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ABSTRACT
Boolean modeling frameworks have long since proved their
worth for capturing and analyzing essential characteristics of
complex systems. Hybrid approaches aim at exploiting the
advantages of Boolean formalisms while refining expressive-
ness. In this paper, we present a formalism that augments
Boolean models with stochastic aspects. More specifically,
biological reactions effecting a system in a given state are
associated with probabilities, resulting in dynamical behav-
ior represented as a Markov chain. Using this approach, we
model and analyze the cytokinin response network of Ara-
bidopsis thaliana with a focus on clarifying the character of
an important feedback mechanism.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: Model Development—
Modeling methodologies; J [Computer Applications]: Life
and Medical Sciences; G [Mathematics of Computing]:
Probability and Statistics—Markov processes

1. INTRODUCTION
Today, mathematical modeling is an integral part of sys-

tems biology research. Mathematical formalisms not only
offer a rigorous way of collecting information on a given sys-
tem, but also allow for comprehensive analysis of structural
aspects and dynamical behavior of biological networks, test-
ing of hypotheses and a focused approach to experimental
design. As a first step in mathematical modeling, we need
to choose a modeling formalism capable of representing the
system. If enough data of sufficient precision is available, dif-
ferential equation modeling is often well suited to the task. If
quantitative information is lacking and kinetic mechanisms
are unknown, or if low copy numbers of biological entities
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have to be modeled, discrete modeling methods are a good
choice.

The decision which modeling formalism to choose is often
not clear-cut. Discrete methods might not be able to cap-
ture some important aspects of a biological system, a fully
quantitative model might be out of reach. Hybrid systems
allow to keep the simplicity of discrete models while expand-
ing the expressiveness of the formalism for some aspects.
For example, a continuous time flow might be added to a
discrete state space in order to evaluate the effects of differ-
ent time delays on the system’s behavior (see e. g. [3, 11]).
In this paper we introduce a Boolean modeling framework
extended to include stochastic aspects. In the following,
we shortly recall basic concepts concerning Boolean mod-
eling and stochastic extensions of Boolean frameworks. In
Sect. 2, we introduce the Stochasticity in Reactions frame-
work, which is based on a local Boolean modeling approach
and introduces probabilities for the processes generating the
network dynamics. We shortly discuss several analysis ap-
proaches, before we illustrate the method by modeling and
analyzing the cytokinin signal transduction network in Ara-
bidopsis thaliana in Sect. 3. Joint work of plant biologists,
mathematicians and computer scientists on this signaling
network, with a focus on identifying the mechanism behind
an inhibitory feedback effect involved in regulation of the
signal transduction, led to the formalism as it is presented
in this paper. We close with a short discussion and perspec-
tives for future work.

1.1 Boolean Models
A Boolean model is a very abstract representation of a

system. Assume we consider a system consisting of N ∈ N
components. Each component is represented by a Boolean
variable. Interpretation of the variable values differs consid-
erably depending on the nature of the components modeled.
A component having value one might signify that the con-
centration of the corresponding substance exceeds a given
threshold, it might indicate that a gene is being expressed
or that a receptor receives a signal and so on. In any case,
the state space of the system is the set S := {0, 1}N .

The dynamics of the system is encoded in a Boolean func-
tion f : S → S, whose coordinate functions (called state
variable update functions) fi, i ∈ {1, . . . , N}, determine
the behavior of the corresponding components. Given the
function f and the state space S, a state transition graph
G := (V,E) representing the system’s dynamics can be de-
rived. The vertex set of this graph corresponds to the state



space of the system and edges are defined based on the func-
tion f and on a chosen update strategy. The most common
update strategies are the so-called synchronous update link-
ing a state with its image under f and the asynchronous
update that does not allow for simultaneous update of com-
ponent values and results in a non-deterministic representa-
tion of the dynamics (see e. g. [7, 12] for definitions).

Boolean models often do not capture all important aspects
of a given system, however, they still allow for rigorous rep-
resentation and analysis and often reveal fundamental prop-
erties of the system. Hybrid methods are a way to refine the
Boolean approach and to incorporate effects that cannot be
modeled in the Boolean framework, such as time delays or
stochastic aspects.

1.2 Stochastic expansion
Quite some work has been done considering stochastic ex-

pansions of Boolean models, motivated by the non-deter-
ministic nature of many biological systems. Substance con-
centrations might fluctuate over time and depending on envi-
ronmental conditions, perturbations or damage might occur
and so on. Different approaches incorporating stochastic as-
pects in Boolean frameworks can be distinguished based on
the way stochasticity is included. Some examples for such
methods are Probabilistic Boolean Networks [10], Stochas-
ticity in Nodes [9], Stochasticity in Functions [4] and Prob-
abilistic Asynchronous Update [16]. These approaches are
closely related but emphasize different aspects of modeling
and analyzing biological systems. In the following, we focus
exemplarily on the Probabilistic Boolean Network approach
for illustrative and comparative purposes.

In a probabilistic Boolean model, the stochastic events ef-
fecting a system in a state s ∈ S are represented as elemen-
tary events of a finite probability space Ωs := {ω1, . . . , ωk},
k ∈ N. A probability function Ps : Ωs → [0, 1] assigns
probabilities to the events. By definition the sum of the
probabilities of the elementary events ω ∈ Ωs is one. In a
slight abuse of notation we drop the index s and denote by
P the probability function for Ωs for all s ∈ S. Evolution
of the system in state s is then determined by a random ex-
periment in Ωs. We denote the set of pairs of a state s ∈ S
and an elementary event ω ∈ Ωs by O:

O := {(s, ω) : s ∈ S, ω ∈ Ωs}.

The probabilistic transition function f : O → S calculates
the successor state for a state s and an elementary event
ω ∈ Ωs. Each elementary event ω ∈ Ωs with f(s, ω) =
s′ represents a possible state transition from s to s′. We
illustrate this idea in Figure 1. The system starts in a state
s with probability space Ωs. The next state s′ is chosen by
a random experiment in Ωs in agreement with f(s, ω).

ω

Ωs

s′ = f(s, ω) ω
′

Ωs
′

s′′ = f(s′, ω′)

Ωs
′′

Figure 1: State transitions of a probabilistic Boolean model.

The dynamics of a probabilistic Boolean model is de-
scribed by a probabilistic state transition graph, i. e. a di-
rected weighted graph with a state space as its vertex set.

Edges represent possible state transitions while edge weights
represent transition probabilities.

Definition 1.1. We call the graph G = (V, ρ, E) with
vertex set V := S, a function ρ : S × S → [0, 1]

ρ(s, s′) =
X

ω∈Ωs,
f(s,ω)=s′

P (ω),

and edge set E := {(s, s′) ∈ V × V : ρ(s, s′) > 0} a proba-
bilistic state transition graph.

Probabilistic Boolean Networks
In a Probabilistic Boolean Network (PBN), there exist l(n) ∈
N alternative state variable update functions f1

n, . . . , f
l(n)
n

for each state variable n ∈ {1, . . . , N}. A function fkn
n with

kn ∈ {1, . . . , l(n)} is chosen for the next update of state vari-
able n with a predefined probability ckn

n ∈ [0, 1]. Naturally,
the sum of the update function probabilities associated with
a state variable n must be equal to one:

l(n)X
k=1

ckn = 1 .

The choices of state variable update functions are indepen-
dent of each other as well as of the current state of the sys-
tem. A state transition is derived using synchronous update,
i. e., all state variables are updated simultaneously accord-
ing to the chosen update functions. The probability space
for an arbitrary state s ∈ S, is then defined as

Ωs =
n

(k1, . . . , kN ) : kn ∈ {1, . . . , l(n)}, n ∈ {1, . . . , N}
o
.

It does not depend on the choice of s. The probability for a
single elementary event ω = (k1, . . . , kN ) is given by

P (ω) =

NY
n=1

ckn
n .

The probabilistic transition function is then defined by

f(s, ω) =
`
fk1

1 (s), . . . , fkN
N (s)

´
for all s ∈ S and ω = (k1, . . . , kN ) ∈ Ωs.

2. STOCHASTICITY IN REACTIONS

2.1 Model description
The Boolean modeling formalism underlying our frame-

work is based on a description of the biological processes
making up the system’s behavior as a whole. Rather than
giving a global description of the dynamics via a function f ,
this approach allows us to model in a local fashion often more
suited to translate the available knowledge into a model.
Extending the Boolean approach, we associate probabilities
with the different reactions possible between network com-
ponents. Referring to the approaches [9, 4] where stochas-
ticity is introduced by considering different global update
functions, we call our approach Stochasticity in Reactions
(SIR).

As a first modeling step, we describe possible reactions
in the system qualitatively. Here, a reaction has a local ef-
fect on the system in the sense that it influences a subset of
system components. For example, we can model substance
degradation as a reaction that only influences the substance



in question, while a biochemical reaction consuming and pro-
ducing some substances will affect every network component
representing one of the substances involved. To describe a
reaction we represent its effect on the state of the system
as a vector. Furthermore, we assign a probability for the
reaction to occur which naturally depends on the state of
the system.

Definition 2.1. A reaction is a pair r := (e, p) con-
sisting of an effect vector e ∈ {−1, 0, 1}N and a function
p : S → [0, 1] satisfying p(s) = 0 for all s ∈ S with s+e /∈ S.
We say that r is valid in a state s ∈ S if p(s) 6= 0.

The vector e specifies the way certain state variables are
affected by the reaction. The components with value zero
represent network components unaffected by the reaction.
Note that different reactions may have the same effect vec-
tor. The function p calculates the probability of the reaction
taking place in a given state. In the following, we represent p
as p = be(s) ·pr, where be : S → {0, 1} is a Boolean function
and pr ∈ [0, 1] is a probability value. Thus, the probability
for a reaction is either zero or pr. The Boolean function be

indicates whether the execution of a reaction in a given state
is possible at all. That is, while the effect vector encodes the
impact of a reaction, the function be encodes the conditions
necessary for the reaction to occur. The probability value
then is the same for all states that satisfy those conditions.
This modeling assumption has proved sufficient for our pur-
poses so far. Nevertheless, it is certainly worth thinking
about modeling the probability with greater dependence on
the current state, i. e., considering a function pr : S → [0, 1]
instead of a constant value pr.

Given a set of reactions R, the set of all valid reactions in
a state s is denoted with Rs := {r ∈ R : p(s) 6= 0}.

The following example will be used to illustrate the for-
malism during the first part of our paper.

Example 2.1. Consider a toy network with three state
variables, i. e. S = {0, 1}3, and a set of four reactions R :=
{r1, r2, r3, r4}. Each reaction is defined by its effect vector
and probability function:

r1 : e1 = (1,−1, 0), p1(s1, s2, s3) = (1− s1) · s2 · pr1 ,

r2 : e2 = (0, 1,−1), p2(s1, s2, s3) = (1− s2) · s3 · pr2 ,

r3 : e3 = (−1, 0, 0), p3(s1, s2, s3) = s1 · pr3 ,

r4 : e4 = (1, 0, 1), p4(s1, s2, s3)

= (1− s1) · (1− s3) · pr4 .

Here, r1 could represent a transformation of a substance rep-
resented by the second network component to a substance
represented by the first component, which is encoded in the
first two components of the effect vector. We want to model
that the transformation can only occur, if there is no sub-
stance 1 present yet and substance 2 is available, which trans-
lates to the Boolean function b1(s1, s2, s3) = (1−s1) ·s2. Re-
action r3 could be used to model degradation of the substance
represented by the first component.

The sets of valid reactions are R(0,0,0) = {r4}, R(0,0,1) =
{r2}, R(0,1,0) = {r1, r4}, R(0,1,1) = {r1}, R(1,0,0) = {r3},
R(1,0,1) = {r2, r3}, R(1,1,0) = {r3}, R(1,1,1) = {r3}.

We have not yet defined probability spaces Ωs, s ∈ S, for
our model. In agreement with Sect. 1.2, we assume that,
given a state s, an elementary event in Ωs basically describes

a possible state transition depending on a given transition
function. We will give a more specific definition later. In
our approach, state transitions depend on the reactions that
may be executed in s. In general, it is possible for more
than one reaction to occur in a given state, and even for
a set of reactions to be executed simultaneously. Thus a
reaction might be involved in several of the possible state
transitions. Mathematically speaking, this amounts to a
valid reaction r = (e, p) with r ∈ Rs describing a probability
event Ar ⊆ Ωs (reaction event) from the probability space
Ωs. That is, reaction events are not necessarily elementary
events. Thus, given a state s it is possible that two (or more)
reactions r1, r2 ∈ Rs exist with Ar1 ∩ Ar2 6= ∅. Therefore,
we need to define the sets of reactions which might occur in
the same state transition and with this the joint probability
for the reaction events.

We call two reactions ri and rj compatible and denote it
with ri ∼ rj if they satisfy the following two conditions:

∃s ∈ S : ri, rj ∈ Rs ,
∀s ∈ S with ri, rj ∈ Rs : (s+ ei + ej) ∈ S .

The effect of a set of reactions occurring in a state is cal-
culated as the sum of the single reaction effects. Therefore,
we need the compatibility definition of reactions to assure,
that this effect does not leave the Boolean state space. This
means, reactions which consume or produce the same state
variable are not compatible. Note in addition that validity
of ri and rj in s ensures that corresponding components of
the effect vectors have the same value if they are non-zero.
Due to this observation, we can easily see that we preserve
pairwise compatibility, if we generalize the concept to sets
of more than two reactions.

Compatible reactions may occur in the same state tran-
sition. We assume that reaction events of compatible reac-
tions in a state s are stochastically independent. This is a
reasonable assumption from a modeling perspective, since
the framework allows to model dependent processes as a
single reaction. Furthermore, compatibility ensures that two
reactions do not use the same resources or generate the same
product. To assign a probability to a reaction event, we de-
fine a probability function P on a subset of 2Ωs for s ∈ S.
The joint probability for the occurrence of two reactions
ri, rj ∈ Rs with ri = (ei, pi) and rj = (ej , pj) can then be
set as

P (Ari ∩Arj ) =

(
pi(s) · pj(s) if ri ∼ rj
0 else

.

We define the term for more than two compatible reactions
accordingly.

If it is essential for modeling purposes to include the pos-
sibility of non-compatible reactions being valid in the same
state, we have to add one more condition for the choice of
reaction probabilities. They need to be defined such that
the union of all reaction events in this state is lower or equal
one:

∀s ∈ S : P (
[
r∈Rs

Ar) ≤ 1.

The condition allows for consistent calculation of the prob-
ability of unions of reaction events, which is then calculated
in the compatible as well as the non-compatible case with



the addition formula of probabilities [2]

P

„ n[
i=1

Ai

«
=

nX
k=1

(−1)k+1
X

I⊆{1,...,n},
|I|=k

P

„\
i∈I

Ai

«
.

Example 2.2. Consider again the running example. It is
easy to see that the reactions r1 and r4 are not compatible.
However, both reactions might occur in the state s = (0, 1, 0).
The union of the two reaction events in the state s = (0, 1, 0)
is calculated as:

P (A1∪A4) = P (A1)+P (A4)−P (A1∩A4) = P (A1)+P (A4).

Since the reactions are not compatible, we know that the
disjunction of their reaction events is empty. That is, only
one or the other reaction can occur and the probabilities for
the two reactions must be defined such that p1(s)+p4(s) ≤ 1.

As already mentioned, reactions are local processes, and sets
of reactions might be involved in state transitions. To cap-
ture all possible sets of reactions in a given state s we basi-
cally have to consider all subsets M of the set of reactions
valid in s such that M contains only compatible reactions.
This leads to the following definition.

Definition 2.2. Let R be a set of reactions. A combi-
nation C is a subset of R such that there exists s ∈ S with
r ∈ Rs for all r ∈ C and ri ∼ rj for all ri, rj ∈ C with i 6= j.

It is sufficient to check the compatibility for pairs of reactions
in C to ensure that the joint effect of the reactions in C
results in a well-defined state. Note furthermore that the
empty set ∅ is always a combination. It has probability
greater than zero in a state, if the union of all reaction events
in this state is lower than one. This basically amounts to
the system remaining in its current state.

We set Cs := {C : C combination, ∀r ∈ C r ∈ Rs} the
set of valid combinations in a state s. Each combination
represents a possible state transition. In other word, each
combination in a state s represents an elementary event ω
from the probability space Ωs. This leads to the definition

Ωs := Cs. (1)

We already discussed how to determine the probability of
compatible reactions occurring. We can now define a prob-
ability function on Ωs, s ∈ S, which we call again P in a
slight abuse of notation. The probability of the execution of
a combination C, that is, the probability of an elementary
event in Ωs, can then be calculated as:

P (C) = P
“\
r∈C

Ar
”
·
“

1− P
“ [
r∈Cc

s

Ar
””

. (2)

Here, the set Ccs represents the reactions in Rs which are
compatible to all reactions in C:

Ccs := {r : r /∈ C, r ∈ Rs, ∀r′ ∈ C : r ∼ r′} . (3)

We summarize the key elements of the modeling approach
in the following definition.

Definition 2.3. Let N ∈ N. The pair S = (S,R) with
state space S := {0, 1}N and a set of K ∈ N reactions
R := {r1, . . . , rK} is called a Stochasticity in Reactions
(SIR) model.
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Figure 2: Probabilistic state transition graph for the running
example.

2.2 Dynamics
We represent the dynamics of a SIR model as a probabilis-

tic state transition graph. The transition function f : O → S
calculating the successor of a given state s with respect to a
combination C of reactions valid in s is defined as follows:

f(s, C) := s+
X

e:(e,p)∈C
e .

Thus, we consider the graph with vertex set S and edge set
derived from the function ρ : S × S → [0, 1],

ρ(s, s′) =
X

C∈Ωs,
f(s,C)=s′

P (C) ,

where P (C) is calculated according to Equation 2.
The probabilistic state transition graph for the running

example is illustrated in Figure 2. For clarity, the edge labels
in the figure do not represent the transition probabilities, but
the respective combinations corresponding to a transition.
The corresponding probabilities are listed in Table 1.

A probabilistic state transition graph G = (V, ρ, E) de-
fines a stochastic state transition matrix P such that P :=
(ρs,s′) with s, s′ ∈ S. A state distribution π is a vector of
length N with:

π ∈ [0, 1]N and

NX
i=1

πi = 1 .

An initial state distribution πσ assigns each state the prob-
ability of this state being the initial state of the system. If
we want to start in a specific initial state s0 ∈ S, then we
choose the distribution πσ with πσs0 = 1 and πσs = 0 for all
s 6= s0.

We are now interested in the sequence of random variables
S(t), t ∈ {0, . . . , T} with T ∈ N, describing the probability
that the system is in state s at time t ∈ {0, . . . , T}. We
calculate the probabilities as follows:

P (S(0) = s) = πσs ,

P (S(t+ 1) = s′ | S(t) = s) = ρs,s′ .

Such a sequence S(t) is called a Markov chain [2]. A re-
alization of the Markov chain is a sequence of states ξ =
(ξ0, . . . , ξT ), ξt ∈ S, t ∈ {0, . . . , T}, such that the probabil-
ity with respect to P and πσ

P
`
(S(0), . . . , S(T )) = ξ | πσ

´
= πσξ0 · ρξ1,ξ2 · . . . · ρξT−1,ξT



s = (0, 0, 0) Ωs = {∅, {r4}} P (∅) = 1− p4(s) P ({r4}) = p4(s)
s = (0, 0, 1) Ωs = {∅, {r2}} P (∅) = 1− p2(s) P ({r2}) = p2(s)
s = (0, 1, 0) Ωs = {∅, {r1}, {r4}} P (∅) = 1− p1(s)− p4(s) P ({r1}) = p1(s)

P ({r4}) = p4(s)
s = (0, 1, 1) Ωs = {∅, {r1}} P (∅) = 1− p1(s) P ({r4}) = p1(s)
s = (1, 0, 0) Ωs = {∅, {r3}} P (∅) = 1− p3(s) P ({r3}) = p3(s)
s = (1, 0, 1) Ωs = {∅, {r2}, {r3}, {r2, r3}} P (∅) = (1− p2(s)) · (1− p3(s)) P ({r2}) = p2(s) · (1− p3(s))

P ({r2, r3}) = p2(s) · p3(s)) P ({r3}) = (1− p2(s)) · p3(s)
s = (1, 1, 0) Ωs = {∅, {r3}} P (∅) = 1− p3(s) P ({r3}) = p3(s)
s = (1, 1, 1) Ωs = {∅, {r3}} P (∅) = 1− p3(s) P ({r3}) = p3(s)

Table 1: Probability space definitions for each state of Example 2.1.

is larger than zero. Such a sequence of states is called tra-
jectory.

Comparison with other stochastic Boolean frameworks
In the following we show how our formalism relates to the
PBN framework described in Sect. 1.2, before we end this
section with some general comments. In a PBN model,
regardless of the particular state variable update function
chosen in a state s, the corresponding state variable re-
mains unchanged, increases or decreases in a state tran-
sition. For each state variable n ∈ N we can define an
activation reaction r+

n = (e+
n , p

+
n ) and a deactivation reac-

tion r−n = (e−n , p
−
n ) where e+

n is the n-th unit vector and
e−n = −e+

n .
From the PBN definition, activation of a state variable n

in a state s may occur, if the state variable is zero and if an
update function fkn with k ∈ 1, . . . , l(n) and fn(s) = 1 exists.
A deactivation may occur, if the state variable is zero and
if an update function fkn with k ∈ 1, . . . , l(n) and fn(s) = 1
exists. We can now simply transfer the probabilities in the
following way:

p+
n := (1− sn) ·

l(n)X
k=1,

fk
n(s)=1

ckn ,

p−n := (sn) ·
l(n)X
k=1,

fk
n(s)=0

ckn .

This leads to the set of valid reactions in a state s

Rs := {r+
n : n ∈ {1, . . . , N}, sn = 0,

∃k ∈ {1, . . . , n} : fkn(s) = 1}
∪{r−n : n ∈ {1, . . . , N}, sn = 1,

∃k ∈ {1, . . . , n} : fkn(s) = 0} .

Compatibility is clearly not a problem, thus we can consider
the power set of Rs, s ∈ S, as probability space Ωs. It is
easy to see that the PBN and the SIR model generate the
same probabilistic state transition graph.

The same reasoning applies when transferring a SIR model
into a PBN model, as long as there are no reaction which
modify values of two or more state variables. If that is not
the case, problems arise since in the PBN formalism the
state variable update functions are considered completely
independent of each other.

A slight generalization of our formalism allows a much
more general observation. Given an arbitrary probabilis-

tic state transition graph, we can construct a SIR model
that generates this graph. To obtain this result, we allow
for the possibility to artificially declare reactions to be non-
compatible. Such a declaration poses no problem from a
theoretical point of view, we omitted it for the sake of clar-
ity and due to the page restriction. It leads to smaller sets
of valid combinations. Given an arbitrary probabilistic state
transition graph, we define a reaction r for each transition
from a state s to a state s′ in the graph. The effect vector e
of r is chosen such that s+ e = s′, the probability function
is chosen such that r is only valid in s and the probability
in s matches the transition probability given by the graph.
With all reactions being defined to be not compatible, the
combinations are just the sets containing only one reaction.
Obviously the state transition graph of this model matches
the one we started with. In this sense, it is possible to ex-
press any model framed in one of the formalisms mentioned
in the beginning of Sect. 1.2 as a SIR model, but the idea of
reactions as local independent events might get lost.

2.3 Analysis
When analyzing a SIR model, we can employ the usual

techniques available for Markov chains. Often, we are in-
terested in the state distributions corresponding to certain
trajectories. The goal is to identify sequences of state tran-
sitions, that is, trajectories in the Boolean state space, that
are associated with high probabilities, and thus can be in-
terpreted as most likely behavior of the system. Focussing
on trajectories derived from Markov chains, we analyze the
corresponding state distributions over time.

Let π(t) denote the state distribution of the Markov chain
after t time steps, that is, P (S(t) = s) = π(t)s. Given an
initial state distribution πσ, it is calculated as:

π(t) = π(t− 1)P
with π(0) := πσ .

For more details see e. g. [2]. The probability for the system
to be in a certain subset of state space is then calculated
as the sum of the corresponding single state probabilities.
For example, such a subset might signify an attractor of the
system or the set of states where a certain component has
value 1.

In addition, existence and reachability of steady states
are often points of interest. In the context of Markov chains
we consider behavior stable if the state distribution over
time converges to a stationary state distribution. If exis-
tent the stationary state distribution of a Markov chain is
unique. We denote such a stationary state with π∗. Using
the stochastic state transition matrix P, a stationary state



satisfies:

π∗ := π∗P .

Every Markov chain converges to a stationary state distri-
bution, if such a distribution exists. Thus it can be seen as
a representation of the long term behavior of a system.

In the remainder of this section we want to focus on anal-
ysis of SIR models, where not all or none of the parameters,
i. e., the reaction probabilities, are specified. In particular,
we are interested in methods to identify parameters. To give
an idea of how to approach such a problem we focus on the
following very concrete question motivated by the applica-
tion described in the following section.

Suppose we identified a state s′ of particular interest for
the functionality of the system. For example, it might be
the initial state for some essential process. We now want to
choose parameters such that the system favors trajectories
reaching the state s′. In particular, given a state s we want
to maximize the probability of the system to quickly move
from s to s′. In our formalism, that translates to making
sure that certain reactions occur while others are omitted.

To state the problem more precisely, we introduce the fol-
lowing notions. A direct path from state s to state s′ is a
path τ s,s′ = (τ0, . . . , τl), l ∈ N, in the probabilistic state
transition graph such that τ0 = s, τl = s′ and τi 6= τj if
i 6= j. Note that τ s,s′ then represents a trajectory. Trajec-
tories are called direct trajectories if we obtain a direct path
by merging consecutive identical states. That is, we allow
self-loops in the trajectory, and thus there might exist an
infinite number of direct trajectories from s to s′ that cor-
respond to the same direct path. We define the probability
of a direct path τ as the sum of the probabilities over all
direct trajectories that generate τ by merging consecutive
identical states. We now represent a direct path as the cor-
responding sequence of non empty combinations. We call
such a sequence a combination sequence.

Definition 2.4. Given a SIR model S = (S,R), a com-
bination sequence r is a finite sequence of non-empty combi-
nations. We say, a combination sequence r := (C1, . . . , Cl)
is valid in a state s ∈ S if there exist states s1, . . . , sl with
s = s1 such that

Ck ∈ Csk for all k ∈ {1, . . . , l} and

sk+1 = f(sk, Ck) for all k ∈ {1, . . . , l − 1}.
We now can use combination sequences to calculate the
probability of direct paths.

To calculate the probability of a combination sequence, we
introduce a random variable ν representing the combination
leading from a state s to a successor s′ with s 6= s′. In other
words, the state variable ν accepts values in the probability
space Ωνs := Ωs\{∅}. The probability that a specific combi-
nation C ∈ Cs\{∅} is chosen for the next state transition is
calculated as:

P (ν = C | s) :=
P (C)

P (
S
C∈Cs\{∅} C)

. (4)

Example 2.3. Consider the running example in Figure
2. Given the state s = (0, 1, 0) possible combinations in s
are Cs = {∅, {r1}, {r4}}. The probability that the next state
transition is due to the combination C = {r1} is:

P (ν = {r1} | (0, 1, 0)) =
P ({A1})

P ({A1}) + P ({A4})
.

Equation (4) allows us to calculate the probability for a spe-
cific state transition. The probability of a combination se-
quence is then calculated as the product of the corresponding
transition probabilities.

We now determine all direct paths, and thus combina-
tion sequences, from s to s′. The sum of their probabilities
represents the probability to go from s to s′ using a direct
path. This leads to a function F which calculates this prob-
ability in terms of the (non-specified) reaction probabilities
of the included reactions. Maximizing this function leads
to a parameter set which maximizes the probability to go
from s directly to s′, which represents a desirable trait of
our system.

When modeling biological systems, we often do not know
the exact particulars of all processes involved. The optimiza-
tion approach introduced above can also be used to compare
the impact of different reactions on the system. That is, we
basically consider several models that differ in only a small
set of reactions and compare the impact of these reactions
under parameter constraints derived from optimization for
effectiveness of the reactions in question. We illustrate this
idea in the following section.

Lastly, we want to mention that it is often reasonable to
restrict analysis to suitable subgraphs of the probabilistic
state transition graph. Here, we can often exploit the un-
derlying discrete network to identify regions of state space
of particular interest.

3. THE CYTOKININ SIGNAL TRANSDUC-
TION NETWORK

3.1 Biological background
Cytokinin is a plant hormone playing an important role

in many developmental and physiological processes in the
plant, such as regulation of shoot and root growth, leaf
senescence and pathogen resistance. The core of the cy-
tokinin signaling system in Arabidopsis thaliana is a multi-
step phospho-relay system that influences the expression of
a group of target genes. Some of these genes in turn code
for regulators of the signaling pathway activity resulting in
a negative feedback effect. However, the nature of the feed-
back mechanism is still unknown. We used the SIR formal-
ism to model the signaling system and test several hypothe-
ses concerning the nature of the feedback mechanism. For a
detailed biological background see [5].

The components involved in the signal transduction can
be grouped in families of proteins. Proteins from the same
family show very similar behavior. To reduce the complex-
ity of the network, we consider the overall behavior of these
families, modeling a family as a single network component.
In the following we shortly present the different network
components.

Cytokinin
Cytokinins are a class of plant hormones that influence dif-
ferent important plant functions [8]. Cytokinin initiates the
expression of several genes, which are called the cytokinin
primary response genes [1].

Arabidopsis Histidin Kinases (AHKs)
The AHKs transmit the cytokinin signal from the apoplast
into the cell. Cytokinin binds to the ligand binding domain
in the extracellular space. This binding causes the canon-



ical histidine residue of the histidine kinase domain to au-
tophosphorylate. After an intramolecular phosphotransfer,
the phosphate group can be transferred to an Arabidopsis
histidin phosphotransfer protein (AHP) via the receiver do-
main [5, 15].

Arabidopsis Histidin Phosphotransfer Proteins (AHPs)
The AHPs act as kinases. AHPs bind to the receiver domain
of AHKs and receive their phosphate group. After the phos-
phorylation of the AHPs, they translocate into the nucleus
and transfer their phosphate group to Arabidopsis response
regulators (ARR) [5, 15]. These can be grouped into two
different families.

Type-B Arabidopsis response regulators (type-B ARRs)
The type-B ARRs expression seems to be independent of
the cytokinin signal. However their activity as transcription
factor is directly related to the cytokinin concentration. The
phosphorylated type-B ARRs activate the transcription of
most cytokinin primary response genes [6].

Type-A Arabidopsis response regulators (type-A ARRs)
The type-A ARRs are part of the cytokinin primary response
genes. Their transcription is activated by the phosphoryla-
tion of the type-B ARR. It has been shown that the type-A
ARRs have a (direct or indirect) negative effect on the ex-
pression of the cytokinin response genes. Additionally, the
phosphorylation of the type-A ARRs results in a higher pro-
tein stability.[5, 15]

We focused in our analysis mainly on the character of the
feedback mechanism involving type-A ARRs. There exist
two theories explaining the negative influence of the type-A
ARRs on the cytokinin response. The first theory assumes
that the type-A ARRs and the type-B ARRs compete for the
phosphate group of AHPs. This is called AB-competition.
The second theory assumes that active type-A ARRs inhibit
the activation of type-B ARRs directly with some unknown
mechanism (AB-inhibition) [14, 13]. In the following, both
theories will be considered.

3.2 SIR Model

State space
We model the components corresponding to cytokinin, AHK,
AHP and type-B ARR as Boolean variables. Cytokinin is ei-
ther absent or present and the three components AHK, AHP
and type-B ARR are either inactive or active. We need to
be more precise in the case of type-A ARRs. Type-A ARRs
are either absent, present/inactive, or present/active. This
is modeled using two Boolean variables. The first state vari-
able indicates presence or absence of type-A ARRs and the
second specifies their activity status. Type-A ARRs will not
be present in their active and their inactive form at the same
time. The network component are listed in Table 2 with the
associated variable name in parenthesis.

Reactions
Since we want to consider different manifestations of the
negative feedback mechanism involving type-A ARRs, we
have to consider different definitions for the corresponding
reactions. However, several reactions are independent of the
assumptions concerning type-ARRs negative feedback. For
illustrative purposes, we explain the modeling of some reac-
tions in detail. All specifications are listed in Table 3.

S1 : Cytokinin (C)
S2 : AHK (K)
S3 : AHP (P )
S4 : Type-B (B)
S5 : Type-A ARR inactive (A)
S6 : Type-A ARR active (Aa)

Table 2: Components of the cytokinin signaling network.

Activation of AHK: K(+)

AHK autophosphorylates in the presence of cytokinin. This
reaction requires the inactive form of the AHK. The two

conditions are encoded in the Boolean function bK
(+)

(s) =
s1 · (1 − s2) partly defining the probability function. The
reaction results in an activation of the AHK. This reaction
effects the value of the state variable K only. This is re-
flected in its effect vector eK(+) = (0, 1, 0, 0, 0, 0).

Activation of AHP: P (+)

AHP becomes phosphorylated if AHK is phosphorylated.
This reaction requires AHK to be in the active and AHP to
be in the inactive form as reflected by the Boolean function

bP
(+)

(s) = s2·(1−s3). The reaction results in an inactivation
of the AHK and an activation of the AHP. This reaction in-
creases the value of state variable P and decreases the value
from K as can be seen in its effect vector (0,−1, 1, 0, 0, 0).

Deactivation of type-B ARR: B(−)

Type-B ARR tend to be unstable in their phosphorylated
form. An explanation for this effect is a dephosphorylation
reaction involving no other network components. The result-
ing effect vector is (0, 0, 0,−1, 0, 0). The reaction requires

type-B ARR to be in their active form, thus bB
(−)

(s) = s4.

Expression of type-A ARR: Ae
The expression of type-A ARR is induced by the phospho-
rylated type-B ARR. This reaction requires type-B ARR to
be in their active form and type-A ARR to be absent.

Degradation of inactive type-A ARR: Ad
Inactive type-A ARR might degrade. This reaction requires
inactive type-A ARR.

Activation of type-A ARR: A(+)

Type-A ARR become phosphorylated as AHP is phosphory-
lated. This reaction requires AHP to be in their active form
and type-A ARR to be in their inactive form. It causes an
activation of type-A ARR.

Degradation of active type-A ARR: Aad
Degradation of active type-A ARR might proceed at a dif-
ferent rate than degradation of inactive type-A ARR. There-
fore, it is modeled as a distinct reaction. This reaction re-
quires active type-A ARR.

Modeling feedback mechanisms

Activation of type-B ARR:B(+)

The two type-A ARR negative feedback assumptions effect
type-B ARR activation. Therefore, we consider two different
reaction definitions for the two assumptions. As a control
we also consider a reaction definition without negative feed-
back.

Version one: no negative feedback : B(+)1



pK(+)(s) = prK(+) · (s1 · (1− s2))
eK(+) = (0, 1, 0, 0, 0, 0)
pP (+)(s) = prP (+) · (s2 · (1− s3))
eP (+) = (0,−1, 1, 0, 0, 0)
pB(+)1(s) = prB(+)1 · (s3 · (1− s4))
eB(+)1 = (0, 0,−1, 1, 0, 0)
pB(+)2(s) = prB(+)2 · (s3 · (1− s4) · (1− s5))
eB(+)2 = (0, 0,−1, 1, 0, 0)
pB(+)3(s) = prB(+)3 · (s3 · (1− s4) · (1− s6))
eB(+)3 = (0, 0,−1, 1, 0, 0)
pB(−)(s) = prB(−) · (s4)
eB(−) = (0, 0, 0,−1, 0, 0)
pAe(s) = prAe · (s4 · (1− s5) · (1− s6))
eAe = (0, 0, 0, 0, 1, 0)
pAd(s) = prAad · (s6)
eAd = (0, 0, 0, 0, 0,−1)
pA(+)(s) = prA(+) · (s3 · s5)
eA(+) = (0, 0,−1, 0, 0, 1)
pAad(s) = prAad · (s6)
eAad = (0, 0, 0, 0, 0,−1)

Table 3: Reaction definitions for the cytokinin SIR model.

Type-B ARR become phosphorylated as AHP are active.
This reaction requires the active form of AHP and an in-
active form of type-B ARR. It results in an inactivation of
AHP and an activation of type-B ARR.

Version two: competition: B(+)2

Type-A ARR and type-B ARR compete for AHP. Due to
this consideration, phosphorylation of the type-B ARR is
prevented in the presence of inactive type-A ARR.

Version three: inhibition: B(+)3

Type-A ARR inhibits phosphorylation of type-B ARR. Phos-
phorylation of type-B ARR is prevented in the presence of
active type-A ARR.

Due to the different considerations about the type-A ARR
negative effect on the cytokinin response, we consider three
different reaction sets, which in turn signify three different
models:

R1 = {K(+), P (+), B(+)1, B(−), Ae, Ad, A
(+), Aad} ,

R2 = {K(+), P (+), B(+)2, B(−), Ae, Ad, A
(+), Aad} ,

R3 = {K(+), P (+), B(+)3, B(−), Ae, Ad, A
(+), Aad} .

We do not yet specify the reaction probabilities. Rather,
considerations concerning the stochastic parameters are in-
tegrated in the system analysis presented in the following.

3.3 Analysis and Results
We want to compare the different assumptions of com-

petition and inhibition in this part. Therefore, we deter-
mine the states in which the two effects influence the type-B
ARR activation and analyze the influence of the reaction
probabilities for reaching these states. We choose the state
s0 = (1, 0, 0, 0, 0, 0) as initial state, representing a cytokinin
signal and a quiescent state for all components of the signal-
ing pathway. It is easy to see that the first transitions are
fully determined by this state. That is, the first reaction that
occurs is reaction K(+) followed by P (+). Stochastic aspects
come into play following the execution of these reactions.

We proceed as follows. First, we focus on the model repre-
senting competition. We consider the set of states for which
the reaction modeling the competition is valid, determine
the impact of competition on state transitions starting in
such states and analyze the influence of reaction probabili-
ties on the probability that the system reaches such states.
Maximizing the probability for reaching states where com-
petition may come into play yield optimal parameters for
effective competition. We apply the methods utilizing di-
rect paths, which we introduced in Sect. 2.3.

Competition effects the behavior of the system if the sys-
tem is in a state with type-A ARR and type-B ARR inac-
tive. If cytokinin is present, as we assume throughout this
analysis, there is a total number of four such states. All of
them are reached from states with active type-B ARR and
absent type-A ARR by executing the expression reaction
of type-A ARR and deactivation of type-B ARR. Further-
more, the expression of type-A need to occur before or at
the same time as the type-B inactivation. Type-B ARR de-
activation should occur before type-A activation and before
type-A degradation. We assume that K(+) and P (+) are
very fast reactions, which is in agreement with biological
observations. So whenever K(+) or P (+) are valid reactions
they should be immediately executed. This can be modeled
by assigning them probability 1. This assumption allows
us to determine the influence of the reactions Ae, Ad A

(+)

and B(−) on the accessibility of the competition state by
focussing on a subgraph of the state transition graph.

Figure 3 shows the resulting subgraph of the state tran-
sition graph, which is induced by the three states s1 =
(1, 1, 1, 1, 0, 0), s2 = (1, 1, 1, 1, 1, 0) and s3 = (1, 1, 1, 0, 1, 0).
For clarity, we represent each state only by the components
corresponding to variables B, A and Aa. The state (0, 1, 0)
represents the state of interest for competition. Edges repre-
sent the possible reaction combinations in the states. Edges
without head vertex represent combinations which are valid
in the states but do not result in a state of this subgraph.
Starting with active type-B ARR and absent type-A ARR,
we now want to calculate the probability of the system evolv-
ing from (1, 0, 0) to (0, 1, 0) without leaving the subgraph.
There are two reaction sequences that represent this behav-
ior r1 = ({Ae, B(−)}) and r2 = ({Ae}, {B(−)}):

(1, 0, 0)
Ae,B

(−)

−−−−−→ (0, 1, 0) and

(1, 0, 0)
Ae−−→ (1, 1, 0)

B(−)

−−−→ (0, 1, 0).
The probability of the reaction sequence r1 is calculated

using the function f1 : [0, 1]4 → [0, 1] with:

f1(prAe , prAd , prA(+) , prB(−))

=
prB(−) · prAe

prB(−) + prAe − prB(−) · prAe
.

The probability of the reaction sequence r2 is calculated us-
ing the function f2 : [0, 1]4 → [0, 1] with:

f2(prAe , prAd , prA(+) , prB(−))

=
prAe · (1− prB(−))

prAe + prB(−) − prB(−) · prAe

× prB(−)(1− prAd − prA(−))

prB(−) + prAd + prA(−) − prB(−) · (prAd + prA(−))
.

We now proceed with an optimization approach as de-
scribed in Sect. 2.3 to identify parameters that favor com-
petition. This allows us to analyze the maximal effect of the
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Figure 3: A part of the model state transition graph, for the
state variables B, A and Aa with C = 1, K = 1 and P = 1

competition model in terms of negative feedback. To deter-
mine optimal conditions for the competition, we optimize
the function F with:

F (prAe , prAd , prA(+) , prB(−))

= f1(prAe , prAd , prA(+) , prB(−))

+ f2(prAe , prAd , prA(+)prB(−))

while prAe , prAd , prA(+) , prB(−) ∈ [0.01, 0.5] .

Here, we restrict the probability parameter to the interval
[0.01, 0.5] in order to allow a minimal reaction probability
of 0.01 and to allow a minimal stochastic effect of 0.5. We
calculate the maximum of F using a numerical solution algo-
rithm, as implemented for example in MATLAB. Optimiza-
tion yields a vector θ = (0.01, 0.5, 0.01, 0.1429) of probability
values with F (θ) = 0.78.

Clearly, the calculated probabilities for the reactions Ad
and A(+) are at the minimal value of 0.01 while the probabil-
ity for the reaction Ae is at the maximal possible value with
0.5. This reflects that for effective competition reactions Ad
and A(+) should not be executed in the states considered,
while reaction Ae should occur rapidly. The probability of
B(−) favors the outcome of B(−) occurring before reactions
Ad and A(+), but after Ae.

In the following we analyze the behavior of the three mod-
els using the parameters favoring competition. A direct com-
parison is then possible since we use the same parameter set
on all three cases. Since we chose the parameters to opti-
mize competition, we would expect that the corresponding
model displays strong negative feedback effects, while the
other models might show a weaker or no effect at all.

The inhibition mechanism prevents type-B ARR phospho-
rylation if type-A ARR is active until degradation of the
type-A ARR. Therefore the effectiveness of the inhibition is
highly dependent on the probability of type-A ARR activa-
tion and the probability of the active type-A ARR degra-
dation. We consider three different values for active type-A
ARR degradation for the analysis. The parameter specifica-
tions are summarized in the following table.

prK(+) = 1 prAe = 0.5
prP (+) = 1 prA(+) = 0.01
prB(+) = 0.1 prAd = 0.01
prB(−) = 0.1429 prAad ∈ {0.001, 0.01, 0.1}

For our analysis we focus on the behavior of the com-
ponents B and Aa since they are directly involved in the

different mechanisms. Figure 4 shows state variable activity
for the state variables B and Aa for the reaction sets R1,
R2 and R3. Here, state variable activity denotes the proba-
bility of the system to be in a state where the corresponding
state variable has value one. Thus, the curves in the figure
illustrate the probability of occurrence of active type-B ARR
and active type-A ARR. We used the initial state distribu-
tion πσ specifying s0 = (1, 0, 0, 0, 0, 0) as initial state, i. e.,
πσs0 = 1, and plotted the probabilities over 500 time steps.
The different curves in one coordinate system correspond to
different choices for the probability of active type-A degra-
dation.

The figure shows that Aa activity hardly varies depending
on the choice of model, while a strong impact of the choice
of probability value for its degradation can be observed. Ac-
tivity of B is completely independent of Aa activity for re-
action set R1 due to the absence of negative influence in the
control model. For reaction set R2, modeling competition,
higher stability of active type-A ARR (modeled by lower
probabilities for Aa degradation) influences B activity in
the beginning, yet ongoing observation reveals a stronger
inhibition of B activity if we assume low stability of active
type-A ARR. Lastly, in the inhibition model effectiveness of
the inhibition increases with increasing stability of Aa.

The results show that competition shows a strong in-
hibitory effect on type-B ARR activity only if stability of
type-A ARR is rather low. In contrast, the inhibitory mech-
anism is the more effective the higher the stability of Aa.
Based on these observations, further biological experiments
relating stability of active type-A ARR to regulation of the
cytokinin response genes might help to clarify the nature
of the negative feedback mechanism. Earlier experimental
results indicate that type-A ARR stability increases with ac-
tivation [13]. Together with our calculation, this allows for
a tentative hypothesis favoring the inhibitory mechanism.

4. DISCUSSION
In this paper we present a new method to model complex

interactions in biological networks using a hybrid framework
combining Boolean modeling and stochastic effects. Com-
pared to other probabilistic Boolean models, our method is
based on a more local approach, modeling reactions usually
only involving a small subset of the system’s components.
This allows for a very flexible choice with regard to the up-
date strategy determining state transitions in the Boolean
state space. Reactions group together changes in component
values that are dependent on each other and thus should be
executed at the same time. It is furthermore possible to
group reactions together in order to consider simultaneous
effects of different reactions as well.

Probabilities assigned to reactions allow for modeling of
several important aspects influencing the behavior of a bio-
logical system that cannot be captured by a purely Boolean
approach. Reaction probabilities may represent uncertain-
ties in the execution of processes due to environmental con-
ditions or faulty realization, but they can also be used to
distinguish fast and slow processes. Analysis of the resulting
probabilistic state transition graph can focus on a variety of
aspects, for example determination of trajectories with high
probabilities or examination of the importance of a given
reaction for the system’s dynamics. Since parameter iden-
tification is clearly an issue, analysis of unspecified models
can be carried out in order to obtain statements relating pa-
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Figure 4: State variable activity of B and Aa for the three
reaction sets R1, R2 and R3 and with three different active
type-A degradation probabilities: 1 : prAad = 0.001, 2 :
prAad = 0.01 and 3 : prAad = 0.1

rameter values to possible behaviors. We plan to investigate
possible approaches to such questions in future work.

We used the Markov property to simulate the dynamic of
the system, which allows for effective simulation and analy-
sis exploiting the rich theory and existing tools for Markov
chains. However, the Markov property is a very strong
assumption in the context of modeling biological systems,
since processes of different time scales might become effec-
tive when taking into account accumulation effects. This
difficulty can be addressed using additional state variables
simulating specific memory effects. However, the addition
of state variables should be limited due to the exponential
growth of the state space and the probabilistic state tran-
sition graph. To balance the effects, methods focussing on
analysis of submatrices of the state transition matrix, rep-
resenting independent modules of the system, need to be
studied in more detail. It might also be fruitful to study the
properties of the underlying discrete model more closely to
exploit available network reduction methods.

The presented formalism already proved useful in applica-
tion. The mechanism by which the negative feedback loop of
cytokinin signaling works has been much discussed but re-
mains obscure. The work presented here marks the protein
stability of the type-A ARRs as a decisive factor determin-
ing whether inhibition or competition is more likely. Protein
stability of the type-A ARRs has not been previously consid-
ered in this context. Thus the results of this study provide
us with a new experimentally testable hypothesis.
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