
Approximation of spectral intervals and associated leading

directions for linear differential-algebraic systems via smooth

singular value decompositions ∗

Vu Hoang Linh † Volker Mehrmann ‡

August 5, 2010

Abstract

This paper is devoted to the numerical approximation of Lyapunov and Sacker-Sell spectral
intervals for linear differential-algebraic equations (DAEs). The spectral analysis for DAEs
is improved and the concepts of leading directions and solution subspaces associated with
spectral intervals are extended to DAEs. Numerical methods based on smooth singular value
decompositions are introduced for computing all or only some spectral intervals and their
associated leading directions. The numerical algorithms as well as implementation issues are
discussed in detail and numerical examples are presented to illustrate the theoretical results.

Keywords: differential-algebraic equation, strangeness index, Lyapunov exponent, Bohl
exponent, Sacker-Sell spectrum, exponential dichotomy, spectral interval, leading direction,
smooth singular value decomposition.

AMS(MOS) subject classification: 65L07, 65L80, 34D08, 34D09

1 Introduction

In this paper we study the spectral analysis for linear differential-algebraic systems with variable
coefficients (DAEs)

E(t)ẋ = A(t)x+ f(t), (1)

on the half-line I = [0,∞), together with an initial condition x(0) = x0. Here we assume that
E,A ∈ C(I,Rn×n), and f ∈ C(I,Rn) are sufficiently smooth. We use the notation C(I,Rn×n) to
denote the space of continuous functions from I to Rn×n. Linear systems of the form (1) arise
when one linearizes a general implicit nonlinear system of DAEs

F (t, x, ẋ) = 0, t ∈ I, (2)

along a particular solution [13].
DAEs are an important and convenient modeling concept in many different application areas,

see [9, 26, 31, 32, 44] and the references therein. However, many numerical difficulties arise due to
the fact that the dynamics is constrained to a manifold, which often is only given implicitly, see
[32, 43, 44].

Similar to the situation of constant coefficient systems, where the spectral theory is based
on eigenvalues and associated eigenvectors or invariant subspaces, in the variable coefficient case
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one is interested in the spectral intervals and associated leading directions, i.e., the initial vec-
tors that lead to specific spectral intervals. We introduce these concepts for DAEs and develop
numerical methods for computing this spectral information on the basis of smooth singular value
decompositions associated with the homogenous version of (1).

The numerical approximation of Lyapunov exponents for ordinary differential equations
(ODEs) has been investigated widely, see e.g. [3, 4, 6, 10, 15, 23, 24, 22, 29, 27] and the ref-
erences therein. Recently, in [37, 38], the classical spectral theory for ODEs such as Lyapunov,
Bohl and Sacker-Sell intervals, see [1] and the references therein, was extended to DAEs. It was
shown that there are substantial differences in the theory and that most results for ODEs hold
for DAEs only under further restrictions. In [37, 38] also the numerical methods (based on QR
factorization) for computing spectral quantities of ODEs of [23, 25], were extended to DAEs.

In this paper, motivated by the results in [20, 21] for ODEs, we present a characterization
for the leading directions and solution subspaces associated with the spectral intervals associated
with (1). Using the approach of [38], we also discuss the extension of recent methods introduced
in [20, 21] to DAEs. These methods compute the spectral intervals of ODEs and their associated
leading directions via smooth singular value decompositions (SVDs). Under an integral separation
condition, we show that these SVD based methods apply directly to DAEs. Most of the theoretical
results as well as the numerical methods are direct generalizations of [20] but, furthermore, we also
prove that the limit (as t tends to infinity) of the V -component in the smooth SVD of any fun-
damental solution provides not only a normal basis, but also an integrally separated fundamental
solution matrix, see Theorem 38. This significantly improves Theorem 5.14 and Corollary 5.15 in
[20].

The outline of the paper is as follows. In the following section, we revisit the spectral theory of
differential-algebraic equations that was developed in [37]. In Section 3 we extend the concepts of
leading directions and growth subspaces associated with spectral intervals to DAEs. In Section 4,
we propose discrete and continuous SVD methods for approximating the spectral intervals and
leading directions. Algorithmic details and comparisons of the methods are discussed as well.
Finally, in Section 5 some numerical experiments are given to illustrate the theoretical results as
well as the efficiency of the SVD methods.

2 Spectral theory for strangeness-free DAEs

2.1 Strangeness-free DAEs

General linear DAEs with variable coefficients have been studied in detail in the last twenty years,
see [32] and the references therein. In order to understand the solution behavior and to obtain
numerical solutions, the necessary information about derivatives of equations has to be used. This
has led to the concept of the strangeness index, which under very mild assumptions allows to use
the DAE and (some of) its derivatives to be reformulated as a system with the same solution
that is strangeness-free, i.e., for which the algebraic and differential part of the system are easily
separated.

In this paper for the discussion of spectral intervals, we restrict ourselves to regular DAEs, i.e.,
we require that (1) (or (2) locally) has a unique solution for sufficiently smooth E,A, f (F ) and
appropriately chosen (consistent) initial conditions, see again [32] for a discussion of existence and
uniqueness of solution of more general nonregular DAEs.

With this theory and appropriate numerical methods available, then for regular DAEs we may
assume that the homogeneous DAE in consideration is already strangeness-free and has the form

E(t)ẋ = A(t)x, t ∈ I, (3)

where

E(t) =

[
E1(t)

0

]
, A(t) =

[
A1(t)
A2(t)

]
,

2



with E1 ∈ C(I,Rd×n) and A2 ∈ C(I,R(n−d)×n), are such that the matrix function

Ē(t) :=

[
E1(t)
A2(t)

]
(4)

is invertible for all t. As a direct consequence, then E1(t) and A2(t) are of full row-rank. For the
numerical analysis, the solutions of (3) (and the coefficients E,A) are supposed to be sufficiently
smooth so that the convergence results for the numerical methods [32] applied to (3) hold. It is
then easy to see that an initial vector x0 ∈ Rn is consistent for (3) if and only if A2(0)x0 = 0, i.e.,
if x0 satisfies the algebraic equation.

The following lemma, which can be viewed as a generalized Schur form for matrix functions, is
the key to the theory and numerical methods for the computation of spectral intervals for DAEs.
It is a slight modification of [37, Lemma 7] using also different notation to avoid confusion with
later sections.

Lemma 1 Consider a strangeness-free DAE system of the form (3) with continuous coefficients
E,A. Let Û ∈ C1(I,Rn×d) be an arbitrary orthonormal basis of the solution subspace of (3). Then
there exists a matrix function P̂ ∈ C(I,Rn×d) with pointwise orthonormal columns such that by
the change of variables x = Ûz and multiplication of both sides of (3) from the left by P̂T , one
obtains the system

E ż = Az, (5)

where E := P̂TEÛ , A := P̂TAÛ − P̂TE ˙̂
U and E is upper triangular.

Proof. Considering an arbitrary solution x and substituting x = Ûz into equation (3), we obtain

EÛż = (AÛ − E ˙̂
U)z. (6)

Since (3) is strangeness-free, and since A2Û = 0, we have that the matrix EÛ must have full
column-rank. Thus, see [19], there exists a smooth QR-decomposition

EÛ = P̂E ,

where the columns of P̂ form an orthonormal set and E is nonsingular and upper triangular. This
decomposition is unique if the diagonal elements of E are chosen positive. Multiplying both sides
of (6) by P̂T , we arrive at

E ż = [P̂TAÛ − P̂TE ˙̂
U ]z.

Finally, setting A := P̂TAÛ − P̂TE ˙̂
U completes the proof.

System (5) is an implicitly given ODE, since E is nonsingular. It is called essentially underlying
implicit ODE system (EUODE) of (3) and it can be made explicit by multiplying with E−1 from
the left, see also [2] for constructing EUODEs of so-called properly-stated DAEs. In our numerical
methods we will need to construct the coefficients of the EUODE pointwise. Note, however, that
in (6) for a fixed given Û , the matrix function P̂ is not unique. In fact, any P̂ for which P̂TEÛ is
invertible yields an implicit EUODE. However, obviously E−1A is unique, i.e., with a given basis,
the explicit EUODE provided by Lemma 1 is unique. In the numerical methods, however, we need
to choose the matrix function P̂ appropriately.

For the theoretical analysis we will heavily use the fact that for a given basis Û , the correspon-
dence between the solutions of (3) and those of (5) is one-to-one, i.e., x is a solution of (3) if and
only if z = ÛTx is a solution of (5). Different special choices of the basis Û will, however, lead
to different methods for approximating Lyapunov exponents. Note that Û ÛT is just a projection
onto the solution subspace of (3), hence z = ÛTx implies Ûz = Û ÛTx = x.
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2.2 Lyapunov exponents and Lyapunov spectral intervals

In the following we briefly recall the basic concepts of the spectral theory for DAEs, see [37] for
details.

Definition 2 A matrix function X ∈ C1(I,Rn×k), d ≤ k ≤ n, is called fundamental solution
matrix of the strangeness-free DAE (3) if each of its columns is a solution to (3) and rankX(t) =
d, for all t ≥ 0. A fundamental solution matrix is said to be minimal if k = d.

One may construct a minimal fundamental matrix solution by solving initial value problems for
(3) with d linearly independent, consistent initial vectors. For example, let Q0 ∈ Rn×n be a
nonsingular matrix such that A2(0)Q0 =

[
0 Ã22

]
, where Ã22 ∈ Ra×a is a nonsingular matrix.

Then, the d columns of the matrix

X0 = Q0

[
Id
0

]
(7)

form a set of linearly independent and consistent initial vectors for (3), see [33].

Definition 3 Let f : [0,∞) −→ R be a non-vanishing function. The quantities

χu(f) = lim sup
t→∞

1

t
ln |f(t)| , χ`(f) = lim inf

t→∞

1

t
ln |f(t)| , (8)

are called upper and lower, Lyapunov exponents of f , respectively. In a similar way we define
upper and lower Lyapunov exponents for vector valued functions, where the absolute values are
replaced by norms.

For a constant c 6= 0 and non-vanishing functions f1, . . . , fj Lyapunov exponents satisfy

χu(cf1) = cχu(f1), χ`(cf1) = cχ`(f1) (9)

and

χu

(
n∑
i=1

fi

)
≤ max
i=1,...n

χu(fi), (10)

where equality holds if the maximal Lyapunov exponent is attained by only one function.

Definition 4 For a given fundamental solution matrix X of a strangeness-free DAE system of
the form (3), and for 1 ≤ i ≤ d, we introduce

λui = lim sup
t→∞

1

t
ln ||X(t)ei|| and λ`i = lim inf

t→∞

1

t
ln ||X(t)ei|| ,

where ei denotes the i-th unit vector and ||·|| denotes the Euclidean norm. The columns of a minimal
fundamental solution matrix form a normal basis if Σdi=1λ

u
i is minimal. The λui , i = 1, 2, ..., d

belonging to a normal basis are called (upper) Lyapunov exponents and the intervals [λ`i , λ
u
i ],

i = 1, 2, ..., d, are called Lyapunov spectral intervals. The set of the Lyapunov spectral intervals is
called the Lyapunov spectrum of (3).

Similar as in the case of ODEs, a normal basis for (3) exists and it can be constructed from any
(minimal) fundamental matrix solution.

Definition 5 Suppose that P ∈ C(I,Rn×n) and Q ∈ C1(I,Rn×n) are nonsingular matrix func-
tions such that Q and Q−1 are bounded. Then the transformed DAE system

Ẽ(t) ˙̃x = Ã(t)x̃,

with Ẽ = PEQ, Ã = PAQ − PEQ̇ and x = Qx̃ is called globally kinematically equivalent
to (3) and the transformation is called a global kinematic equivalence transformation. If P ∈
C1(I,Rn×n) and, furthermore, also P and P−1 are bounded then we call this a strong global
kinematic equivalence transformation.
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The Lyapunov exponents of a DAE system as well as the normality of a basis formed by the
columns of a fundamental solution matrix are preserved under global kinematic equivalence trans-
formations.

Proposition 6 For any given minimal fundamental matrix X of (3), for which the Lyapunov
exponents of the columns are ordered decreasingly, there exist a constant, nonsingular, and upper
triangular matrix C ∈ Rd×d such that the columns of XC form a normal basis for (3).

Proof. Since orthonormal changes of basis keep the Euclidean norm invariant, the spectral analysis
of (3) can be done via its EUODE. Thus, let Z be the corresponding fundamental matrix of (5),
X = ÛZ. Due to the existence result of a normal basis for ODEs [39] (see also [1, 23]), there
exists a matrix C with the properties listed in the assertion such that ZC is a normal basis for
(5). Thus XC = ÛZC is a normal basis for (3).

The fundamental solutions X and Z satisfy the following relation.

Theorem 7 [37] Let X be a normal basis for (3). Then the Lyapunov spectrum of the DAE (3)
and that of the ODE (5) are the same. If E ,A are as in (5) and if E−1A is bounded, then all the
Lyapunov exponents of (3) are finite. Furthermore, the spectrum of (5) does not depend on the
choice of the basis Û and the matrix function P̂ .

Similar to the regularity concept for DAEs introduced in [17], we have the following definition.

Definition 8 The DAE system (3) is said to be Lyapunov-regular if its EUODE (5) is Lyapunov-
regular, i.e., if

d∑
i

λui = lim inf
t→∞

1

t
ln ||detZ(t)|| ,

where Z(t) is a fundamental matrix solution of (5).

The Lyapunov-regularity of a strangeness-free DAE system (3) is well-defined, since it does not
depend on the construction of (5), i.e., the choice of the pair Û , P̂ . Furthermore, the Lyapunov-
regularity of (3) implies that for any nontrivial solution x, the limit limt→∞

1
t ln ||x(t)|| exists.

Hence, we have λli = λui , i.e., the Lyapunov spectrum of (3) is a point spectrum.
In the following we consider the adjoint equation of (3), given by

ET ẏ = −(A+ Ė)T y, (11)

see e.g., [14, 34], and also a slightly different formulation in [2]. The following statement shows a
relation between EUODEs of (3) and (11).

Proposition 9 Let the orthonormal columns of the matrix Û form a basis of the solution subspace
of (3). Then there exists P̂ ∈ C1(I,Rn×d) such that the columns of P̂ form an orthonormal basis for
the solution subspace of (11). Furthermore, by the change of variables y = P̂w and multiplication
of both sides of (11) by ÛT , we obtain the EUODE for the adjoint system (11), given by

ET ẇ = −(A+ Ė)Tw, (12)

which is exactly the adjoint of (5). If Û is such the matrix E is upper triangular with positive
diagonal elements, then the corresponding P̂ is unique.

Proof. We first prove uniqueness. Suppose that there exist matrix functions P̃ and P̂ with
orthonormal columns, such that Ẽ ż = Ãz and Ê ż = Âz, respectively, where both Ẽ and Ê are
upper triangular with positive diagonal elements. Since the columns of P̃ and P̂ form bases of
the same subspace, there exists a matrix function S ∈ C(I,Rn×d), such that P̂ = P̃S. We have
STS = P̂T (P̃ P̃T P̂ ) = P̂T P̂ = Id (because P̃ P̃T is a projection onto the solution subspace, i.e.,
range P̂ ), and thus S is orthogonal. On the other hand, by the construction of the EUODE, we
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have ST Ê = Ẽ and Ê is invertible, which implies that ST is upper triangular. Hence, S is a
diagonal matrix with diagonal elements +1 or −1. But since Ẽ and Ê have positive diagonals,
then S = I.

For the existence we give a constructive proof. From the proof of Lemma 1, P̂ is determined
via EÛ = P̂ Ê . Due to the special form of E, we can first determine an auxiliary P̃ such that

EÛ =

[
E1Û

0

]
= P̃ Ê , which implies that P̃ =

[
P̃1

0

]
. Here P̃1 and Ê are determined by, e.g.,

a smooth QR decomposition of E1Û . Unfortunately, in general such a P̃ is not a basis of the
solution subspace of (11) yet. We observe that we can replace the zero block by any P̃2 and the
relation P̃TEÛ = E still holds. Hence for the construction, we look for an appropriate P̃2 block so

that P̃ =

[
P̃1

P̃2

]
satisfies the algebraic constraint of (11). If we then orthonormalize the columns

of P̃ , we are done. The adjoint DAE (11) has the form[
ET11 0
ET12 0

] [
ẏ1
ẏ2

]
=

[
−(A11 + Ė11)T −AT21
−(A12 + Ė12)T −AT22

] [
y1
y2

]
,

and, since the adjoint of (3) is again strangeness-free, see [34], we can reorder the equations so
that the left upper d × d-block of the coefficient matrix on the left-hand side is nonsingular and
then eliminate the left lower block. Then, we obtain an equivalent DAE of the form[

ẼT11 0
0 0

] [
ẏ1
ẏ2

]
=

[
−ÃT11 −ÃT21
−ÃT12 −ÃT22

] [
y1
y2

]
.

In this system, the algebraic constraint is given explicitly by 0 = ÃT12y1 + ÃT22y2, where ÃT22 is
nonsingular. Hence, let P̃2 = −Ã−T22 Ã

T
12P̃1. Finally, applying a Gram-Schmidt orthogonalization

to P̃ , we obtain a basis of (11), denoted by P̂ , which also fulfils P̂TEÛ = E , where E is upper
triangular. One easily verifies that the obtained EUODE of the adjoint equation (11) is exactly
the adjoint of EUODE (5) of the original DAE (3).

With these preparations we obtain a generalization of [37, Theorem 19] on the relation between
the Lyapunov exponents of (3) and those of (11).

Theorem 10 Suppose that the matrix function E = P̂TEÛ and its inverse are bounded on I,
where the columns of Û , P̂ form bases of the solution spaces in Proposition 9. If λli are the lower
Lyapunov exponents of (3) and −µui are the upper Lyapunov exponents of the adjoint system (11),
both in increasing order, then λli = µui , i = 1, 2, ..., d, Furthermore, system (3) is Lyapunov
regular if and only if (11) is Lyapunov regular, and in this case we have the Perron identity

λi = µi, i = 1, 2, ..., d. (13)

Proof. Due to Proposition 9, it suffices to consider two implicit EUODEs which are adjoint of each
other. The assertion then follows by the same argument as that in the proof of [37, Theorem 19],
which is based on the Lagrange identity WT (t)E(t)Z(t) = WT (0)E(0)Z(0), where Z and W are
fundamental solutions of EUODE (5) and its adjoint (12), respectively.

Since we have used the assumption that E and its inverse are bounded, it would be more
practical to check this property in terms of the original data. This is easily possible for the class
of so-called semi-implicit DAEs (i.e., those with E12 = 0), see [37, Theorem 19].

We stress that unlike the approach in [17], where certain inherent ODEs of the same size as the
original DAE are used, our spectral analysis is based on the essentially underlying ODEs, which
have reduced size and can be constructed numerically.
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2.3 Stability of Lyapunov exponents

Lyapunov exponents may be very sensitive to small changes in the system. In order to study this
sensitivity for DAEs, we consider the specially perturbed system

[E(t) + F (t)]ẋ = [A(t) +H(t)]x, t ∈ I, (14)

where

F (t) =

[
F1(t)

0

]
, H(t) =

[
H1(t)
H2(t)

]
,

and where F1 and H1, H2 are assumed to have the same order of smoothness as E1 and A1, A2,
respectively. Perturbations of this structure are called admissible, which is the generalization to
the variable coefficient case of the concepts for the constant coefficient DAEs studied in [12]. The
DAE (3) is said to be robustly strangeness-free if it stays strangeness-free under all sufficiently
small admissible perturbations. It is easy to see that the DAE (3) is robustly strangeness-free
under admissible perturbations if and only if the matrix function Ē defined by (4) is boundedly
invertible. It should be noted that it is an open problem even in the constant coefficient case how
to analyze the behavior of DAEs under non-admissible perturbations.

In the following we restrict ourselves to robustly strangeness-free DAE systems under admissible
perturbations.

Definition 11 The upper Lyapunov exponents λu1 ≥ ... ≥ λud of (3) are said to be stable if for
any ε > 0, there exists δ > 0 such that the conditions supt ||F (t)|| < δ, supt ||H(t)|| < δ, and

supt

∣∣∣∣∣∣Ḣ2(t)
∣∣∣∣∣∣ < δ on the perturbations imply that the perturbed DAE system (14) is strangeness-

free and
|λui − γui | < ε, for all i = 1, 2, ..., d,

where the γui are the ordered upper Lyapunov exponents of the perturbed system (14).

It is clear that the stability of upper Lyapunov exponents is invariant under strong global kinematic
equivalence transformations. Compared with the ODE case, the boundedness condition on Ḣ2 is
an extra condition. The following simple example shows its necessity.

Example 12 Consider the system
ẋ1 = x1,
0 = x2.

It is easy to see that this trivial DAE is robustly strangeness-free, Lyapunov-regular, and it has
only one Lyapunov exponent λ = 1. Now, consider the perturbed DAE

(1 + ε2 sin 2mt) ẋ1 − ε cosmt ẋ2 = x1,
0 = −2ε sinmtx1 + x2,

(15)

where ε is a small perturbation parameter and m is a given integer. From the second equation of
(15), we obtain x2 = 2ε sinmtx1. Differentiating this expression for x2 and inserting the result
into the first equation, after some elementary calculations, we obtain

ẋ1 = (1 +mε2 +mε2 cos 2mt)x1.

Explicit integration yields x1(t) = e(1+mε
2)t+ε2 sin 2mt/2, from which the only Lyapunov exponent

λ̂ = 1+mε2 is calculated. Clearly, even if ε, and hence the perturbation in the coefficient matrices
is small, the difference between two Lyapunov exponents may be arbitrarily large by choosing
sufficiently large m.

Another important concept is that of integral separation for DAEs.
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Definition 13 A minimal fundamental solution matrix X for (3) is called integrally separated if
for i = 1, 2, ..., d− 1 there exist constants c1 > 0 and c2 > 0 such that

||X(t)ei||
||X(s)ei||

· ||X(s)ei+1||
||X(t)ei+1||

≥ c2ec1(t−s),

for all t, s with t ≥ s ≥ 0.
If a DAE system has an integrally separated minimal fundamental solution matrix, then we say

that it has the integral separation property.

The integral separation property is invariant under strong global kinematic equivalence transfor-
mations. Furthermore, if a fundamental solution X of (3) is integrally separated, then so is the
corresponding fundamental solution Z of (5) and vice versa.

Note that by using a global kinematic equivalence transformation, see [37, Remark 13], (3)
can be transformed to a special structured form, where the block A21 becomes zero, i.e., we may
assume that (3) has the form[

E11 E12

0 0

] [
ẋ1
ẋ2

]
=

[
A11 A12

0 A22

] [
x1
x2

]
. (16)

The advantage of this form is that then the associated EUODE is

E11ẋ1 = A11x1.

Therefore, for the perturbation analysis, in the following we may assume that (3) is already given
with A21 = 0, i.e., the perturbed DAE has the form

(E11 + F11) ˙̃x1 + (E12 + F12) ˙̃x2 = (A11 +H11)x̃1 + (A12 +H12)x̃2,

0 = H21x̃1 + (A22 +H22)x̃2. (17)

We then have the following sufficient conditions for the upper Lyapunov exponents of (3) to be
stable.

Theorem 14 Consider a strangeness-free DAE (3) in the form (16). Suppose that the matrix Ē
in (4) is boundedly invertible and that E−111 A11, A12A

−1
22 and Ȧ22 are bounded on I. Then, the

upper Lyapunov exponents of (3) are distinct and stable if and only if the system has the integral
separation property.

Proof. First of all, it is easy to see that the inverse of Ē is bounded if and only if E−111 , A
−1
22 , and

E−111 E12A
−1
22 are bounded. In the algebraic equation of (17), for sufficiently small H22, we can

solve for x2 and obtain x2 = −(A22 + H22)−1H21. Differentiating this expression and inserting
the result into the first equation, we obtain the perturbed EUODE

(E11 + F̃11) ˙̃x1 = (A11 + H̃11)x̃1,

where

F̃11 = F11 − (E12 + F12)(A22 +H22)−1H12,

H̃11 = H11 + (E12 + F12)
d

dt
[(A22 +H22)−1H21]− (A12 +H12)(A22 +H22)−1H21.

The last equation is equivalent to

(I + E−111 F̃11) ˙̃x1 = (E−111 A11 + E−111 H̃11)x̃1.

Under the given boundedness assumptions (see Definition 11), it is not difficult to check that the
terms E−111 F̃11 and E−111 H̃11 are arbitrary small in norm, provided that the norms of the original
perturbation F,H are sufficiently small and d

dtH22 is bounded. Using the well-known result on
the stability of Lyapunov exponents for ODEs, see [1] or [23], the assertion follows.
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Remark 15 Example 12 and Theorem 14 demonstrate that, unlike in the perturbation analy-
sis of time-invariant DAEs [12], that of time-varying DAEs requires more restrictive conditions.
However, for some classes of structured problems, see [16] and [37, Section 3.2], parts of these
conditions can be relaxed.

The integral separation of a fundamental matrix solution can be equivalently expressed in term
of integral separation of a sequence of functions. Two continuous and bounded functions f1 and
f2 are said to be integrally separated if there exist c1 > 0 and c2 ≥ 0 such that∫ t

s

(f1(r)− f2(r)) dr ≥ c1(t− s)− c2, ∀t > s ≥ 0.

In practice, the integral separation of two functions can be tested via their Steklov difference.
Defining Steklov averages by

fHi (t) :=
1

H

∫ t+H

t

fi(r)dr, (i = 1, 2),

it follows from a result of [1] that the functions f1, f2 are integrally separated if and only if there
exists scalar H > 0 such that their Steklov difference is positive, i.e., for H sufficiently large, there
exists a constant c3 > 0 such that

fH1 (t)− fH2 (t) ≥ c3 > 0, for all t ≥ 0.

For further discussions on integral separation and its importance in the context of approximating
Lyapunov exponents, see [23, 24, 25].

2.4 Bohl exponents and Sacker-Sell spectrum

Further concepts that are important to describe the qualitative behavior of solutions to ordi-
nary differential equations are the exponential-dichotomy or Sacker-Sell spectra [45] and the Bohl
exponents [7], see also [18]. The extension of these concepts to DAEs has been presented in [37].

Definition 16 Let x be a nontrivial solution of (3). The (upper) Bohl exponent κuB(x) of this
solution is the greatest lower bound of all those values ρ for which there exist constants Nρ > 0
such that

||x(t)|| ≤ Nρeρ(t−s) ||x(s)||

for any t ≥ s ≥ 0. If such numbers ρ do not exist, then one sets κuB(x) = +∞. Similarly, the
lower Bohl exponent κ`B(x) is the least upper bound of all those values ρ′ for which there exist
constants N ′ρ > 0 such that

||x(t)|| ≥ N ′ρeρ
′(t−s) ||x(s)|| , 0 ≤ s ≤ t.

Lyapunov exponents and Bohl exponents are related via

κ`B(x) ≤ λ`(x) ≤ λu(x) ≤ κuB(x).

Bohl exponents characterize the uniform growth rate of solutions, while Lyapunov exponents sim-
ply characterize the growth rate of solutions departing from t = 0 and the formulas characterizing
Bohl exponents for ODEs, see e.g. [18], immediately extend to DAEs, i.e.

κuB(x) = lim sup
s,t−s→∞

ln ||x(t)|| − ln ||x(s)||
t− s

, κ`B(x) = lim inf
s,t−s→∞

ln ||x(t)|| − ln ||x(s)||
t− s

.

Moreover, under the boundedness conditions of Theorem 14, the Bohl exponents are stable with
respect to admissible perturbations without the integral separation assumption, see [16, 37].
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Definition 17 The DAE (3) is said to have exponential dichotomy if for any minimal funda-
mental solution X there exist a projection Π ∈ Rd×d and positive constants K and α such that

||X(t)ΠX+(s)|| ≤ Ke−α(t−s), t ≥ s,
||X(t)(Id −Π)X+(s)|| ≤ Keα(t−s), s > t,

(18)

where X+ denotes the generalized Moore-Penrose inverse of X.

Let X be a fundamental solution matrix of (3) and let the columns of Û form an orthonormal
basis of the solution subspace, then we have X = ÛZ, where Z is the fundamental solution matrix
of the corresponding EUODE (5) and hence invertible. Observing that X+ = Z−1ÛT , we have∣∣∣∣X(t)ΠX+(s)

∣∣∣∣ =
∣∣∣∣Z(t)ΠZ−1

∣∣∣∣ , and
∣∣∣∣X(t)(Id −Π)X+(s)

∣∣∣∣ =
∣∣∣∣Z(t)(Id −Π)Z−1

∣∣∣∣ .
Thus, the following statement is obvious.

Proposition 18 The DAE (3) has exponential dichotomy if and only if its corresponding EUODE
(5) has exponential dichotomy.

Furthermore, as it has been remarked in [20, 23], the projector Π can be chosen to be orthogonal,
i.e., Π = ΠT . The projector Π projects to a subspace of the complete solution subspace in
which all the solutions are uniformly exponentially decreasing, while the solutions belonging to
the complementary subspace are uniformly exponentially increasing.

In order to extend the concept of exponential dichotomy spectrum to DAEs, we need shifted
DAE systems

E(t)ẋ = [A(t)− λE(t)]x, t ∈ I, (19)

where λ ∈ R. By using the transformation as in Lemma 1, we obtain the corresponding shifted
EUODE for (19)

E ż = (A− λE)z.

Definition 19 The Sacker-Sell (or exponential dichotomy) spectrum of the DAE system (3) is
defined by

ΣS := {λ ∈ R, the shifted DAE (19) does not have an exponential dichotomy} . (20)

The complement of ΣS is called the resolvent set for the DAE system (3), denoted by ρ(E,A).

Then, using Proposition 18 and the result for the ODE case [45], we have the following result.

Theorem 20 [37] The Sacker-Sell spectrum of (3) is exactly the Sacker-Sell spectrum of its EU-
ODE (5). Furthermore, the Sacker-Sell spectrum of (3) consists of at most d closed intervals.

Using the same arguments as in [37, Section 3.4], one can show that under the boundedness
conditions of Theorem 14, unlike the Lyapunov spectrum, the Sacker-Sell spectrum of the DAE
(3) is stable with respect to admissible perturbations. Theorem 50 in [37] also states that if X is
an integrally separated fundamental matrix of (3), then the Sacker-Sell spectrum of the system
is exactly given by the d (not necessarily disjoint) Bohl intervals associated with the columns of
X. In the remainder of the paper, we assume that ΣS consists of p ≤ d pairwise disjoint spectral
intervals, i.e., ΣS = ∪pi=1[ai, bi], and bi < ai+1 for all 1 ≤ i ≤ p. This assumption can be easily
achieved by combining possibly overlapping spectral intervals to larger intervals.

3 Leading directions and subspaces

As we have noted before, initial vectors of (3) must be chosen consistent and they form a d-
dimensional subspace in Rn. Furthermore, the solutions of (3) also form a d-dimensional subspace
of functions in C1(I,Rn). Let us denote these spaces by S0 and S(t), respectively. Furthermore,
for x0 ∈ S0 let us denote by x(t;x0) the (unique) solution of (3) that satisfies x(0;x0) = x0. In
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order to obtain geometrical information about the subspaces of solutions which have a specific
growth, we extend the analysis for ODEs given in [20] to DAEs.

For j = 1, . . . d, define the set Wj of all consistent initial conditions w such that the upper
Lyapunov exponent of the solution x(t;w) of (3) satisfies χu(x(·;w)) ≤ λuj , i.e.,

Wj =
{
w ∈ S0 : χu (x(·;w)) ≤ λuj

}
, j = 1, . . . , d.

Let the columns of Û(·) form a smoothly varying basis of the solution subspace S(·) of (3) and con-
sider an associated EUODE (5). Then we can consider (5) and, instead of Wj , the corresponding
set of all initial conditions for (5) that lead to Lyapunov exponents not greater than λuj . In this
way it is obvious that all for ODEs in [20] (Propositions 2.8–2.10) apply to EUODEs of the form
(5) and, as a consequence of Theorem 7, we obtain several analogous statements for (3). First, we
state a result on the subspaces Wj .

Proposition 21 Let dj be the largest number of linearly independent solutions x of (3) such that
lim supt→∞

1
t ln ||x(t)|| = λuj . Then Wj is a dj dimensional linear subspace of S0. Furthermore, the

spaces Wj, j = 1, 2, . . ., form a filtration of S0, i.e., if p is the number of distinct upper Lyapunov
exponents of the system, then we have

S0 = W1 ⊃W2 ⊃ . . . ⊃Wp ⊃Wp+1 = {0} .

It follows that lim supt→∞
1
t ln ||x(t;w)|| = λuj if and only if w ∈ Wj\Wj+1. Moreover, if we have

d distinct upper Lyapunov exponents, then the dimension of Wj is d− j + 1.
If Yj is defined as the orthogonal complement of Wj+1 in Wj , i.e.,

Wj = Wj+1 ⊕ Yj , Yj ⊥Wj+1,

then S0 = Y1 ⊕ Y2 ⊕ . . .⊕ Yp, and

lim sup
t→∞

1

t
ln ||x(t;w)|| = λuj if and only if w ∈ Yj .

It follows that if we have p = d distinct Lyapunov exponents, then dim(Yj) = 1 for all j = 1, . . . , d.
In the next section, similar to [20, 21], we will approximate the spaces Yj by using smooth singular
value decompositions (SVDs), see [11, 19], of fundamental solutions.

If the DAE system (3) is integrally separated, then it can be shown that the sets Wj , Yj can
be also used to characterize the set of initial solutions leading to lower Lyapunov exponents, see
[20, Proposition 2.10] for details.

Consider now the resolvent set ρ(E,A). For µ ∈ ρ(E,A), let us define the following stable and
unstable sets, respectively.

Sµ = {w ∈ S0 : limt→∞ e−µt ||x(t;w)|| = 0} ,
Uµ = {w ∈ S0 : limt→∞ e−µt ||x(t;w)|| = +∞} ∪ {0} .

Note that the definition of the unstable set Uµ is different from that for ODEs in [20, 45], see also
the formula (21) below. By definition, it is clear that Sµ ∩ Uµ = ∅ for µ ∈ ρ(E,A). Furthermore,
for µ1, µ2 ∈ ρ(E,A), µ1 < µ2, we have Sµ1 ⊆ Sµ2 and Uµ1 ⊇ Uµ2 .

In the following we study the EUODE (5) associated with (3). For simplicity, we assume that
Z is the principal matrix solution, i.e., Z(0) = Id. This can always achieved by an appropriate
kinematic equivalence transformation. Following the construction for ODEs in [20], we characterize
the sets

Sdµ =
{
v ∈ Rd : lim

t→∞
e−µt ||Z(t)v|| = 0

}
,

Udµ =
{
v ∈ Rd : lim

t→∞
eµt
∣∣∣∣Z(t)−T v

∣∣∣∣ = 0
}

(21)
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associated with (5). Recalling that p is the number of disjoint spectral intervals, let us now choose
a set of values µ0 < µ1 < . . . < µp, such that µj ∈ ρ(E,A) and ΣS ∩ (µj−1, µj) = [aj , bj ] for
j = 1, . . . , p. In other words, we have

µ0 < a1 ≤ b1 < µ1 < · · · < µj−1 < aj ≤ bj < µj < · · · < µp−1 < ap ≤ bp < µp.

The following two theorems which are easily adopted from [20, 45] describe the relation between
the stable and unstable sets and the Lyapunov spectral intervals.

Theorem 22 Consider the EUODE (5) associated with (3), the corresponding sets Sdµj
and Udµj

,
j = 0, . . . , p defined in (21), and the intersections

N d
j = Sdµj

∩ Udµj−1
, j = 1, . . . , p. (22)

Then every N d
j is a linear subspace of dimension dim(N d

j ) ≥ 1 with the following properties:

(i) N d
k ∩N d

l = {0}, for k 6= l,

(ii) Rd = N d
1 ⊕N d

2 ⊕ . . .N d
p .

Theorem 23 Consider the EUODE (5) associated with (3), and the sets N d
j defined in (22),

j = 1, . . . , p. If v ∈ N d
j and

lim sup
t→∞

1

t
ln ||Z(t)v|| = χu, lim inf

t→∞

1

t
ln ||Z(t)v|| = χ`,

then χ`, χu ∈ [aj , bj ].

Let Û be an orthonormal basis of the solution subspace for (3) and introduce the sets

Nj = Û(0)N d
j =

{
w ∈ S0 : w = Û(0)v, v ∈ N d

j

}
, j = 1, . . . , p, (23)

then solutions of the DAE (3) with initial condition from Nj can be characterized as follows.

Corollary 24 Consider the EUODE (5) associated with (3), and the sets Nj defined in (23),
j = 1, . . . , p. If w ∈ Nj and

lim sup
t→∞

1

t
ln ||x(t;w)|| = χu, lim inf

t→∞

1

t
ln ||x(t;w)|| = χ`,

then χ`, χu ∈ [aj , bj ].

This means that Nj is the subspace of initial conditions associated with solutions of (3) whose
upper and lower Lyapunov exponents are located inside [aj , bj ].

The next theorem characterizes the uniform exponential growth of the solutions of (3).

Theorem 25 Consider the EUODE (5) associated with (3), and the sets Nj defined in (23),
j = 1, . . . , p. Then w ∈ Nj\ {0} if and only if

1

Kj−1
eaj(t−s) ≤ ||x(t;w)||

||x(s;w)||
≤ Kje

bj(t−s), for all t ≥ s ≥ 0, (24)

and some positive constants Kj−1,Kj.

Proof. Due to the construction of the EUODE (5), see Lemma 1, we have x(t;w) = Û(t)Z(t)v,
where v = Û(0)Tw, and thus ||x(t;w)|| = ||Z(t)v||. Theorem 3.9 and Remark 3.10 of [20] state that
v ∈ N d

j if and only if

1

Kj−1
eaj(t−s) ≤ ||Z(t)v||

||Z(s)v||
≤ Kje

bj(t−s), for all t ≥ s ≥ 0,

and some positive constants Kj−1,Kj . Hence, the inequalities (24) follow immediately.

We can also characterize the relationship of the sets Nj and the Bohl exponents.
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Corollary 26 Consider the EUODE (5) associated with (3) and the sets Nj defined in (23). Then
for all j = 1, . . . , p, we have

(i) w ∈ Nj\ {0} if and only if aj ≤ κ`(x(·;w)) ≤ κu(x(·;w)) ≤ bj, where κ`, κu are the Bohl
exponents.

(ii) Sµj
= Û(0)Sdµj

, Uµj
= Û(0)Udµj

, and Nj = Sµj
∩ Uµj−1

, j = 1, . . . , p.

Proof. (i) The proof of the first part follows from Theorem 25 and the definition of Bohl exponents,
see Definition 16.

(ii) First we prove
Û(0)Sdµj

⊂ Sµj
, Û(0)Udµj

⊂ Uµj
.

To this end, take an arbitrary w ∈ Û(0)Sdµj
. Then v clearly belongs to Sdµj

, and consequently,

||x(t;w)||
||x(s;w)||

=
||Z(t)v||
||Z(s)v||

≤ Kje
bj(t−s),

where v is defined as in the proof of Theorem 25. It follows that w ∈ Sµj
. The relation Û(0)Udµj

⊂
Uµj is proved analogously. As a consequence of Theorem 3.4 in [20], we have dimSdµj

+dimUdµj
= d.

Therefore,
d = dim Û(0)Sdµj

+ dim Û(0)Udµj
≤ dimSµj

+ dimUµj
.

On the other hand, Sµj ∩ Uµj = {0}. Thus, the identities

Û(0)Sdµj
= Sµj , Û(0)Udµj

= Uµj .

hold and the proof is complete.

Remark 27 An alternative way to characterize the unstable set Udµ is as{
v ∈ Rd : limt→∞ eµt ||Z(t)v|| = +∞

}
∪ {0} for µ ∈ ρ(E,A). Furthermore, we have

Sµj
= {w ∈ S0 : κu(x(·;w)) ≤ bj} ∪ {0} ,

Uµj−1
=

{
w ∈ S0 : κ`(x(·;w)) ≥ aj

}
∪ {0} ,

as well. For further properties of Sdµj
and Udµj

, see [20, Theorem 3.11] in the case when the system
is integrally separated.

In this section we have adapted and extended several results on spectral intervals, leading
directions and stability sets to strangeness-free DAEs. In the next section we present the main
results of the paper, the extension of smooth singular value decomposition based methods to
DAEs.

4 SVD-based methods for DAEs

In this section we extend the approach in [20, 21] of using smooth SVDs for the computation
of spectral intervals of ODEs to DAEs. We assume again that the DAE system is given in the
strangeness-free form (3), i.e., whenever the value of E(t), A(t) is needed, this has to be computed
from the derivative array as described in [32]. This can be done for example with the FORTRAN

code GELDA [35] or the corresponding MATLAB version [36].
Let X be an (arbitrary) minimal fundamental matrix solution of (3), in particular, assume

that X ∈ C1(I,Rn×d). Suppose that we are able to compute a smooth SVD

X(t) = U(t)Σ(t)V T (t), t ≥ 0, (25)

13



where U ∈ C1(I,Rn×d), V,Σ ∈ C1(I,Rd×d), UT (t)U(t) = V T (t)V (t) = Id for all t ∈ I, and
Σ(t) = diag(σ1(t), . . . , σd(t)) is diagonal. We assume that U,Σ, and V possess the same smoothness
as X. This holds, e.g., if X(t) is analytic, see [11] or if the singular values of X(t) are distinct for
all t, see [19, 42]. The explicit construction of smooth SVDs is rather computationally expensive,
see [11] and the proof of [32, Theorem 3.9].

Remark 28 Note that U in the smooth SVD of X and Û as in the construction of the EUODE,
play the same role, they form orthonormal bases of the corresponding solution subspace S, so
we are in fact in the special case of the analysis in Section 2. If we set Z = ΣV T , then this is
a fundamental solution of the resulting EUODE of the form (5). Furthermore, the factorization
Z = ΣV T is the SVD of the specially chosen fundamental solution Z.

We will also demonstrate how to modify the methods of [20, 21] to approximate only a few
(dominant) spectral intervals. For this we need to select ` (` < d) columns of a fundamental
solution, i.e., ` linearly independent solutions of the DAE (3), and proceed to work with them.

4.1 Discrete SVD method

We first discuss a discrete SVD method, where the fundamental matrix solution X is indirectly
evaluated by solving (3) on subintervals and to reduce the accumulation of errors, the numerical
integration is performed with a reorthogonalization. For T sufficiently large, we choose a set of N
grid points 0 = t0 < t1 < . . . < tN = T . Suppose that a skinny QR factorization, see e.g., [28],
X(0) = Q0R0 is given, where Q0 ∈ Rn×d and R0 ∈ Rd×d. We can proceed in the same way, when
only ` < d (dominant) spectral intervals are of interest. Then we successively solve the initial
value problems {

E(t)Ẋk(t) = A(t)Xk(t), tk−1 ≤ t ≤ tk,
Xk(tk−1) = Qk−1, k = 1, 2, . . . ,

(26)

followed by QR decompositions Xk(tk) = QkRk which are determined using modified Gram-
Schmidt orthogonalization or Householder transformations, see [28].

Then we have
X(tN ) = QNRNRN−1 · · ·R1R0. (27)

Up to this step the method is the same as the discrete QR method for approximating spectral
intervals, see [23, 37]. We then proceed by using the product SVD algorithm [8, 41, 46] to
compute the (approximate) SVD of the matrix product on the right-hand side of (27) without
evaluating the product itself. As a result of applying the product SVD algorithm to the product
RNRN−1 · · ·R1R0 in (27), we then obtain the desired factorization of X(tN ) in the form

QNU
(N)Σ(N)Σ(N−1) . . .Σ(1)Σ(0)(V (N))T (28)

with diagonal matrices Σ(0), . . . ,Σ(N). To extract the spectral information from the obtained
factorization, one proceeds as in the discrete QR methods [37, 38], where only the diagonal com-
ponents are used. In particular, assuming that T is sufficiently large, approximate upper and lower
Lyapunov exponents are obtained by computing a truncated lim sup and lim inf in

λui = lim sup
tN→∞

1

tN

N∑
j=0

ln
(

Σ(j)
)
i,i
, λ`i = lim inf

tN→∞

1

tN

N∑
j=0

ln
(

Σ(j)
)
i,i
, (29)

for i = 1, 2, . . . , d. Theorem 32 given below for the continuous SVD method justifies the use of
(29) for approximating Lyapunov exponents.

The approximation of the Sacker-Sell spectrum is obtained analogously, see Theorem 34 below.
Concretely, with N > M > 0, we have

κui = lim sup
tM ,tN−tM→∞

1

tN − tM

N∑
j=M+1

ln
(

Σ(j)
)
i,i
, κ`i = lim inf

tM ,tN−tM→∞

1

tN − tM

N∑
j=M+1

ln
(

Σ(j)
)
i,i
,

(30)
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for i = 1, 2, . . . , d.
We summarize the procedure in the following algorithm.

Algorithm 1 (Discrete SVD algorithm for computing the Lyapunov spectrum of a
linear DAE with variable coefficients)

Input: A pair of sufficiently smooth matrix functions (E,A) in the form of the strangeness-free
DAE (3) (if they are not available directly they must be obtained pointwise as output of a routine
such as GELDA), the time interval [0, T ], τ ∈ (0, T ), and a mesh 0 = t0 < t1 < ... < tN−1 < tN = T .
Output: Approximations to the endpoints of the spectral intervals {λli, λui }di=1.

Initialization

1. Set t0 := 0, X0 = Q0R0.

2. Set λi(t0) := 0 and si := 0 for i = 1, . . . , d (for computing the sum si of the

logarithms).

Computing the fundamental solution in product form

For j = 1, . . . , N

1. Solve the initial value problem (26) for Xj(tj) on [tj−1, tj ].

2. Compute the QR factorization Xj(tj) = QjRj.

Product SVD

Apply the product SVD Algorithm to
∏0
j=N Rj to compute the factors Σ(j), j =

0, 1, 2, . . . , N in (28) and the factor V N.

Calculation of the Lyapunov exponents

For j = 1, . . . , N

1. Update si := si + ln[(Σ(j))ii] and λi(tj) = 1
tj
si, i = 1, 2, . . . , d.

2. If desired, test the integral separation property by using {si}di=1.

3. Update minτ≤t≤tj λi(t) and maxτ≤t≤tj λi(t), i = 1, 2, . . . , d.

For the approximation of Sacker-Sell spectral intervals only the last step has to be modified, by
using (30) instead of (29).

4.2 Continuous SVD method

In the continuous SVD method one derives differential-algebraic equations for the factors U,Σ,
and V and solves the corresponding initial value problems via numerical integration.

If we differentiate the expression for X in (25) with respect to t and substitute the result into
(3), we obtain

EU̇ΣV T + EU Σ̇V T + EUΣV̇ T = AUΣV T ,

or equivalently, using the orthogonality of V ,

EU̇Σ + EU Σ̇ + EUΣV̇ TV = AUΣ.

Since the second block-row of E is zero and Σ is invertible, it follows that

A2U = 0, (31)
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because the columns of U form an orthonormal basis of a subspace of the solution subspace. If we
then differentiate (31) and insert this, we obtain[

E1

A2

]
+

[
E1

A2

]
U Σ̇ +

[
E1

A2

]
UΣV̇ TV =

[
A1

−Ȧ2

]
UΣ. (32)

We define the matrix function

Ā =

[
A1

−Ȧ2

]
,

and the skew-symmetric matrix functions

H = UT U̇ , K = V T V̇ .

The latter two matrix functions are of size d × d (or ` × ` in the reduced case). We can use an
idea suggested in [37, 38] to determine a matrix function P ∈ C(I,Rn×d) such that

PT Ē = EUT , (33)

where E is nonsingular and upper triangular with positive diagonal entries. Due to [38, Lemma
12], this defines P, E uniquely. The numerical computation of this pair will be discussed later.
Note that the identity PTEU = PT ĒU = E holds, so that P can also be used to produce an
EUODE of the form (5) via Lemma 1.

The following property of E is important in the proof of numerical stability for the SVD method.

Proposition 29 Consider the matrix function P defined via (33). Then

||E|| ≤
∣∣∣∣Ē∣∣∣∣ , ∣∣∣∣E−1∣∣∣∣ ≤ ∣∣∣∣Ē−1∣∣∣∣ .

Proof. The estimate for ||E|| follows immediately from the identity PT ĒU = E . For the second
inequality one observes that (33) is equivalent to

Ē−TU = PE−T ,

and hence PTE−TU = E−T . Thus, the estimate for
∣∣∣∣E−1∣∣∣∣ is obtained analogously.

Denoting by cond(M) the normwise condition number of a matrix M with respect to inversion,
as a consequence of Proposition 29, we have that the cond E ≤ cond Ē, and thus the sensitivity
of the implicit EUODE (5) that we are using to compute the spectral intervals is not larger than
that of the original DAE.

Multiplying both sides of (32) with PT from the left, we obtain

EHΣ + EΣ̇ + EΣKT = PT ĀUΣ.

With
G = PT ĀU and C = E−1G, (34)

we then arrive at
HΣ + Σ̇ + ΣKT = CΣ,

which is almost the same differential equation as in the ODE case, see [20, 21], there is just a
different formula for C = [ci,j ]. Using the skew-symmetry of H = [hi,j ],K = [ki,j ] and that
Σ = diag(σ1, . . . , σd) is diagonal, we obtain the expressions

hi,j =
ci,jσ

2
j + cj,iσ

2
i

σ2
j − σ2

i

, for i > j, and hi,j = −hj,i for i < j;

ki,j =
(ci,j + cj,i)σiσj

σ2
j − σ2

i

, for i > j, and ki,j = −kj,i for i < j. (35)
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We also get immediately the differential equation for the diagonal elements of Σ

σ̇i = ci,iσi, i = 1, . . . , d, (36)

and that for the V -factor,
V̇ = V K. (37)

By some further elementary calculations, we also obtain the equation for the U -factor as

EU̇ = EU(H − C) +AU. (38)

It is easy to see that (38) is a strangeness-free (non-linear) matrix DAE, that is furthermore linear
with respect to the derivative. Furthermore, the algebraic constraint is also linear and the same
as that of (3). We will discuss the efficient integration of this particular matrix DAE (38) below.

To proceed further, we have to assume that the matrix function C in (34) is uniformly bounded
on I. Furthermore, in order for the Lyapunov exponents to be stable, we will assume that the
functions σi are integrally separated, i.e., there exist constants k1 > 0 and k2, 0 < k2 ≤ 1, such
that

σj(t)

σj(s)

σj+1(s)

σj+1(t)
≥ k2ek1(t−s), t ≥ s ≥ 0, j = 1, 2, . . . , d− 1. (39)

Condition (39) is equivalent to the integral separation of the diagonal of C. This property again
can be easily checked in practice via the computation of Steklov differences, see Section 2.3.

The following results are then obtained in the same way as the corresponding results for ODEs
in [20].

Proposition 30 Consider the differential equations (37), (38) and (36) and suppose that the
diagonal of C is integrally separated. Then, the following statements hold.

(a) There exists t̄ ∈ I, such that for all t ≥ t̄, we have

σj(t) > σj+1(t), j = 1, 2, . . . , d− 1.

(b) The skew-symmetric matrix function K(t) converges exponentially to 0 as t→∞.

(c) The orthogonal matrix function V (t) converges exponentially to a constant orthogonal matrix
V̄ as t→∞.

Proof. The proofs of (a), (b), and the convergence of V follow in the same way as the corresponding
results in in [20, 23]. Further, one can show that the convergence rate of K is not worse than
−k1, where k1 is the constant in (39), see [23, Lemma 7.3]. Then, invoking the argument of [18,
Lemma 2.4], we obtain ∣∣∣∣V (t)− V̄

∣∣∣∣ ≤ (e∫∞t ||K(s)||ds − 1
) ∣∣∣∣V̄ ∣∣∣∣ ,

where V̄ = limt→∞ V (t). By elementary calculations, it is easy to show that the convergence rates
for t→ +∞ of V and K are the same.

Remark 31 In [20, Theorem 5.4] it is shown that the exponential rate of convergence of V is
given by

α = γ max
1≤j≤d−1

(λuj+1 − λuj ),

where γ is a constant, 0 < γ ≤ 1. Furthermore, if the system (5) is regular, then γ = 1 [20,
Corollary 5.5].

We can also characterize the relationship between the stability of Lyapunov exponents and integral
separation of the singular values.
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Theorem 32 System (3) has distinct and stable Lyapunov exponents if and only if for any fun-
damental matrix solution X, the singular values of X are integrally separated. Moreover, if X is
a fundamental solution, then

λuj = lim sup
t→∞

1

t
lnσj(t), λ`j = lim inf

t→∞

1

t
lnσj(t), j = 1, 2, . . . , d. (40)

Proof. For the proof, we apply [20, Theorem 4.2] to the EUODE (5) and consider the corresponding
fundamental solution Z = ÛTX for a fundamental solution X, where Û is a fixed orthonormal
basis determined by the continuous SVD algorithm. Note that (3) is integrally separated if and
only if the associated EUODE (5) is integrally separated. Invoking Theorem 7 and the fact that
the singular values of X and those of Z are the same, we obtain the desired formulas in (40).

Remark 33 Theorem 32 has two computational consequences. By [20, Lemma 4.3], it follows
that we can work with any minimal fundamental solution X. This is an advantage compared to the
QR methods [37, 38] which require the use of a normal basis. In order to compute the Lyapunov
exponents numerically, they must be stable. For the ODE case, the stability of distinct Lyapunov
exponents and the integral separation of the ODE are equivalent. For DAEs, however, we need
further boundedness conditions, see Example 12 and Theorem 14, which need to be checked in
any computational method.

Theorem 34 Suppose that (3) has distinct and stable Lyapunov exponents. Then, the Sacker-Sell
spectrum of (3) is the same as that of the diagonal system

Σ̇(t) = diag(C(t))Σ(t).

Furthermore, this Sacker-Sell spectrum is given by the union of the Bohl intervals associated with
the scalar equations σ̇i(t) = ci,i(t)σi(t), i = 1, 2, . . . , d.

Proof. The proof follows in the same way as the proof of Theorem 32 and [20, Theorem 4.6].

Similarly to the ODE case, the limit matrix V̄ provides a normal basis, that is, using the
columns of X(0)V̄ for initial conditions, we obtain a fundamental matrix solution whose columns
have Lyapunov spectral intervals [λ`j , λ

u
j ], j = 1, 2, . . . , d.

Theorem 35 Suppose that (3) has distinct and stable Lyapunov exponents. Let X(t) =
U(t)Σ(t)V (t)T be a smooth SVD of an arbitrary fundamental solution. Let V̄ = [v̄1, . . . , v̄d] be
the limit of the factor V (t) as t→∞. Then

χu(X(·)v̄j) = λuj , χ`(X(·)v̄j) = λ`j , j = 1, 2, . . . , d.

Proof. We apply [20, Theorem 5.8] to the EUODE (5) with the corresponding fundamental
solution Z. Then observing that χu(X(·)v̄j) = χu(Z(·)v̄j) and χ`(X(·)v̄j) = χ`(Z(·)v̄j), the
assertion follows.

Theorem 36 Suppose that (3) has distinct and stable Lyapunov exponents and let ΣS =⋃m
j=1[aj , bj ]. Then Nj = Û(0) span{v̄k, . . . , v̄l}, where the integers k, l, k < l are such that

λul+1 < aj ≤ λ`l , λuk ≤ bj < λ`k−1.

Proof. We apply [20, Theorem 5.12] to obtain the characterization of the subspaces N d
j associated

with (5). Then, the relationship between Nj and N d
j expressed in (23) yields the assertion.

Remark 37 In Theorem 36 we can also use X(0) span{v̄k, . . . , v̄l} for an arbitrary fundamental

solution matrix X and we also have [aj , bj ] =
⋃l
i=k[κ`(X(·)v̄i), κu(X(·)v̄i)] for j = 1, . . . ,m.
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In the following we show that the initial conditions given by X(0)V̄ provide not only the
directional information for a normal basis and for the subspaces associated with Sacker-Sell spectral
intervals as stated in Theorem 35 and Theorem 36, but they also lead to an integrally separated
fundamental solution. Since we do not need to assume that the DAE (3) has d disjoint Sacker-Sell
spectral intervals, the following theorem significantly improves the result of [20, Theorem 5.14,
Corollary 5.15].

Theorem 38 Suppose that the DAE system (3) has distinct and stable Lyapunov exponents.
Let X(t) = U(t)Σ(t)V (t)T be a smooth SVD of an arbitrary fundamental solution and let
V̄ = [v̄1, . . . v̄d] be the limit of V (t) as t → ∞. Then starting from X(0)V̄ leads to an integral
separated fundamental solution, i.e., X(t)V̄ is integrally separated.

Proof. Let xi(t), i = 1, 2, . . . , d be the columns of X(t)V̄ which is a fundamental solution for
(3). By assumption, there exists an integrally separated fundamental solution which we denote
by X̄(t) = [x̄1(t), . . . , x̄d(t)]. Then there exist positive constants α1 and α2 such that

||x̄i(t)||
||x̄i(s)||

||x̄i+1(s)||
||x̄i+1(t)||

≥ α2e
α1(t−s), t ≥ s ≥ 0, i = 1, . . . , d− 1. (41)

As a consequence, we obtain

||x̄i(t)||
||x̄i+1(t)||

≥ α2e
α1t, t ≥ 0, i = 1, . . . , d− 1. (42)

To investigate the relation between [x1, . . . xd] and [x̄1, . . . , x̄d], observe that, since both form
fundamental solutions, there exist coefficients bi,j , 1 ≤ i, j ≤ d such that

xi = bi,1x̄1 + bi,2x̄2 + · · ·+ bi,dx̄d, i = 1, 2, . . . , d.

By Theorem 35 we have χu(xi) = χu(x̄i) = λui , i = 1, 2, . . . , d and the Lyapunov exponents are
distinct. Then using (9) and (10) it follows that

bi,1 = bi,2 = . . . = bi,i−1 = 0, bi,i 6= 0, i = 1, . . . , d,

and, thus, we can estimate xi by x̄i. In fact, they are asymptotically equal for sufficiently large t
and we have

||xi(t)|| = |bi,i| ||x̄i(t)||

∣∣∣∣∣∣
∣∣∣∣∣∣ x̄i(t)||x̄i||

+

d∑
j=i+1

bi,j x̄j(t)

|bi,i| ||x̄i(t)||

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ |bi,i| ||x̄i(t)||

1 +

d∑
j=i+1

|bi,j | ||x̄j(t)||
|bi,i| ||x̄i(t)||

 ,

and simultaneously

||xi(t)|| ≥ |bi,i| ||x̄i(t)||

1−
d∑

j=i+1

|bi,j | ||x̄j(t)||
|bi,i| ||x̄i(t)||

 ,

Due to (42), for an arbitrarily given constant ε ∈ (0, 1), there exists a (sufficiently large) t̄i such
that for t ≥ t̄i

|bi,i| ||x̄i(t)|| (1− ε) ≤ ||xi(t)|| ≤ |bi,i| ||x̄i(t)|| (1 + ε).

Choosing t̄ = maxi=1,...,d {t̄i}, then this estimate holds for all t ≥ t̄ and for all i = 1, . . . , d. Hence,
by invoking (41), for t ≥ s ≥ t̄ and i = 1, . . . , d− 1, we have the following uniform estimate

||xi(t)||
||xi(s)||

||xi+1(s)||
||xi+1(t)||

≥ ||x̄i(t)|| (1− ε)
||x̄i(s)|| (1 + ε)

||x̄i+1(s)|| (1− ε)
||x̄i+1(t)|| (1 + ε)

≥
(

1− ε
1 + ε

)2

α2e
α1(t−s) = ᾱ2e

α1(t−s),

where ᾱ2 =
(

1−ε
1+ε

)2
α1. This implies that [x1, . . . , xd] are integrally separated as well.
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For the implementation of the continuous SVD method several important issues have to be
considered. First, we need the computation of P (t) in (33) for every used time point t. This can
be done via the pencil arithmetic of [5] as presented in [38]. Let us briefly recall this process here.
One first performs a QR factorization[

Ē
UT

]
=

[
T̃1,1 T̃1,2
T̃2,1 T̃2,2

] [
M̃1,1

0

]
,

which implies that T̃T1,2Ē = −T̃T2,2UT . In general this factorization does not guarantee that T̃2,2 is
invertible. To obtain this we compute the QR factorization of the augmented matrix[

Ē 0
UT Id

]
=

[
T11 T12
T21 T22

] [
M11 M12

0 M22

]
,

where T = [Ti,j ] is orthogonal and M = [Mi,j ] is upper triangular. Then we have that TT2,2 = M2,2

is nonsingular and upper triangular. In order to get the desired matrices P and E , we use an
additional QR factorization

T1,2 = PL, (43)

where P fulfills PTP = Id and L is lower triangular (the fact that T1,2 is full column-rank is
implied directly by the nonsingularity of T2,2). Finally, we set E = −L−TT2,2.

As an alternative approach, we may use the transformation as it is used to determine consistent
initial conditions (7) as well as for the EUODEs in [37]. First, compute an orthogonal matrix Q̃
such that [

E11 E12

A21 A22

]
Q̃ =

[
Ẽ11 Ẽ12

0 Ã22

]
,

where Ã22 is upper triangular, for instance, by using Householder transformations. Let PT and
the transformed matrix function UT Q̃ be decomposed accordingly into blocks as

[
PT1 PT2

]
and[

ŨT1 ŨT2
]
, respectively. Observe that then Ũ2 = 0, since the constraint A2U = 0 implies that

A2Q̃Q̃
TU = 0 and hence Ũ1 is orthogonal. Multiplying (33) by Q̃ from right, one obtains[

PT1 PT2
] [ Ẽ11 Ẽ12

0 Ã22

]
= E

[
ŨT1 0

]
,

or equivalently
PT1 Ẽ11 = EŨT1 , PT1 Ẽ12 + PT2 Ã22 = 0.

To solve this system of matrix equations we calculate a QR factorization

Ẽ11Ũ1 = P̃1Ẽ ,

where P̃1 is orthogonal and Ẽ is upper triangular. Then we solve the upper triangular matrix
equation ÃT22P̃2 = −ẼT12P̃1 to obtain P̃2. Computing another QR factorization[

P̃1

P̃2

]
=

[
P1

P2

]
R,

where R is lower triangular, and finally setting E = R−T Ẽ , we have finished the construction.

Remark 39 In practice, if the boundedness of Ẽ12Ã
−1
22 is ensured, then we can accept the pair

P̃ , Ẽ as well, i.e., the last orthogonalization step (applied to P̃ ) can be omitted. In this case, if
Ẽ11 is boundedly invertible, then so is Ẽ . See also Theorem 14.

Next, we discuss how to avoid the risk of overflow in calculating σi(t), since the singular values
may grow exponentially fast. For this we use the same approach as suggested for the ODE case
in [21]. We introduce auxiliary functions

νj(t) =
σj+1(t)

σj(t)
for j = 1, . . . , d− 1; νd(t) = lnσd(t), t ≥ 0. (44)
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Instead of integrating the diagonal elements σi(t), we solve initial value problems for the ODEs

d

dt
(ln νj(t)) = cj+1,j+1(t)− cj,j(t), j = 1, . . . , d− 1; ν̇d(t) = cd,d(t). (45)

Then, we define

νij(t) =
σj(t)

σi(t)
=

i∏
k=j−1

νk(t) for j = i+ 1, i+ 2, . . . , d.

and rewrite the formulas for the entries of H = [hi,j ] and K = [ki,j ] as

hi,j =
ci,jν

2
i,j + cj,i

ν2i,j − 1
, j > i, hi,j = −hj,i, j < i, (46)

ki,j =
ci,j + cj,i
ν2i,j − 1

νi,j , j > i, ki,j = −kj,i, j < i. (47)

To compute the Lyapunov exponents, similarly to the discrete SVD method, we introduce

λj(t) =
1

t
lnσj(t), j = 1, 2, . . . , d. (48)

Then, we have

λd(t) =
1

t
νd(t), λj(t) = λj+1(t)− 1

t
ln νj(t), j = 1, 2, . . . , d− 1. (49)

In practice, choosing τ ≥ 0 large and T � τ , we may use the approximation

λuj ≈ max
τ≤t≤T

λj(t), λ`j ≈ min
τ≤t≤T

λj(t), j = 1, 2, . . . , d− 1.

The computation of Sacker-Sell intervals (in fact we compute the Bohl exponents of σj(t), see
Theorem 34) can be carried out using the same auxiliary functions. Similar to [37], for τ̃ > 0, we
define the Steklov averages

ψτ̃ ,j(t) =
1

τ̃
(lnσj(t+ τ̃)− lnσj(t)) =

1

τ̃
((t+ τ̃)λj(t+ τ̃)− tλj(t)) , j = 1, 2, . . . , d− 1. (50)

In practice, with τ̃ > 0 large and T � τ̃ , we approximate the desired Bohl exponents by

κuj ≈ max
0≤t≤T−τ̃

ψτ̃ ,j(t), κ`j ≈ min
0≤t≤T−τ̃

ψτ̃ ,j(t), j = 1, 2, . . . , d− 1. (51)

Finally, we need to carefully integrate the the orthogonal factor U (and also V if we are interested
in the growth directions). During the integration of the strangeness-free DAE (38), we have to
guarantee that the computed factor U satisfies the algebraic constraint as well as the orthonor-
mality at every mesh point ti. This can be achieved by using a projected DAE solver such as the
projected backward difference formula BDF, see [9]. To solve the nonlinear matrix-valued equation
that is arising in every time-step, we suggest to use several simple fixpoint iterations instead of
the faster converging but much more expensive Newton iteration. To illustrate this, applying the
implicit Euler method to (38) at the time t = tn yields

E(tn)
Un − Un−1

h
= E(tn)UnS(tn, Un) +A(tn)Un, (52)

where Un denotes the approximation of U(tn) and S = H − C is the nonlinear function of t and
U given in (5). Rearranging the terms, we obtain the fixpoint equation[

E1(tn)
A2(tn)

]
Un =

[
E1(tn)Un−1 + h (E1(tn)UnS(tn, Un) +A1(tn)Un)

0

]
, (53)
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or alternatively[
E1(tn)− hA1(tn)

A2(tn)

]
Un =

[
E1(tn)Un−1 + hE1(tn)UnS(tn, Un)

0

]
. (54)

To approximate Un, we may use the simple fixpoint iteration[
E1(tn)
A2(tn)

]
U (k+1)
n =

[
E1(tn)Un−1 + h

(
E1(tn)U

(k)
n S(tn, U

(k)
n ) +A1(tn)U

(k)
n

)
0

]
, k = 0, 1, . . . ,

(55)

with starting value U
(0)
n = Un−1. The iteration based on (54) is similar. Due to the assumption

that the system is strangeness-free, the solution of the linear systems exists and if a direct solver
is used then only one LU factorization is needed in each time-step. For sufficiently small time-size
h, the iteration converges linearly and the approximate limit, denoted by Ūn, obtained in this way
obviously satisfies the algebraic equation. The orthogonality can then be achieved by an additional
QR factorization which yields the solution Un with orthogonal columns.

To avoid having to solve a linear system and having to evaluate the nonlinear term repeatedly
in each iteration step, one may exploit the special structure and the quasi-linearity of (38) and
use instead so-called half-explicit methods (HEMs) [31]. That is, we apply an appropriate explicit
discretization scheme to the differential part of (38) and simply write A2(tn)Un = 0 for the
algebraic part at the actual time t = tn. As integrator for (38), we then may use e.g. an explicit
Euler method. This then leads to a linear system that has to be solved in every time-step given
by[

E1(tn−1)
A2(tn)

]
Un =

[
E1(tn−1)Un−1 + h (E1(tn−1)Un−1S(tn−1, Un−1) +A1(tn−1)Un−1)

0

]
. (56)

If we assume, in addition, that the function Ȧ2 is bounded, which is a natural condition in the
sensitivity analysis of the exponents, see Theorem 14, as well as in the convergence analysis of the
Euler method, then for sufficiently small stepsize h, the coefficient matrix of the linear system for
Un is invertible and again only one linear system needs to be solved in each time step.

To start the continuous SVD algorithm, we first integrate the DAE (3) with an appropriate
initial condition X(0) = X0, see (7) until t = t1 > 0. Then, we compute the SVD of the matrix
solution at t = t1

X(t1) = U1Σ1V1 (57)

and proceed with the continuous SVD method for computing Lyapunov and Sacker-Sell spectra
from t = t1.

Algorithm 2 (Continuous SVD algorithm for computing Lyapunov and Sacker-Sell
spectra)

Input: A pair of sufficiently matrix functions (E,A) in the form of the strangeness-free DAE
(3) (if they are not available directly they must be obtained pointwise as output of a routine such
as GELDA); the first derivative of A2 (if it is not available directly, use a finite difference formula
to approximate); the values T, τ̃ , τ such that τ̃ ∈ (0, T ) and τ ∈ (0, T );

Output: Endpoints for spectral intervals {λli, λui }
p
i=1.

• Initialization:

1. Set j = 0, t0 := 0. Compute X0 by (7).

2. Integrate (3) with X(t0) = X0 on [t0, t1], t1 ≥ t0.
3. Calculate the SVD (57). Set U(t1) = U1, V (t1) = V1 and σi(t1) = (Σ1)i, i =

1, 2, . . . , d. Evaluate also νi(t1) via (44).

4. Compute P (t1) as described in (33).

5. Form λi(t1), i = 1, ..., d by (48).
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While tj < T

1. j := j + 1.

2. Choose a stepsize hj and set tj = tj−1 + hj.

3. Evaluate U (and V , if it is desired) and νk, k = 1, . . . , d by integrating

(38), (37), and (45) using (34),(46), and (47).

4. Compute P (tj) as in (43).

5. Compute λi(tj) by (49) and ψτ̃ ,i(tj) by (50).

6. If desired, test integral separation via the Steklov difference.

7. Update minτ≤t≤tj λi(t) and maxτ≤t≤tj λi(t).

The corresponding algorithm for computing Sacker-Sell spectra is almost the same (except for
the last step) where, applying (51) minτ≤t≤T−τ̃ ψτ̃ ,i(t) and maxτ≤t≤T−τ̃ ψτ̃ ,i(t) are computed.
For the computation of the Sacker-Sell spectra via the continuous SVD algorithm, the memory
requirement is increased, since the values of the values λi at the previous mesh points in [tj− τ̃ , tj ]
must be stored and updated as j changes.

4.3 A comparison of the continuous and discrete SVD and QR methods

At first sight, the discrete version of the SVD method seems to be more simple and more easy to
implement. However, there are some serious disadvantages, which make the use of this method
become less preferable. The first problem is the exponential growth of the fundamental solution.
Similarly to the discrete QR method, see [37, 38], if the system has one or some large positive
exponents, then we must restrict the numerical integration to small stepsizes. Otherwise the
columns of X become nearly linearly-dependent and then the QR factorization may produce
inaccurate results. The second disadvantage is the need to use the product SVD. On the one hand
both the computational cost and the memory requirement become extremely large as the problem
dimensions d and ` and the number of steps N increase, on the other hand it is well-known that
forming the product explicitly may lead to very inaccurate or even useless results if N is large.
Hence the discrete SVD technique is not feasible for large problems and long products.

For this reason we prefer the continuous SVD algorithm. To compare this approach with the
continuous QR algorithm proposed and investigated in [38], we should first note that if we do not
need to integrate the V -component, then the complexity of the continuous SVD algorithm is only
slightly higher than that of the continuous QR algorithm. However, in the SVD method, we do
not need to work with a normal basis as it is required in the QR method. We can choose any
fundamental solution and proceed with it. Furthermore, if we want to determine information on
the leading directions, this is easily available by incorporating the evaluation of the V factor in the
algorithm. Note that for integrally separated problems the factor V converges exponentially fast.
A weak point of the continuous SVD method is that we have to assume the existence of a smooth
SVD which can only be guaranteed if the coefficient functions are analytic or singular values are
distinct for all time t, see (35). For integrally separated systems, this latter condition is ensured
only from a sufficiently large time t̄ on. In practice, the trick of integrating the system up to a
(not necessarily large) time t1 often helps. However, even if the singular values are different, but
come very close to each other, then numerical instabilities may occur in the course of integration
of U that need extra treatment as suggested in [11, 40].

Finally we comment on the extra difficulties that arise, when the continuous SVD method is
applied to DAEs instead of ODEs. First of all we need the derivative of the block A2. If it is not
available explicitly, then a procedure based on automatic differentiation or finite differences can
be used to evaluate Ȧ2. Second, the differential equation for the factor U is a strangeness-free
DAE, as well. As we have already discussed, then for the numerical integration a DAE solver must
be used, which is able to preserve both the (linear) algebraic constraint and the orthonormality
of the solution at the mesh points. Finally, there are some extra numerical linear algebra tasks
to be performed, such as the computation of the factor P in (33) via a QR factorization and the
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calculation of C in (34) via the solution of linear systems, which however, are upper triangular
and generally of smaller size than that of the original problem, in particular if only ` < d spectral
intervals are needed. The conditioning of these two linear algebra problems is not worse than that
of the original DAE (3) which is dominated by the condition number of Ē.

5 Numerical results

We have implemented the continuous SVD method described in Section 4 in MATLAB. The
following results are obtained on an IBM computer with Intel CPU T2300 1.66 GHz. For the
orthogonal integration, we have used both the implicit Euler scheme (52) combined with the
fixpoint iteration (54) and the half-explicit scheme (56) discussed in the previous section.

To illustrate the properties of the procedures, we consider two examples, which are slightly
modified from examples in [37, 38]. One of the examples presents a Lyapunov-regular DAE
system and the second system is not Lyapunov-regular. In the second case, we calculate not only
the Lyapunov spectral intervals, but also the Sacker-Sell intervals.

Example 40 Our first example is a Lyapunov-regular DAE system which is constructed similar
to ODE examples in [23]. It presents a DAE system of the form (3) which is constructed by
beginning with an upper triangular implicit ODE system, Ē1,1(t) ˙̄x1 = Ā1,1(t)x̄1, where

Ē1,1(t) =

[
1 + 1

(t+1)2 1

0 1 + 1
t+1

]
, Ā1,1(t) =

[
λ1 − 1

t+1 ω sin t

0 λ2 + cos (t+ 1)

]
, t ∈ I, (i = 1, 2),

and where λi, i = 1, 2, (λ1 > λ2) are given real parameters.
By increasing the parameter ω we can make the problem of computing the spectral intervals

more and more ill-conditioned.
We then performed a kinematic equivalence transformation to get the implicit ODE system

Ẽ1,1(t) ˙̃x1 = Ã1,1(t)x̃1 with coefficients

Ẽ11 = Ū1Ē1,1V̄
T
1 , Ã11 = Ū1Ā1,1V̄

T
1 + Ū1Ē1,1V̄

T
1

˙̄V 1V̄
T
1 ,

where Ū1(t) = Gγ1(t), V̄1(t) = Gγ2(t), and G(γi) is a Givens rotation

Gγ(t) =

[
cos γt sin γt
− sin γt cos γt

]
with some real parameters γ1, γ2.

We then chose additional blocks Ẽ12 = Ū1, Ã12 = V̄1, Ã22 = Ū1V̄1 and finally

Ẽ =

[
Ẽ11 Ẽ12

0 0

]
, Ã =

[
Ã11 Ã12

0 Ã22

]
.

Using a 4× 4 orthogonal matrix

G(t) =


cos γ3t 0 0 sin γ3t

0 cos γ4t sin γ4t 0
0 − sin γ4t cos γ4t 0

− sin γ3t 0 0 cos γ3t

 ,
with real values γ3, γ4, we obtain a strangeness-free DAE system of the form (3) with coefficients
E = ẼGT , A = ÃGT + ẼGT ĠGT . Furthermore, because Lyapunov-regularity as well Lyapunov
exponents are invariant under orthogonal changes of variable, this system is Lyapunov-regular
with the Lyapunov exponents λ1, λ2.

For our first numerical test we have used the values

λ1 = 1, λ2 = −1, γ1 = γ4 = 2, γ2 = γ3 = 1, ω = 1. (58)
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Table 1: Lyapunov exponents computed via continuous SVD algorithm with half-explicit Euler
integrator for Example 40.

T h λ1 λ2
CPU-time

in s
CPU-time
in s, ` = 1

500 0.1 0.9539 -0.9579 3.0156 2.7344
500 0.05 0.9720 -0.9760 5.9375 5.4375
500 0.01 0.9850 -0.9890 29.5781 27.0625
1000 0.1 0.9591 -0.9592 5.9531 5.5000
1000 0.05 0.9772 -0.9773 11.7969 10.7969
1000 0.01 0.9902 -0.9903 58.7500 54.5000
2000 0.05 0.9801 -0.9805 23.4844 21.5938
2000 0.01 0.9932 -0.9936 117.4531 107.5156
5000 0.01 0.9952 -0.9955 294.1250 268.4531
10000 0.01 0.9960 -0.9962 586.9219 537.9375

Table 2: Lyapunov exponents computed via continuous SVD algorithm with implicit Euler inte-
grator for Example 40.

T h λ1 λ2
CPU-time

in s
CPU-time
in s, ` = 1

500 0.1 1.0169 -1.0209 5.0781 3.6406
500 0.05 1.0028 -1.0069 9.0469 6.8594
500 0.01 0.9915 -0.9955 37.8438 32.5156
1000 0.1 1.0221 -1.0222 10.0781 7.2031
1000 0.05 1.0080 -1.0082 18.0625 13.5625
1000 0.01 0.9967 -0.9968 75.7188 63.9531
2000 0.05 1.0110 -1.0115 36.2344 26.8125
2000 0.01 0.9997 -1.0001 151.1875 127.6719
5000 0.01 1.0017 -1.0020 377.7813 319.5938
10000 0.01 1.0025 -1.0027 754.9688 638.2813

The results by the half-explicit Euler and the implicit Euler schemes are given in Tables 1 and
2. Time-savings for the reduced case ` = 1 are noticeable. By comparing the two integrators, it
is clearly seen that half-explicit methods promise to be competitive alternatives to fully implicit
methods when solving the special class of matrix DAEs of the form (38).

Next, we investigate the dependence of the numerical results on the rotation parameters γ in
this example. We set γi = 10 for i = 1, 2, 3, 4 and recalculated the Lyapunov exponents. The
results by the half-explicit Euler and the implicit Euler schemes are displayed in Table 3. Clearly,
smaller stepsizes are necessary. The ∗ indicates that with some larger stepsizes, the implicit Euler
method even failed because the simple fixpoint iteration does not converge. Furthermore, the
CPU-time of the implicit Euler method is significantly increased, since more iterations are needed.

The dependence on ω, i.e., the magnitude of the upper triangular part in Ā1,1 is presented
in Tables 4 and 5, which show the numerically computed Lyapunov exponents in the case when
ω = 10 and ω = 100, respectively. The other parameters are as in (58). We see that for larger
parameters ω the computation of the Lyapunov exponents is much harder.

We have also tested the (exponential) convergence of the V -factor for different values of λis.
In Figure 1, we plot the components V11 and V21 for λ1 = −λ2 = 1 and for λ1 = −λ2 = 0.3,
respectively. Due to the larger difference between the exponents, the V -components of the first
case (the highest and the lowest curves) converge very quickly to their constant limits, while those
of the second case (the intermediate curves) oscillate at the beginning and only slowly converge.
This illustrated the comments in Remark 31.
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Table 3: Lyapunov exponents computed via half-explicit Euler and implicit Euler method for
Example 40, and rotation parameter γi = 10.

T h λ1 λ2
CPU-time

in s
λ1 λ2

CPU-time
in s

500 0.1 0.3850 -0.3890 3.0469 * * *
500 0.05 0.6536 -0.6577 5.8906 * * *
500 0.01 0.9901 -0.9941 29.5313 0.9901 -0.9941 51.6094
1000 0.1 0.3893 -0.3894 5.9375 * * *
1000 0.05 0.6552 -0.6553 11.7344 * * *
1000 0.01 0.9952 -0.9953 58.7656 0.9951 -0.9952 103.2344
2000 0.05 0.6594 -0.6599 23.5938 * * *
2000 0.01 0.9981 -0.9985 117.5469 0.9979 -0.9983 205.9531
5000 0.01 1.0001 -1.0004 293.5156 0.9998 -1.0001 516.0469

Table 4: Lyapunov exponents computed via half-explicit Euler and implicit Euler method for
Example 40, ω = 10.

T h λ1 λ2
CPU-time

in s
λ1 λ2

CPU-time
in s

500 0.1 0.8755 -0.8796 3.0313 * * *
500 0.05 0.9340 -0.9380 5.9375 0.1887 -0.1927 5.9063
500 0.01 0.9777 -0.9817 29.2969 0.8901 -0.8941 29.3125
1000 0.1 0.7721 -0.7722 5.9375 1.1845 -1.1846 12.4688
1000 0.05 0.8884 -0.8885 11.7500 1.0948 -1.0949 19.3438
1000 0.01 0.9734 -0.9735 58.5781 1.0143 -1.0144 75.6250
5000 0.01 0.9780 -0.9783 293.2656 1.0190 -1.0193 377.3750

Table 5: Lyapunov exponents computed via half-explicit Euler and implicit Euler method for
Example 40, ω = 100.

T h λ1 λ2
CPU-time

in s
λ1 λ2

CPU-time
in s

1000 0.05 * * * * * *
1000 0.01 0.7780 -0.7781 60.2188 1.1700 -1.1701 98.9375
1000 0.005 0.8941 -0.8942 119.0469 1.0866 -1.0868 176.4688
1000 0.001 0.9764 -0.9765 593.1719 1.0147 -1.0148 769.4375

Figure 1: Graph of V11(t) and V21(t) for different λis in Example 40.
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Table 6: Lyapunov spectral intervals computed via continuous SVD algorithm with half-explicit
Euler integrator for Example 41.

T τ̃ h [λl1, λ
u
1 ] [λl2, λ

u
2 ]

CPU-time
in s

1000 100 0.10 [-1.0332 0.5704] [ -5.9311 -4.6909] 6.2500
5000 100 0.10 [ -1.0332 0.9851] [ -5.9311 -4.3592] 31.5469
10000 100 0.10 [ -1.0332 0.9851] [ -5.9311 -3.9980] 61.8906
10000 100 0.05 [ -1.0183 0.9946] [ -5.9421 -4.0107] 123.2500
20000 100 0.10 [ -1.0332 0.9851] [ -5.9311 -3.9746] 123.6563
20000 100 0.05 [ -1.0183 0.9946] [ -5.9421 -3.9882] 248.7969
50000 100 0.05 [-1.0183 0.9946] [ -5.9421 -3.9882] 619.2344
50000 500 0.05 [ -0.9935 0.9946] [ -5.9421 -3.9882] 627.0000
100000 100 0.05 [ -1.0183 0.9946] [ -5.9421 -3.9882] 1283.3
100000 500 0.05 [-1.0087 0.9946] [ -5.9421 -3.9882] 1243.4

Table 7: Sacker-Sell spectral intervals computed by continuous SVD algorithm with half-explicit
Euler integrator for Example 41.

T τ̃ h [κl1, κ
u
1 ] [κl2, κ

u
2 ]

CPU-time
in s

5000 100 0.10 [ -0.9723 1.4003] [ -6.3636 -3.5761] 39.5469
10000 100 0.10 [-0.9723 1.4003] [ -6.3636 -3.5626] 79.4531
10000 100 0.05 [ -0.9617 1.4088] [ -6.3734 -3.5764] 186.1719
20000 100 0.10 [ -1.3757 1.4003] [ -6.3636 -3.5626] 158.5313
20000 500 0.10 [ -1.3708 1.3898] [-6.4497 -3.5633] 277.9063
20000 100 0.05 [-1.3577 1.4088] [-6.3734 -3.5764] 380.7656
50000 100 0.10 [ -1.4412 1.4003] [ -6.3636 -3.5626] 395.0000
50000 500 0.10 [ -1.4407 1.3898] [ -6.4497 -3.5633] 705.7031
50000 100 0.05 [-1.4241 1.4088] [-6.3734 -3.5764] 971.3750
100000 100 0.10 [-1.4412 1.4003] [ -6.3636 -3.5626] 799.8281
100000 500 0.10 [-1.4407 1.3898] [ -6.4497 -3.5633] 1370.1
100000 100 0.05 [ -1.4241 1.4088] [ -6.3734 -3.5764] 1897.2

Example 41 (A DAE system which is not Lyapunov-regular) With the same transformations as
in Example 40 we also constructed a DAE that is not Lyapunov-regular by changing the matrix
Ā(t) in Example 40 to

Ā(t) =

[
sin(ln(t+ 1)) + cos(ln(t+ 1)) + λ1 ω sin t

0 sin(ln(t+ 1))− cos(ln(t+ 1)) + λ2

]
, t ∈ I.

Here we have chosen λ1 = 0, λ2 = −5. The other parameters are again as in (58). Since Lyapunov
and Sacker-Sell spectra are invariant with respect to global kinematical equivalence transformation,
it is easy to compute the Lyapunov spectral intervals as [−1, 1] and [−6,−4] and the Sacker-Sell
spectral intervals as [−

√
2,
√

2] and [−5−
√

2,−5+
√

2]. The calculated Lyapunov spectral intervals
are displayed in Table 6 and the calculated Sacker-Sell intervals are given in Table 7.

6 Conclusion

In this paper we have improved the spectral analysis for linear DAEs introduced in [37]. Based
on the construction of an essentially underlying implicit ordinary differential equation (EUODE)
which has the same spectral properties as the original DAE, we have presented new methods
that are based on smooth singular value decompositions (SVD). This approach provides a unified
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insight into different kinds of computational techniques for approximating spectral intervals for
DAEs. A characterization of the leading directions as well as the stable and unstable solution
subspaces has been given. We have also developed SVD-based methods for just few spectral
intervals and their associated leading directions. Unlike the QR-based methods proposed in [37],
the new SVD-methods are applied directly to DAEs of the form (3). It has been shown that, under
the integral separation and some other boundedness assumptions, not only the spectral intervals,
but also their associated growth directions can be approximated efficiently by the continuous SVD
method.
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[33] P. Kunkel and V. Mehrmann, Stability properties of differential-algebraic equations and
spin-stabilized discretizations. Electr. Trans. Num. Anal, 26:385–420, 2007.

[34] P. Kunkel and V. Mehrmann. Optimal control for unstructured nonlinear differential-algebraic
equations of arbitrary index. Math. Control, Signals, Sys., 20:227–269, 2008.

[35] P. Kunkel, V. Mehrmann, W. Rath, and J. Weickert. A new software package for linear
differential–algebraic equations. SIAM J. Sci. Comput., 18:115–138, 1997.

29



[36] P. Kunkel, V. Mehrmann, and S. Seidel. A MATLAB package for the nu-
merical solution of general nonlinear differential-algebraic equations. Technical Re-
port 16/2005, Institut für Mathematik, TU Berlin, Berlin, Germany, 2005. url:

http://www.math.tu-berlin.de/preprints/.

[37] V.H. Linh and V. Mehrmann. Lyapunov, Bohl and Sacker-Sell spectral intervals for
differential-algebraic equations. J. Dynamics Diff. Eq., 21:153–194, 2009.

[38] V.H. Linh, V. Mehrmann, and E. Van Vleck. QR methods and error analysis for comput-
ing Lyapunov and Sacker-Sell spectral intervals for linear differential-algebraic equations. To
appear in Adv. Comput. Math., url: http://dx.doi.org/10.1007/s10444-010-9156-1.
Also available as Preprint 676, DFG Research Center Matheon, TU Berlin, Berlin, Germany,
2009. url: http://www.matheon.de/ .

[39] A. M. Lyapunov. The general problem of the stability of motion. Translated by A. T. Fuller
from Edouard Davaux’s French translation (1907) of the 1892 Russian original. Internat. J.
Control, pages 521–790, 1992.

[40] V. Mehrmann and W. Rath, Numerical Methods for the Computation of Analytic Singular
Value Decompositions. Electr. Trans. Num. Anal., 1:72–88, 1993.

[41] S. Oliveira and D. E. Stewart. Exponential splitting of products of matrices and accurately
computing singular values of long products. Lin. Alg. Appl., 309:175–190, 2000.
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