`.(1.5)

In view of the difficulties for non-selfadjoint problems discussed before, we will
focus in the following on the simpler special situation that the eigenvalue of interest
λ is simple and well-separated from the rest of the spectrum.

To distinguish continuous, discrete and approximated eigenvalues, some further
notation is introduced. In the following λ(t) will denote the continuous eigenvalue
of interest at homotopy step t, λ`(t) the corresponding eigenvalue of the discrete
problem, while λ̃`(t) denotes its approximation computed by an iterative eigenvalue
solver in finite precision arithmetic. The corresponding eigenfunctions are denoted
in a similar fashion, i.e., u(t), u`(t), ũ`(t). In order to distinguish the eigenfunction
u`(t) from the corresponding coefficient vector with respect to a given finite element
basis, for this eigenvector u`(t) bold letters will be used. For all these eigenvalues
and eigenfunctions or eigenvectors ? denotes the solution of the corresponding dual
problem, i.e., for the algebraic eigenvalue problem u?` (t) denotes the corresponding
left eigenvector.

We will also use the common notation x . y for x ≤ Cy with a constant C
independent of the mesh size.

The paper is organized as follows: Section 2 reviews the adaptive finite element
method (AFEM) and Section 3 discusses the homotopy method. The homotopy
error is presented in Section 4. In Section 5 a complete a posteriori error estimator
for all three different error sources is presented. In Section 6 several different
adaptive homotopy algorithms are developed. A comparison of the performance for
the different algorithms is presented in Section 7 via several numerical examples.

2. Adaptive finite element methods

In this section we review the basic concept of the adaptive finite element method
(AFEM). Starting from an initial coarse triangulation T0, the AFEM generates a
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sequence of nested triangulations T0, T1, . . . with corresponding nested spaces

V0 ⊆ V1 ⊆ . . . ⊆ V` ⊂ V.

A typical AFEM loop consists of the four steps

Solve −→ Estimate −→ Mark −→ Refine.

Solve. In the step Solve the primal and dual generalized algebraic eigenvalue
problems

(2.1) (A` + C`)u` = λ`B`u` and u?` (A` + C`) = λ?`u
?
`B`

are solved, where the coefficient matrices are the symmetric positive definite stiffness
matrix A`, the nonsymmetric convection matrix C` and the symmetric positive
definite mass matrix B`. The right and left eigenvectors u` = [u`,k] and u?` = [u?`,k]
represent the eigenfunctions

u` =
dim(V`)∑
k=1

u`,kϕk and u?` =
dim(V`)∑
k=1

u?`,kϕk.

with respect to the basis span{ϕ1, . . . , ϕdim(V`)} = V`.

Estimate. At this step the discretization error is estimated. The eigenvalue error
is estimated a posteriori with a standard residual type error estimator using the
residuals for both, the primal and dual, eigenfunctions. The proof of reliability,
i.e., that the estimator is an upper bound of the eigenvalue error, can be found in
[HR01, GC09], where it is shown, that

(2.2) |λ− λ`| .
∑
T∈T`

(
η2
` (T ) + η?2` (T )

)
.

Here the primal η` and dual η∗` refinement indicators for a triangle T ∈ T` are
defined as

η2
` (T ) := h2

T ‖β ·∇u` − λ`u`‖2L2(T ) +
∑

E∈E`(T )

hE‖[∇u`]·nE‖2L2(E),

η?2` (T ) := h2
T ‖−β ·∇u?` − λ?`u?`‖

2
L2(T ) +

∑
E∈E`(T )

hE‖[∇u?` ]·nE‖
2
L2(E),

where E`(T ) denotes the set of all edges for an element T ∈ T`, hE is the length of
the edge E, hT is the diameter of the triangle T , nE denotes an unit normal for the
edge E, and [·] denotes the jump across some edge E defined as [v] := v|T+ − v|T− ,
v ∈ V , for two neighboring triangles T± ∈ T` with E = T+ ∩ T−.

Note that the constant in the a posteriori error estimate (2.2) depends on the
eigenvalue condition number 1/b(u, u?) [GC09].

Mark. Based on the refinement indicators the set of elements M` ⊆ T` that are
refined is specified in the algorithm Mark . LetM` be the set of minimal cardinality
for which the bulk criterion [Dör96],

θ
∑
T∈T`

(
η2
` (T ) + η?2` (T )

)
≤
∑
T∈M`

(
η2
` (T ) + η?2` (T )

)
is satisfied for a given bulk parameter 0 < θ ≤ 1. This minimal set M` may be
computed by a greedy algorithm. Sorting all the values (η2

` (T ) + η?2` (T ))T∈T`
in

ascending order allows to add elements with largest values successively to the set
M` until the bulk criterion is fulfilled.
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Figure 2.1. Bisec3, green and blue refinement. The new refer-
ence edge is marked through a second line in parallel opposite the
new vertices new1, new2 or new3.

Refine. Given a triangulation T` on the level `, let E` denote its set edges and
let E(T ) denote the reference edge for a given triangle T . Note that the reference
edge E(T ) will be the same edge of T in all triangulations T` which include T .
However, once T in T` is refined, the reference edges will be specified for the different
sub-triangles as indicated in Figure 2.1. To preserve the quality of the mesh, a
closure algorithm computes the smallest subset M̂` of E` which includes all edges
of elements in M` and reference edges E(T ) such that{

E(T ) : T ∈ T` with E`(T ) ∩ M̂` 6= ∅
}
⊆ M̂`.

In other words, once an edge E of an element T is marked for refinement, the
reference edge E(T ) of T is marked as well. The mesh-refinement method Refine
then consists of the following five different refinements. Elements with no marked
edge are not refined, elements with one marked edge are refined green, elements
with two marked edges are refined blue, and elements with three marked edges are
refined bisec3 as depicted in Figure 2.1.

For further details on adaptive finite element methods for several problems see
[AO00, BR03, BS02, Ver96].

3. Homotopy methods

In this section we will discuss homotopy methods and extend them from the matrix
eigenvalue problem to the operator problem. Homotopy methods in the context of
nonsymmetric matrix eigenvalue problems are discussed in [LZ92, LZ99, LZC92,
LKK97]. In [LG95] an extension to the eigenvalue problem for selfadjoint partial
differential operators is presented.

In the matrix case, from the eigenvalues and eigenvectors of some known matrix
A0, for a given function f : [0, 1] → [0, 1] with f(0) = 0, f(1) = 1, the eigenvalues
and eigenvectors of

(3.1) H(t) = (1− f(t))A0 + f(t)A1 for 0 ≤ t ≤ 1

can be computed by following their paths from 0 to 1. In the following we will
discuss the case f(t) = t, but in practice, the function f should grow faster towards
t = 1 to improve the convergence of the homotopy method.

The homotopy concept can be easily extended to the convection-diffusion oper-
ator eigenvalue problem. Starting from the spectrum of some known operator, e.g.,
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from L0u := −∆u, one may use a continuation method to obtain the eigenpairs for
the convection-diffusion operator L1u := −∆u+ β · ∇u.

Throughout the paper the following homotopy equation is considered for the
model problem (1.1)

(3.2) H(t) = (1− t)L0 + tL1 for 0 ≤ t ≤ 1.

Since for t = 0 we have
H(0) = L0,

the eigenpairs of H(0) are the eigenpairs for the Laplace eigenvalue problem. The
continuation method uses a ’time’-stepping procedure with nodes t0 = 0 < t1 <
. . . < tN = 1 to compute the eigenvalues and eigenvectors of

−∆u+ tiβ · ∇u = λu in Ω.

Finally when the homotopy reaches its final value 1, the eigenpairs of H(1) = L1,
are the eigenpairs of the desired problem,

−∆u+ β · ∇u = λu in Ω.

For each step ti the corresponding weak finite dimensional primal and dual problems

a(u`, v`) + ti c(u`, v`) = λ`b(u`, v`) for all v` ∈ V`,
a(w`, u?` ) + tic(w`, u?` ) = λ?`b(w`, u

?
` ) for all w` ∈ V`,

lead to the generalized primal and dual matrix eigenvalue problems

(A` + ti C`)u` = λ`B`u`,(3.3)
u?` (A` + ti C`) = λ?`u

?
`B`,(3.4)

corresponding to the discrete homotopy equation

H`(t) = (1− t)A` + t(A` + C`) = A` + tC`.

For the case considered here, of simple and well-separated eigenvalues that do not
bifurcate during the homotopy process, it is known [Kat82] that every eigenvalue
λ`(t) of the generalized eigenvalue problems (3.3) and (3.4) is an analytic function
in t. Hence by choosing appropriate homotopy step-sizes, the eigenvalues can be
continued on an analytic path towards the eigenvalues of (A`+C`, B`), see [LKK97,
LZ99]. The evolution of an eigenpair as a function of t is called an eigenpath and
is denoted by (λ`(t),u`(t)) and (λ?` (t),u

?
` (t)), respectively.

4. Homotopy Error

In this section we analyze the homotopy error which in another context is called
modeling error [BE03]. As we solve at the beginning of the homotopy process first
the selfadjoint problem and on the matrix level symmetric generalized eigenvalue
problem we need to understand how the real eigenvalues of the symmetric prob-
lem move to the (potentially complex conjugate) eigenvalues of the final problem.
For this we need to bound the homotopy error between the eigenvalues of the ini-
tial symmetric and of the final nonsymmetric problem via some a posteriori error
estimator, i.e.,

|λ(1)− λ(t)| . ν(t) for 0 ≤ t ≤ 1.
We have the following bound for the operator eigenvalue problem.

Lemma 4.1. For the model problem (1.1), the difference between the exact eigen-
values λ(t) of the homotopy H(t) in (3.2) and λ(1) can be estimated via

(4.1) |λ(1)− λ(t)| . ν(t) := (1− t)|β|∞ (|||u(t)|||+ |||u?(t)|||) for 0 ≤ t ≤ 1.

The constant in the inequality tends to 1/(2b(u(1), u?(1)) as t→ 1.
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Proof. For the homotopy parameter 0 ≤ t ≤ 1, the primal and dual weak eigenvalue
problems have the form

a(u(t), v) + tc(u(t), v) = λ(t)b(u(t), v) for all v ∈ V,
a(w, u?(t)) + tc(w, u?(t)) = λ?(t)b(w, u?(t)) for all w ∈ V.

Algebraic manipulations yield

(λ(1)− λ(t))
(
b(u(1), u?(1)) + b(u(t), u?(t))− b(u(1)− u(t), u?(1)− u?(t))

)
= (λ(1)− λ(t))

(
b(u(1), u?(t)) + b(u(t), u?(1))

)
= λ(1)b(u(1), u?(t)) + λ?(1)b(u(t), u?(1))

− λ?(t)b(u(1), u?(t))− λ(t)b(u(t), u?(1))

= (1− t)c(u(1), u?(t)) + (1− t)c(u(t), u?(1)).

Since β is divergence free, it follows that

c(u(1), u?(t)) = −c(u?(t), u(1)).

Then the Hölder inequality implies that

c(u(t), u?(1))− c(u?(t), u(1)) ≤ ‖β · ∇u(t)‖‖u?(1)‖+ ‖β · ∇u?(t)‖‖u(1)‖
≤ |β|∞ (|||u(t)|||+ |||u?(t)|||) .

Since b(u(t), u?(t)) tends to b(u(1), u?(1)) and since b(u(1) − u(t), u?(1) − u?(t))
tends to zero as t → 1, the constant in the eigenvalue error estimate tends to
1/(2b(u(1), u?(1)). �

5. A Posteriori Error Estimator

In this section we discuss the a posteriori estimation of the eigenvalue error dur-
ing the homotopy process. Since in the next section three algorithms are presented
which use the homotopy process in combination with mesh adaptivity and inexact
algebraic eigenvalue solvers, it is of particular interest to bound the difference be-
tween the exact eigenvalue of the original problem at homotopy step t = 1 and the
inexact iterative solution for a homotopy step t ≤ 1. Since the exact solution is un-
known, this bound should be only based on the computed inexact approximations
of right and left eigenvectors and the approximated eigenvalue of H`(t) .

Using the a posteriori error bound for the discretization error from [HR01, GC09],
we obtain that for any 0 ≤ t ≤ 1,

|||u(t)−u`(t)|||2 + |||u?(t)− u?` (t)|||2 + |λ(t)− λ`(t)|

. η2(λ`(t), u`(t), u?` (t)) :=
∑
T∈T`

(
η2(λ`(t), u`(t);T ) + η?2(λ`(t), u?` (t);T )

)
.

Here and throughout this paper,

η2(λ`(t), u`(t);T ) := h2
T ‖β ·∇u`(t)− λ`(t)u`(t)‖2L2(T )

+
∑

E∈E`(T )

hE‖[∇u`(t)]·nE‖2L2(E),

η?2(λ`(t), u?` (t);T ) := h2
T ‖−β ·∇u?` (t)− λ`(t)u?` (t)‖

2
L2(T )

+
∑

E∈E`(T )

hE‖[∇u?` (t)]·nE‖
2
L2(E).
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Following [Par98, HL06, MM10], for the algebraic errors we have the estimate

|||u`(t)−ũ`(t)|||2 + |||u?` (t)− ũ?` (t)|||2 + |λ`(t)− λ̃`(t)|

. µ2(λ̃`(t), ũ`(t), ũ?` (t)) :=

(
‖r`‖B−1

`

‖u`‖B`

)2

+

(
‖r?`‖B−1

`

‖u?`‖B`

)2

,

with the algebraic residuals

r` := (A` + C`)u` − λ`B`u`, r?` := u?` (A` + C`)− λ?`u?`B`,

and ‖u`‖M :=
√

u∗`Mu`. The constants for the algebraic error estimators depend
on the condition number of the considered eigenvalue and the gap in the spectrum.
However, in our numerical examples the eigenvalue of interest is well-conditioned
and well-separated from the rest part of the spectrum.

Lemma 5.1. Suppose that |λ`(t) − λ̃`(t)| < 1. Then, for a fixed 0 ≤ t ≤ 1, the
perturbation of the a posteriori error estimator for the discretization error satisfies

|η(λ`(t), u`(t), u?` (t))− η(λ̃`(t), ũ`(t), ũ?` (t))|2 . µ2(λ̃`(t), ũ`(t), ũ?` (t)).

Proof. Using the triangle inequality, we have

|η(λ`(t), u`(t), u?` (t))− η(λ̃`(t), ũ`(t), ũ?` (t))|2

≤
∑
T∈T`

h2
T ‖β ·∇(u`(t)− ũ`(t))− λ`(t)u`(t) + λ̃`(t)ũ`(t)‖2L2(T )

+
∑
E∈E`

hE‖[∇(u`(t)− ũ`(t))]·nE‖2L2(E)

+
∑
T∈T`

h2
T ‖−β ·∇(u?` (t)− ũ?` (t))− λ`(t)u?` (t) + λ̃`(t)ũ?` (t)‖

2
L2(T )

+
∑
E∈E`

hE‖[∇(u?` (t)− ũ?` (t))]·nE‖
2
L2(E).

The local discrete inverse inequality [BS02] for v` ∈ V` reads

h2
T ‖D2v`‖2L2(T ) . ‖∇v`‖

2
L2(T ).

Let ωE := T+ ∪ T− denote the edge patch for two neighboring triangles T± ∈ T`
such that E = T+ ∩ T−. The trace inequality [BS02] for v ∈ V

‖v‖2L2(E) . h
−1
E ‖v‖

2
L2(ωE) + hE‖∇v‖2L2(ωE)

together with another application of the triangle inequality yields

|η(λ`(t), u`(t), u?` (t))− η(λ̃`(t), ũ`(t), ũ?` (t))|2

.
∑
T∈T`

h2
T ‖λ`(t)u`(t)− λ̃`(t)ũ`(t)‖2L2(T ) + h2

T ‖λ?` (t)u?` (t)− λ̃?` (t)ũ?` (t)‖2L2(T )

+
∑
T∈T`

h2
T |β|∞

(
‖∇u`(t)−∇ũ`(t)‖2L2(T ) + ‖∇u?` (t)−∇ũ?` (t)‖2L2(T )

)
+
∑
E∈E`

‖∇u`(t)−∇ũ`(t)‖2L2(ωE) + ‖∇u?` (t)−∇ũ?` (t)‖2L2(ωE).
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The finite overlap of the edge patches ωE and the Poincaré inequality [BS02] lead
to

|η(λ`(t), u`(t), u?` (t))− η(λ̃`(t), ũ`(t), ũ?` (t))|2

. |||u`(t)− ũ`(t)|||2 + |||u?` (t)− ũ?` (t)|||2

+ ‖λ`(t)u`(t)− λ̃`(t)ũ`(t)‖2 + ‖λ?` (t)u?` (t)− λ̃?` (t)ũ?` (t)‖2

. |||u`(t)− ũ`(t)|||2 + |||u?` (t)− ũ?` (t)|||2 + |λ`(t)− λ̃`(t)|2.

Using the assumption |λ`(t)− λ̃`(t)| < 1 completes the proof. �

Lemma 5.2. For the model problem (1.1), the difference between the iterative
eigenvalue λ̃`(t) in the homotopy H`(t) and the continuous eigenvalue λ(1) of the
original problem (1.1) can be estimated a posteriori via

|λ(1)− λ̃`(t)| . ν(λ̃`(t), ũ`(t), ũ?` (t)) + η2(λ̃`(t), ũ`(t), ũ?` (t)) + µ2(λ̃`(t), ũ`(t), ũ?` (t))

in terms of

ν(λ̃`(t), ũ`(t), ũ?` (t)) :=(1− t)|β|∞ (|||ũ`(t)|||+ |||ũ?` (t)|||)

+ (1− t)|β|∞
(
η(λ̃`(t), ũ`(t), ũ?` (t)) + µ(λ̃`(t), ũ`(t), ũ?` (t))

)
.

Proof. The triangle inequality gives

|λ(1)− λ̃`(t)| ≤ |λ(1)− λ(t)|+ |λ(t)− λ`(t)|+ |λ`(t)− λ̃`(t)|.
The first term is estimated via Lemma 4.1 as

|λ(1)− λ(t)| . (1− t)|β|∞ (|||u(t)|||+ |||u?(t)|||)
≤ (1− t)|β|∞ (|||ũ`(t)|||+ |||ũ?` (t)|||)

+ (1− t)|β|∞ (|||u(t)− u`(t)|||+ |||u`(t)− ũ`(t)|||)
+ (1− t)|β|∞ (|||u?(t)− u?` (t)|||+ |||u?` (t)− ũ?` (t)|||) .

The a posteriori error bound and Lemma 5.1 lead to

|||u(t)− u`(t)||| . η(λ̃`(t), ũ`(t), ũ?` (t)) + µ(λ̃`(t), ũ`(t), ũ?` (t)),

|||u?(t)− u?` (t)||| . η(λ̃`(t), ũ`(t), ũ?` (t)) + µ(λ̃`(t), ũ`(t), ũ?` (t)).

The algebraic error estimates

|||u`(t)− ũ`(t)||| . µ(λ̃`(t), ũ`(t), ũ?` (t)),

|||u?` (t)− ũ?` (t)||| . µ(λ̃`(t), ũ`(t), ũ?` (t))

then complete the estimate of the first term. The second term is estimated with
Lemma 5.1 as

|λ(t)− λ`(t)| . η2(λ̃`(t), ũ`(t), ũ?` (t)) + µ2(λ̃`(t), ũ`(t), ũ?` (t))

and the third term again with the algebraic error estimate

|λ`(t)− λ̃`(t)| . µ2(λ̃`(t), ũ`(t), ũ?` (t)). �

6. Algorithms

In this section we will combine the homotopy method with the adaptive finite
element method. We will balance the homotopy error, the discretization error and
the error in the iterative solution of the generalized algebraic eigenvalue problems
(3.3)–(3.4). An important factor in the presented algorithms is the step-size control
for the homotopy steps. The homotopy method strongly depends on the step-size
τ , which influences the convergence and accuracy of the method. A very small τ
will assure that the homotopy method gives a good approximation of the desired
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eigenvalues and eigenvectors, but will lead to large computational costs. On the
other hand, if τ is too large, then the method may not capture a crossing or joining
of eigenvalues. Therefore, the goal is to choose τ in an optimal way, such that it
will assure accuracy of the approximation, minimize the computational effort and
keep track of the eigenpath. To achieve this, we may employ adaptive step-size
control techniques that are well established in the numerical solution of ordinary
differential equations [HNW93], e.g., predictor-corrector procedures as they are
commonly used [LZ99]. Combining the homotopy approach with the adaptive finite
element method, however, requires a modification of the adaptive step-size control
techniques.

At this stage, under the given assumptions, the following simple step-size con-
trol can be applied. If the number of required refinement steps for the homotopy
parameters ti and ti + τ differs significantly, then the homotopy step for ti + τ is
rejected and ti + qτ is used, where 0 < q < 1, e.g., q = 1

2 . If the number of refine-
ments is small, then the step-size τ is preserved or even increased by choosing, e.g.,
τ = q−1τ . This simple idea allows to describe the dependence of the step-size not
only on the solution but also on the mesh adaptation process.

As test case, we consider only the eigenvalue with smallest real part, which is
known to be simple and well-separated [Eva00] for all 0 ≤ t ≤ 1. Thus it will not
bifurcate and the evolution of the eigenvalue follows an analytic path.

The best choice of the maximal number of refinement steps is still an open
question. Future work will have to include the combination of the presented con-
cepts with methods that detect multiple eigenvalues, bifurcation in the paths, ill-
conditioning, or the treatments of jumps in the eigenpaths.

In the following we present three different adaptive algorithms for the homotopy
driven eigenvalue problem.

In Algorithm 1, a fixed step-size τ for the homotopy is considered in order to
analyze the influence of the homotopy error on the mesh adaptation process and
the accuracy of the solution. Algorithm 2 considers an adaptive step-size control
for the homotopy, based on the number of refinements required to balance the
discretization error η` and the desired accuracy ε. Algorithm 3 then finally combines
the two concepts from Algorithms 1 and 2.

In all three algorithms, ρ will denote the accuracy for the matrix eigensolver,
0 < ω < 1 is the parameter in the relative accuracy condition for the algebraic
approximation error, 0 < δ < 1 is the parameter balancing the discretization and
homotopy error estimators, 0 < θ < 1 is the marking parameter for the bulk
marking strategy and γ denotes the maximal number of refinement steps in each
homotopy step of Algorithms 2 and 3. In Algorithm 1, τ is the fixed step-size, while
in the other two algorithms it is the starting step-size for refinement.

In all three homotopy methods, the basic mesh adaptation method given by
the procedures Estimate & Solve, Mark and Refine as described in Section 2
is used. In the Estimate & Solve function (see below) for the given mesh and
parameters in each refinement step, the generalized algebraic eigenvalue problem
(AEVP) for ((A`+tC`), B`) has to be solved. The approximation of the eigenpair is
considered to be accurate if the estimate for the complete algebraic approximation
error µ, (both for the left and right eigenvectors), is smaller then the discretization
error η, up to some fixed constant ω (see line 5). To ensure that the algebraic
approximation error itself is small, the tolerance parameter ρ for the iterative solver
depends on the discretization error η and is also adapted (lines 4–6). The algebraic
eigenvalue problem is solved using the Arpack [LSY98] implementation of the
implicitly restarted Arnoldi method for nonsymmetric eigenvalue problems. The
size of the constructed Krylov subspaces is chosen to be as small as possible and



ADAPTIVE HOMOTOPY METHODS 11

η`

τ

Algorithm 1

η`

τ

ε

Algorithm 2

τ

η`

Algorithm 3

Figure 6.1. Schematic view of three homotopy-based Algorithms.

the approximations of the right and left eigenvectors from the previous iteration
are taken as starting values for the new Arnoldi step. Note that here the final
accuracy ε of the solution is not required at every step, only the relation between
the discretization error and the algebraic approximation error is used to stop the
procedure.

In order to illustrate the differences between the three algorithms their main
ideas are depicted in Figure 6.1.

6.1. Algorithm 1. The first algorithm introduces a homotopy method with fixed
step-size τ . For the initial homotopy parameter t0 = 0, the corresponding Laplace
eigenvalue problem is solved on the initial mesh T0(t0) (line 3), where the algebraic
eigenvalue problem is solved up to tolerance ρ(t0) (line 4, see Estimate & Solve
for details). This step is the same for all three algorithms. Based on the calculated
initial approximation of the eigenpair at t0 the corresponding discretization and
homotopy error estimators η0(t0), ν0(t0) are determined (line 6).

In order to balance the discretization error, the homotopy error, and the desired
accuracy ε, the adaptive mesh refinement method is used (lines 9–15). The mesh
adaptation process is repeated as long as the discretization error dominates over
the homotopy error multiplied by a balancing factor δ or is larger than the desired
accuracy ε (line 9). Throughout the adaptive loop, sequences of meshes T`+j(tk),
error estimators ηj(tk), νj(tk), µj(tk) and eigentriple approximations (λ̃j(tk),ũj(tk),
ũ?j (tk)) are assembled. To avoid unnecessary computational work, at each step of
the adaptation loop, the algebraic eigenvalue problem is solved only up to the

Estimate & Solve

Input: T , t, ρ, ω, ũ, ũ?

1: [(A+ C), B] = Create AEVP(T , β, t)
2: [µ, ũ, ũ?] = Solve AEVP(A+ C, B, ρ, ũ, ũ?)
3: Compute η
4: ρ = 2η
5: while µ > ωη do
6: ρ = ρ

2
7: [µ, ũ, ũ?] = Solve AEVP(A+ C, B, ρ, ũ, ũ?)
8: Compute η
9: end while

10: Compute ν
Output: η, ν, µ, λ, ũ, ũ?
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accuracy ρ(tk), which depends on the discretization error ηj(tk) (see line 8 and the
Estimate & Solve function for details). When the condition in line 9 does not
hold, a new homotopy parameter tk+1 = tk + τ is chosen and the new adaptation
process starts with a previously obtained approximation taken as initial guess (line
13). Here Pj,j−1 denotes the prolongation matrix from the last coarse mesh Tj−1(tk)
to the refined mesh Tj(tk) (line 12–13). Note that the final mesh derived for the
former homotopy parameter is taken as the initial mesh for the new computations
(line 3). After a fixed number of homotopy steps tk reaches its final value one and
the algorithm returns the approximated eigenvalues and eigenvectors of the model
problem.

The final number of refinement levels reached up to the parameter tk is denoted
by `, while j is a refinement index for the current parameter tk. This distinction
is made to separate a sequence of meshes for a single homotopy step from the final
sequence obtained for the whole algorithm. It has particular importance for the
next two algorithms.

Although controlling the homotopy error is beneficial, however, an arbitrary
fixed choice of the homotopy step-size, in general, will not work, especially for more
complicated problems. In the nonsymmetric case the eigenvalues move according
to their condition number [Saa92]. Ill-conditioned eigenvalues, as a function of t,
may move very fast. The lack of an analogue of the min-max theorem [GV96] for
nonsymmetric problems makes the localization of the eigenvalue very hard. In par-
ticular, it may be difficult to guarantee fast convergence of the iterative eigensolver
to the eigenvalue with smallest real part for the next homotopy parameter tk + τ
even with correct starting eigenvalue for a certain parameter tk, if the step-size τ is
chosen too large. On the other hand choosing τ very small leads to a large number
of homotopy steps, and since for each step the whole adaptive mesh refinement loop
has to be performed, this may led to large computational effort.

6.2. Algorithm 2. In contrast to Algorithm 1, in Algorithm 2 an adaptive step-
size control for the homotopy is used. Starting with an initial step-size τ the first

Algorithm 1

Input: t0 = 0, τ, T0(t0), ρ, ε, ω, δ, ũ0(t0), ũ?0(t0)
1: ` = 1, k = 0
2: while tk ≤ 1 do
3: T0(tk) = T`(tk−1)
4: ρ(tk) = ρ
5: [ũ0(tk), ũ?0(tk)] = [ũ`(tk−1), ũ?` (tk−1)]
6: [η0(tk), ν0(tk), ũ0(tk), ũ?

0(tk)] = Estimate & Solve(T0(tk), ρ(tk), ω, ũ0(tk), ũ?
0(tk))

7: j = 0
8: ρ(tk) = η`(tk)
9: while ηj(tk) > max(δνj(t), ε) do

10: j = j + 1
11: Mj(tk) = Mark(ηj(tk), θ)
12: Tj(tk) = Refine(Tj−1(tk),Mj(tk))
13: [ũj(tk), ũ?j (tk)] = [Pj,j−1ũj−1(tk), Pj,j−1ũ?j−1(tk)]
14: [ηj(tk), νj(tk), ũj(tk), ũ?

j (tk)] = Estimate & Solve(Tj(tk), ρ(tk), ω, ũj(tk), ũ?
j (tk))

15: end while
16: ` = `+ j
17: tk+1 = tk + τ, k = k + 1
18: end while
Output: λ̃(1), ũ(1), ũ?(1)
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Algorithm 2

Input: t0 = 0, τ, β, T0(t0), ρ, ε, ω, γ, ũ0(t0), ũ?0(t0)
1: ` = 1, k = 0
2: while tk < 1 do
3: T0(tk) = T`−1(tk−1)
4: ρ(tk) = ρ
5: [ũ0(tk), ũ?0(tk)] = [ũ`−1(tk−1), ũ?`−1(tk−1)]
6: [η0(tk), ν0(tk), ũ0(tk), ũ?

0(tk)] = Estimate & Solve(T0(tk), ρ(tk), ω, ũ0(tk), ũ?
0(tk))

7: ρ(tk) = η`(tk)
8: j = 0
9: while ηj(tk) > ε do

10: if j > γ then
11: k = k − 1
12: τ = qτ
13: j = 0
14: break
15: end if
16: j = j + 1
17: Mj(tk) = Mark(ηj(tk), θ)
18: Tj(tk) = Refine(Tj−1(tk),Mj(tk))
19: [ũj(tk), ũ?j (tk)] = [Pj,j−1ũj−1(tk), Pj,j−1ũ?j−1(tk)]
20: [ηj(tk), νj(tk), ũj(tk), ũ?

j (tk)] = Estimate & Solve(Tj(tk), ρ(tk), ω, ũj(tk), ũ?
j (tk))

21: end while
22: ` = `+ j
23: if j < γ then
24: τ = q−1τ
25: end if
26: tk+1 = min(tk + τ, 1), k = k + 1
27: end while
Output: λ̃`(1), ũ`(1), ũ?(1)

approximation is computed to assure that the discretization error ηj(tk) is smaller
than the fixed, desired accuracy ε (line 9). No dependence on the homotopy error is
considered here. Additionally, for each homotopy parameter only a fixed number of
refinement steps γ inside the adaptive loop is allowed (see line 10). If the adaptive
loop needs more refinement steps than γ (line 10), then it means that the eigenvalue
problems considered for parameters tk and tk+τ differ too much and that the step-
size τ should be decreased. In that case, to ensure good approximations in the
eigenvalue continuation, the algorithm rejects the current homotopy step (lines 11–
13), sets up a new τ = qτ (line 12), for some 0 < q < 1, and starts the adaptation
loop for the new homotopy parameter tk+τ . If the number of refinements is smaller
than γ, then the algorithm attempts to increase the step-size to q−1τ (line 24).
Otherwise τ is preserved in the next homotopy step. At this point the previously
introduced distinction between global and local refinement indices ` and j is used
to carry out the rejection step, while keeping the right mesh hierarchy. Meshes
obtained for the rejected homotopy parameter will not be considered in the final
sequence of meshes.

Note, that here the initial mesh for the new homotopy parameter is taken as the
last but one mesh obtained for the previous homotopy step (line 3). If the step-sizes
were chosen optimally and the consecutive problems do not differ too much, then
the previous mesh should be a good starting mesh for the next step. In this way
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Algorithm 3

Input: t0 = 0, τ, q, T0(t0), ε, ω, δ, γ, ũ0(t0), ũ?0(t0)
1: ` = 1, k = 0
2: while tk ≤ 1 & tk−1 < 1 do
3: T0(tk) = T`−1(tk−1)
4: ρ(tk) = ρ
5: [ũ0(tk), ũ?0(tk)] = [ũ`−1(tk−1), ũ?`−1(tk−1)]
6: [η0(tk), ν0(tk), ũ0(tk), ũ?

0(tk)] = Estimate & Solve(T0(tk), ρ(tk), ω, ũ0(tk), ũ?
0(tk))

7: ρ(tk) = η`(tk)
8: j = 0
9: while ηj(tk) > max(δνj(tk), ε) do

10: if j > γ then
11: k = k − 1
12: τ = qτ
13: j = 0
14: break
15: end if
16: j = j + 1
17: Mj(tk) = Mark(ηj(tk), θ)
18: Tj(tk) = Refine(Tj−1(tk),Mj(tk))
19: [ũj(tk), ũ?j (tk)] = [Pj,j−1ũj−1(tk), Pj,j−1ũ?j−1(tk)]
20: [ηj(tk), νj(tk), ũj(tk), ũ?

j (tk)] = Estimate & Solve(Tj(tk), ρ(tk), ω, ũj(tk), ũ?
j (tk))

21: end while
22: ` = `+ j
23: if j < γ then
24: τ = q−1τ
25: end if
26: tk+1 = min(tk + τ, 1), k = k + 1
27: end while
Output: λ̃`(1), ũ`(1), ũ?(1)

the continuation of meshes is also guaranteed. At the beginning it is reasonable
to allow τ to be large and let the algorithm to adapt its step-size by itself. It is
obvious, however, that if the total error is dominated by the homotopy error ν`(tk),
then driving the discretization error η`(tk) in each homotopy step below ε may lead
to large computational effort.

6.3. Algorithm 3. The third algorithm combines both ideas of controlling the
homotopy error and using adaptive step-size control. In this way the homotopy
method accepts only the approximations which are of a desired accuracy and whose
computational cost is reasonable. Simultaneously, adaptation in space, homotopy
and for the iterative solver is applied. During the mesh adaptation the discretization
error ηj(tk) is adapted to be smaller than the homotopy error νj(tk). Also at
each iteration step of the algebraic eigensolver, the approximation error µj(tk) is
adjusted, to avoid computing a solution that is too accurate in comparison to the
discretization error ηj(tk). The adaptation of the homotopy parameter t is based on
the maximal number of refinement levels γ. Currently, no analysis of the optimal
choice of γ is known, that will lead to the minimal number of refinement steps.

In summary, for Algorithm 1 fixed step-sizes in t are considered together with
adaptivity in the mesh size assuring that the complete discretization error η is
below the homotopy error ν for each homotopy parameter t. In Algorithm 2,
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adaptivity in both the homotopy parameter t and the mesh is achieved. Here,
however, unlike in Algorithm 1 the discretization error is driven below the fixed
tolerance ε, which is the same for each homotopy parameter and adaptation level.
Algorithm 3 then combines the techniques of Algorithms 1 and 2. The homotopy
error ν drives the mesh adaptivity and the homotopy step-sizes are adapted with
respect to the parameter γ.

7. Numerical Experiments

This section presents some numerical results obtained with the three adaptive
homotopy Algorithms 1–3 presented in Section 6. As a model problem we consider

−∆u+ β · ∇u = λu in Ω and u = 0 on ∂Ω

with Ω being either the unit square or the L-shaped domain. In order to calculate
the eigenvalue errors we also compute some reference values. The reference values
were obtained by Aitken extrapolation on uniform meshes [Ait26].

Common to all experiments is that for Arpack [LSY98] the number k of Arnoldi
vectors equals 3 and the maximal number MXITER of Arnoldi restarts is set to
1 [LSY98]. The experiments were run on a AMD Phenom II X6 2,8 GHz processor
with 8GB RAM using the programming environment Matlab R2010a [MAT10].

The homotopy starts with the simple symmetric eigenvalue problem with known
smallest eigenvalue λ(t0) = 2π2 for the unit square and known approximation
λ(t0) ≈ 9.6397238440219 [TB06] for the L-shaped domain and then uses the ho-
motopy to bring in the convection part. All experiments determine the eigenvalue
with the smallest real part, since it is known to be simple and well-separated for
any value of convection parameter β [Eva00], thus there are no bifurcation points
and the algorithms are following analytic eigenpaths.

To recall the motivation of the homotopy method, it is important to note that for
general non-selfadjoint problems, there is no guarantee that we achieve convergence
to an eigenvalue of interest if standard methods are used. Experiments show that
with a small number of Arnoldi vectors (i.e., a low dimensional Krylov subspace,)
and a random starting vector Arpack does not find any good approximation to
an eigenvalue for t = 1 even for very coarse meshes. Thus, stable adaptive mesh
refinement is not possible with a low cost variation of the Arnoldi method as shown
for selfadjoint problems in [MM10]. On the other hand the numerical experiments
show that, starting from the symmetric problem and following the eigenpath lead to
sufficiently accurate approximations of the original non-selfadjoint problem. This
shows that we can view our algorithms as means to provide a starting vector for
the non-selfadjoint problem which is sufficiently close to the eigenvector of interest.
Therefore, most of the computational work is expected to occur in the last homotopy
step t = 1 which is confirmed by the numerical experiments.

Example 1. For this example let Ω be the (convex) unit square Ω = (0, 1) ×
(0, 1). We choose the convection parameter β = (20, 0)T , the starting point of the
homotopy t0 = 0, the marking parameter θ = 0.3, the balancing parameter of the
discretization and approximation error estimators ω = 0.1, the step-size update
parameter q = 1/2, the number of refinement steps γ = 2, the overall accuracy
ε = 10−1, the initial tolerance for the iterative solver ρ = 1 and the balancing
parameter of the homotopy and discretization error estimators δ = 0.1. A reference
value for the eigenvalue with the smallest real part is given by

λ ≈ 119.7392.

In general one can observe that all three algorithms lead to a finite sequence of
homotopy steps and to an approximation of the eigenvalue of interest at the last
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t η`(t) ν`(t) µ`(t) error estimator
0.0 18.7972 267.9989 0.0025677 286.7986
0.1 21.9037 250.3131 0.0003188 272.2171
0.2 17.6390 224.2302 0.0042579 241.8735
0.3 14.7243 204.8199 0.0066615 219.5508
0.4 12.0933 185.7716 0.0054502 197.8704
0.5 10.1746 167.8197 0.0560768 178.0503
0.6 7.8788 142.9867 0.0189887 150.8845
0.7 11.0907 121.0055 0.0577501 132.1540
0.8 8.4339 85.4466 0.0206147 93.9012
0.9 3.4934 44.0072 0.0025632 47.5031
1.0 0.0854 0.0000 0.0008344 0.0862

Table 7.1. The discretization η`(t), the homotopy ν`(t), and the
iteration µ`(t) error estimator for all homotopy steps t in Algo-
rithm 1 for Example 1.

t λ̃`(t)
|λ`(1)−λ̃`(t)|
|λ`(1)| #DOF CPU time

0.0 20.31171 0.83037 65 0.04
0.1 21.19837 0.82296 65 0.05
0.2 23.76193 0.80155 114 0.09
0.3 28.68327 0.76045 222 0.13
0.4 35.57882 0.70286 436 0.17
0.5 44.58901 0.62762 838 0.24
0.6 55.71845 0.53467 1607 0.35
0.7 68.87482 0.42479 1607 0.41
0.8 83.83805 0.29983 3075 0.66
0.9 100.83461 0.15788 10370 1.86
1.0 119.74434 0.00004 587509 127.34

Table 7.2. The eigenvalue approximation λ̃`(t), the relative
eigenvalue error |λ`(1)−λ̃`(t)|

|λ`(1)| , the number of degrees of freedom
(#DOF), and the CPU time for all homotopy steps t in Algo-
rithm 1 applied to Example 1.

t η`(t) ν`(t) µ`(t) error estimator
0.00 0.0725 183.1140 0.0000000 183.1865
0.25 0.0649 156.7655 0.0000002 156.8303
0.50 0.0740 136.5043 0.0000012 136.5783
0.75 0.0640 88.4754 0.0000598 88.5395
1.00 0.0783 0.0000 0.0004680 0.0788

Table 7.3. The discretization η`(t), the homotopy ν`(t), and the
iteration µ`(t) error estimator for all homotopy steps t in Algo-
rithm 2 applied to Example 1.

step t = 1. Notice that for all algorithms, more or less, most of the computational
work is done at the last step and therefore for the final problem. This can be seen
in Tables 7.2, 7.4 and 7.6 when comparing the CPU time after the last step to the
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t λ̃`(t)
|λ`(1)−λ̃`(t)|
|λ`(1)| #DOF CPU time

0.00 19.74139 0.83513 18420 2.62
0.25 25.98903 0.78295 48506 20.51
0.50 44.73837 0.62637 124817 40.28
0.75 75.98888 0.36538 366519 112.36
1.00 119.74216 0.00002 641569 278.09

Table 7.4. The eigenvalue approximation λ̃`(t), the relative
eigenvalue error |λ`(1)−λ̃`(t)|

|λ`(1)| , the number of degrees of freedom
(#DOF), and the CPU time for all homotopy steps t in Algo-
rithm 2 applied to Example 1.

t η`(t) ν`(t) µ`(t) error estimator
0.0000 18.7972 267.9987 0.0025668 286.7984
0.2500 21.9560 224.1103 0.0070254 246.0733
0.5000 12.7398 173.0761 0.1539409 185.9698
0.7500 6.2305 99.7848 0.0008341 106.0161
0.8750 5.1172 54.7893 0.0003906 59.9069
0.9375 1.8715 27.6650 0.0001211 29.5367
0.9688 1.1430 14.0956 0.0271601 15.2658
0.9844 0.6630 7.0425 0.0141278 7.7196
0.9922 0.2189 3.4744 0.0006248 3.6940
1.0000 0.0745 0.0000 0.0020618 0.0765

Table 7.5. The discretization η`(t), the homotopy ν`(t), and the
iteration µ`(t) error estimator for all homotopy steps t concerning
Algorithm 3 applied to Example 1.

t λ̃`(t)
|λ`(1)−λ̃`(t)|
|λ`(1)| #DOF CPU time

0.0000 20.31171 0.83037 65 0.04
0.2500 25.86284 0.78401 112 0.25
0.5000 44.52525 0.62815 661 0.45
0.7500 75.97150 0.36553 3613 0.88
0.8750 96.37374 0.19514 6538 5.20
0.9375 107.66847 0.10081 21936 22.60
0.9688 113.63394 0.05099 40027 53.26
0.9844 116.67842 0.02556 71610 194.81
0.9922 118.19399 0.01290 226196 358.30
1.0000 119.76367 0.00020 685571 587.75

Table 7.6. The eigenvalue approximation λ̃`(t), the relative error
|λ`(1)−λ̃`(t)|
|λ`(1)| , the number of degrees of freedom (#DOF), and the

CPU time for all homotopy steps t in Algorithm 3 for Example 1.

previous one. Note that here we only present the data for the best approximation
of each homotopy step and not those for the intermediate approximations.

In Algorithm 1 the fixed homotopy step-size τ = 0.1 is chosen. Table 7.1 and 7.2
for Algorithm 1 show that a small homotopy step-size leads to a sequence where
the second last homotopy step t = 0.9 does involve a small discrete problem, i.e.,
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Figure 7.1. Convergence history of Algorithms 1, 2, and 3 with
respect to #DOF for Example 1.
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Figure 7.2. Convergence history of Algorithms 1, 2, and 3 with
respect to CPU time for Example 1.

#DOF = 10370. Therefore, most of the refinement is done only in the last homotopy
step t = 1, when the final accuracy is reached. Thus the computational overhead
introduced by the homotopy is minor for the right choice of homotopy step-size τ .
Since the best choice for τ is not known, it is necessary, and in practice reasonable,
to introduce some extra computational overhead by using adaptive step-size control.
One may notice that the value obtained in the second last homotopy step has a large
relative error and only the final approximation is good. As displayed in Figure 7.1
this effect leads to a nonlinear convergence rate and results in larger eigenvalue
errors for t < 1 and accurate values only for t = 1.

Algorithm 2 introduces an adaptive homotopy step-size control. As initial step-
size τ = 1 is chosen. Tables 7.3 and 7.4 show that the first homotopy step is
rejected and a smaller step-size τ is taken. In this example Algorithm 2 chooses
less homotopy steps than the other two algorithms. Due to the fixed control of
the discretization error by ε, the number of degrees of freedom (DOFs) is already
high for the simple symmetric problem. This means that for t < 1 the error with
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respect to the DOFs is much larger than for the other algorithms as displayed in
Figure 7.1. On the other hand for the last step t = 1 the result is very accurate.

To overcome the drawback of a fixed step-size in Algorithm 1 and a fixed dis-
cretization error control in Algorithm 2, both techniques are combined in Algo-
rithm 3. In Tables 7.5 and 7.6 we observe that the homotopy step-size is decreased
very much towards the end of the homotopy process. This effect is due to the fact,
that the algorithm increases the number of DOF strongly only for t close to 1.
This observation can be interpreted as that the algorithm computes a sufficiently
accurate initial approximation to an eigenvector for t = 1. Note that most of the
computational costs arise for t close to 1, during the last three homotopy steps.
Figure 7.1 shows that Algorithm 3 is a combination of the other two algorithms.
The error for approximations with homotopy steps t < 1 is much smaller than for
Algorithm 2 but similar to that of Algorithm 1. In contrast to Algorithm 1 the
homotopy step-size is adapted, fewer homotopy steps needed and the steps are more
concentrated towards t = 1.

In Figure 7.2 all three algorithms are compared with respect to computational
time. Obviously, Algorithm 2 and 3 need more time than Algorithm 1, since they
reject some steps during their automatic step-size control. For more complicated
problems, going beyond this simple model example, it is expected that the adaptive
step-size control will lead to faster computation than the method with a fixed step-
size. The homotopy procedure in Algorithm 1 only introduces little computational
overhead, with the possible drawback of a small (unknown) fixed step-size while
Algorithm 2 does adapt the step-size automatically, but for the cost of larger com-
putational overhead. In fact Table 7.4 shows that the overhead is less than 1/2 of
the overall CPU time, which is worthwhile. On the other hand Algorithm 3 needs
even more computational time but combines the two advantages of Algorithm 1
and 2. The increase of the CPU time is due to the fact that Algorithm 3 rejects
many steps during the homotopy process. Nevertheless, this moderate increase of
the computational cost seems to be reasonable for more difficult situations, where
without path following techniques no convergence to the desired eigenvalues can be
guaranteed.

The final approximate primal and dual eigenfunctions for Algorithms 1, 2, and 3,
together with the corresponding meshes, are depicted in Figures 7.3, 7.4 and 7.5.
The final meshes for all problems look quite similar. Notice that, due to the adaptive
refinement procedure for triangles, the symmetry of the mesh cannot strictly be
preserved. For the square domain, primal and dual solutions of the problem have
almost independent supports living on the opposite boundaries of the domain due
to the convection in x direction. Therefore, all final meshes look quite “symmetric”.
This observation shows that, in general, it is necessary to adapt the mesh for both
the primal and dual eigenfunctions. Note that the meshes are more refined towards
the strong boundary layers of both the primal and the dual solution.

Example 2. As in the first example, let Ω be the (convex) unit square Ω =
(0, 1) × (0, 1) and the convection parameter β = (20, 0)T . We choose the start-
ing point of the homotopy t0 = 0, the marking parameter θ = 0.3, the balancing
parameter of the discretization and approximation error estimators ω = 0.1, the
step-size update parameter q = 1/3, the number of refinement steps γ = 2, the over-
all accuracy ε = 10−1, the initial tolerance for the iterative solver ρ = 1 and the
balancing parameter of the homotopy and discretization error estimators δ = 0.1.
Note that the only difference to Example 1 is the choice of the homotopy update
parameter q. Here we demonstrate how a different choice of q influences the ho-
motopy process for algorithms 2 and 3. The results are presented in Tables 7.7,
7.8, 7.9 and 7.10. Figures 7.6 and 7.7 compare the results obtained for Examples
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t η`(t) ν`(t) µ`(t) error estimator
0.0000 0.0725 183.1140 0.0000000 183.1865
0.1111 0.0912 168.2191 0.0000003 168.3103
0.2222 0.0942 159.3306 0.0000002 159.4248
0.3333 0.0989 152.3163 0.0000008 152.4151
0.4444 0.0960 143.1067 0.0000018 143.2027
0.5556 0.0911 129.1835 0.0000177 129.2746
0.6667 0.0801 108.7764 0.0001128 108.8567
0.7778 0.0683 80.8181 0.0000674 80.8864
0.8889 0.0957 45.0185 0.0054764 45.1197
1.0000 0.0754 0.0000 0.0000176 0.0755

Table 7.7. The discretization η`(t), the homotopy ν`(t), and the
iteration µ`(t) error estimator for all homotopy steps t in Algo-
rithm 2 applied to Example 2.

t λ̃`(t)
|λ`(1)−λ̃`(t)|
|λ`(1)| #DOF CPU time

0.0000 19.74139 0.83513 18420 2.49
0.1111 20.97550 0.82482 18790 16.60
0.2222 24.67750 0.79391 29056 25.07
0.3333 30.84926 0.74236 45356 30.59
0.4444 39.49122 0.67019 79339 40.55
0.5556 50.60291 0.57739 125471 57.97
0.6667 64.18232 0.46398 229212 94.00
0.7778 80.23295 0.32994 373527 163.85
0.8889 98.74642 0.17532 374404 223.33
1.0000 119.74011 0.00001 664996 347.61

Table 7.8. The eigenvalue approximation λ̃`(t), the relative
eigenvalue error |λ`(1)−λ̃`(t)|

|λ`(1)| , the number of degrees of freedom
(#DOF), and the CPU time for all homotopy steps t in Algo-
rithm 2 applied to Example 2.

t η`(t) ν`(t) µ`(t) error estimator
0.0000 16.8811 263.0051 0.0021032 279.8883
0.3333 18.0718 206.6701 0.0269778 224.7690
0.6667 12.4096 131.4125 0.0267075 143.8488
0.7778 5.3468 93.0901 0.5150339 98.9520
0.8889 4.1960 49.5161 0.1155408 53.8276
0.9259 2.5740 33.2055 0.0664040 35.8459
0.9630 1.6085 16.6848 0.0016130 18.2949
0.9753 0.9158 11.0943 0.0048967 12.0149
0.9877 0.5368 5.5432 0.0030163 6.0829
0.9918 0.3062 3.6710 0.0001411 3.9773
1.0000 0.0585 0.0000 0.0001896 0.0586

Table 7.9. The discretization η`(t), the homotopy ν`(t), and the
iteration µ`(t) error estimator for all homotopy steps t in Algo-
rithm 3 applied to Example 2.
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Figure 7.3. Primal (top left) and dual (top right) eigenfunction
approximations for the final mesh (bottom) with 5130 nodes for
Algorithm 1 applied to Example 1 with ε = 2.
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Figure 7.4. Primal (top left) and dual (top right) eigenfunction
approximations for the final mesh (bottom) with 6225 nodes for
Algorithm 2 applied to Example 1 with ε = 10.

1 and 2. In general we do not observe significant differences, which confirms that
the presented algorithms seem to be rather robust with respect to the adaptivity
of the homotopy. Comparing the results with those of the Example 1 shows that
the choice q = 1/3 leads to similar relative eigenvalue errors for t < 1 but smaller
relative eigenvalue error at the end for homotopy step t = 1. It is remarkable
that Table 7.8 indicates that Algorithm 2 generates a sequence with almost fixed
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Figure 7.5. Primal (top left) and dual (top right) eigenfunction
approximations for the final mesh (bottom) with 6663 nodes for
Algorithm 3 applied to Example 1 with ε = 10.

t λ̃`(t)
|λ`(1)−λ̃`(t)|
|λ`(1)| #DOF CPU time

0.0000 20.23079 0.83104 67 0.05
0.3333 30.72139 0.74343 211 0.29
0.6667 64.20818 0.46377 1283 0.46
0.7778 80.23738 0.32990 4610 1.90
0.8889 98.94516 0.17366 8390 2.47
0.9259 105.61009 0.11800 15539 20.97
0.9630 112.53208 0.06019 27839 38.42
0.9753 114.91115 0.04032 50910 92.94
0.9877 117.31628 0.02023 90675 148.05
0.9918 118.11498 0.01356 162166 340.33
1.0000 119.74169 0.00002 874628 510.75

Table 7.10. The approximation λ̃`(t), the relative error
|λ`(1)−λ̃`(t)|
|λ`(1)| , the number of degrees of freedom (#DOF), and the

CPU time for all homotopy steps t in Algorithm 3 applied Exam-
ple 2.

homotopy step-size τ = 0.1. For Algorithm 2 the choice of q = 1/3 leads to 10
homotopy steps compared to 5 steps in Example 1. Although this is an increase
by a factor of two, the overall computational costs increase only slightly. This can
be explained by the fact that in each homotopy step there are fewer refinements
and overall fewer rejections of homotopy steps than in Example 1. For Algorithm 3
the choice of q = 1/3 leads to one additional homotopy step but the computational
costs moderately decrease. All these examples show that a proper choice of the
parameter q is important for the overall performance of the algorithms.
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Figure 7.6. Comparison of the convergence history of Algo-
rithms 2, and 3 with respect to #DOF for Example 1 and Example
2.
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Figure 7.7. Comparison of the convergence history of Algo-
rithms 2, and 3 with respect to CPU time for Example 1 and
Example 2.

Example 3. For this example let Ω be the (non-convex) L-shaped domain Ω =
(−1, 1)×(−1, 1)\([0, 1]×[−1, 1]). We choose the convection parameter β = (10, 0)T ,
the starting point of the homotopy t0 = 0, the marking parameter θ = 0.3, the
balancing parameter of the discretization and approximation error estimators ω =
0.1, the step-size update parameter q = 1/2, the number of refinement steps γ = 2,
the overall accuracy ε = 10−1, the initial tolerance for the iterative solver ρ = 1
and the balancing parameter of the homotopy and discretization error estimators
δ = 0.1. A reference value for the eigenvalue with smallest real part is given by

λ ≈ 34.6397.

Again for Algorithm 1 a fixed step-size τ = 0.1 is chosen. The results look similar
to those of the Examples 1 and 2. The eigenvalue errors for the homotopy steps
t < 1 are rather large and only the values for t = 1 are accurate. Table 7.12 shows
that most of the CPU time is used on the last level.
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t η`(t) ν`(t) µ`(t) error estimator
0.0 7.1409 90.0380 0.0020414 97.1809
0.1 7.6368 83.3621 0.0197150 91.0186
0.2 5.1146 71.0670 0.0044748 76.1861
0.3 6.3955 67.5948 0.0474799 74.0378
0.4 4.7441 58.7391 0.0509343 63.5341
0.5 3.5712 50.2084 0.0339932 53.8136
0.6 2.5295 42.2268 0.1135079 44.8698
0.7 3.2350 33.5816 0.0020547 36.8187
0.8 2.3482 23.5356 0.0127627 25.8966
0.9 0.9418 11.9678 0.0041016 12.9137
1.0 0.0721 0.0000 0.0068876 0.0790

Table 7.11. The discretization η`(t), the homotopy ν`(t), and
the iteration µ`(t) error estimator for all homotopy steps t in Al-
gorithm 1 applied to Example 3.

t λ̃`(t)
|λ`(1)−λ̃`(t)|
|λ`(1)| #DOF CPU time

0.0 9.87965 0.71479 150 0.05
0.1 10.11007 0.70814 150 0.07
0.2 10.74190 0.68990 292 0.11
0.3 11.94127 0.65527 292 0.13
0.4 13.64386 0.60612 488 0.18
0.5 15.87295 0.54177 835 0.25
0.6 18.63379 0.46207 1546 0.38
0.7 21.85930 0.36895 1546 0.47
0.8 25.62643 0.26020 2769 0.69
0.9 29.89331 0.13702 9117 1.51
1.0 34.63932 0.00001 154994 79.15

Table 7.12. The eigenvalue approximation λ̃`(t), the relative
eigenvalue error |λ`(1)−λ̃`(t)|

|λ`(1)| , the number of degrees of freedom
(#DOF), and the CPU time for all homotopy steps t in Algo-
rithm 1 applied to Example 3.

t η`(t) ν`(t) µ`(t) error estimator
0.00 0.0688 64.7314 0.0000002 64.8002
0.25 0.0669 52.1595 0.0000032 52.2264
0.50 0.0864 41.3648 0.0000454 41.4512
0.75 0.0612 24.9728 0.0000235 25.0340
1.00 0.0654 0.0000 0.0002845 0.0657

Table 7.13. The discretization η`(t), the homotopy ν`(t), and
the iteration µ`(t) error estimator for all homotopy steps t in Al-
gorithm 2 applied to Example 3.

Algorithm 2 starts with a step-size τ = 1 which is reduced by the adaptive pro-
cedure to τ = 0.25 and afterwards not changed any more. Therefore, Algorithm 2
needs in total only 5 homotopy steps and not 11 as Algorithm 1. Since the dis-
cretization error estimator at each homotopy step is forced to be smaller than the
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t λ̃`(t)
|λ`(1)−λ̃`(t)|
|λ`(1)| #DOF CPU time

0.00 9.64199 0.72165 18602 2.26
0.25 11.20316 0.67658 28573 15.85
0.50 15.88943 0.54129 39141 20.94
0.75 23.70187 0.31576 99976 37.13
1.00 34.62952 0.00029 168258 74.28

Table 7.14. The eigenvalue approximation λ̃`(t), the relative
eigenvalue error |λ`(1)−λ̃`(t)|

|λ`(1)| , the number of degrees of freedom
(#DOF), and the CPU time for all homotopy steps t in Algo-
rithm 2 applied to Example 3.

t η`(t) ν`(t) µ`(t) error estimator
0.0000 7.1752 90.1329 0.0023012 97.3104
0.5000 4.3043 50.7307 0.0108970 55.0459
0.7500 2.7624 29.2814 0.1024431 32.1463
0.8750 1.1924 14.9202 0.0143657 16.1270
0.9375 0.4360 7.5295 0.0208416 7.9863
1.0000 0.0932 0.0000 0.0000282 0.0932

Table 7.15. The discretization η`(t), the homotopy ν`(t), and
the iteration µ`(t) error estimator for all homotopy steps t in Al-
gorithm 3 applied to Example 3.

t λ̃`(t)
|λ`(1)−λ̃`(t)|
|λ`(1)| #DOF CPU time

0.0000 9.88054 0.71476 148 0.11
0.5000 15.87104 0.54183 698 0.34
0.7500 23.66888 0.31671 2156 0.98
0.8750 28.75123 0.16999 6912 3.10
0.9375 31.60501 0.08761 22058 11.88
1.0000 34.63909 0.00002 124469 32.37

Table 7.16. The approximation λ̃`(t), the relative error
|λ`(1)−λ̃`(t)|
|λ`(1)| , the number of degrees of freedom (#DOF), and the

CPU time for all homotopy steps t in Algorithm 3 applied to Ex-
ample 3.

fixed tolerance ε, the number of degrees of freedom is large already for the first
homotopy step. Here, in contrast to the previous examples, the approximation for
the last step t = 1 is less accurate than for the other two algorithms.

The results for Algorithm 3 show the nature of both other algorithms. The step-
size is chosen adaptively without loss of accuracy compared to the eigenvalue error
of Algorithm 1. Moreover, it needs only one more homotopy step than Algorithm 2
and the meshes for the step t < 1 are much coarser than those of Algorithm 2.
Again most of the time is spent to compute the final approximation on the last and
second last level. It is also interesting to see that the second last approximation of
the eigenvalue obtained in Algorithm 3 is much better than the corresponding one
for Algorithm 2, despite using four times fewer DOFs.
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Figure 7.8. Convergence history of Algorithms 1, 2, and 3 with
respect to #DOF for Example 3.
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Figure 7.9. Convergence history of Algorithms 1, 2, and 3 with
respect to CPU time for Example 3.

It is remarkable that for this more complicated example the fastest algorithm,
with respect to computational time, is Algorithm 3, see Figure 7.9. This experiment,
therefore, strongly underlines the advantages of adaptivity in all three directions,
namely the homotopy, the discretization and the approximation.

Figures 7.10, 7.11 and 7.12 show adaptively refined meshes for Algorithms 1,
2 and 3 in Example 3. Note that due to the re-entrant corner the meshes show
stronger refinement towards the origin. Since the solution for the selfadjoint prob-
lem is known to have a strong singularity at the origin, it is not clear whether this
extra refinement results from the homotopy process or from the refinement on the
last homotopy step t = 1. Indeed, looking at the approximated final primal and
dual solutions does not suggest extra refinement, since they have function values
close to zero at the origin, but this may be misleading. The fact that the convec-
tion acts only along the x axis is clearly visible in the shape of the discrete primal
and dual solutions. Note that the primal and dual solution are not mirror images
as in the previous examples, but again show strong boundary layers on opposite
boundary edges.



ADAPTIVE HOMOTOPY METHODS 27

1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

Figure 7.10. Primal (top left) and dual (top right) eigenfunction
approximations for the final mesh (bottom) with 4926 nodes for
Algorithm 1 for Example 3 with ε = 3.
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Figure 7.11. Primal (top left) and dual (top right) eigenfunction
approximations for the final mesh (bottom) with 3694 nodes for
Algorithm 2 for Example 3 with ε = 3.
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Figure 7.12. Primal (top left) and dual (top right) eigenfunction
approximations for the final mesh (bottom) with 3745 nodes for
Algorithm 3 for Example 3 with ε = 3.
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[OB91] J.E. Osborn and I. Babuška, Eigenvalue problems, vol. 2, Handbook of Numerical

Analysis, 1991.

[Par98] B. N. Parlett, The symmetric eigenvalue problem, SIAM, Philadelphia, PA, 1998.
[PTVF92] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C,

2nd ed., Cambridge University Press, Cambridge, UK, 1992.

[RT83] P.A. Raviart and J.M. Thomas, Introduction á l’analyse numérique des equations
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