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Abstract

Mathematical programs in which the constraint set is partially defined by the solutions of
an elliptic variational inequality, so-called “elliptic MPECs”, are formulated in reflexive Banach
spaces. With the goal of deriving explicit first order optimality conditions amenable to the
development of numerical procedures, variational analytic concepts are both applied and further
developed. The paper is split into two main parts. The first part concerns the derivation of
conditions in which the state constraints are assumed to be polyhedric sets. This part is then
completed by two examples, the latter of which involves pointwise bilateral bounds on the
gradient of the state. The second part begins with the derivation of a formula for the second
order (Mosco) epiderivative of the indicator function of a general convex set. This result is then
used to derive analogous conditions to those which are presented in the first part. Finally, an
elliptic MPEC is considered important to the study of elasto-plasticity in which the pointwise
Euclidean norm of the gradient of the state is bounded. Explicit strong stationarity conditions
are provided for this problem.

1 Introduction

The mathematical modeling of real-world phenomena often leads to infinite dimensional, i.e., func-
tion space, problem formulations containing variational inequalities. For example, certain problems
in elasticity [25], elasto-plasticity [17, 24], and mathematical finance [1] all lead to models in which
a variational inequality arises. In addition, minimization problems involving certain classes of
non-smooth functionals result in variational inequalities via Fenchel-Legendre dualization and as-
sociated Euler-Lagrange conditions [14]. Due to their practical relevance, many research efforts
have been devoted to the study of variational inequalities and their numerical solution since their
conception, see e.g., [15, 16, 26] and the references therein.

Frequently, one is often interested in controlling the solution of a variational inequality in order
to achieve a desired state or to minimize a target quantity. On an abstract level this leads to
minimization problems of the type

minimize J(u, y) over (u, y) ∈ U × Y
subject to (s.t.) y ∈ S(u),

(1)

where (u, y) denotes the associated control-state pair with respective control space U and state space
Y , J is a sufficiently smooth objective function, and S : U → Y represents the solution operator
of the underlying variational inequality. Problems of type (1) are sometimes called mathematical
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programs with equilibrium constraints (MPECs), as the variational inequality often represents an
equilibrium condition, e.g., first-order optimality conditions of a convex optimization problem.
Although the literature on finite dimensional MPECs has reached a certain level of sophistication,
as evidenced by the monographs [28, 32, 34] and the many references therein, far less is known
about MPECs in function spaces. With respect to the latter, we mention [6, 33] and the selected
papers [7, 8, 9, 20, 23, 30]. We would also like to mention that parameter identification problems
for variational inequalities lead to problems of type (1); see, e.g., [18, 19] and references therein.

From a mathematical optimization point of view the difficulties associated with (1) result from
a lack of constraint regularity, which in turn prevents the application of well-known results for
mathematical programs in Banach space; see, e.g., [41]. Moreover, upon reducing (1) to a problem
in u by considering y = y(u) = S(u), following the so-called implicit programming approach, the
problem typically becomes a non-smooth and non-convex problem, which is then hard to tackle
analytically as well as numerically. In particular, the explicit representation of first order optimality
conditions suitable for numerical realization remains an issue.

In a recent work motivated by similar results in finite dimensions as found in [39], an attempt at
systematizing stationarity conditions for function-space-based problems of the type (1) was under-
taken in [20]. Remarkably, versions of weak, C, and strong stationarity were derived that paralleled
the concepts in finite dimensions; and whereas many approaches applied in the past relied on penal-
ization techniques, the method of [20] utilizes a relaxation approach yielding stronger stationarity
conditions than those resulting from penalty techniques. Penalization or relaxation techniques
have the advantage that they readily facilitate the application of the well-established theory on
mathematical programs in Banach space for the existence of Lagrange multipliers. Moreover, these
techniques may be turned into algorithmic frameworks by closely following the derivation of first
order optimality systems for the MPEC. Using these techniques, as was demonstrated in [20, 21],
makes the problems amenable to the application of fast solvers such as semismooth Newton and
multigrid methods.

Despite the appeal of penalization and regularization methods, variational analysis (see e.g.,
[5, 38, 31]) provides a different set of analytical tools able to directly derive sharp, i.e., strong,
stationarity conditions without needing to pass to the limit with respect to certain parameters
that arise in the relaxation/penalty approaches. Oftentimes one needs only to verify that the data
of the underlying problem satisfy a certain constraint qualification in order to derive first order
optimality conditions, thereby providing a means for avoiding relaxation/penalization techniques
and limit processes in a problem-dependent fashion.

In this respect, the aim of this work is two-fold: (i) We utilize and extend tools from variational
analysis in order to derive an abstract first order optimality system (in the sense of strong station-
arity) for a rather broad class of control problems of elliptic variational inequalities. (ii) We treat
systems involving (pointwise) gradient constraints of the type

M :=
{
y ∈ H1

0 (Ω) ||∇y| ≤ ψ, almost everywhere (a.e.) on Ω
}
.

Gradient constraints in function space MPECs have yet to be treated in the literature, despite
having been mentioned as an important (open) problem class in [30]. For control of obstacle-type
problems (i.e., with pointwise unilateral constraints on the state, rather than its gradient) it turns
out that we recover the strong stationarity conditions derived earlier by Mignot and Puel in [30],
who applied a mix of penalization techniques and conical derivatives.

The rest of the paper is organized as follows. In section 2, we introduce notation and basic
concepts. The remaining sections subdivide our investigation into a polyhedric setting (Sections 3–
5) and a more general setting (Sections 6–8) with respect to the constraints on the state. Section 3
is devoted to studying differentiability properties of the control-to-state mapping, i.e. the solution
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operator of the underlying variational inequality. Our results extend those obtained by Mignot in
his fundamental paper [29] on the conical derivative of the solution operator associated with the
obstacle problem. In section 4, these results are applied to derive strong stationarity conditions for
the MPEC, and in section 5 two case studies are performed yielding first the well-known stationarity
result of Mignot and Puel [30] (here in the sense of a validation of our technique) and then explicit
strong stationarity conditions in the presence of pointwise constraints on the gradient of the state.
The extension to the general case is more delicate as the variational arguments in the polyhedric
case do not immediately apply. Hence, in section 6, we establish a new result on the second-order
Mosco epiderivative of the indicator function of a closed convex set. This result enables us to
derive strong stationarity in the general case in section 7. Finally, in section 8 we use our abstract
results to calculate explicit strong stationarity conditions for the case of pointwise constraints on
the 2-norm of the gradient of the state.

2 Notation and Basic Concepts from Variational Analysis

Throughout the text we make significant use of certain objects that are more or less standard in
the literature. New or lesser known concepts are introduced throughout the text so that they may
be better understood in context.

2.1 Assumptions and Notation

Within the entirety of this paper, we will only consider real Banach spaces and we make the
additional assumption that the topologies of some Banach space X along with its topological dual
X∗ are compatible. If X is in addition reflexive, then the strong topologies on both spaces are
considered, otherwise we assume X∗ is equipped with the weak∗-topology, so that the dual of X∗

is isometric to X. For more on this subject, the reader is referred to any standard reference on
Functional Analysis, e.g., [40]. We denote the dual pairing between X and X∗ by 〈·, ·〉X∗,X and
denote strong convergence in any space, e.g., X, via the symbol “→X” and weak convergence by
“⇀X”. The embedding of a space X into Y is denoted X ↪→ Y . If X is an inner product space,
then the inner product will be denoted by (·, ·)X and the norm defining the topology on X is
denoted by || · ||X . We denote the closure in the topology on X by cl{·}X . In all cases, we leave
off the subscript “X” if it is clear in context. Finally, if x, y ∈ Rl, then x · y represents their scalar
product and for any subset A ⊆ Rl, we use “a.e. A” to represent “almost everywhere on A”.

2.2 A Few Important Function Spaces

At some points in this paper, we provide examples in which certain function spaces are present. We
always assume that the subset Ω ⊆ Rl is a bounded open subset with Lipschitz boundary ∂Ω and
let l ≥ 1. We denote the standard Lebesgue space of square integrable functions/vector fields by
L2(Ω)l, leaving off the “l”-subscript if l = 1; and we denote the space of all infinitely differentiable
functions whose (compact) support is contained in Ω by C∞0 (Ω). We then define the Sobolev space
H1

0 (Ω) as the completion of the space C∞0 (Ω) with respect to the norm

||x||H1
0 (Ω) := ||∇x||L2(Ω)l .

The usage of this norm for defining H1
0 (Ω) follows from the boundedness of Ω. Here, the gradient

of x is understood in a weak sense. Finally, we denote the pointwise ∞-norm and 2-norm of the
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gradients of H1
0 -functions for any ω ∈ Ω by

|∇y(ω)|∞ := max
1≤i≤l

|∇yi(ω)| and |∇y(ω)|2 :=

(
l∑

i=1

∇yi(ω)2

)1/2

,

respectively. When it is clear in context, we leave off the arguments “ω”. For more on Sobolev
spaces we refer the reader to [2].

2.3 Variational Analytic Concepts

Throughout this subsection we assume that X is some arbitrary Banach space paired with its dual
X∗ and let C ⊆ X be a nonempty closed convex set. In addition, we define the indicator function
of C

IC(x) :=
{

0, y ∈ C,
+∞, y /∈ C.

The tangent cone to C at x ∈ C is defined by

TC(x) :=
{
d ∈ X

∣∣∃tk → 0+,∃dk →X d : x+ tkdk ∈ C, ∀k
}
.

In the event that C is only closed but not convex, then we refer to this cone as the contingent
cone. As we will see in a moment, the tangent cone can be derived via calculating the polar cone
to another variational object. This however, is not true when C is not convex.

Given another arbitrary Banach space Y , we refer to any mapping F from X into the set of
subsets of Y as a multifunction or set-valued mapping. We use the notation F : X ⇒ Y to denote
that F is a multifunction. The graph of a multifunction is defined by

gphF := {(x, y) ∈ X × Y |y ∈ F (x)} .

Clearly, gphF ⊂ X × Y . Though multifunctions are very different from single-valued mappings,
we can still define (generalized) derivatives using contingent cones. Accordingly, we define the
contingent derivative of F at a point (x, y) ∈ gphF to be the mapping DF [(x, y)] : X ⇒ Y whose
graph equals TgphF (x, y), i.e.,

w ∈ DF [(x, y)](u)⇔ (u,w) ∈ TgphF (x, y)⇔
{
∃tk → 0+,∃uk →X u,∃wk →Y w :
y + tkwk ∈ F (x+ tkuk).

For more on these and related concepts, see e.g., [5]. Another important object in our study is the
so-called normal cone. The normal cone to a closed convex set C ⊆ X at some point x ∈ C is
defined by

NC(x) :=
{
x∗ ∈ X∗

∣∣〈x∗, x′ − x〉X∗,X ≤ 0,∀x′ ∈ C
}
.

In addition, NC(x) can also be (equivalently) defined by

NC(x) := {x∗ ∈ X∗ |〈x∗, d〉X∗,X ≤ 0, ∀d ∈ TC(x)} = [TC(x)]− ,

i.e., as the negative polar/dual cone of the tangent cone. Given that X and X∗ are paired spaces,
it holds that

[NC(x)]− =
[
[TC(x)]−

]−
= TC(x),
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as TC itself is a closed convex cone. When C is merely closed and not convex, we can define another
type of normal cone known as the Fréchet normal cone

N̂C(x) :=

{
x∗ ∈ X∗

∣∣∣∣∣lim sup
x′→Xx

〈x∗, x′ − x〉
||x′ − x||X

≤ 0

}
.

Note that the lim sup in the previous definition must hold for all sequences x′ →X x. This often
makes the Fréchet normal cone extremely difficult to calculate explicitely. Nevertheless, Theorem
1.10 in [31] provides the following upper approximation

N̂C(y) ⊂ [TC(y)]− ,

where equality holds if X is reflexive and one considers weak limits in the definition of TC or X is
finite dimensional.

Finally, we define the subdifferential of a convex lower-semicontinuous function f : X → R̄ at
x ∈ dom f by

∂f(x) :=
{
x∗ ∈ X∗

∣∣〈x∗, x′ − x〉+ f(x) ≤ f(x′), ∀x′ ∈ X
}
.

Note that for any non-empty closed convex set C ⊆ X, ∂IC(x) = NC(x). We direct the reader to
[31] for more information concerning the dual variational objects.

3 Generalized Differentiation of the Solution: Polyhedric Case

In this section, we demonstrate the application of some known theoretical results and obtain a
general formula for the contingent derivative of the solution of the variational inequality in the case
where the set of state constraints is polyhedric.

Throughout this section, we define S to be the solution mapping of the variational inequality

u ∈ Ay +NM (y),

where A is a coercive bounded linear operator from Y into Y ∗, i.e., there exists a ξ ∈ R+ \{0} such
that

〈Ay, y〉Y ∗,Y ≥ ξ||y||2Y ,∀y ∈ Y.

In addition, we define M to be a closed convex subset of the reflexive Banach space Y and u ∈ Y ∗.
By referring to certain classical results, e.g., Chapter 3 in [26], we see that S is in fact a single-valued
and locally Lipschitz function of u.

In order to provide a formula for the contingent derivative of S, we need a way of characterizing
the contingent derivative of NM . We begin with the case of so-called polyhedric sets M .

Definition 3.1 (Polyhedric Sets). A closed convex set C of a Banach space X is called polyhedric
if for all x ∈ C

TC(x) ∩ {v}⊥ = cl
{
RC(y) ∩ {v}⊥

}
X
,

where RC(y) represents the so-called radial cone and is defined by

RC(y) := {h ∈ X |∃τ∗ > 0 : ∀τ ∈ [0, τ∗], y + τh ∈ C }

and v ∈ NC(y).

Note that in general, the tangent cone to M contains the radial cone, in fact, it can also be
defined as the closure of RM . We will later provide two (non-trivial) examples containing polyhedric
sets, but first we state the following important result due to Levy [27].
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Theorem 3.1 ([27], Theorem 3.1). Let M be a polyhedric subset of some reflexive Banach space
Y and v ∈ NM (y). Then for any (y, v) ∈ gphNM , the following are equivalent

1. w ∈ DNM [(y, v)](d).

2. w ∈ NK(y,v)(d).

3. (d,w) ∈ K(y, v)× [K(y, v)]− : 〈w, d〉 = 0.

Here, K(y, v) := TM (y) ∩ {v}⊥, i.e., the critical cone.

We note that the original theorem was stated in terms of so-called proto-derivatives of NM , see
Definition 6.4 in Section 6, however, we later argue that this object coincides with the contingent
derivative. We would also like to bring the reader’s attention to the fact that Theorem 3.1 can be
can be easily derived by using Equation (2.13) in Example 2.10 together with Theorem 3.9 in [13].

By appealing to a special calculus rule for the contingent derivatives of certain classes of mul-
tifunctions, we prove the next important corollary.

Corollary 3.1 (The Contingent Derivative of S). Let M be a polyhedric subset of a reflexive
Banach space Y and S be as above. If (u, y) ∈ gphS, then the following are equivalent:

1. d ∈ DS[(u, y)](w).

2. w ∈ Ad+NK(y,v)(d).

3. w −Ad ∈ [K(y, v)]− , d ∈ K(y, v), 〈w −Ad, d〉 = 0.

or equivalently

TgphS(u, y) =
{

(w, d) ∈ Y ∗ × Y
∣∣w −Ad ∈ [K(y, v)]− , d ∈ K(y, v), 〈w −Ad, d〉 = 0

}
.

Here, v := u−Ay.

Proof. Define
S−1(y) := {u ∈ Y ∗ |u ∈ Ay +NM (y)} .

It can be easily derived from the definition of the contingent derivative ( see e.g., Chapter 4 in [5])
that

d ∈ DS[(u, y)](w)⇔ w ∈ DS−1[(y, u)](d).

Then since A is Fréchet differentiable from Y to Y ∗, we can refer to Proposition 5.1.2 in [5], which
states

w ∈ DS−1[(y, u)](d) = Ad+DNM [(y, u−Ay)](d).

The rest follows from Theorem 3.1.

Remark 3.1 (Contingent Derivatives vs. Conical Derivatives). In his seminal 1976 paper
[29], Mignot introduces a type of one-sided directional derivative for continuous mappings between
Banach spaces called the conical derivative. Perhaps the most stunning result concerning these
derivatives is found in Theorem 3.3 ([29]), where solutions to a specific class of variational inequal-
ities are shown to admit a conical derivative for every perturbation parameter (similar to w in
Corollary 3.1). In turn, the conical derivative is the solution of a variational inequality of the type
found in Corollary 3.1. However, Mignot does so only for a restricted class of function spaces and
choice of M . In this sense, Corollary 3.1 extends Mignot’s result to reflexive Banach spaces for all
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state constraints M , provided the sets are polyhedric. Indeed, 2. in Corollary 3.1 can be viewed as
the necessary and sufficient optimality conditions to the optimization problem

min
d∈Y

{
1
2
〈Ad, d〉 − 〈w, d〉+ IK(y,v)(d)

}
.

Since this objective function is strictly convex, coercive and lower semicontinuous, the optimization
problem always has a unique solution, see. e.g., Theorem 3.3.4 in [4]; this holds regardless of the
choice of w ∈ Y ∗. Moreover, it is easy to ascertain the Lipschitz continuity of these solutions as
functions of w using the coercivity of the operator A. Hence, for any fixed (u, y) ∈ gphS, i.e., a
solution y of the original variational inequality for a given u, we see that at every point w ∈ Y ∗, this
solution admits a contingent derivative DS[(u, y)](w) = d, where d solves the variational inequality:

Find d ∈ K(y, v) : 〈Ad, d′ − d〉 ≥ 〈w, d′ − d〉, ∀d′ ∈ K(y, v).

In Corollary 6.2, we fully generalize this result to hold for all closed convex sets of state constraints
M in reflexive Banach spaces.

Continuing, we have the following important result, which incidentally can be derived via ar-
guments in Chapter 5 of [5] (Proposition 5.1.3 with “f(x) := 0”). Nevertheless, we provide an
alternate proof for completeness. Keep note of how the result follows without the requirement that
M is polyhedric.

Proposition 3.1 (Domain-Constrained Solution Mappings). Assume that Y is a reflexive
Banach space and U a Hilbert space such that Y ↪→ U ↪→ Y ∗, where the embedding of U (identified
with its dual U∗) in Y ∗ is dense. If M ⊂ Y is nonempty, closed, and convex, then for any
(u, y) ∈ [U × Y ] ∩ gphS it holds that

T[U×Y ]∩gphS(u, y) = TgphS(u, y).

Proof. Throughout the proof, we identify U with its dual, making it a proper subspace of Y ∗.
Therefore, U is formally a convex set. Moreover, since the subspace U is dense in Y ∗ and the
convergence of wk is taken in Y ∗, we see that TU (u) = Y ∗.

Begin by letting (w, d) ∈ T[U×Y ]∩gphS(u, y). Then by definition there exist sequences tk → 0+,
wk →Y ∗ w, and dk →Y d such that

u+ tkwk ∈ U ∧ y + tkdk ∈ S(u+ tkwk), ∀k.

It follows that (w, d) ∈ [TU (u)× Y ] ∩ TgphS(u, y) = TgphS(u, y).
Consider now that since S is locally Lipschitz near u, there exists a scalar L > 0 and a neigh-

borhood W of u such that

S(u′) ⊂ S(u
′′
) + L||u′ − u′′ ||Y ∗B, ∀u′, u

′′ ∈ W.

Here, B represents the open unit ball in Y . Now let (w, d) ∈ [TU (u)× Y ]∩TgphS(u, y). Then there
exist sequences tk → 0+, wk →Y ∗ w, w′k →Y ∗ w, and d′k →Y d such that

u+ tkwk ∈ U ∧ y + tkd
′
k ∈ S(u+ tkw

′
k), ∀k.

For large k we have from the Lipschitz continuity of S that

y + tkd
′
k ∈ S(u+ tkw

′
k) ⊂ S(u+ tkwk) + tkL||w′k − wk||Y ∗B
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Due to the single-valuedness of the solution mapping S near u, we obtain a bounded sequence
bk ∈ B such that for k large

y + tkd
′
k = S(u+ tkwk) + tkL||w′k − wk||Y ∗bk.

Then by defining dk := d′k − tkL||w′k − wk||Y ∗bk, we obtain a sequence dk → d such that for large
enough k

u+ tkwk ∈ U ∧ y + tkdk ∈ S(u+ tkwk),

Hence, (w, d) ∈ T[U×Y ]∩gphS(u, y). The assertion follows.

The previous result has wide-ranging consequences that will become clear as soon as we present
the examples in the coming sections. We close this section with an additional result needed for the
derivation of dual first order optimality conditions for the class of elliptic MPECs with polyhedric
state constraints and subspace constraints on the control.

Proposition 3.2 (Approximation of the Fréchet Normal Cone). Given the setting from
Proposition 3.1 with (u, y) ∈ [U × Y ] ∩ gphS, the following holds

N̂[U×Y ]∩gphS(u, y) ⊆
{

(p∗, q∗) ∈ Y × Y ∗
∣∣p∗ ∈ K(y, v), q∗ ∈ −A∗p∗ + [K(y, v)]−

}
.

Here, v := u−Ay.

Proof. From Theorem 1.10 in [31] and Proposition 3.1, we know that

N̂[U×Y ]∩gphS(u, y) ⊆ [T[U×Y ]∩gphS(u, y)]− = [TgphS(u, y)]− .

Passing now to the definition of the polar cone we see that

[TgphS(u, y)]− = {(p∗, q∗) ∈ Y × Y ∗ |〈w, p∗〉+ 〈q∗, d〉 ≤ 0, ∀(w, d) ∈ TgphS(u, y)} .

Using Corollary 3.1, we can proceed in a manner similar to the proof of Lemma 3.1 in [35].

[TgphS(u, y)]− = {(p∗, q∗) ∈ Y × Y ∗ |〈w, p∗〉+ 〈q∗, d〉 ≤ 0,∀(w, d) ∈ TgphS(u, y)}
=
{

(p∗, q∗) ∈ Y × Y ∗
∣∣〈Ad+ h, p∗〉+ 〈q∗, d〉 ≤ 0,∀(d, h) ∈ gphNK(y,v)

}
=
{

(p∗, q∗) ∈ Y × Y ∗
∣∣〈A∗p∗ + q∗, d〉+ 〈h, p∗〉 ≤ 0,∀(d, h) ∈ gphNK(y,v)

}
Recall from Theorem 3.1 that

gphNK(y,v) =
{

(d, h) ∈ Y × Y ∗
∣∣d ∈ K(y, v), h ∈ [K(y, v)]− , 〈h, d〉 = 0

}
.

Then by ignoring the complementarity relation 〈h, d〉 = 0, we observe that

[TgphS(u, y)]− ⊃
{

(p∗, q∗) ∈ Y × Y ∗
∣∣A∗p∗ + q∗ ∈ [K(y, v)]− , p∗ ∈ K(y, v)

}
.

Conversely, since K(y, v)×{0} and {0}× [K(y, v)]− are subsets of gphNK(y,v) we obtain the reverse
inclusion, i.e.,

[TgphS(u, y)]− ⊂
{

(p∗, q∗) ∈ Y × Y ∗
∣∣A∗p∗ + q∗ ∈ [K(y, v)]− , p∗ ∈ K(y, v)

}
,

as was to be shown.
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4 Optimality Conditions for the Elliptic MPEC: Polyhedric Case

Using the results of the previous section, we derive what amount to so-called strong or S-stationarity
conditions (cf. [39]) for elliptic MPECs. The choice of nomenclature is done so in an effort to unify
terminology with the classical MPEC literature. Though the abstract conditions below do not
directly reflect the sign conditions normally associated with S-stationarity conditions, the examples
in the following sections do in fact exhibit this behavior.

Consider the following class of elliptic MPECs{
min J(u, y)
s.t. u ∈ U , y ∈ S(u).

(2)

Here, we assume as before that S is the solution mapping of some variational inequality of the form

u ∈ Ay +NM (y),

where A : Y → Y ∗ is a coercive bounded linear operator and M ⊆ Y is polyhedric. In addition, we
assume that Y is a subspace of U , where U is some Hilbert space densely embedded in Y ∗ (upon
identification with its dual U∗. Finally, we let J be Fréchet differentiable from U × Y to R.

Theorem 4.1 (Existence of a Solution to the Elliptic MPEC). In addition to the assumptions
above, we assume that the objective functional J satisfies the following additional criteria.

1. ∀uk ⇀U u, ∀yk ⇀Y y, lim infk J(uk, yk) ≥ J(u, y) (weak lower-semicontinuity).

2. ∃c1, c2 ∈ R : ∀y ∈ Y , J(u, y) ≥ c1||u||U + c2. (partial coercivity).

3. ∃K > 0 : J(u, y) ≥ K > −∞ ∀u, y ∈ U × Y (boundedness from below).

Then the elliptic MPEC (2) possesses at least one solution (ū, ȳ), provided the embedding “ U ↪→
Y ∗” is compact.

Proof. The proof is standard, however, in the interest of completeness, we provide it in the ap-
pendix.

Remark 4.1 (Strength of the Assumptions). In the proof of Theorem 4.1, we do note require
M to be polyhedric. In fact, it is enough that M be closed and convex. Furthermore, we would
require only a slight change of proof if we were to restrict u to a closed convex subset of U . Thus,
the result provides an existence proof for a large class of elliptic MPECs.

One example of an objective functional that satisfies the needed requirements is

J(u, y) =
1
2
||y − yd||2L2(Ω) +

α

2
||u||2L2(Ω),

where α ≥ 0 and zd ∈ L2(Ω) with Y = H1
0 (Ω), Y ∗ = H−1(Ω), and U = L2(Ω). Since Ω is bounded

by assumption, H1
0 (Ω) is densely embedded into L2(Ω), which in turn implies that L2(Ω) is densely

embedded into H−1(Ω), as L2(Ω) is a Hilbert space. Moreover, the boundedness also implies the
compactness of the embedding L2(Ω) ↪→ H−1(Ω).

We now present our first main result providing dual optimality conditions for (2).
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Theorem 4.2 (Strong Stationarity Conditions I). Let (ū, ȳ) be a locally optimal solution of
(2), then there exist multipliers p∗ ∈ K(ȳ, v̄), r∗ ∈ [K(ȳ, v̄)]−, and v̄ ∈ NM (ȳ) such that

0 = ∇uJ(ū, ȳ) + p∗, (3)
0 = ∇yJ(ū, ȳ) + r∗ −A∗p∗, (4)
0 = Aȳ − ū+ v̄. (5)

Proof. The result follows from Proposition 5.1 in [32] given the Fréchet differentiability of J on
U × Y and using the estimate from Proposition 3.2.

5 Two Examples with Polyhedric State Constraints M

In this section, we provide examples in which the conditions (3) and (4) from Theorem 4.2 are
made explicit. We begin with a classical example for illustration, following which we derive new
conditions for an important example from the study of elasto-plasticity (cf. [24, 25]).

5.1 Optimal Control of the Obstacle Problem

In [29], Mignot demonstrates the polyhedricity of constraint sets of the type{
y ∈ H1

0 (Ω) |ϕ ≤ y ≤ ψ, a.e.Ω
}
,

where ψ,ϕ ∈ H1(Ω) are appropriately chosen. Furthermore, many other obstacle-problem-type
constraints sets, i.e., box-constraints, in Lp-spaces are shown to be polyhedric in Chapter 6 of
[10]. Using the optimality conditions derived in the previous section, along with the well-known
characterizations for both the associated critical cone and its dual, we quickly rederive the well-
known conditions of Mignot and Puel [30]. As their conditions are considered to be the best
possible for the optimal control of the obstacle problem, we consider this brief derivation as a type
of validation for the optimality of our conditions.

In the following,

• Y := H1
0 (Ω),

• U := L2(Ω),

• M :=
{
y ∈ H1

0 (Ω) | y ≥ 0, a.e.Ω
}

,

• J : L2(Ω)×H1
0 (Ω)→ R, Fréchet differentiable.

For the definitions and assumptions on these spaces, we refer the reader to Section 2.
By Theorem 4.2, if (ū, ȳ) is a locally optimal solution of the associated elliptic MPEC, then

there exist (p∗, r∗) ∈ H1
0 (Ω)×H−1(Ω) such that

0 = ∇uJ(ū, ȳ) + p∗

0 = ∇yJ(ū, ȳ) + r∗ −A∗p∗,

where p∗ ∈ TM (ȳ) ∩ {ū−Aȳ}⊥ and r∗ ∈
[
TM (ȳ) ∩ {ū−Aȳ}⊥

]−. Then by referring to Lemma 3.2
in [35] (along with the discussion following Lemma 2.2), it holds that

p∗ ≥ 0, a.e.A,
〈ū−Aȳ, p∗〉 = 0,

〈r∗, ϕ〉 = 0, ∀ϕ ∈ H1
0 (Ω) : ϕ = 0, a.e.A,

〈r∗, ϕ〉 ≤ 0, ∀ϕ ∈M : 〈ū−Aȳ, ϕ〉 = 0.
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By carefully comparing these conditions to Theorem 3.3 in [30], we see that our conditions yield
those of Mignot and Puel. Note that in [30], J(u, y) := 1

2 ||y−zd||
2
L2(Ω) + α

2 ||u||
2
L2(Ω), with α > 0. As

expected in this setting, we see that the regularity of the optimal control ū is better than L2(Ω),
in fact, ū ∈ H1

0 (Ω).

5.2 Pointwise Constraints on the Gradient of the State using the ∞-Norm

Many important problems in the study of elasto-plasticity require the pointwise bounding of the
gradient of the displacement, i.e., the stress on an isotropic body at each point in the presence of a
given force. The optimal control problem then results in an elliptic MPEC in which the gradients
of the state y are pointwise bounded (almost everywhere). In the following example, we consider a
setting in which the gradients of the state are pointwise bounded using the ∞-norm on vectors in
Rl. In Section 8, we consider the 2-norm instead, which does not allow a simple reformulation to
a bilateral setting.

In the following,

• Y := H1
0 (Ω),

• U := L2(Ω),

• M :=
{
y ∈ H1

0 (Ω) | |∇y|∞ ≤ ψ, a.e.Ω
}

, ψ ∈ L∞(Ω) and ∃ψ ∈ R+ \ {0} : ψ ≥ ψ > 0, a.e.Ω,

• J : L2(Ω)×H1
0 (Ω)→ R, Fréchet differentiable.

We use ∇y to represent the full gradient and ∇yi for its components. This simple rule will be
applied throughout this example for all vectors and their components. It is easy to see that M can
be equivalently defined by

M =
{
y ∈ H1

0 (Ω) | −ψ ≤ ∇yi ≤ ψ, a.e.Ω, 1 ≤ i ≤ l
}
.

In addition to these basic assumptions, we reduce the space of the gradient used in the state
constraints, i.e., more specifically:

• ∇ : H1
0 (Ω)→ G(Ω), where G(Ω) := ∇(H1

0 (Ω)), i.e., the image space of the gradient.

In shrinking the image space of the gradient, we obtain a surjective bounded linear operator. This
leads to the new formulation of the constraint set M :

M =
{
y ∈ H1

0 (Ω) | ∇y ∈ Bψ
}
,

where
Bψ := {z ∈ G(Ω) |−ψ ≤ zi ≤ ψ, a.e.Ω, 1 ≤ i ≤ l} .

The image space is not merely chosen for its convenience. In fact, as shown in Proposition 1
(Chapter IX, Section 1) in [12], L2(Ω)l can be written as the orthogonal direct sum

L2(Ω)l = G(Ω)⊕H(div 0,Ω),

where
H(div 0,Ω) :=

{
x ∈ L2(Ω)l |div x = 0

}
.

This then allows us to use the L2(Ω)l-norm on G(Ω). Not only is G(Ω) closed with respect to
the L2(Ω)l-norm, but it is also a Hilbert space with inner product (·, ·)L2(Ω)l . Using these facts,
it is easy to see the Bψ is closed and convex in G(Ω). We now show, using essentially the same
argument as in the proof of Proposition 6.33 in [10], that Bψ is polyhedric in G(Ω). In order to
continue, we will need the following definitions.
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Definition 5.1 (The Active and Inactive Sets). For some y ∈ M , we define the upper active
set for the i-th component of ∇y, A+

i (∇y) ⊆ Ω, such that

A+
i (∇y) := {ω ∈ Ω | ∇yi(ω) = ψ(ω)} .

and the lower active set for the i-th component of ∇y, A−i (∇y) ⊆ Ω, such that

A−i (∇y) := {ω ∈ Ω | ∇yi(ω) = −ψ(ω)} .

The i-th inactive set, Ii(∇y), is therefore defined by

Ii(∇y) := Ω \ A+
i (∇y) ∪ A−i (∇y).

Note that we can analogously define the active and inactive sets for any element of Bψ.

Proposition 5.1 (The Tangent and Normal Cones to Bψ). Let the set Bψ be defined as above
and z ∈ Bψ. Then

TBψ(z) =
{
h ∈ G(Ω)

∣∣hi ≤ 0, a.e.A+
i (z), hi ≥ 0, a.e.A−i (z), 1 ≤ i ≤ l

}
.

Moreover, the properties of G(Ω) allow the elements of the normal cone NBψ(z) to be identified
with elements of G(Ω) so that

NBψ(z) =
{
λ ∈ G(Ω)

∣∣λi ≥ 0, a.e.A+
i (z), λi ≤ 0, a.e.A−i (z), λi = 0, a.e. Ii(z), 1 ≤ i ≤ l

}
.

Therefore, the critical cone to Bψ at z for some λ ∈ NBψ(z) is characterized as

K(z,λ) = TBψ(z) ∩ {λ}⊥ =

h ∈ G(Ω)

∣∣∣∣∣∣∣∣
hi ≤ 0 a.e.A+

i (z) : λi = 0
hi = 0 a.e.A+

i (z) : λi > 0
hi ≥ 0 a.e.A−i (z) : λi = 0
hi = 0 a.e.A−i (z) : λi < 0

, 1 ≤ i ≤ l

 ,

where
{λ}⊥ :=

{
h ∈ G(Ω)

∣∣∣(λ,h)L2(Ω)l = 0
}
.

Here, conditions of the type “ a.e.A+
i (z) : λi = 0” are to be understood: “almost everywhere on the

set
{
ω ∈ A+

i (z) |λi(ω) = 0
}

”.

Proof. Let h ∈ TBψ(z). Then by definition, there exist sequences tk → 0+ and hk → h in G(Ω)
such that

z + tkhk ∈ Bψ, ∀k.

Then for any i such that 1 ≤ i ≤ l, it holds that

−ψ ≤ zi + tkh
i
k ≤ ψ, a.e.Ω, ∀k.

Thus,

0 ≤ hik ≤
ψ − zi
tk

, a.e.A−i (z), ∀k

and
−ψ − zi

tk
≤ hik ≤ 0, a.e.A+

i (z), ∀k.
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Here, we use hik to represent the i-th component of the hk. Hence,

TBψ(z) ⊆
{
h ∈ G(Ω)

∣∣hi ≤ 0, a.e.A+
i (z), hi ≥ 0, a.e.A−i (z), 1 ≤ i ≤ l

}
. (6)

Now let h ∈ G(Ω) satisfy the righthand side of (6) and define the following class of vector fields
indexed by τ > 0

rτ :=
ΠBψ(z + τh)− z

τ
.

Here, ΠBψ represents the metric projection onto Bψ. Since z + τrτ = ΠBψ(z + τh), rτ ∈ RBψ(z)
for all τ > 0.

Consider now that for almost every ω ∈ Ω, rτ (ω) → h(ω). Indeed, pointwise, we can always
find τ > 0 small enough such that z(ω) + τh(ω) ∈ Bψ(ω). Moreover, since G(Ω) is a Hilbert space
and Bψ(ω) is closed and convex for almost every ω ∈ Ω, the metric projection is single-valued and
Lipschitz continuous with modulus 1 (non-expansive). Therefore, it holds that |rτ (ω)| ≤ |h(ω)| for
almost every ω ∈ Ω. Then given G(Ω) is a closed subspace of L2(Ω)l, we can apply Lebesgue’s
Dominating Convergence Theorem, which yields rτ → h in G(Ω). As the set of all rτ is contained
in RBψ(z) and cl {RBψ(z)}G(Ω) = TBψ(z), (6) holds as an equality.

We now move on to the derivation of the normal cone. By definition

NBψ(z) =
[
TBψ(z)

]− =
{
λ ∈ G(Ω)∗

∣∣〈λ,h〉G(Ω)∗,G(Ω) ≤ 0, ∀h ∈ TBψ(z)
}
.

By virtue of the Riesz Representation Theorem, there exists a unique λ̃ ∈ G(Ω) for each λ ∈ G(Ω)∗

such that
〈λ,h〉G(Ω)∗,G(Ω) =

(
λ̃,h

)
L2(Ω)l

.

Hence, we identify all λ ∈ NBψ(z) with their G(Ω) counterparts, so that

〈λ,h〉G(Ω)∗,G(Ω) ≤ 0, ∀h ∈ TBψ(z)⇔
(
λ̃,h

)
L2(Ω)l

≤ 0, ∀h ∈ TBψ(z).

DefiningA+(z) := A+
1 (z)×· · ·×A+

l (z), A−(z) := A−1 (z)×· · ·×A−l (z), and I(z) := I1(z)×· · ·×Il(z),
the polarity inequality becomes(

λ̃,h
)
L2(Ω)l

=
∫
A+(z)

λ̃ · hdω +
∫
A−(z)

λ̃ · hdω +
∫
I(z)

λ̃ · hdω ≤ 0, ∀h ∈ TBψ(z).

Referring to the above, we see that if h ∈ G(Ω) such that hi = 0 a.e. on A+
i (z) ∪ A−i (z) and free

on Ii(z) for all i = 1, . . . , l, then h ∈ TBψ(z). Therefore, λ̃ must equal zero a.e. on I(z). Then
since the components of h are almost everywhere non-positive on A+(z) and almost everywhere
non-negative on A−(z) for all h ∈ TBψ(z), λ̃ must always have the opposite signs (a.e.) on these
sets. By identifying the λ̃ with the λ, the asserted formula for the normal cone holds.

Given the formulae for the tangent and normal cones, the characterization for the critical cone
follows trivially.

Corollary 5.1 (Polyhedricity of Bψ). The set Bψ as defined above is polyhedric in G(Ω), i.e.,
for any λ ∈ NBψ(z), it holds that

TBψ(z) ∩ {λ}⊥ = cl
{
RBψ(z) ∩ {λ}⊥

}
G(Ω)

.

Proof. The argument follows analogously to the derivation of the tangent cone and mirrors the
proof of Proposition 6.33 in [10].
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This leads to our next result.

Proposition 5.2 (The Tangent and Normal Cones to M). Let y ∈ M , where M is defined
as above. Then

TM (y) =
{
d ∈ H1

0 (Ω)
∣∣∇d ∈ TBψ(∇y)

}
and

NM (y) =
{
−div λ ∈ H−1(Ω)

∣∣λ ∈ G(Ω) : λ ∈ NBψ(∇y)
}
,

Here, the associated critical cone to M at y ∈M for some v ∈ NM (y) is characterized by

K(y, v) = TM (y) ∩ {v}⊥ =

d ∈ H1
0 (Ω)

∣∣∣∣∣∣∣∣
∇di ≤ 0 a.e.A+

i (∇y) : λi = 0
∇di = 0 a.e.A+

i (∇y) : λi > 0
∇di ≥ 0 a.e.A−i (∇y) : λi = 0
∇di = 0 a.e.A−i (∇y) : λi < 0

, 1 ≤ i ≤ l

 .

Here, λ ∈ NBψ(∇y) such that v = −div λ.

Proof. Due to the assumption on the range space of ∇, the classical generalized Slater condition,
i.e.,

0 ∈ int
{
∇(H1

0 (Ω))−Bψ
}

automatically holds. Indeed, since ∇(H1
0 (Ω)) = G(Ω) and Bψ ⊂ G(Ω), there always exists an ε > 0

such that Bε(0) ⊂ ∇(H1
0 (Ω)) − Bψ. Thus, the assertions hold for TM (y) and NM (y) (cf., e.g., [5],

Chapter 4.2). Note that the adjoint of ∇ is −div , understood in a weak sense.
Due to Proposition 5.1, for each v ∈ NM (y), there exists a λ ∈ NBψ(∇y) such that v = −div λ.

Therefore, taking any arbitrary d ∈ K(y, v) requires

〈−div λ, d〉H−1,H1
0

= (λ,∇d)L2(Ω)l = 0.

Continuing the previous relation further yields

(λ,∇d)L2(Ω)l =
∫
A+(∇y)

λ · ∇ddω +
∫
A−(∇y)

λ · ∇ddω +
∫
I(∇y)

λ · ∇ddω =∫
A+(∇y)

λ · ∇ddω +
∫
A−(∇y)

λ · ∇ddω = 0.

The rest follows from the fact that ∇di and λi always have opposite signs. The reverse inclusion is
trivial.

Given the explicit formula for the critical cone associated with M provided by the previous
proposition, we now demonstrate that M is in fact polyhedric.

Proposition 5.3 (Polyhedricity of M). Given M as above, y ∈ M , and v ∈ NM (y), it holds
that

K(y, v) = TM (y) ∩ {v}⊥ = cl
{
RM (y) ∩ {v}⊥

}
H1

0 (Ω)
,

i.e., M is polyhedric.

Proof. Since ∇ is onto and Bψ is polyhedric (Propostion 5.1), Proposition 3.54 in [10] implies

cl
{
d ∈ K(y, v)

∣∣∇d ∈ RBψ(∇y)
}
H1

0 (Ω)
= K(y, v).
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Given
TM (y) ∩ {v}⊥ ⊇ cl

{
RM (y) ∩ {v}⊥

}
H1

0 (Ω)
,

it suffices to show that {
d ∈ K(y, v)

∣∣∇d ∈ RBψ(∇y)
}
⊂ RM (y) ∩ {v}⊥ .

By definition ∇d ∈ RBψ(∇y) implies the existence of a τ > 0 such that ∇y + τ∇d ∈ Bψ. Hence,
d ∈ RM (y). Then since d ∈ K(y, v) implies 〈v, d〉H−1,H1

0
= 0, it holds that d ∈ RM (y) ∩ {v}⊥.

Given the previous results, we need one last component in order to provide the explicit station-
arity conditions for the elliptic MPEC.

Proposition 5.4 (The Polar Cone [K(y, v)]−). Given M as above, y ∈ M , and v ∈ NM (y), it
holds that

[K(y, v)]− =

−div µ ∈ H−1(Ω)

∣∣∣∣∣∣µ ∈ G(Ω) :
µi ≥ 0 a.e.A+

i (∇y) : λi = 0
µi ≤ 0 a.e.A−i (∇y) : λi = 0
µi = 0 a.e. Ii(∇y)

, 1 ≤ i ≤ l


Proof. By definition,

[K(y, v)]− =
{
d∗ ∈ H−1(Ω)

∣∣∣〈d∗, d〉H−1,H1
0
≤ 0, ∀d ∈ K(y, v)

}
.

Let µ satisfy the requirements for the righthand side of the asserted result. Then by Proposition
5.2, for any d ∈ K(y, v), we have

〈−div µ, d〉H−1,H1
0

= (µ,∇d)L2 ≤ 0.

Therefore, the inclusion “⊇” holds. For the reverse direction, define

L :=

µ ∈ G(Ω)

∣∣∣∣∣∣
µi ≥ 0 a.e.A+

i (∇y) : λi = 0
µi ≤ 0 a.e.A−i (∇y) : λi = 0
µi = 0 a.e. Ii(∇y)

, 1 ≤ i ≤ l

 .

It is easy to show that L is closed and convex in G(Ω). Assume now that there exists some
d∗ ∈ [K(y, v)]− such that d∗ /∈ −div (L). Then there must exist some δ ∈ H1

0 (Ω) strongly separating
d∗ from −div (L), see e.g., II.38 Prop. 4 [11], i.e.,

〈d∗, δ〉H−1,H1
0
> 0, 〈−div µ, δ〉H−1,H1

0
≤ 0, ∀µ ∈ L.

Then δ cannot be in K(y, v). However, for any arbitrary µ ∈ L, it holds that

0 ≥ 〈−div µ, δ〉H−1,H1
0

= (µ,∇δ)L2(Ω)l .

Since the previous must hold for all µ ∈ L, we deduce that δ ∈ K(y, v), a contradiction. The
assertion follows.

Now that we have all the necessary characterizations, we can provide explicit strong stationarity
conditions for the elliptic MPEC via Theorem 4.2.
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Proposition 5.5 (Explicit Strong Stationarity Conditions). Under the given data assump-
tions, let (ū, ȳ) be a (locally) optimal solution to corresponding MPEC. Then there exist multipliers
p ∈ H1

0 (Ω), λ ∈ G(Ω), and µ ∈ G(Ω) such that

0 = ∇uJ(ū, ȳ) + p, (7)
0 = ∇yJ(ū, ȳ)− div µ−A∗p, (8)
0 = Aȳ − ū− div λ, (9)

(10)

where for all i = 1, . . . , l
∇pi ≤ 0, a.e.A+

i (∇y) : λi = 0
∇pi = 0, a.e.A+

i (∇y) : λi > 0
∇pi ≥ 0, a.e.A−i (∇y) : λi = 0
∇pi = 0, a.e.A−i (∇y) : λi < 0

∣∣∣∣∣∣∣∣
µi ≥ 0, a.e.A+

i (∇y) : λi = 0
µi ≤ 0, a.e.A−i (∇y) : λi = 0
µi = 0, a.e. Ii(∇y)

∣∣∣∣∣∣∣∣
λi ≥ 0, a.e.A+

i (∇y)
λi ≤ 0, a.e.A−i (∇y)
λi = 0, a.e. Ii(∇y)


and

A+
i (∇y) = {ω ∈ Ω |∇yi(ω) = ψ(ω)} ,
A−i (∇y) = {ω ∈ Ω |∇yi(ω) = −ψ(ω)} ,
Ii(∇y) = Ω \ A+

i (∇y) ∪ A−i (∇y).

Proof. The result follows from Theorem 4.2 via Propositions 5.2, 5.3, and 5.4.

As in the simple obstacle case, we see that if the tracking functional

J(u, y) =
1
2
||y − zd||2L2 +

α

2
||u||2L2(Ω),

is chosen with α > 0, then the optimal control ū ∈ H1
0 (Ω).

6 Generalized Differentiation of the Solution via Variational Con-
vergence and Epiderivatives

In the following section, we derive a new formula for the contingent derivative of the normal
cone mapping that is valid for all closed convex sets in reflexive Banach spaces. This important
result allows us to provide optimality conditions for a much wider array of problems and extends
the characterizations of the polyhedric setting. We begin by introducing an important type of
variational convergence.

Definition 6.1 (Mosco Epiconvergence). Let {ϕt} be a family of functions from a Banach space
X into the extended reals R̄ parameterized by t > 0 and ϕ : X → R̄. Then the family ϕt is said to
Mosco epiconverge to ϕ as t→ 0+ if for all sequences tn → 0+ and every x ∈ X, the following two
conditions hold

∀xn ⇀ x, ϕ(x) ≤ lim inf
n

ϕtn(xn), (11)

∃xn → x, ϕ(x) ≥ lim sup
n

ϕtn(xn). (12)

16



For more on this and related types of variational convergence, we refer the reader to [3]. In the
next definition, we will use second-order differential quotients associated with some proper convex
lower semicontinuous function f : X → R̄, where X is again some arbitrary Banach space. We
assume f is finite at x ∈ X, x∗ ∈ X∗, and h ∈ X arbitrary. The so-called second-order difference
quotient associated with f are then defined by

(∆2
t f)x,x∗(h) :=

f(x+ th)− f(x)− t〈x∗, x〉
1
2 t

2
.

Definition 6.2 (Second-Order Mosco Epiderivatives). Let f : X → R̄ be any proper convex
lower semicontinuous function, X an arbitrary Banach space and x∗ ∈ X∗. If the family of associ-
ated second-order difference quotients (∆2

t f)x,x∗ Mosco epiconverges to some function ϕ as t→ 0+

with ϕ(0) 6= −∞, then f is said to be twice Mosco epidifferentiable at x relative to x∗. Here, ϕ
represents the second-order Mosco epiderivative of f at x relative to z, which we denote by f

′′
x,x∗.

Second-order Mosco epiderivatives were introduced by Rockafellar for extended real-valued func-
tionals from Rn in [36] and there is a compendium of results for finite dimensional objects in [38].
Some important references for the infinite dimensional setting include, but are by no means limited
to, [13, 22, 27].

Before introducing the next type of generalized derivative, we recall two notions of set limits,
see e.g., [5].

Definition 6.3 (Painlevé-Kuratowski Upper/Lower-Limits). Let Ct ⊆ X be a family of
subsets indexed by t > 0 and X is some Banach space. We define

• the Painlevé-Kuratowski Upper Limit of {Ct}t>0

Lim supt→0+Ct :=
{
x ∈ X

∣∣∃tn → 0+∃xn → x : xn ∈ Ctn
}

;

• the Painlevé-Kuratowski Lower Limit of {Ct}t>0

Lim inft→0+Ct :=
{
x ∈ X

∣∣∀tn → 0+∀xn → x : xn ∈ Ctn
}
.

As mentioned in a remark following Theorem 3.1, the original calculus rules of Rockafellar (finite
dimensions) and Do (infinite dimensions) were stated in terms of so-called proto-derivatives. These
objects were introduced by Rockafellar in [37] and were also developed by A.Levy and R.Poliquin.
We direct the reader to [38] for a comprehensive listing of results and a proper bibliography of
important works.

Definition 6.4 (Proto-Derivatives). Let F : X ⇒ Y be a multifunction and both X and Y be
Banach spaces. Then F : X ⇒ Y is said to be proto-differentiable at x ∈ X relative to z ∈ Y if
and only if

Lim supt→0+

gphF − (x, z)
t

= Lim inft→0+
gphF − (x, z)

t
,

with the common cone being the graph of the proto-derivative. We denote the proto-derivative of F
at x relative to z by PF [(x, z)].

Note that since

gphDF [(x, z)] = TgphF (x, z) = Lim supt→0+

gphF − (x, z)
t

,

the proto-differentiability of a multifunction F immediately implies the contingent-differentiability
of F and the two derivatives coincide. We can now state the following important calculus rule,
which forms the basis for our interest in second-order Mosco epiderivatives.
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Theorem 6.1 (Do [13], Theorem 3.9). Let f : X → R̄ be a proper convex lower-semicontinuous
function, X a reflexive Banach space, and f(x) be finite. Then the following statements are equiv-
alent:

• f is twice Mosco epidifferentiable at x ∈ X relative to x∗ ∈ X∗.

• The subdifferential ∂f is proto-differentiable at (x, x∗) ∈ gph ∂f .

In addition, it holds that

∂(
1
2
f
′′
x,x∗)(h) = P∂f [(x, x∗)](h), h ∈ X. (13)

This brings us to our main result.

Theorem 6.2 (The Second-Order Mosco Epiderivative of IM ). Let M be a nonempty closed
convex set in a reflexive Banach space Y and v ∈ ∂IM (y) = NM (y). Then the indicator func-
tion IM : Y → R̄ is twice Mosco epidifferentiable at y relative to v and the second order Mosco
epiderivative is characterized as follows:

(I
′′
M )y,v(d) =

{
0 d ∈ TM (y) ∩ {v}⊥ ,
∞ otherwise .

(14)

In other words,
(I
′′
M )y,v(d) = IK(y,v)(d),

where
K(y, v) := TM (y) ∩ {v}⊥ .

Proof. Clearly the indicator function of a nonempty closed convex set is proper, convex, and lower
semicontinuous and for any y ∈ M , IM (y) = 0, i.e., IM is finite. Begin by letting tn → 0+ be
an arbitrary sequence of scalars converging to zero from above and let dn ⇀Y d, for an arbitrary
d ∈ Y . By the definition of the indicator function, the lower limit

lim inf
n

IM (y + tndn)− IM (y)− tn〈v, dn〉
t2n/2

will be equal to infinity unless there exists a subsequence of dn or some large N0 ∈ N such that
y+tndn ∈M for all n ≥ N0. Therefore, suppose such a sequence exists. Given any v′ ∈ NM (y), the
closure and convexity of M imply that 〈v′, y′ − y〉 ≤ 0 for all y′ ∈M , in which case it follows from
the assumption that 〈v′, dn〉 ≤ 0. Since dn ⇀Y d, we observe that 〈v′, d〉 ≤ 0 for all v′ ∈ NM (y).
Then from the convexity of M , we deduce: d ∈ TM (y). In addition, we see that the second-order
difference quotients are all non-negative and in fact reduce to

−2〈v, dn〉
tn

≥ 0.

Hence, if 〈v, dn〉 does not converge to zero, tn → 0+ implies that the lower limit tends to infinity,
which leads to the following inequality.

lim inf
n

IM (y + tndn)− IM (y)− tn〈v, dn〉
t2n/2

≥
{

0 d ∈ TM (y) ∩ {v}⊥ ,
∞ otherwise ,

(15)

Since tn was arbitrarily chosen, (15) holds for all sequences tn → 0+ and dn ⇀ d. Thus, the
righthand side of (15) is a good candidate for the second-order Mosco epiderivative. Recalling
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Definition 6.2, we see that in order to complete the proof, we need to show for all tn → 0+ that
there exists a strongly converging sequence dn → d such that

lim sup
n

IM (y + tndn)− IM (y)− tn〈v, dn〉
t2n/2

≤
{

0 d ∈ TM (y) ∩ {v}⊥ ,
∞ otherwise .

In what follows, let tn → 0+ be arbitrary. Clearly, if d /∈ TM (y) ∩ {v}⊥, then the inequality
will always hold. Therefore, we only need to construct sequences for d ∈ TM (y) ∩ {v}⊥. Since
both TM (y) and {v}⊥ are strongly closed in Y, their intersection is as well. Therefore, for all
d ∈ TM (y) ∩ {v}⊥ there exists a strongly convergent sequence δn → d with δn ∈ TM (y) ∩ {v}⊥ for
all n, such that 〈v, δn〉 = 0 and, by the definition of TM (y), sequences τnk → 0+ and δnk → δn such
that y+ τnk δ

n
k ∈M for all k and each n. From the convexity of M , we infer that for any t ∈ [0, τnk ],

we have
y + tδnk = (1− t

τnk
)y +

t

τnk
(y + τnk δ

n
k ) ∈M, ∀k, ∀n. (16)

Moreover, we deduce that 〈v, δnk 〉 → 0 as k → ∞ and similar to before, we see that 〈v, δnk 〉 ≤ 0.
Hence, for some ε > 0, there exists Kn ∈ N for each n such that

1. |2〈v, δnk 〉| ≤ t1+ε
nmin for all k ≥ Kn, where nmin := argminn {t1, . . . , tn}.

2. ||δn − δnk || ≤ tn for all k ≥ Kn.

3. τnk ≤ fn for all k ≥ Kn, with fn arbitrary such that fn → 0+ monotonely.

We now build our strongly converging sequence dn. Begin by fixing m1 ∈ N and define

εm1 := min
1≤i≤m1

τ iKi .

Given tn → 0+, there exists an N(εm1) ∈ N such that for all n ≥ N(εm1)

tn ≤ εm1 .

By the definition of εm1 , it also holds that

tn ≤ τm1
Km1

.

For all n < N(εm1), set dn := δ1
K1

. Now define j1 to be the smallest index such that

tN(εm1 ) > τm1+j1
Km1+j1

and define l1 ≥ 1 to be the first index such that

tN(εm1 )+l1 ≤ τ
m1+j1
Km1+j1

.

By the third assumption on Kn, j1 exists since τnKn → 0+, with n; and l1 exists since tn → 0+.
Then using these indices, we set dn = δm1

Km1
for all n = N(εm1), . . . , N(εm1) + l1 − 1.

Given for all n = N(εm1) + i with i = 0, . . . , l1 − 1, tn ∈ [0, τm1
Km1

] and dn = δm1
Km1

, it holds that
y + tndn ∈M (cf. (16)). Thus, IM (y + tndn) = 0.

At this point we define m2 := m1 + j1 and repeat the process described above with m2 in place
of m1. Clearly, εm2 ≤ εm1 and N(εm2) ≥ N(εm1). If N(εm1)+ l1−1 < N(εm2), then set dn = δm1

Km1

for all n such that N(εm1) + l1 − 1 ≤ n < N(εm2). As l1 ≥ 1, tn ≤ εm1 so that t ∈ [0, τm1
Km1

] and

19



y + tndn ∈ M still holds. Also note that the case “N(εm2) < N(εm1) + l1 − 1” cannot happen.
Indeed, this would require, for all n = N(εm2), . . . , N(εm1) + l1 − 1, that τm2

Km2
< tn ≤ εm2 , but

εm2 ≤ τ
m2
Km2

by definition, a contradiction. The rest continues as before.
To see that the process continues indefinitely, let p ≥ 1 and consider that the convergence of

τnKn → 0+ ensures the existence of a jp ∈ N such that tN(εmp ) > τ
mp+jp
Kmp+jp

. With jp fixed, we now

look to increase the number n larger than N(εmp). We do this by checking if tN(εmp )+i > τ
mp+jp
Kmp+jp

for i = 1, 2, . . . . As jp is fixed, so is τmp+jp
Kmp+jp

. Therefore, the convergence of tn → 0+ implies the

existence of some lp such that tN(εmp )+lp ≤ τ
mp+jp
Kmp+jp

, by definition, we define mp+1 and continue as
before. This ensures that the process is perpetual.

Summarizing, we describe the construction via the following diagram

dn = δ1
K1
, . . . , δ1

K1︸ ︷︷ ︸
1≤n<N(εm1 )

| δm1
Km1

, . . . , δm1
Km1︸ ︷︷ ︸

N(εm1 )≤n<N(εm2 )

| δm2
Km2

, . . . , δm2
Km2︸ ︷︷ ︸

N(εm2 )≤n<N(εm3 )

| . . . ,

that is, dn is a subsequence of δnKn . Furthermore, we have for all µ > 0 and large n that

||d− δnKn || ≤ ||d− δn||+ ||δn − δ
n
Kn || ≤ µ+ tn ≤ 2µ,

so that δnKn → d as n→∞ and thus, dn as well. Finally, since

0 ≤ −2〈v, dn〉
tn

≤
t1+ε
nmin

tn
≤ t1+ε

n

tn
= tεn and tεn → 0,

we see that the true limit of the difference quotients exists so that the limit superior equals zero.
Lastly, since 0 ∈ TM (y) ∩ {v}⊥ the function

ϕ(d) :=
{

0 d ∈ TM (y) ∩ {v}⊥ ,
∞ otherwise ,

is the Mosco epilimit of the second-order difference quotients and therefore amounts to the second-
order Mosco epiderivative of IM , as was to be shown.

We immediately obtain the next two corollaries.

Corollary 6.1 (The Contingent Derivative of NM ). Let M be a nonempty closed convex set of
a reflexive Banach space Y and v ∈ ∂IM (y) = NM (y). Then for any (y, v) ∈ gphNM , the following
are equivalent:

1. w ∈ DNM [(y, v)](d).

2. w ∈ NK(y,v)(d).

3. (d,w) ∈ K(y, v)× [K(y, v)]− : 〈w, d〉 = 0.

Here, K(y, v) := TM (y) ∩ {v}⊥, i.e., the critical cone.

Proof. The result follows from (13) via the formula (14) in Theorem 6.2. Indeed, ∂IK(y,v)(d) =
NK(y,v)(d) due to convexity. Furthermore, since K(y, v) is a cone, we have from Lemma 4.2.5 in [5]
that

w ∈ NK(y,v)(d)⇐⇒ (d,w) ∈ K(y, v)× [K(y, v)]− : 〈w, d〉 = 0.

The assertion then follows.
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Corollary 6.2 (The Contingent Derivative of S). Let M be a nonempty closed convex set of
a reflexive Banach space Y and S be as above. If (u, y) ∈ gphS, then the following are equivalent:

1. d ∈ DS[(u, y)](w).

2. w ∈ Ad+NK(y,v)(d).

3. w −Ad ∈ [K(y, v)]− , d ∈ K(y, v), 〈w −Ad, d〉 = 0.

or equivalently

TgphS(u, y) =
{

(w, d) ∈ Y ∗ × Y
∣∣w −Ad ∈ [K(y, v)]− , d ∈ K(y, v), 〈w −Ad, d〉 = 0

}
.

Here, v := u−Ay.

Proof. The proof is analogous to that of Theorem 4.2. The rest follows from Corollary 6.1.

Corollary 6.2 once again demonstrates the power of the variational analytic method, as we
now have a formula characterizing the contingent derivative of the solution of any linear elliptic
variational inequality in reflexive Banach spaces. Furthermore, as mentioned in Remark 3.1, we
have now fully generalized Mignot’s classical result.

7 Optimality Conditions for the Elliptic MPEC: Nonlinear Case

We are now in a position to derive abstract optimality conditions for the more general elliptic
MPEC (2), which we restate here for convenience.{

min J(u, y)
s.t. u ∈ U , y ∈ S(u).

(17)

We assume as always that S is the solution mapping of some variational inequality of the form

u ∈ Ay +NM (y),

where A : Y → Y ∗ is a coercive bounded linear operator and M ⊆ Y is any non-empty closed
convex set. As before, we assume that Y ↪→ U ↪→ Y ∗, with U a Hilbert space, is densely embedded
in Y ∗, and we assume J is Fréchet differentiable from U × Y to R.

Theorem 7.1 (Strong Stationarity Conditions II). Let (ū, ȳ) be a locally optimal solution of
(17), then there exist multipliers p∗ ∈ K(ȳ, v̄), r∗ ∈ [K(ȳ, v̄)]−, and v̄ ∈ NM (ȳ) such that

0 = ∇uJ(ū, ȳ) + p∗, (18)
0 = ∇yJ(ū, ȳ) + r∗ −A∗p∗, (19)
0 = Aȳ − ū+ v̄. (20)

Proof. The result follows from Proposition 5.1 in [32] given the Fréchet differentiability of J on U×Y
and using the estimate from Proposition 3.2, which holds via the characterization of DS[(ū, ȳ)] in
Corollary 6.2.
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8 Pointwise Constraints on the Gradient of the State using the
2-Norm

Earlier we motivated the need for the non-linear non-smooth case with

M :=
{
y ∈ H1

0 (Ω) | |∇y|2 ≤ ψ, a.e.Ω
}
.

where ∇ : H1
0 (Ω)→ G(Ω) with G(Ω) := ∇(H1

0 (Ω)) ⊂ L2(Ω)l, a closed (Hilbert) subspace of L2(Ω)l.
As we are about to see, the derivation of the objects needed for the stationarity conditions mirrors
that of the polyhedric case. Once again, we have the following data assumptions, with M as above.

• Y := H1
0 (Ω),

• U := L2(Ω),

• J : L2(Ω)×H1
0 (Ω)→ R, Fréchet differentiable,

• ψ has a lower bound, ψ ∈ R+ \ {0}, i.e., ψ ≥ ψ > 0.

• ∇ : H1
0 (Ω)→ G(Ω), where G(Ω) := ∇(H1

0 (Ω)), i.e., the image space of the gradient.

By defining Kψ := {z ∈ G(Ω) ||z|2 ≤ ψ, a.e.Ω}, we reformulate M as

M =
{
y ∈ H1

0 (Ω) |∇y ∈ Kψ

}
.

Since ∇, as defined here, is a surjective bounded linear operator, we only need to calculate TKψ
and NKψ in order to derive formulae for TM and NM , for which we have the next result.

Proposition 8.1 (The Tangent and Normal Cones to Kψ). Let Kψ be defined as above and
assume z ∈ Kψ. Then

TKψ(z) = {h ∈ G(Ω) |z · h ≤ 0, a.e.A(z)}

and

NKψ(z) =

λq ∈ G(Ω)

∣∣∣∣∣∣
λ ∈ L2(Ω) : λ ≥ 0, a.e.A(z), λ = 0, a.e. I(z)

q(ω) ∈
{
{z(ω) /|z(ω)|2 } |z(ω)| 6= 0
B1(0) |z(ω)| = 0


Here, B1(0) represents the closed unit ball in G(Ω).

Proof. Let h ∈ TKψ(z). Then there exist sequences tk → 0+ and hk → h in G(Ω) such that
|z + tkhk|2 ≤ ψ a.e. Ω. By squaring both sides and rearranging terms, we observe that z · h ≤ 0
a.e. A(z). Thus, the inclusion “⊆” holds. For the reverse direction, we again us an argument based
on Lebesgue’s Dominating Convergence Theorem. Indeed, by defining the family of G(Ω)-vector
fields

pτ :=
ΠKψ(z + tkh)− z

τ
,

it holds that for all τ > 0, pτ ∈ RKψ(z). Moreover, for almost every ω, pτ (ω) → h(ω) and since
G(Ω) is a Hilbert space and Kψ is closed and convex, the metric projection is non-expansive, i.e.,
|pτ (ω)| ≤ |h(ω)|. As G(Ω) is a closed subspace of L2(Ω)l in the L2(Ω)l-norm, it holds that pτ → h
in G(Ω). Therefore, the reverse inclusion holds.

We now characterize the normal cone. Formally,

NKψ(z) =
{
µ∗ ∈ G(Ω)∗

∣∣〈µ∗,h〉G∗,G ≤ 0,∀h ∈ TKψ(z)
}
.
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Nevertheless, since G(Ω) is a Hilbert space with L2(Ω)l inner product, we can associate with every
µ∗ ∈ NKψ(z) its G(Ω)-counterpart µ. Therefore, we view the normal cone as follows

NKψ(z) =
{
µ ∈ G(Ω)

∣∣∣(µ,h)L2(Ω)l ≤ 0,∀h ∈ TKψ(z)
}
.

Suppose that λ ∈ L2(Ω) satisfies λ ≥ 0 a.e.A(z) and λ = 0 a.e. I(z) and q ∈ G(Ω) such that

q(ω) ∈
{
{z(ω) /|z(ω)|2 } |z(ω)| 6= 0,
B1(0) |z(ω)| = 0.

In general, λq ∈ L2(Ω)l as the components of q are all essentially bounded on Ω (and therefore
elements of L∞(Ω)). Then clearly

(λq,h)L2(Ω)l =
∫
A(z)

λ
z
|z|2
· hdω ≤ 0, ∀h ∈ TKψ(z).

Define the set

N0(z) :=

λq ∈ G(Ω)

∣∣∣∣∣∣
λ ∈ L2(Ω) : λ ≥ 0, a.e.A(z), λ = 0, a.e. I(z)

q(ω) ∈
{
{z(ω) /|z(ω)|2 } |z(ω)| 6= 0
B1(0) |z(ω)| = 0

 .

Clearly, NKψ(z) ⊇ N0(z). To see that N0(z) is convex in G(Ω), let α ∈ (0, 1) and v1,v2 ∈ N0(z).
Then since

αv1(ω) + (1− α)v2(ω) =

{
(αλ1(ω) + (1− α)λ2(ω)) z(ω)

|z(ω)|2 , |z(ω)| 6= 0,
0, |z(ω)| = 0,

and the set {
λ ∈ L2(Ω) |λ ≥ 0, a.e.A(z), λ = 0, a.e. I(z)

}
is convex, it holds that αv1 + (1− α)v2 ∈ N0(z).

Next, we demonstrate that N0(z) is closed in G(Ω). Let vn ∈ N0(z) such that vn → v in
L2(Ω)l. By definition, there exist λn ∈ L2(Ω), where λn ≥ 0 almost everywhere on A(z) and
λn = 0 almost everywhere on I(z), and qn ∈ G(Ω) ⊂ L2(Ω)l with the pointwise description for
almost every ω ∈ Ω:

qn(ω) ∈
{
{z(ω)/|z(ω)|} |z(ω)| 6= 0,
B1(0) |z(ω)| = 0,

such that vn = λnqn. Clearly, qn ∈ L∞(Ω)l for all n.
Given vn → v in L2(Ω)l, there exists a positive constant C such that ||vn||2L2(Ω)l

≤ C. Hence,∫
Ω
λnqn · λnqndω =

∫
Ω
λ2
nqn · qndω =

∫
A(z)

λ2
ndω = ||λn||2L2(Ω) ≤ C.

Therefore, there exists λ̂ ∈ L2(Ω) and a subsequence {nk}∞k=1 ⊂ {n}∞n=1 such that λnk ⇀ λ̂ in
L2(Ω). Moreover, since the set

U =
{
λ ∈ L2(Ω) |λ ≥ 0, a.e.A(z), λ = 0, a.e. I(z)

}
is closed and convex in L2(Ω), and thus, weakly closed in L2(Ω), λ̂ ∈ U as well.
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Continuing, we use the fact that G(Ω) is a Hilbert space with the L2(Ω)l-inner-product to
rewrite v. Indeed, by letting α, β ∈ R \ {0}, we can write v = αλ̂q + βw, where q is described

analogously to the qn and w ∈
{
λ̂q
}⊥

. Consider then that

||vn − v||2L2(Ω)l = ||vn||2L2(Ω) − 2(vn,v)L2(Ω)l + ||v||2L2(Ω)l

= ||λnqn||2L2(Ω) − 2(λnqn, αλ̂q + βw)L2(Ω)l + ||αλ̂q + βw||2L2(Ω)l

= ||λnqn − αλ̂q||2L2(Ω)l − 2β(λnqn,w)L2(Ω)l + ||βw||2L2(Ω)l .

Then since λnk ⇀ λ̂ in L2(Ω) and w is orthogonal to λ̂q,

−2β(λnkqnk ,w)L2(Ω)l = −2β
∫
A(z)

λnk
z
|z|2
·wdω → −2β

∫
A(z)

λ̂
z
|z|2
·wdω = 0.

However, this implies that ||λnkqnk − αλ̂q||2
L2(Ω)l

+ ||βw||2
L2(Ω)l

→ 0, which can only hold when

||βw||2
L2(Ω)l

= 0 and ||λnkqnk − αλ̂q||2
L2(Ω)l

→ 0. Finally, we note that

||λnkqnk − αλ̂q||2L2(Ω)l =∫
Ω

∣∣∣λnkqnk − αλ̂q
∣∣∣2
2
dω =

∫
A(z)

∣∣∣∣(λnk − αλ̂)
z
|z|2

∣∣∣∣2
2

dω =
∫
A(z)

∣∣∣(λnk − αλ̂)
∣∣∣2
2
dω.

Hence, λn → αλ̂ in L2(Ω), α > 0, and v has the form: λ̃q, where λ̃ ∈ U . Therefore, N0(z) is
closed.

Finally, suppose there exists v∗ ∈ NKψ(z) such that v∗ /∈ N0(z). Then then there exists a
u∗ ∈ G(Ω)∗ strongly separating v∗ from N0(z) (see e.g., II.38 Prop. 4 [11]). That is,

〈u∗,v∗〉G∗,G > 0, 〈u∗,v〉G∗,G ≤ 0,∀v ∈ N0(z).

Using again the fact that G(Ω) is a Hilbert space, we immediately identify u∗ with its counterpart
u ∈ G(Ω) so that the previous relation becomes

∃u ∈ G(Ω) : (u,v∗)L2(Ω)l > 0, (u,v)L2(Ω)l ≤ 0,∀v ∈ N0(z).

The first inequality, being strict, implies that u /∈ TKψ(z). However,

(u,v)L2(Ω)l ≤ 0, ∀v ∈ N0(z)⇔
∫
A(z)

λ
z
|z|2
· udω ≤ 0.

Then since this must hold for all λ which are non-negative almost everywhere on A(z) it holds that
z · u ≤ 0 a.e. A(z), a contradiction. Therefore, NKψ(z) \N0(z) = ∅, as was to be shown.

We immediately obtain our next result.

Proposition 8.2 (The Tangent and Normal Cones to M). Let y ∈ M , where M is defined
as above. Then

TM (y) =
{
d ∈ H1

0 (Ω)
∣∣∇y · ∇d ∈ TKψ(∇y)

}
and

NM (y) =
{
−div (λq) ∈ H−1(Ω)

∣∣λ ∈ L2(Ω) ∧ q ∈ G(Ω) : λq ∈ NKψ(∇y)
}
,
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In addition, the critical cone to M at y for any normal v ∈ NM (y) becomes

K(y, v) = TM (y) ∩ {v}⊥ =
{
d ∈ H1

0 (Ω)
∣∣∇y · ∇d ≤ 0, a.e.A0(∇y),∇y · ∇d = 0, a.e.A+(∇y)

}
,

where
A0(∇y) := {ω ∈ A(∇y) |λ(ω) = 0} , A+(∇y) := {ω ∈ A(∇y) |λ(ω) > 0} ,

i.e., the weakly and the strongly active sets, respectively.

Proof. The same argument as used in the proof of Proposition 5.2 applies to the derivation of the
normal and tangent cones. For the critical cone, let d ∈ TM (y) ∩ {v}⊥. Then

∇y · ∇d ≤ 0, a.e.A(∇y) ∧ 〈v, d〉H−1,H1
0

= 0.

Using the characterization of the normals v, it holds for all d in the critical cone that

〈v, d〉H−1,H1
0

= 〈−div λq, d〉H−1,H1
0

= (λq,∇d)L2(Ω)l =∫
A(∇y)

λ
∇y
|∇y|2

· ∇ddω =
∫
A+(∇y)

λ
∇y
|∇y|2

· ∇ddω = 0.

Hence, the inclusion “⊆” holds, whereas the reverse direction is trivial and follows via a direct
verification.

This last corollary leads to the final variational object needed for the stationarity conditions.

Proposition 8.3 (The Polar Cone [K(y, v)]−). Let y ∈M , where M is defined as above. Then

[K(y, v)]− =

w ∈ H
−1(Ω)

∣∣∣∣∣∣∣∣∣∣
w = −div (µq) :

µ ∈ L2(Ω) :
{
µ ≥ 0, a.e.A0(∇y)
µ = 0, a.e. I(∇y)

q(ω) ∈
{
{∇ȳ(ω) /|∇ȳ(ω)|2 } |∇ȳ(ω)| 6= 0
B1(0) |∇ȳ(ω)| = 0

 .

Proof. We begin by demonstrating the inclusion “⊇” for the assertion and denote the righthand
side of the equation by K0. Let w ∈ K0 and consider an arbitrary d ∈ K(y, v). Then

〈w, d〉H−1,H1
0

= 〈−div (µq), d〉H−1,H1
0

= (µq,∇d)L2(Ω)l =∫
A0(∇y)

µ
∇y
|∇y|2

· ∇ddω +
∫
A+(∇y)

µ
∇y
|∇y|2

· ∇ddω.

Continuing, we recall the characterization of d provided in Proposition 8.2, which provides us with∫
A0(∇y)

µ
∇y
|∇y|2

· ∇ddω +
∫
A+(∇y)

µ
∇y
|∇y|2

· ∇ddω =
∫
A0(∇y)

µ
∇y
|∇y|2

· ∇ddω ≤ 0.

Hence, the inclusion holds.
We now use an analogous argument as in the proof of Proposition 8.1 to demonstrate equality.

We first need to argue that K0 is closed and convex. Since the argument is identical to the one in
Proposition 8.1 we only need to demonstrate closedness of K0. First note that K0 is the image of
the set

L0 :=

µq ∈ G(Ω)

∣∣∣∣∣∣∣∣∣∣
µ ∈ L2(Ω) :

{
µ ≥ 0, a.e.A0(∇y)
µ = 0, a.e. I(∇y)

q(ω) ∈
{
{∇ȳ(ω) /|∇ȳ(ω)|2 } |∇ȳ(ω)| 6= 0
B1(0) |∇ȳ(ω)| = 0

 .
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under the divergence operator. Then since the data assumptions imply that −div is a bounded
linear operator from G(Ω) into H−1(Ω), it is enough to show that L0 is closed. Let wn ∈ L0 such
that wn → w in L2(Ω)l. Then by the closedness of G(Ω), w ∈ G(Ω). By definition, wn ∈ L0

implies that there exist µn ∈ L2(Ω) and qn ∈ G(Ω) satisfying the requirements for L0 such that
wn = µnqn. The rest follows analogously to the the closure argument for N0(z) found in the proof
of Proposition 8.1. Hence, L0 and, as argued above, K0 are closed in their respective spaces.

Assume now there exists w∗ ∈ [K(y, v)]− such that w∗ /∈ K0. Then there exists a δ ∈ H1
0 (Ω)

strongly separately the two sets, i.e.,

〈w∗, δ〉H−1,H1
0
> 0, 〈w, δ〉H−1,H1

0
≤ 0, ∀w ∈ K0.

Therefore, δ /∈ K(y, v). Conversely, using the definition of K0 and the characterization of K(y, v)
provided by Proposition 8.2, we obtain δ ∈ K(y, v), a contradiction. Hence, equality holds.

We may now provide the explicit strong stationarity conditions.

Proposition 8.4 (Explicit Strong Stationarity Conditions). Under the given data assump-
tions, let (ū, ȳ) be a (locally) optimal solution to corresponding MPEC. Then there exist multipliers
p ∈ H1

0 (Ω), q ∈ G(Ω), µ ∈ L2(Ω), and λ ∈ L2(Ω) such that

0 = ∇uJ(ū, ȳ) + p, (21)
0 = ∇yJ(ū, ȳ)− divµq−A∗p, (22)
0 = Aȳ − ū− div λq, (23)

where {
∇ȳ · ∇p ≤ 0 a.e.A0(∇ȳ)
∇ȳ · ∇p = 0 a.e.A+(∇ȳ)

∣∣∣∣ q(ω) ∈
{
{∇ȳ(ω) /|∇ȳ(ω)|2 } |∇ȳ(ω)| 6= 0
B1(0) |∇ȳ(ω)| = 0

}
,

{
µ ≥ 0 a.e.A0(∇ȳ)
µ = 0 a.e. I(∇ȳ)

∣∣∣∣ λ ≥ 0 a.e.A(∇ȳ)
λ = 0 a.e. I(∇ȳ)

}
.

Moreover, A(∇ȳ) = {ω ∈ Ω ||∇ȳ(ω)|2 = ψ(ω)},

A+(∇ȳ) = {ω ∈ A(∇ȳ) |λ(ω) > 0} , and A0(∇ȳ) = {ω ∈ A(∇ȳ) |λ(ω) = 0} .

Proof. The result follows from Theorem 7.1 via Propositions 8.2, 8.1, and 8.3.

As a final remark, we note that if the tracking functional J(u, y) mentioned in Remark 4.1 were
to be used in this example, then we again observe the increased regularity of the optimal control,
i.e., ū ∈ H1

0 (Ω). Furthermore, using such a J in the context of this example, we can guarantee that
an optimal pair (ū, ȳ) exists via Theorem 4.1.

Appendix

Proof of Theorem 4.1

Proof. We first derive that S is a Lipschitz continuous function with respect to u ∈ Y ∗. By Theorem
3.3.4 in [4], there exists a unique y solving the variational inequality for each u ∈ Y ∗. Let (u1, y1)
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and (u2, y2) be two arbitrary control-state pairs. Then by the convexity of M , the generalized
equation used to describe S can be formulated in variational form for each pair as follows:

〈Ay1 − u1, y
′ − y1〉Y ∗,Y ≥ 0,∀y′ ∈M, (24)

〈Ay2 − u2, y
′′ − y2〉Y ∗,Y ≥ 0,∀y′′ ∈M. (25)

Substituting y′ = y2 and y′′ = y1 into (24) and (25), respectively, and recognizing that

〈Ay2 − u2, y
′′ − y2〉 = 〈u2 −Ay2, y2 − y′′〉Y ∗.Y ,

we add the two inequalities together and obtain

〈Ay1 − u1 + u2 −Ay2, y2 − y1〉Y ∗.Y ≥ 0.

By the coercivity of A, there exists a ξ ∈ R+ \ {0} such that

ξ||y2 − y1||2Y ≤ 〈A(y2 − y1), y2 − y1〉Y ∗.Y ≤ 〈u2 − u1, y2 − y1〉Y ∗,Y ≤ ||u2 − u1||Y ∗ ||y2 − y1||Y .

It follows that there exists L = 1/ξ such that

||S(u2)− S(u1)||Y ≤ L||u2 − u1||Y ∗ , ∀u1, u2 ∈ Y ∗. (26)

Therefore, we can rewrite (2) as follows:

min
{
J̃(u) |u ∈ U

}
,

where J̃(u) := J(u, S(u)). Due to the continuity of S, J̃ remains coercive and bounded from below
by some K. Therefore, the level sets of J̃ , i.e., the sets defined by

levγ J̃ :=
{
u ∈ U

∣∣∣J̃(u) ≤ γ
}
, γ ∈ R

are bounded in U for all γ ∈ R (cf. Proposition 3.2.8. [4]). Now let uk be an infimizing sequence
of J̃ , that is,

lim
k
J̃(uk) = inf

u∈U
J̃(u).

Clearly, there exists some γ0 ∈ R+ \ {0} such that uk ∈ levγ0 J̃ for all k large. Since U is a Hilbert
space and therefore reflexive, we can select a weakly converging subsequence of {uk}, denoted by
{ukl}, such that ukl ⇀ ū. Moreover, the compactness of the embedding of U into Y ∗, which
itself is a Banach space, implies that there exists a further subsequence ukln →Y ∗ ū. Therefore,
ykln = S(ukln )→ S(ū) = ȳ, via (26), so that the assumptions on J imply

−∞ < K ≤ inf
u∈U

J̃(u) = J̃(ū) ≤ lim inf
n

J̃(ukln ) = lim
k
J̃(uk) = inf

u∈U
J̃(u) ≤ γ0,

as was to be shown.
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