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Abstract

The adaptive weights smoothing (AWS) procedure was introduced in

Polzehl and Spokoiny (2000) in the context of image denoising. The

procedure has some remarkable properties like preservation of edges and

contrast, and (in some sense) optimal reduction of noise. The procedure

is fully adaptive and dimension free. Simulations with artificial images

show that AWS is superior to classical smoothing techniques especially

when the underlying image function is discontinuous and can be well

approximated by a piecewise constant function. However, the latter as-

sumption can be rather restrictive for a number of potential applications.

Here the AWS method is generalized to the case of an arbitrary local lin-

ear parametric structure. We also establish some important results about

properties of the AWS procedure including the so called “propagation

condition” and spatial adaptivity. The performance of the procedure is

illustrated by examples for local polynomial regression in univariate and

bivariate situations.
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1. Introduction

Polzehl and Spokoiny (2000), referred to as PS2000 in what follows, offered a new

method of nonparametric estimation, Adaptive Weights Smoothing (AWS), in the con-

text of image denoising. The main idea of the procedure is to describe the largest local

vicinity of every design point Xi in which the underlying model function can be well

approximated by a constant in a data-driven and iterative way. The procedure possesses

remarkable properties. It is fully adaptive in the sense that no prior information about

the structure of the model is required. It is design adaptive and does not suffer from

the Gibbs effect (high variability and increased bias near edges and boundaries). A very

important feature of the method is that it is dimension free and computationally straight-

forward. Our numerical results demonstrate that the new method is, compared to other

nonparametric procedures, very efficient in situations when the underlying model allows

a piecewise constant approximation within large homogeneous regions. Unfortunately,

the iterative nature of the procedure makes a rigorous theoretical analysis of the new

method very complicated. PS2000 did not provide any theoretical results about the ac-

curacy of estimation delivered by this method. Another weak point of the procedure from

PS2000 is that it applies the simplest method of local smoothing based on local constant

approximation. This approach seems reasonable e.g. in image analysis or for statistical

inference in magnet resonance imaging, as shown in Polzehl and Spokoiny (2001), re-

ferred to as PS2001. Other applications to density, volatility, tail index estimation can

be found in Polzehl and Spokoiny (2002). However, in many situations the assumption

of a local constant structure can be too restrictive. A striking example is estimation of

a smooth or piecewise smooth regression function where a piecewise constant approxi-

mation is typically too rough. Local linear (polynomial) smoothing delivers much better

results in such cases, see Fan and Gijbels (1996) or our examples in Section 5.

In the present paper we propose an extension of the AWS procedure to the case of

varying coefficient regression models and simultaneously present a detailed theoretical

study of the new method. We particularly prove an important feature of the procedure,

the “propagation condition”, which means a free extension of every local model in a

nearly homogeneous situation. We then show that this condition automatically leads to

a nearly optimal accuracy of estimation for a smooth regression function.

Varying coefficient regression models generalize classical nonparametric regression and

gained much attention within the last years, see e.g. Hastie and Tibshirani (1993),

Fan and Zhang (1999), Caroll, Ruppert and Welsh (1998), Cai, Fan and Yao (2000)

and references therein. The traditional approach uses an approximation of the varying

coefficient by a local linear model in the varying parameter. The model is estimated for

every localization point independently by local least squares or local maximal likelihood.

Accuracy of estimation is typically studied asymptotically as the localization parameter
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(bandwidth) tends to zero. Such an approach has serious drawbacks of being unable to

incorporate special important cases like a global parametric model, a change-point model

or more generally, models with inhomogeneous variability w.r.t. the varying parameter.

We propose a completely different approach based on the adaptive weights idea that

allows to treat all mentioned special cases in a unified way and to get a nearly optimal

accuracy of estimation in every such situation. It is however worth mentioning that the

classical local polynomial smoothing appears as a very special case of our procedure when

we “turn off” our adaptation step.

The next section discusses the notions of global and local modeling. The basic idea

of the generalized AWS and the description of the procedure are given in Section 3.

The important special case of a local polynomial regression is discussed in Section 4.

The performance of the method is studied for some simulated examples of univariate

and bivariate regression in Section 5. Section 6 discusses theoretical properties of the

procedure. Proofs and some technical results are provided in the Appendix. A reference

implementation of the proposed procedures is available as a contributed package of R

from URL: http://cran.r-project.org/.

2. Local modeling by weights

Suppose that data Yi are observed at design points Xi from the Euclidean space IRd ,

i = 1, . . . , n . In this paper we restrict ourselves to the regression setup with fixed design.

The target of statistical analysis is the mean regression function f(x) = E(Y |X = x) .

We use a representation

Yi = f(Xi) + εi (2.1)

where εi can be interpreted as additive random noise with zero mean. The distribution

of the εi ’s is typically unknown. Often noise homogeneity can be assumed, that is, all the

εi ’s are independent and satisfy Eεi = 0 and Eε2
i = σ2 for some σ > 0 . For exposition

simplicity we restrict ourselves to this homoscedastic situation. Heteroscedastic noise can

be considered as well, see PS2001 for some examples. We assume that an estimate σ̂2

of σ2 is available, see again PS2000 or PS2001 for specific examples.

A pure nonparametric estimate of the target function f(x) usually performs very

poorly, especially in case of a multivariate design. The reason is that the underlying

target function f(x) often is too complex to be estimated with a reasonable quality

without further specifications of its structure.

The approach proposed in PS2000 and PS2001 can be called structural adaptation. We

assume that the underlying model has a relatively simple structure in some vicinity of

every point Xi . The procedure attempts to recover this local structure using a pilot es-

timate of the model function. Then it utilizes this estimated local structural information
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to obtain a new improved estimate of the model function. These two steps are iterated

extending each time the degree of locality for every local model.

The original AWS method from PS2000 is based on the simplest local structural as-

sumption: the function f is nearly constant within some neighborhood U(Xi) of the

point Xi . Here we extend this to the more general situation of a local linear structure.

2.1. Global linear modeling. Suppose we are given a set of functions ψ1(x), . . . , ψp(x)

on IRd . We consider a linear parametric family F = {fθ , θ ∈ Θ} where Θ is a subset

of a p -dimensional Euclidean space and, for θ = (θ1, . . . , θp)> ,

fθ(x) = θ1ψ1(x) + . . . + θpψp(x).

A global parametric structure for the model (2.1) would mean that the underlying

function f belongs to F . The simplest example is a one-parameter family given by

fθ(x) ≡ θ , corresponding to a constant approximation of the function f . Under the

global parametric assumption f ∈ F , the parameter θ can be easily estimated from the

sample Y1, . . . , Yn . A natural estimate of θ is given by ordinary least squares:

θ̂ = arginf
θ

n∑

i=1

(Yi − fθ(Xi))
2 .

For an explicit representation of this estimate vector notation is useful. Define vectors

Ψi in IRp with entries ψm(Xi) , m = 1, . . . , p , and the p× n -matrix Ψ whose columns

are Ψi . Let also Y stand for the vector of observations: Y = (Y1, . . . , Yn)> ∈ IRn . Then

θ̂ =

(
n∑

i=1

ΨiΨ
>
i

)−1 n∑

i=1

ΨiYi =
(
ΨΨ>

)−1
ΨY

provided that the p× p matrix ΨΨ> is nondegenerated.

2.2. Local linear modeling. The global parametric assumption can be too restrictive

and does not allow to model complex statistical objects. A standard approach in non-

parametric inference is to apply the parametric (linear) structural assumption locally.

The most general way to describe a local model centered at a given point is localization

by weights. Let, for a fixed x , a nonnegative weight wi ≤ 1 be assigned to the observa-

tion Yi at Xi . When estimating the local parameter θ at x we utilize every observation

Yi with the weight wi = wi(x) . This leads to a local (weighted) least squares estimate

θ̂(x) = arginf
θ∈Θ

n∑

i=1

wi(Yi − fθ(Xi))2 =
(
ΨWΨ>

)−1
ΨWY (2.2)

with W = diag{w1, . . . , wn} .

We mention two examples of choosing the weights wi . Localization by a bandwidth

is defined by the weights of the form wi(x) = Kl(li) with li = |ρ(x,Xi)/h|2 where h

is a bandwidth, ρ(x,Xi) is the Euclidean distance between x and the design point Xi

and Kl is a location kernel. Localization by a window simply restricts the model to some
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subset (window) U of the design space, that is, wi = 1(Xi ∈ U) and all data points Yi

with Xi outside the region U are not taken into account when estimating θ(x) .

Here we do not assume any special structure for the weights wi , that is, any configu-

ration of the weights is allowed. In what follows we identify the diagonal weight matrix

W = diag{w1, . . . , wn} and the local model defined by these weights.

3. Adaptive weights smoothing

This section describes a new method of locally adaptive estimation, Adaptive Weights

Smoothing. The idea of the procedure is to determine adaptively for every point Xi the

largest possible neighborhood in which the model function f(x) can be well approximated

by a parametric function fθ from F . The local model at Xi is given by weights wij

assigned to every observation Yj . The procedure is iterative. At every iteration step,

the procedure tries to extend the local model at each design point. We first illustrate

the idea for the local constant structural assumption as considered in PS2000. Here the

estimate θ̂i = f̂(Xi) is defined as the mean of the observations Yj with weights wij :

f̂(Xi) =
n∑

j=1

wijYj

/ n∑

j=1

wij . (3.1)

The weights wij are calculated iteratively. For the initial step, the estimate f̂ (0)(Xi) is

computed from a smallest local model defined by a bandwidth h(0) , that is,

f̂ (0)(Xi) = θ̂
(0)

i =
n∑

j=1

Kl

(
l
(0)
ij

)
Yj

/ n∑

j=1

Kl

(
l
(0)
ij

)

with l
(0)
ij =

∣∣ρ(Xi, Xj)/h(0)
∣∣2 . In other words, the algorithm starts with the usual kernel

estimate with the bandwidth h0 , which is taken very small. If Kl = 1(u ≤ 1) as in

PS2000, then for every point Xi the weights wij vanish outside the ball U
(0)
i of radius

h(0) with the center at Xi , that is, the local model at Xi is concentrated on U
(0)
i . Next,

at each iteration k , a ball U
(k)
i with a larger bandwidth h(k) is considered and every

point Xj from U
(k)
i gets a weight w

(k)
ij which is defined by comparing the estimates

f̂ (k−1)(Xi) and f̂ (k−1)(Xj) obtained in the previous iteration. These weights are then

used to compute new improved estimates f̂ (k)(Xi) by use of (3.1).

One possible interpretation of this procedure is that at each iteration step the location

penalty l
(k)
ij =

∣∣ρ(Xi, Xj)/h(k)
∣∣2 is relaxed by increasing h(k) at cost of introducing a

data-driven statistical penalty which comes from comparison of different local models.

Note that under the local constant assumption f(x) = θ , the value θ uniquely deter-

mines the model function and the comparison of the values f̂ (k−1)(Xi) and f̂ (k−1)(Xj) is

equivalent to a comparison of two model functions. The extension of this approach to the

more general local parametric assumption leads to a check of homogeneity for two local

models W
(k−1)
i = diag

{
w

(k−1)
i1 , . . . , w

(k−1)
in

}
and W

(k−1)
j = diag

{
w

(k−1)
j1 , . . . , w

(k−1)
jn

}
, to
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specify the weight w
(k)
ij . Now we discuss how a statistical penalty (distance) for two

local models can be computed.

3.1. Measuring the statistical difference between two local models. Consider

two local models corresponding to points Xi and Xj and defined by diagonal weight

matrices Wi and Wj . We suppose that the structural assumption is fulfilled for both,

that is, the underlying regression function f can be well approximated by some fθ ∈
F within every local model. However, the value of the parameter θ determining the

approximating function fθ may be different for the two local models. We aim to develop

a rule to judge from the data, whether the local model corresponding to the point Xj

and described by Wj is not significantly different (in the value of the parameter θ ) from

the model at Xi described by Wi . More precisely, we want to quantify the difference

between the parameters of these two local models in order to assign a weight wij with

which the observation Yj will enter into the local model at Xi in the next iteration

of the algorithm. A natural way is to consider the data from two local models as two

different populations and to apply the two population likelihood ratio test for testing the

hypothesis θi = θj . Suppose that the errors εi are normally distributed with parameters

(0, σ2) . The log-likelihood L(Wi, θ, θ′) for the local regression model at Xi with the

weights Wi is, for any pair θ,θ′ ∈ Θ , defined by

L(Wi,θ, θ′) =
1

2σ2

n∑

l=1

wil

[
(Yl − Ψ>l θ′)2 − (Yl − Ψ>l θ)2

]

=
1

2σ2

n∑

l=1

wil

[
2(Yl − Ψ>l θ′)Ψ>l (θ − θ′)− (θ − θ′)>ΨlΨ

>
l (θ − θ′)

]

yielding

L(Wi, θ̂i,θ
′) = (2σ2)−1(θ̂ − θ′)>Bi (θ̂ − θ′),

with Bi = ΨWiΨ
> . The classical likelihood-ratio test statistic is of the form

T ◦ij = max
θ

L(Wi, θ, θ′) + max
θ

L(Wj ,θ, θ′)−max
θ

L(Wi + Wj ,θ, θ′)

= L(Wi, θ̂i,θ
′) + L(Wj , θ̂j , θ

′)− L(Wi + Wj , θ̂ij , θ
′) (3.2)

where θ̂i = argmaxθ L(Wi,θ, θ′) is the maximum likelihood estimate (MLE) correspond-

ing to the local model described by the weight matrix Wi and similarly for θ̂j . Also

θ̂ij = argmaxθ L(Wi +Wj ,θ, θ′) is the local MLE corresponding to the combined model

which is obtained by summing the weights from the both models.

The simple algebra yields

T ◦ij = (2σ2)−1(θ̂i − θ̂j)>Bi(Bi + Bj)−1Bj(θ̂i − θ̂j).

Note that the value T ◦ij is “symmetric” w.r.t. Wi and Wj in the sense that T ◦ij = T ◦ji .
In our procedure, described in the next section, we apply a slightly modified asymmetric
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version of this test statistic, namely

Tij = L(Wi, θ̂i)− L(Wi, θ̂j) = (2σ2)−1(θ̂i − θ̂j)>Bi(θ̂i − θ̂j). (3.3)

It has a nice interpretation as a difference between the maximum log-likelihood L(Wi, θ̂i) =

supθ L(Wi, θ, θ′) in model Wi and the “plug-in” log-likelihood L(Wi, θ̂j , θ
′) in which

θ̂j comes from the model Wj . This modification is important because Tij is used

for defining the weight wij with which the observation Yj at Xj will enter in the local

model Wi corresponding to Xi . However, in the “balanced” situation when the “sample

sizes” Ni and Nj are of the same order, the values T ◦ij and Tij have similar properties.

We consider the value Tij as a ‘statistical penalty’, that is, when computing the new

weight wij at the next iteration step we strongly penalize for a large value of Tij .

3.2. Penalization for extending a local model. An important feature of the original

AWS method from PS2000 is its stability against iteration. It turns out that the gen-

eralization of the local constant procedure to the local linear case requires to introduce

an additional penalty to prevent from leverage problems. To clarify the idea, suppose

for the moment that for every iteration step k , each local model W
(k)
i is restricted to

the ball U
(k−1)
i of the radius h(k−1) centered at Xi . Suppose also that the first k − 1

iterations of the algorithm have been carried over. As a result, we obtain for every point

Xi a local model described by the weights w
(k−1)
ij for each Xj ∈ U

(k−1)
i . At the next it-

eration the procedure tries to extend every local model by increasing the bandwidth h(k)

and assigning the weights wij = w
(k)
ij for every point Xj from the larger neighborhood

U
(k)
i of Xi with the radius h(k) . If Xj ∈ U

(k)
i \U (k−1)

i , then giving Xj a significantly

positive weight wij can be interpreted as including the point Xj into the local model

centered at Xi . In some cases, including even one point Xj with a relatively large value

ρ(Xi, Xj) into the local model at Xi may significantly change the estimate θ̂i . Such

leverage problem does not arise in the local constant modeling but it becomes crucial for

local linear (polynomial) regression. To prevent from this danger, we introduce a special

penalty for including an influence point.

To measure the influence of the observation Yj at Xj in the local model described by

the weight matrix Wi , one can consider the extended model obtained by adding a single

observation at the point Xj and look at the relative difference between the original and

the extended model. This leads to the value

γij = tr
{(

ΨW iΨ
>
)−1 (

ΨW iΨ
> + ΨjΨ

>
j

)}
− p

= Ψ>j
(
ΨW iΨ

>
)−1

Ψj = (trWi) Ψ>j
(
ΨWiΨ

>
)−1

Ψj .

Here Ψj ∈ IRp is the j th column of Ψ and, for a diagonal matrix W , we denote

W = (trW )−1W . A large value of γij means that Xj is a leverage point. To make the

procedure more stable w.r.t. such influential points, we additionally penalize for including
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points with a large value γij , i.e. assign small weights even when the difference θ̂i − θ̂j

is statistically insignificant and the statistical penalty sij is small.

For adjusting the penalty term one can use the ‘propagation’ principle which means

a free extension of the model in the homogeneous situation when the coefficients of the

linear model do not vary with location. In that situation, neither the statistical penalty

nor the penalty for extending the model would significantly affect the estimate leading

after the first k − 1 iterations to the classical location weights w
(k−1)
ij,ho = Kl

(
l
(k−1)
ij

)
=

Kl

(∣∣ρ(Xi, Xj)/h(k−1)
∣∣2

)
. The influence of the point Xj within the local homogeneous

model described by W
(k−1)
i,ho is given by

γij,ho = γj

(
W

(k−1)
i,ho

)
=

(
trW (k−1)

i,ho

)
Ψ>j

(
ΨW

(k−1)
i,ho Ψ>

)−1
Ψj

where W
(k−1)
i,ho = diag{w(k−1)

i1,ho , . . . , w
(k−1)
in,ho } . This value γij,ho can be used for adjusting

the penalty for extending the model. Namely, we assign to every observation Yj at Xj

the penalty

e
(k)
ij = τ−1 (γij/γij,ho − 1)+

where a+ means max{0, a} and τ is a numerical tuning parameter.

3.3. Defining weights. Using the previously described methods, we compute for every

pair (i, j) the penalties l
(k)
ij , s

(k)
ij and e

(k)
ij . It is natural to require that the influence

of every such factor is independent of the other factors. This suggests to define the new

weight w
(k)
ij using the product

w̃
(k)
ij = Kl

(
l
(k)
ij

)
Ks

(
s

(k)
ij

)
Ke

(
e

(k)
ij

)
,

where Kl,Ks and Ke are three kernel functions, which are nondecreasing on the positive

semiaxis and satisfy the condition Kl(0) = Ks(0) = Ke(0) = 1 .

In the algorithm presented in the subsection, we use one more (memory) parameter

η ∈ (0, 1) which controls the rate of changing the weights for every local model within

the iteration process. Namely, we define the new weight w
(k)
ij as a convex combination

of the previous step weight w
(k−1)
ij and the just defined product w̃

(k)
ij :

w
(k)
ij = ηw

(k−1)
ij + (1− η)w̃(k)

ij .

3.4. Formal description of the procedure. Important ingredients of the method are

the kernels Kl,Ks and Ke ; the parameters λ, τ and η ; the initial bandwidth h(0) , the

factor a > 1 , the maximal bandwidth hmax and the estimated error variance σ̂2 . The

choice of these parameters is discussed in detail in Section 3.5.

The generalized procedure reads as follows:

1. Initialization: For every i define the diagonal matrix W
(0)
i with diagonal entries

w
(0)
ij = Kl(l

(0)
ij ) and l

(0)
ij =

∣∣ρ(Xi, Xj)/h(0)
∣∣2 , that is, W

(0)
i = diag{w(0)

i1 , . . . , w
(0)
in } .
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Compute

N
(0)
i = trW (0)

i , B
(0)
i = ΨW

(0)
i Ψ>, Z

(0)
i = ΨW

(0)
i Y and θ̂

(0)

i =
(
B

(0)
i

)−1
Z

(0)
i .

Set k = 1 .

2. Iteration: for every i = 1, . . . , n define W
(k−1)
i,ho = diag

{
Kl

(
l
(k−1)
i1

)
, . . . , Kl

(
l
(k−1)
in

)}
,

• calculate the adaptive weights: For every point Xj compute

γ
(k)
ij = N

(k−1)
i Ψ>j

(
B

(k−1)
i

)−1
Ψj ,

γ
(k)
ij,ho = tr

(
W

(k−1)
i,ho

)
Ψ>j

(
ΨW

(k−1)
i,ho Ψ>

)−1
Ψj

where Ψj is j th column of Ψ . Then calculate the penalties

l
(k)
ij =

∣∣ρ(Xi, Xj)/h(k)
∣∣2 ,

s
(k)
ij = (2σ̂2λ)−1

(
θ̂

(k−1)

i − θ̂
(k−1)

j

)>
B

(k−1)
i

(
θ̂

(k−1)

i − θ̂
(k−1)

j

)
,

e
(k)
ij = τ−1

(
γ

(k)
ij /γ

(k)
ij,ho − 1

)
+

(3.4)

and obtain the weight w̃
(k)
ij as

w̃
(k)
ij = Kl

(
l
(k)
ij

)
Ks

(
s

(k)
ij

)
Ke

(
e

(k)
ij

)
, (3.5)

Denote by W̃
(k)
i the diagonal matrix whose diagonal elements are w̃

(k)
ij .

• Compute the new estimate: Compute

N
(k)
i = ηN

(k−1)
i + (1− η)trW̃ (k)

i ,

Z
(k)
i = ηZ

(k−1)
i + (1− η)Ψ W̃

(k)
i Y,

B
(k)
i = ηB

(k−1)
i + (1− η)Ψ W̃

(k)
i Ψ>,

and the estimate θ̂
(k)

i (resp. f̂
(k)
i ) of θi (resp. of fi = f(Xi) ) by

θ̂
(k)

i =
(
B

(k)
i

)−1
Z

(k)
i , f̂

(k)
i = Ψ>i θ̂

(k)

i .

3. Stopping: Increase k by 1, set h(k) = ah(k−1) . If h(k) ≤ hmax continue with step 2.

Otherwise terminate.

We obtain the final estimates as f̂i = f̂
(k∗)
i , with k∗ denoting the total number of

iterations.

3.5. Choice of parameters. The parameters of the procedure are selected similarly to

PS2000. We briefly discuss each of the parameters.

Kernels Ks , Kl and Ke : The kernels Ks and Kl must be nonnegative and

non-increasing on the positive semiaxis. We propose to use Ks(u) = e−uI{u≤6} . We

recommend to apply a compactly supported localization kernel Kl to reduce the com-

putational effort of the method. PS2000 used a uniform kernel, here the triangle kernel

Kl(u) = (1 − u)+ is employed. We also set Ke = Ks . Our numerical results show
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that similarly to the standard local linear (polynomial) regression the particular choice

of kernels Ks , Kl and Ke does not significantly affect the performance of the method.

Initial bandwidth h(0) , parameter a and maximal bandwidth hmax : The

starting bandwidth h(0) should be small. We recommend to select h(0) such that every

initial local neighborhood U
(0)
i contains a sufficient number of design points to guarantee

identifiability of the local parameter θi .

The parameter a controls the growth rate of the local neighborhoods for every point

Xi . If Xi are from the unit cube in the space IRd we take the parameter a as a = a
1/d
grow .

This allows for an exponential growth, in k , of the mean number of points inside a ball

U
(k)
i with radius h(k) with the factor agrow . Our default choice is agrow = 1.25 . This

ensures that the number of iterations k∗ is at most logarithmic in the sample size.

The maximal bandwidth hmax may be taken very large if the specified local model

allows for a good approximation of the regression function in its smooth parts. How-

ever, using a too large final bandwidth hmax may lead to oversmoothing and artificial

segmentation. A data-driven method of optimal stopping, based, for instance, on cross-

validation can be applied for selecting a proper bandwidth hmax .

The value of hmax also determines the number of iterations and can therefore be used

to control the numerical complexity of the procedure.

Parameter λ : An important parameter of the procedure is λ which scales the

statistical penalty sij . Small values of λ lead to overpenalization which may result in

unstable performance of the method in the homogeneous situation. Large values of λ

may result in loss of adaptivity of the method (less sensitivity to structural changes).

The extreme case is given by λ = ∞ which leads to nonadaptive local linear procedure

with the bandwidth hmax .

A reasonable way to define the parameter λ for a specific application is based on

the condition of free extension, which we also call the “propagation condition”. This

condition means that in a homogeneous situation, i.e. when the underlying parameters

for every two local models coincide, the impact of the statistical penalty in the computed

weights wij is negligible. This would result in a free extension of every local model under

homogeneity.

In a homogenous situation, provided the value hmax is sufficiently large, all weights

wij will be close to one at the end of the iteration process and every local model will

essentially coincide with the global one. Therefore, the parameter λ can be adjusted

by selecting the minimal value of λ still providing a prescribed probability of getting

the global model at the end of the iteration process for the homogeneous (parametric)

model θ(x) = θ using Monte-Carlo simulations. The theoretical justification is given by

Theorem 6.1 in Section 6.1, that claims that the choice λ = C log n with a sufficiently

large C yields the “propagation” condition whatever the parameter θ is.
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Our default value is λ = qα(χ2
p) , that is the α -quantile of the χ2 distribution with p

degree of freedom, where α depends on the specified linear parametric family. Defaults

for the case of local polynomial regression are given in Section 5. An optimal choice of

α may also slightly depend on the error distribution.

Parameter τ : The optimal choice of τ depends on the method of smoothing. For the

local constant AWS considered in PS2000, there are no influential points (see Section 4.1).

For local polynomial smoothing the default choice of τ is given in Section 4.

Parameter η and the control step: A value η ∈ (0, 1) can be used to control the

stability of the AWS procedure w.r.t. iterations. An increase of η results in a higher

stability, however, it decreases the sensitivity to changes of the local structure. The use

of the memory parameter also guarantees that the estimates θ̂
(k)

i are well defined, that

is, all the matrices B
(k)
i are positive definite. Our default choice is η = 1/2 .

The original AWS procedure from PS2000 did not involve the “memory” parameter

η (it corresponds to η = 0 ). Instead it used an additional control step in which the

new estimate θ̂
(k)

i was compared with all the previous estimates θ̂
(k′)
i for k′ < k . If

the difference θ̂
(k)

i − θ̂
(k′)
i became significant, the new estimate was not accepted and

the previous step estimate was used. This control step is a very useful device for proving

some theoretical properties of the procedure, because it ensures that the gained quality

of estimation will not be lost in further iterations, see Section 6 for more details. In the

local linear case this control step would accept the estimate θ̂
(k)

i only if

(2σ̂2)−1
(
θ̂

(k′)
i − θ̂

(k)

i

)>
B

(k′)
i

(
θ̂

(k′)
i − θ̂

(k)

i

) ≤ η∗, k′ = 1, . . . , k − 1, (3.6)

that is, when the new estimate θ̂
(k)

i lies inside all confidence ellipsoids of previous esti-

mates at the point Xi . However, our numerical results (not reported here) indicate that

the usefulness of the control step for practical purpose is questionable. The use of the

“memory” parameter η can be regarded as a soft version of the control step.

3.6. Computational complexity of the algorithm. We start with the following two

important remarks. First note, that every estimate is defined as θ̂
(k)

i =
(
B

(k)
i

)−1
Z

(k)
i

using the matrix B
(k)
i and the vector Z

(k)
i . Similarly, the new weights w̃

(k)
ij are computed

on the basis of the same statistics B
(k−1)
i , Z

(k−1)
i and N

(k−1)
i from the previous step

of the procedure. Therefore, the whole structural information is contained in these three

basis elements. During the adaptation step, we compute for every i the weights w̃
(k)
ij

with different j only with the aim to compute the new elements B
(k)
i , Z

(k)
i and N

(k)
i .

This reduces the memory requirements for the algorithm to O(np2) or even to O(np)

for local polynomial modeling, see the next section, while keeping all the weights w
(k)
ij

would lead to the memory requirement O(n2) .

The localization kernel Kl usually has a compact support, say, [0, 1] . This immedi-

ately implies that for every local model at Xi , all the weights w̃
(k)
ij for the points Xj
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outside the ball U
(k)
i = {x : ρ(Xi, x) ≤ h(k)} vanish. Therefore, it suffices at each step to

compute the weights w̃
(k)
ij for pairs Xi, Xj with ρ(Xi, Xj) ≤ h(k) . Denote by Mk the

maximal number of design points Xj within a ball of radius h(k) centered at a design

point. At the k th step there are at most Mk positive weights w̃
(k)
ij for any Xi .

Therefore, for carrying out the k th adaptation step of the algorithm, we have to

compute the penalties l
(k)
ij , s

(k)
ij and e

(k)
ij and the value w̃

(k)
ij , for every pair (i, j) with

ρ(Xi, Xj) ≤ h(k) due to (3.5). This requires a finite number of operations depending on

the number of parameters p only, and the whole k th adaptation step of the algorithm

requires of order nMk operations.

To obtain the estimate we need, for every point Xi , to compute the d × d -matrix

B
(k)
i = ηB

(k−1)
i +(1−η)Ψ W̃

(k)
i Ψ> , the vector Z

(k)
i = ηZ

(k−1)
i +(1−η)Ψ W̃

(k)
i Y and the

value N
(k)
i = ηN

(k−1)
i + (1− η)trW̃ (k)

i . It is clear that the complexity of computing all

these values is of order Mk . Computing θ̂
(k)

i =
(
B

(k)
i

)−1
Z

(k)
i requires a finite number

operations depending on p only. Therefore, the complexity of the whole estimation

step is again of order nMk . Since typically the numbers Mk grow exponentially, the

complexity of the whole algorithm is estimated as n(M1 + . . .+Mk∗) ³ nMk∗ where k∗

is the number of iteration steps.

4. Local polynomial regression

We now specify the procedure for adaptive local polynomial estimation of a regression

function with univariate and multivariate covariates.

4.1. Local constant regression. The local constant approximation corresponds to the

simplest family of basis functions {ψm} consisting of one constant function ψ0 ≡ 1 .

The major advantage of this method is that the dimensionality of the regressors plays

absolutely no role. In this situation Ψ = (1, . . . , 1) and, for every diagonal matrix

W = diag(w1, . . . , wn) , it holds ΨWΨ> = trW and ΨWY =
∑n

l=1 wlYl . Hence, for the

local constant case, the B
(k)
i ’s coincide with the N

(k)
i ’s. The statistical penalty s

(k)
ij can

be written in the form s
(k)
ij = (2σ2)−1N

(k−1)
i

∣∣θ̂(k−1)

i − θ̂
(k−1)

j

∣∣2 . Also, for all i and k ,

it holds γ
(k)
ij = trW (k−1)

i /trW (k−1)
i ≡ 1 , and similarly for γ

(k)
ij,ho . Therefore, the penalty

eij is always zero and can be dropped.

The weights w̃
(k)
ij can be computed as w̃

(k)
ij = Kl(l

(k)
ij )Ks(s

(k)
ij ) that essentially co-

incides with the proposal from PS2000 if the uniform kernel Kl is applied. A small

difference remains in the use of the memory parameter η and in a slightly different form

of the statistical penalty.

4.2. Local polynomial univariate regression. Local linear (polynomial) smoothing

is known to be much more accurate when estimating a smooth function, see e.g. Fan

and Gijbels (1996). A generalization of the original AWS to the local linear (polynomial)

regression therefore is of special importance.
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For local polynomial regression the basis functions could be specified as ψ1(x) = 1 ,

ψ2(x) = x , . . . , ψp(x) = xp−1 . However, it is well known, that the numerical stability of

the procedure will be improved if, for every local model, the basis functions are centered

at the reference point Xi , that is, the functions (x − Xi)m are applied. This is, for

fixed i , only a reparametrization, but requires to slightly modify the description of

the procedure. Denote by Ψ(Xi) the p × n matrix with the entries (Xl − Xi)m for

m = 0, 1, . . . , p− 1 and l = 1, . . . , n .

The estimation step of the algorithm is performed similarly to the case described in

Section 3.4. The only difference is that the family of basis functions (or, equivalently,

the matrix Ψ ) depends on the central point Xi . Suppose that at the k th step of the

procedure, for a point Xi , the matrix W̃
(k)
i has been computed. We then compute the

p -vector Z
(k)
i = ηZ

(k−1)
i + (1− η)Ψ(Xi)W̃

(k)
i Y with entries Z

(k)
i,m of the form

Z
(k)
i,m = ηZ

(k−1)
i,m + (1− η)

n∑

l=1

w̃
(k)
il (Xl −Xi)mYl m = 0, . . . , p− 1,

and the matrix B
(k)
i = ηB

(k−1)
i +(1−η)Ψ(Xi)W̃

(k)
i Ψ>(Xi) whose entries are of the form

B
(k)
i,mm′ = b

(k)
i,m+m′ for m,m′ = 1, . . . , p where

b
(k)
i,m = ηb

(k−1)
i,m + (1− η)

n∑

l=1

w̃
(k)
il (Xl −Xi)m m = 0, . . . , 2p− 2,

The estimate θ̂
(k)

i in the local model at Xi , is obtained as θ̂
(k)

i =
(
B

(k)
i

)−1
Z

(k)
i .

In the k th adaptation step, we have to compare two estimates corresponding to the

local models W
(k−1)
i and W

(k−1)
j . Note however, that this comparison can be done only

if the both estimates are computed for the same basis system. Thus, the comparison

requires to recompute the estimate for the local model W
(k−1)
j w.r.t. the basis centered

at the point Xi . Let θ̂j = (θ̂j,0, . . . , θ̂j,p−1)> be the estimate for the local model at Xj .

This estimate leads to a local approximation of the unknown regression function by the

polynom f̂j(x) = θ̂j,0 + θ̂j,1(x − Xj) + . . . + θ̂j,p−1(x − Xj)p−1 . Now we represent this

polynom as a linear combination of the basis functions (x − Xi)m , m = 0, . . . , p − 1 ,

that is, we have to find new coefficients θ̂ij = (θ̂ij,0, . . . , θ̂ij,p−1)> such that

f̂j(x) = θ̂ij,0 + θ̂ij,1(x−Xi) + . . . + θ̂ij,p−1(x−Xi)p−1.

The coefficients θ̂ij,m can be computed from the formula θ̂ij,m = (m!)−1dmf̂j(Xi)/dxm .

Suppose that all the estimates θ̂
(k−1)

i = (θ̂(k−1)
i,0 , . . . , θ̂

(k−1)
j,p−1 )> have been computed in

the previous step. Next, for a fixed i and every j , we compute the estimates θ̂
(k−1)

ij by

θ̂
(k−1)
ij,m =

p−m−1∑

q=0

(
q + m

q

)
θ̂
(k−1)
j,q+m(Xi −Xj)q. m = 0, 1, . . . , p− 1.
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The estimate θ̂
(k−1)

ij is used in place of θ̂
(k−1)

j for computing the statistical penalty s
(k)
ij

in (3.4). For computing the extension penalty, we apply Ψ(Xi) in place of Ψ and Ψj

has to be replaced by Ψj(Xi) which is the j th column of Ψ(Xi) . The remaining steps

of the procedure are performed similarly to the basic algorithm.

4.3. Local linear multiple regression. Let X1, . . . , Xd be points in the d -dimensional

Euclidean space IRd . Classical linear regression leads to an approximation of the regres-

sion function f by a linear combination of the constant function ψ0(x) = 1 and d

coordinate functions ψm(x) = xm , so that the family {ψm} consists of p = d + 1 basis

functions. Our procedure attempts to apply this approximation locally for adaptively se-

lected local models. The global linear modeling arises as a special case if the underlying

model is entirely linear.

Similarly to the univariate case, we adopt for every design point Xi a local linear

model with centered basis functions ψm(x,Xi) = xm − Xim for m = 1, . . . , d . The

corresponding p×n matrix Ψ(Xi) has columns Ψl(Xi) = (1, Xl1−Xi1, . . . , Xld−Xid)>

for l = 1, . . . , n . At the estimation step one computes the estimates θ̂
(k)

i of the parameter

θ ∈ IRp for every local model, leading to a local linear approximation of the function f

by the linear function f̂j(x) with

f̂j(x) = θ̂j,0 +
d∑

m=1

θ̂j,m(xm −Xj,m).

This linear function can be rewritten in the form

f̂j(x) = θ̂j,0 +
d∑

m=1

θ̂j,m(Xi,m −Xj,m) +
d∑

m=1

θ̂j,m(xm −Xi,m).

Therefore, only the first coefficient of the vector θ̂j has to be recomputed when the basis

system Ψ(Xi) is used in place of Ψ(Xj) . This means that at the k th adaptation step,

the vector θ̂
(k−1)

j is replaced by θ̂
(k−1)

ij where θ̂
(k−1)
ij,m = θ̂

(k−1)
j,m for m = 1, . . . , d and

θ̂
(k−1)
ij,0 = θ̂

(k−1)
ij,0 +

∑d
m=1 θ̂j,m(Xi,m −Xj,m) . The rest of the procedure is carried through

similarly to the univariate case.

4.4. Local quadratic bivariate regression. Finally we shortly discuss the bivariate

case with d = 2 for local quadratic approximation. The case of a larger d can be

handled similarly. The family {ψm} of basis functions contains one constant function

equal to 1, two linear coordinate functions x1 and x2 and three quadratic functions

x2
1, x

2
2 and x1x2 . It is useful to utilize the notation m = (m1, m2) , |m| = m1 + m2

and xm = xm1
1 xm2

2 for x = (x1, x2)> ∈ IR2 and integers m1,m2 . The family of basis

functions can now be written in the form {ψm(x), |m| ≤ 2} . For numerical stability the

centered functions ψm(x−Xi) should be used within each local model.
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At the k th estimation step one computes the entries θ̂
(k)
i,m , |m| ≤ 2 , of the vector

θ̂
(k)

i . At the k th adaptation step we additionally need, for every i , to recompute the

vectors θ̂
(k−1)

j for the basis system Ψ(Xi) . Similarly to the univariate case, we get

θ̂
(k−1)
ij,m =

∑

m′:|m′|≤2−|m|

(
m + m′

m

)
θ̂
(k−1)
j,m+m′ (Xi −Xj)m′

, |m| ≤ 2.

Here
∑

m′:|m′|≤2−|m| means the sum over the set of all pair m′ = (l′1, l
′
2) with m′

1 +m′
2 ≤

2−m1−m2 and
(

m
m′

)
=

(
m1

m′
1

)(
m2

m′
2

)
. Particularly, θ̂

(k−1)
ij,m = θ̂

(k−1)
j,m for all m with |m| = 2 ,

and θ̂ij,0 = f̂j(Xi) . The rest of the procedure remains as before.

5. Numerical results

We now demonstrate the performance of the method for artificial examples in uni-

variate and bivariate regression. The aim of this study is to illustrate two important

features of the procedure: adaptability to large homogeneous regions and sensitivity to

sharp changes in the local structure of the model. We also try to give some hints about

the choice of the degree of local polynomial approximation.

Estimates are obtained using R, a language and environment for statistical computing,

and its contributed libraries pspline (J. Ramsay and B. Ripley), waveslim (B. Whitcher)

and aws (J. Polzehl).

Our univariate simulations are conducted generating data as (Xi, Yi) with Yi =

f(Xi) + εi . The sample size is n = 1000 . The design is chosen as an equidistant

grid on (0, 1) . Errors εi are i.i.d. Gaussian or t-distributed. The error variance σ2 is

assumed to be unknown.

Local linear ( p = 1 ), local quadratic ( p = 2 ) and local cubic ( p = 3 ) AWS estimates

are computed for 1000 simulated data sets using a maximal bandwidth hmax = 0.25 and

defaults, see Table 1, for the other parameters. The parameter τ was selected to provide

the propagation condition in the pure parametric situation.

Table 1. Default parameters used for the AWS procedure

λ η τ

p 0 1 2 3 1 2 3

univariate qχ2;.966,1 qχ2;.92,2 qχ2;.92,3 qχ2;.92,4 .5 4.5 13.5 40

bivariate qχ2;.966,1 qχ2;.92,3 qχ2;.92,6 - .5 13.5 150 -

For comparison we use a penalized cubic smoothing spline, with smoothing parameter

determined by generalized cross validation. See Heckman and Ramsey (2000) for details.

Such a choice was motivated by excellent numerical results delivered by this method

for many situations. We also tried other more sophisticated procedures like wavelets,
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Figure 1. Univariate Example 1: Simulated data sets with local cubic

AWS estimates (hmax = 0.6 ) and Box-Plots of MAE for local linear, local

quadratic and local cubic AWS and penalized cubic smoothing splines.

pointwise adaptive procedures, Markov Random Fields methods but the numerical results

(not reported here) were always in favor of smoothing splines, see also PS2000.

5.1. Univariate Example 1. Our first example uses the piecewise smooth function

f(x) =





8x x < 0.125,

2− 8x 0.125 ≤ x < 0.25,

44(x− 0.4)2 0.25 ≤ x < 0.55,

0.5 cos(6π(x− 0.775) + 0.5 0.55 ≤ x.

The upper row of Figure 1 shows plots of the first data set for σ = 0.125, 0.25 and

0.5 , respectively, together with the estimate obtained by local cubic AWS with default

parameters and hmax = 0.6 . The bottom row reports the results in form of box-plots of

Mean Absolute Error (MAE) obtained for the four procedures in 1000 simulation runs.

Figure 2, providing pointwise estimates of the Mean Absolute Error for three proce-

dures in case of σ = 0.125 , illustrates the local behavior of the procedures. Especially

the local linear AWS is superior to the cubic smoothing spline both near the discontinu-

ities and within smooth regions. Local quadratic AWS seems to be a bit more variable

near the first singularity x = 0.125 , but behaves excellent for the rest of the design.

Advantages are due to the local adaptivity of the AWS procedures in contrast to the

global nature of the smoothing spline.
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Figure 2. Univariate Example 1: Estimated pointwise Mean Abso-

lute Error for local linear and local quadratic AWS and penalized cubic

smoothing splines, σ = 0.125 .

5.2. Univariate example 2. The second univariate example uses a smooth regression

function with varying second derivative:

f(x) = sin(2.4π/(x + 0.2)) .

The upper row of Figure 3 provides a typical data set for σ = 0.125, 0.25, 0.5 and 1 ,
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Figure 3. Univariate Example 2: Simulated data sets with local cubic

AWS estimates (hmax = 0.3 ) and Box-Plots of MAE for local linear, local

quadratic and local cubic AWS and penalized cubic smoothing splines.
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Figure 4. Example 2: Estimated pointwise Mean Absolute Error for

local quadratic AWS, local cubic AWS and penalized cubic smoothing

splines in case of σ = 0.25 .

Table 2. MAE for Example 2 with t -distributed errors

Error distribution linear AWS quadratic AWS cubic AWS splines

t3 0.0808 0.0730 0.0673 0.0914

t5 0.0808 0.0728 0.0665 0.0948

t10 0.0810 0.0730 0.0662 0.0957

N (0, 0.25) 0.0813 0.0727 0.0657 0.0955

respectively, together with the local cubic AWS estimate obtained from this data set

using standard parameters and hmax = 0.3 . The bottom row contains box-plots of Mean

Absolute Error obtained for the four procedures in 1000 simulation runs.

Figure 4 again gives pointwise estimates of the Mean Absolute Error. Results are

shown for local quadratic and cubic AWS and the penalized cubic smoothing splines in

case of σ = 0.25 . The AWS procedures perform better in regions where the regression

function is highly fluctuating or very smooth while the smoothing spline delivers better

results only in a small region of medium fluctuation, i.e. for x ∈ (0.05, 0.2) where the

global smoothing parameter of the spline is nearly optimal in the local sense as well.

For small values of x the spline suffers from high bias while for large values variability

dominates. AWS delivers a good compromise in all cases.

Table 2 provides simulation results obtained using the same regression function and

t -distributed errors, with 3, 5, 10 and ∞ degrees of freedom. Errors are rescaled to

have variance σ2 = 0.25 . A maximal bandwidth of hmax = 0.3 is used. Simulation size

is 1000. The results show a robust behavior with respect to non-Gaussian errors.
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Table 3. MAE and optimal parameters of bivariate reconstructions

AWS (hmax ) Local polynomial (h ) Wavelets

p = 0 p = 1 p = 2 p = 0 p = 1 p = 2 DWT MODWT

MAE 0.076 0.042 0.024 0.102 0.098 0.104 0.127 0.063

Parameters 0.075 0.3 0.74 0.053 0.062 0.099 D4, 5 Haar, 5

5.3. Bivariate Example. We use the following example to demonstrate the behavior

of our procedure in a bivariate design. Data are generated on a equidistant grid of

100× 100 points in [−1, 1]2 using the regression function:

f(x, y) = (4x2 + 8y3)sign(4x2 − 4xy − 6y3)

and additive errors with variance σ2 = 0.25 . The upper left of Figure 5 shows a perspec-

tive plot of the data. The three panels in the right column provide plots of the estimated

surface obtained by local constant, local linear and local quadratic AWS, with standard

values for λ and τ . For a comparison we computed reconstructions of the surface us-

ing local polynomial estimates of order 0 , 1 and 2 using optimal global bandwidths

and reconstructions using a discrete wavelet transform (DWT) and a maximum overlap

discrete wavelet transform (MODWT), see e.g. Gencay, Selcuk and Whitcher (2001),

with optimal basis and optimal depth of decomposition. We used R-package waveslim

of Brandon Whitcher in the last two cases. The reconstructions using the local linear

estimator and MODWT are shown in the left column of Figure 5.

Table 3 provides the mean absolute error (MAE) of the reconstructions together with

the parameters used, i.e. hmax for AWS, optimal bandwidth h for the local polyno-

mial estimators and basis system and depth of decomposition for wavelets. The results

clearly illustrate the advantages of AWS compared to local polynomial smoothing if the

unknown regression function is piecewise smooth. AWS automatically detects disconti-

nuities and therefore allows for a larger bandwidth within smooth regions, resulting in

a larger variance reduction. AWS also outperforms wavelet approaches on this example

due to its more flexible handling of boundaries. Best results are obtained for the local

quadratic approach, while local constant AWS suffers from a segmentation effect caused

by its inappropriate structural assumption.

5.4. Summary. The performance of the AWS method is completely in agreement with

what was aimed: it is adaptive to variable smoothness properties of the underlying

function and sensitive to discontinuities outperforming the classical smoothing methods.

It demonstrates excellent results for a small or moderate noise and it is stable with respect

to large noise.

Local quadratic AWS seems to be a reasonable compromise for many situations com-

bining a good approximating properties with a very good quality of change-point or edge



20 varying coefficient regression modeling by aws

Noisy data

Local linear estimate

Maximum Overlap Wavelets

Local constant AWS

Local linear AWS

Local quadratic AWS

Figure 5. Bivariate Example: Perspective plots of data (upper left),

local constant (upper right), local linear (lower left) and local quadratic

(lower right) reconstruction.

estimation. In situations with large homogeneous regions, local polynomial approxima-

tion of a higher order can be slightly preferable. The choice of the polynomial degree can

be also done automatically using global cross-validation type criteria.

Our experiments (not reported here) demonstrate that the procedure is rather stable

w.r.t. to the choice of the parameters λ , τ , η , hmax , that is, a moderate change of these

parameters near default values does not significantly affect the quality of estimation. In

the most of cases, only a minor improvement can be achieved by tuning these parameters.
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6. Some important properties of AWS

This section discusses some properties of the AWS procedure. In particular we establish

the “propagation condition” which means a free extension of every local model in a

homogeneous situation, leading to a nearly parametric estimate at the end of iteration

process. Further we discuss the rate of estimation for a smooth function θ(x) .

6.1. Behavior inside homogeneous regions. Propagation condition. The proce-

dure is designed to provide a free extension of every local model within a large homoge-

neous region. An extreme case is given by a fully parametric homogeneous model. In that

case, a desirable feature of the method is that the final estimate at every point coincides

with high probability with the fully parametric global estimate. This property which we

call the “propagation” condition is proved here under some simplifying assumptions.

The analysis of the properties of the iterative estimates θ̂
(k)

i is very difficult. The main

reason is that every estimate θ̂
(k)

i solves the local likelihood problem for the local model

defined by the weights w
(k)
ij which are random and depend on the same observations

Y1, . . . , Yn . To tackle this problem we make the following assumption:

(A0) for every step k an independent sample Y1, . . . , Yn is available so that the weights

w
(k)
ij are independent of the sample Y1, . . . , Yn for every k .

This assumption can be realized by splitting the original sample into k∗ subsamples.

Since the number of steps is only of logarithmic order this split can change the quality of

estimation only by a logarithmic factor. Of course, this is only a theoretical device, the

use of the same sample for all steps of the algorithm still requires a further justification.

In our study we restrict ourselves to the case of the varying coefficient model with

homogeneous Gaussian noise:

(A1) The observations Y1, . . . , Yn follow the model Yi = f(Xi) + εi where ε1, . . . , εn

are i.i.d. N (0, σ2) .

The results can be easily extended to the case when the errors εi have uniformly bounded

exponential moments. To simplify the presentation we also assume that

(A2) The statistical penalty s
(k)
ij is defined via the likelihood ratio test statistic T ◦ij

from (3.2) in Section 3.1.

In our procedure the statistic Tij from (3.3) is applied. However, an essential difference

between Tij and T ◦ij only occurs in the situations where the local models Wi and Wj

are strongly unbalanced, which do not meet in the specific cases considered here.

(A3) The extension penalty e
(k)
ij is set to zero, that is, Ke(e

(k)
ij ) = 1 .

Again, this assumption is not restrictive because the extension penalty does not matter

as long as the propagation condition is studied.

We first consider the homogeneous situation with θi = θ which corresponds to a

global linear model f(x) = θ1ψ1(x) + . . . + θpψp(x) .
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Theorem 6.1. Let (A0), (A1), (A2) and (A3) be fulfilled. Suppose that θ(Xi) ≡ θ , i.e.

f = Ψθ . If λ ≥ C log n with constant C depending on the kernel Ks only, then for

every iteration k

P

(
min

i,j=1,...,n
Ks(s

(k)
ij ) > 1/2

)
≥ 1− 1/n.

Proof. Define b by the equation Ks(b) = 1/2 . Theorem 8.3 from the Appendix yields

for every iteration k

P

(
min

i,j=1,...,n
Ks(s

(k)
ij ) > 1/2

)
= P

(
max

i,j=1,...,n
T

(k)
ij ≤ bλ

)
≥ 1−

n∑

i,j=1

qp(bλ− p)

where qp(u) is defined by log qp(u) = −u/2 + 0.5p log(1 + u/p) . It is easy to see that

qp(u) fulfills log qp(u) ≤ −2 log n for u ≥ Cp log n with some constant Cp depending

on p only. This yields the assertion as soon as bλ − p ≥ Cp log n , or, equivalently,

λ ≥ (p + Cp log n)/b . ¤

This result means that the statistical penalty entering in the weights w
(k)
ij at every

iteration k does not restrict a free extension of any local model.

Corollary 6.2. Let the assumptions (A0), (A1), (A2) and (A3) be fulfilled and θ(Xi) ≡
θ . If λ ≥ C log n and hmax is sufficiently large, then the last step estimate θ̂i = θ̂

(k∗)
i

fulfills for every z ≥ 0

P
(
(2σ2)−1(θ̂i − θ)>ΨΨ>(θ̂i − θ) > p + z

)
≤ qp(z)

where log qp(u) = −u/2 + 0.5p log(1 + u/p) .

Proof. If hmax is sufficiently large then the location penalty Kl(l
(k)
ij ) at the final iteration

k = k∗ fulfills Kl(l
(k)
ij ) ≈ 1 for every pair (i, j) . By Theorem 6.1 the statistical penalty

Ks(s
(k)
ij ) ≥ 1/2 , hence w

(k)
ij ≥ 1/2 for all (i, j) . This yields ΨW

(k)
i Ψ> ≥ 0.5ΨΨ> and

the result follows from Theorem 8.1 in the Appendix. ¤

Due to this result the final estimate θ̂i = θ̂
(k∗)
i delivers the same quality of estimation

as the global LSE θ̂ = (ΨΨ>)−1ΨY . In fact, one can show an even stronger assertion:

with a high probability it holds θ̂i ≈ θ̂ .

The propagation condition can be easily extended to the case of a large homogeneous

region G in X . Define for every x ∈ G the distance from x to the boundary of G ,

i.e. ρG(x) = min{ρ(x,Xj) : Xj /∈ G} . At every step k we consider only internal points

Xi ∈ G which are separated from the boundary with the distance 2h(k) :

G(k) = {Xi ∈ G : ρG(Xi) ≥ 2h(k)}.

The next result claims the propagation condition (free extension) for all such points.
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Theorem 6.3. Let the assumptions (A0), (A1) and (A2) be fulfilled. Suppose that

θ(Xi) ≡ θ for all Xi from some region G in X . If λ ≥ C log n for some constant C

depending on the kernel Ks only, then for every iteration k

P

(
min

(i,j): Xi∈G(k), ρ(Xi,Xj)≤h(k)
Ks(s

(k)
ij ) > 1/2

)
≥ 1− 1/n.

Proof. It suffices to note that if Xi ∈ G(k) then the local model W
(k)
i as well as all

the models W
(k)
j for all Xj with ρ(Xi, Xj) ≤ h(k) are homogeneous. Hence, the result

follows again by Theorem 8.3. ¤

6.2. Accuracy of estimation for a varying coefficient model. We consider the case

of an arbitrary function f which allows a good linear approximation in a neighborhood

of a point x ∈ X . We first show that this condition ensures a free extension of all the

local models within this neighborhood.

Let a design point x = Xi for some i be fixed, and let h be some bandwidth used

in the iteration procedure. We define Uh(x) = {x′ : |x′ − x| ≤ h} . We consider the

following conditions which are specified for the fixed point x and the bandwidth h :

(A4) It holds |Ψ>j [θ(Xj)− θ(x)] | ≤ δ for some δ ≥ 0 and all Xj ∈ Uh(Xi) .

(A5) The kernel Kl is compactly supported on [0, 1] .

(A6) Define W ∗
i = diag{w∗i1, . . . , w∗in} with w∗ij = Kl(|ρ(Xi, Xj)/h|2) , N∗

i = trW ∗
i

and B∗
i = ΨW ∗

i Ψ> . It holds N∗
i ΨiΨ

>
i ≤ CB B∗

i .

Condition (A4) means that the value f(Xj) can be approximated by a linear expression

Ψ>j θ(x) with the precision δ for every Xj ∈ Uh(x) . Condition (A6) guarantees a certain

design regularity in a neighborhood of the reference point x . The next result claims the

propagation condition (free extension) for the local models W
(k)
i as long as h(k) ≤ h

provided that δ is sufficiently small.

Theorem 6.4. Let the assumptions (A0) through (A6) be fulfilled. Let λ ≥ C log n for

some constant C depending on the kernel Ks only. If

2σ−2pδ2(N∗
i + N∗

j ) ≤ bλ/6, Xj ∈ Uh(x), (6.1)

where b is defined by K(b) = 1/2 , then for every iteration k with h(k) ≤ h

P

(
min

j: Xj∈Uh(Xi)
Ks(s

(k)
ij ) ≥ 1/2

)
≥ 1− 1/n. (6.2)

If h(k) = h , then the estimate f̂
(k)
i = Ψiθ̂

(k)
i of fi = f(Xi) fulfills

P

(∣∣∣f̂ (k)
i − fi

∣∣∣ >
√

pCBδ + σ
√

2CBλ/N∗
i

)
≤ 2/n. (6.3)

The proof is given in the Appendix. The result (6.3) indicates that the first k iter-

ations of the procedure (for h(k) ≤ h ) lead to a reasonable quality of estimation of the

function f(·) . However, the procedure has to prevent from losing the obtained quality
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of estimation during further iterations. This is precisely what the control step of the

original AWS procedure from PS2000 does, see the discussion at the end of Section 3.5.

The procedure presented here applies this control step in a soft form, however we only

show how the hard control step (3.6) can be used for proving the rate result.

Theorem 6.5. Let the conditions of Theorem 6.4 be fulfilled and let the procedure involve

the control step from (3.6) with η∗ ≥ λ . Then the last step estimate f̂i = Ψ>i θ̂
(k∗)
i of

fi = f(Xi) fulfills with a probability of at least 1− 2/n

∣∣∣f̂i − fi

∣∣∣ ≤
√

pCBδ + σ
√

2CBλ/N∗
i + σ

√
2CBη∗/N∗

i .

Proof. Let h = h(k) for some k . The control step (3.6) ensures that

(2σ2)−1
(
θ̂

(k)

i − θ̂
(k∗)
i

)>
B

(k)
i

(
θ̂

(k)

i − θ̂
(k∗)
i

) ≤ η∗.

This yields by (A6)

N
(k)
i

∣∣f̂ (k)
i − f̂i

∣∣2 = N
(k)
i

(
θ̂

(k)

i − θ̂
(k∗)
i

)>
ΨiΨ

>
i

(
θ̂

(k)

i − θ̂
(k∗)
i

)

≤ CB

(
θ̂

(k)

i − θ̂
(k∗)
i

)>
B

(k)
i

(
θ̂

(k)

i − θ̂
(k∗)
i

) ≤ 2σ2CBη∗.

By Theorem 6.4 N
(k)
i ≥ 0.5N∗

i with a high probability and the assertion follows directly

from (6.3). ¤

6.3. Rate of estimation for a smooth function f(·) . Spatial adaptivity. Here

we briefly discuss one important special case of the result of Theorem 6.5. Namely, we

suppose that f(·) is a smooth function in IRd and consider the polynomial basis {ψm}
of degree less than a given integer number s . In the univariate case d = 1 there are

exactly p = s basis functions, e.g. 1, u− x, . . . , (u− x)s−1 . We also suppose that

(A4s) The function f(·) is s times continuously differentiable and |f (s)(u)| ≤ Ls! for

some constant L and all u ∈ Uh(x) .

(A7) For some positive constants CX1 ≤ CX2 and for all h ∈ [h(0), hmax] holds

CX1 ≤ N∗
h/(nhd) ≤ CX2.

where N∗
h =

∑n
j=1 Kl(|ρ(Xi, Xj)/h|2) .

Note that condition (A4s) ensures (A4) with δ = Lhs . We now apply Theorem 6.5 to

this situation with η∗ = λ . The result is formulated as a separate statement.

Theorem 6.6. Suppose that (A0), (A1), (A2), (A3), (A4s), (A5), (A7) are fulfilled and

(A6) holds for all h ∈ [h(0), hmax] . If λ ≥ C log n for some fixed C , then

P
(∣∣f̂i − fi

∣∣ > C1(λσ2/n)s/(d+2s)Ld/(d+2s)
)
≤ 2/n

where the constant C1 depends on CX1, CX2 and CB only.
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Proof. The bound (6.3) and condition (A7) imply with a high probability
∣∣∣f̂i − fi

∣∣∣ ≤
√

pCBδ + 2σ
√

2CBλ/N∗
i ≤

√
pCBLhs + 2σ

√
2CBλ/(CX1nhd).

Optimizing this expression w.r.t. h leads to h = C2{λσ2/(nL2)}1/(d+2s) . With this

choice condition (6.1) is fulfilled in view of (A7) provided that C2 is not too large. Using

such an h results in the accuracy of order {λσ2/n}s/(d+2s)Ld/(d+2s) as required. ¤

The accuracy shown in Theorem 6.6 is optimal in rate for the problem of estimation of

a smooth function f up to a logarithmic factor λ . Therefore, this result means that our

procedure is pointwise adaptive in the sense that it automatically adapts to the unknown

local smoothness degree measured by the exponent s and the Lipschitz constant L . As

shown in Lepski, Mammen and Spokoiny (1997) this property automatically leads to rate

optimality in the Sobolev and Besov function classes Bs
p,q .

7. Summary and Outlook

The paper presents a new general method of local linear modeling based on the adap-

tive weights idea. The method has a number of remarkable properties. In particular,

AWS applies in a unified way to a broad class of regression models, and the procedure is

able to adapt to the unknown and variable function structure without requiring any spe-

cific prior information like the degree of smoothness of the underlying regression function.

These features are justified both by our theoretical results and by numerical examples.

Similarly to local polynomial smoothing, the AWS method is design adaptive and has

no boundary problem. The produced estimate does not exhibit the usual Gibbs effect

(high variability and increased bias near discontinuities).

AWS applies for high dimensional models. However, for local linear or local polynomial

modeling, the number of parameters grows dramatically with the dimension d , and the

procedure can face the so called “curse of dimensionality” problem: in high dimension,

pure nonparametric modeling leads to strong oversmoothing. Specifically for the AWS

method, if the number of parameters becomes too high (say, more than 6) then the

procedure looses sensitivity to structural changes. For such situation, combining the

procedure with some dimension reduction methods can be useful.

The AWS method is computationally straightforward and the numerical complexity

can be easily controlled, see Section 3.4.

The presented procedure is however restricted to the case of a local linear model. An

extension to generalized linear models with varying coefficients is important for many

applications, see Cai, Fan and Li (2000). This will be a subject for further development.

8. Appendix

Here we present some general results on large deviation probabilities for local likelihood

ratio test statistics in Gaussian regression.
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We consider the varying coefficient regression model Yi = f(Xi) + εi with homoge-

neous Gaussian errors εi ∼ N (0, σ2) . The local model W is described by the weights

w1, . . . , wn . Local linear modeling assumes the linear structure of the model function f

within the local model W : f(x) = θ1ψ1(x)+ . . .+θpψp(x) for a given system {ψm(x)} .

The corresponding local MLE θ̂ can be represented in the form θ̂ =
(
ΨWΨ>

)−1
ΨWY

with the notation from Section 2.2. The local likelihood ratio test statistic is defined for

a given θ by L(W, θ̂, θ) = (θ̂ − θ)>B(θ̂ − θ)/(2σ2) where B = ΨWΨ> .

8.1. Linear parametric case. Define θ = B−1ΨWf . Then Ψθ is the best linear

approximation of f within the local model W . In the homogeneous case f = Ψ>θ , it

obviously holds θ = θ . The first result shows that θ̂ is a good estimate of the vector

θ . This particularly implies nice properties of the estimate in a homogeneous situation

when the local linear assumption is fulfilled and θ is the true parameter.

Theorem 8.1. For every z ≥ 0

P
(
2L(W, θ̂,θ) > p + z

)
≤ qp(z)

where

qp(z) = exp (−0.5z + 0.5p log(1 + z/p)) . (8.1)

Proof. The model equation Y = f + ε immediately implies that θ̂i = B−1
i ΨWiY =

θi + B−1
i ΨWiε . Therefore, θ̂i − θi = B−1

i ΨWiε does not depend on θ , and we assume

without loss of generality that θ = 0 , so that the observations Yi coincide with the noise

εi . This obviously implies Eθ̂ = 0 . The covariance matrix V of the estimate θ̂ can be

represented as

V = Eθ̂θ̂
>

= EB−1Ψεε>Ψ>B−1 = σ2B−1DB−1

where D = ΨW 2Ψ> . Therefore, the estimate θ̂ can be expressed as θ̂ = V 1/2ζ where

ζ is a standard Gaussian random vector in IRp . This yields

L(W, θ̂, θ) = (2σ2)−1ζ>V 1/2BV 1/2ζ = 0.5ζ>Rζ

with R = B−1/2DB−1/2 . Since wi ≤ 1 , it holds D ≤ B and ‖R‖ ≤ 1 , that is, the

largest eigenvalue of R does not exceed one. Now the desired result follows from the

general result for Gaussian quadratic forms in Lemma 8.2. ¤

Lemma 8.2. Let a symmetric p× p -matrix R fulfill ‖R‖ ≤ 1 . Then

P
(
ζ>Rζ ≥ p + z

)
≤ qp(z).

Proof. Let r1, . . . , rp be the eigenvalues of R satisfying rm ≤ 1 for all m . It holds for

every µ < 1 by simple algebra

log E exp(µζ>Rζ/2) = log
p∏

m=1

1√
1− µrm

= −1
2

p∑

m=1

log(1− µrm) ≤ −0.5p log(1− µ).
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Now the exponential Chebyshev inequality implies

log P
(
0.5ζ>Rζ ≥ (p + z)/2

)
≤ −µ(p + z)/2 + log E

(
0.5µζ>Rζ

)

≤ −0.5µ(p + z)− 0.5p log(1− µ).

This expression is maximized by µ = z/(p + z) leading to

log P
(
ζ>Rζ ≥ p + z

)
≤ −0.5z + 0.5p log(1 + z/p)

as required. ¤

Next we consider the likelihood ratio test statistic T ◦ij defined in Section 3.6 for two

local models Wi and Wj .

Theorem 8.3. Let f = Ψ>θ . Then for every z ≥ 0

P
(
T ◦ij > p + z

) ≤ qp(z).

Proof. We use the expression 2T ◦ij = σ−2(θ̂i− θ̂j)>Bi(Bi +Bj)−1Bj(θ̂i− θ̂j) . Note that

Cov(θ̂i − θ̂j) ≤ 2 Cov(θ̂i) + 2Cov(θ̂j) = 2Vi + 2Vj ≤ 2σ2(B−1
i + B−1

j ).

Now the result follows from Lemma 8.2 similarly to the proof of Theorem 8.1. ¤

8.2. Sufficient conditions for free extension. We consider the general situation of

a varying coefficient model. We show that if the difference between two local models

defined in terms of the Kullback-Leibler distance, is sufficiently small, then T ◦ij is with

a large probability smaller then bλ for some b ≤ 1 .

Theorem 8.4. Let b ∈ (0, 1] be such that z = bλ/2− p > 0 . Then the condition

∆ := 0.5σ−2(θi − θj)>Bi(Bi + Bj)−1Bj(θi − θj) ≤ bλ/6 (8.2)

with θi = B−1
i ΨWif and θj = B−1

j ΨWjf implies

P
(
T ◦ij > bλ

) ≤ qp(z) + e−bλ/12.

Proof. We use the decomposition

θ̂i − θ̂j = ξi − ξj + θi − θj

where ξi = B−1
i ΨWiε and similarly for ξj . This implies with Bij = Bi(Bi + Bj)−1Bj

2σ2T ◦ij = (ξi − ξj)>Bij(ξi − ξj) + (θi − θj)>Bij(θi − θj) + 2(θi − θj)>Bij(ξi − ξj).(8.3)

The result of Theorem 8.3 implies

P
(
σ−2(ξi − ξj)>Bij(ξi − ξj) > p + z

)
≤ qp(z).
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Next, ζij = σ−2(θi − θj)>Bij(ξi − ξj) is a Gaussian random variable with zero mean

satisfying

Eζ2
ij = σ−4(θi − θj)>Bij Cov(ξi − ξj)Bij(θi − θj)

≤ 2σ−2(θi − θj)>Bij(θi − θj) ≤ 4∆. (8.4)

Here we have used that Cov(ξi − ξj) ≤ 2σ2Bij , see the proof of Theorem 8.3. This and

condition (8.2) imply

P (ζij > bλ/3) ≤ e−bλ/12.

Since p + z = bλ , we finally obtain

P
(
T ◦ij > bλ

) ≤ P
(
0.5σ−2(ξi − ξj)>Bij(ξi − ξj) ≥ p + z

)
+ P (ζij > bλ/3)

≤ qp(z) + e−bλ/12

as required. ¤

The next assertion delivers some sufficient conditions ensuring (8.2). More precisely,

we consider the situation when the function f can be well approximated by a lin-

ear function Ψ>θ within both local models Wi and Wj . If |f(Xl) − Ψ>l θ| ≤ δ for

some small positive δ and all Xl entering with positive weight in the model Wi , then

(f−Ψ>θ)>Wi(f−Ψ>θ) =
∑

l wil|f(Xl)−Ψ>l θ|2 ≤ Niδ
2 with Ni =

∑
l wil and similarly

for the model Wj .

Lemma 8.5. The condition

(f − Ψ>θ)>Wi(f − Ψ>θ) ≤ δ2Ni

implies

(θi − θ)>Bi(θi − θ) ≤ pδ2Ni .

If, in addition, (f − Ψ>θ)>Wj(f − Ψ>θ) ≤ Njδ
2 , then

(θi − θj)>Bij(θi − θj) ≤ 2pδ2(Ni + Nj)

where Bij = Bi(Bi + Bj)−1Bj .

Proof. The use of Bi = ΨWiΨ
> and θi = B−1

i ΨWif gives

(θi − θ)>Bi(θi − θ) = (f − Ψ>θ)>WiΨ
>B−1

i ΨWi(f − Ψ>θ)

Define A = W
1/2
i Ψ>B−1

i ΨW
1/2
i . Then

trAA> = trW 1/2
i Ψ>B−1

i ΨWiΨ
>B−1

i ΨW
1/2
i = trB−1

i ΨWiΨ
> = trIp = p.

Therefore, by the Cauchy-Schwarz inequality

|(θi − θ)>Bi(θi − θ)|2 ≤ ‖W 1/2
i (f − Ψ>θ)‖2 trAA> ≤ Niδ

2p
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and the first assertion follows.

Since Bij ≤ Bi and similarly Bij ≤ Bj , it holds

(θi − θj)>Bij(θi − θj) ≤ 2(θi − θ)>Bi(θi − θ) + 2(θj − θ)>Bj(θj − θ).

and the second assertion follows as well. ¤

8.3. Separability condition. Now we present some sufficient conditions for separability

of two local models. Namely, we aim to establish conditions that ensure T ◦ij ≥ Aλ where

A is the length of the support of the kernel Ks ( Ks(u) = 0 for u > A ). With this

conditions, it holds Ks(Tij/λ) = 0 and hence the new weight wij will be equal to zero.

Theorem 8.6. The condition

∆ := 0.5σ−2(θi − θj)>Bi(Bi + Bj)−1Bj(θi − θj) > Aλ (8.5)

implies with b = (∆−Aλ)/λ

P
(
T ◦ij < Aλ

) ≤ e
− b2λ

4(A+b) .

Proof. As in the proof of Theorem 8.4, decomposition (8.3) and condition (8.4) imply

P
(
T ◦ij < Aλ

) ≤ P (∆ + ζij < Aλ) ≤ P (−ζij > bλ) ≤ e−b2λ2/(4∆).

¤

Proof of Theorem 6.4. The propagation condition (6.2) follows similarly to the proof of

Theorem 6.3. The only difference is that in the local smooth case we apply Theorems 8.4

and 8.5 instead of Theorem 8.3. Let k be such that h(k) ≤ h and Xj ∈ Uh(Xi) . We

apply Theorem 8.4 to the local models W
(k)
i and W

(k)
j . For this we have to check

the condition (8.2) using Lemma 8.5. It holds with θ = θ(x) by the assumptions (A4)

and (A6) that (f − Ψ>θ)>W
(k)
j (f − Ψ>θ) ≤ N

(k)
j δ2 ≤ N∗

j δ2 for every Xj ∈ Uh(Xi) .

Lemma 8.5 yields
(
θ

(k)
i − θ

(k)
j

)>
B

(k)
ij

(
θ

(k)
i − θ

(k)
j

) ≤ 2pδ2(N∗
i + N∗

j )

so that the condition (8.2) is fulfilled by (6.1).

Theorem 8.4 now applies yielding

P

(
min

j=1,...,n
s

(k)
ij < 1/2

)
≤ n−1

provided that λ = C log n with a sufficiently large C .

The second assertion of the theorem follows from the next lemma.

Lemma 8.7. Let the assumptions (A4), (A5) and (A6) hold true for some h and x =

Xi . Let also the local model Wi be such that wij ≥ 0.5wij := Kl(lij) for all j . If

λ ≥ C log n for some fixed C , then

P

(
|f̂i − fi| > δ

√
pCB + σ

√
2CBλ/N∗

i

)
≤ 1/n.
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Proof. Define W ∗
i = diag{w∗i1, . . . , w∗in} , B∗

i = ΨW ∗
i Ψ> and N∗

i = trW ∗
i . Then the

conditions of the lemma yield Ni ≥ 0.5N∗
i and Bi ≥ 0.5B∗

i . Next, by Theorem 8.1

P
(
(θ̂i − θi)>Bi(θ̂i − θi) ≥ λσ2

)
≤ 1/n

for λ ≤ C log n with a sufficiently large C . This implies by (A6) with a high probability

(θ̂i − θi)>B∗
i (θ̂i − θi) ≤ 2λσ2.

In view of (A6) this gives

N∗
i (θ̂i − θi)>ΨiΨ

>
i (θ̂i − θi) ≤ 2CBλσ2

or equivalently

|f̂i − f i| ≤ σ
√

2CBλ/N∗
i

where f i = Ψ>i θi . Next, Lemma 8.5 and (A4) imply

(θi − θ)>B∗
i (θi − θ) ≤ pδ2N∗

i .

This and (A6) yield using the equality fi = Ψ>i θ

|f i − fi|2 = (θi − θ)>ΨiΨ
>
i (θi − θ) ≤ CB(θi − θ)>B∗

i (θi − θ)/N∗
i ≤ pCBδ2

and the assertion follows. ¤
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