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Abstract. We consider the behavior of a modulated wave solution to an S1-
equivariant autonomous system of differential equations under an external forc-
ing of modulated wave type. The modulation frequency of the forcing is as-
sumed to be close to the modulation frequency of the modulated wave solution,
while the wave frequency of the forcing is supposed to be far from that of the
modulated wave solution. We describe the domain in the three-dimensional
control parameter space (of frequencies and amplitude of the forcing) where
stable locking of the modulation frequencies of the forcing and the modulated
wave solution occurs.

Our system is a simplest case scenario for the behavior of self-pulsating
lasers under the influence of external periodically modulated optical signals.

1. Introduction. This paper investigates systems of differential equations of the
type

dx

dt
= f(x) + g(x)|y|2, (1.1)

dy

dt
= h(x)y + γeiαta(βt), (1.2)

where x ∈ Rn, y ∈ C, the functions f, g : Rn → Rn, h : Rn → C, and a : R → C

are sufficiently smooth of class Cl with some positive integer l. The function a is
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2π-periodic, and α > 0, β > 0 and γ ≥ 0 are parameters. We assume that for γ = 0
the unperturbed system

dx

dt
= f(x) + g(x)|y|2, (1.3)

dy

dt
= h(x)y, (1.4)

has an exponentially orbitally stable quasi-periodic solution of modulated wave type

x(t) = x0(β0t), y(t) = y0(β0t)e
iα0t. (1.5)

Here α0 > 0 and β0 > 0 are constants, while x0 : R → Rn and y0 : R → C

are smooth 2π-periodic functions. We assume that the following nondegeneracy
condition holds:

rank





x′0(ψ) 0
ℜy′0(ψ) −ℑy0(ψ)
ℑy′0(ψ) ℜy0(ψ)



 = 2. (1.6)

It is easy to verify that (1.6) is true for all ψ ∈ R if it is true for one ψ. Moreover,
without loss of generality we assume that ψ 7→ arg y0(ψ) is periodic, i.e. the curve
y = y0(ψ) in C does not loop around the origin (otherwise we should replace y0(β0t)
by y0(β0t)e

ikβ0t and α0 by α0 − kβ0 with an appropriate k ∈ Z).
It follows from assumption (1.6) that the set

T2 := {(x0(ψ), y0(ψ)eiϕ) ∈ R
n × C : ϕ, ψ ∈ T1},

where T1 = R/(2πZ) is the unit circle, is diffeomorphic to a two-dimensional torus.
Obviously, T2 is invariant with respect to the flow of (1.3)–(1.4), and the solution
(1.5) lies on T2.

Roughly speaking, our main result describes the domain in the three-dimensional
space of the control parameters α, β and γ with |α−α0| ≫ 1 and β ≈ β0 such that
the following holds: For almost any solution (x(t), y(t)) to (1.1)–(1.2), which is at
a certain moment close to T2, there exists σ ∈ R such that

‖x(t) − x0(βt+ σ)‖ +
∣
∣|y(t)| − |y0(βt+ σ)|

∣
∣ ≈ 0 for large t.

Let us reformulate our result in a more abstract language as well as in the lan-
guage of a physical application.

Abstractly speaking, (1.3)–(1.4) is an autonomous system which is equivariant
under the T1-action (x, y) 7→ (x, eiϕy), ϕ ∈ T1, on the phase space. The solution
(1.5) is a so-called modulated wave solution or relative periodic orbit to the T1-
equivariant system (1.3)–(1.4). It is well-known that generically those solutions are
structurally stable under small perturbations that do not destroy the autonomy
and the T1-equivariance of the system. Thus, our results describe the behavior of
exponentially orbitally stable modulated wave solutions to T1-equivariant systems
under external forcings of modulated wave type in the case when the difference
between the internal and the external modulation frequencies β − β0 is small while
the difference between the internal and the external wave frequencies α−α0 is large.
Note that in [12] related results are described for the case when both differences of
modulation and wave frequencies are small, and [11] considers the case when the
internal state as well as the external forcing are not modulated. For an even more
abstract setting of these results see [4].

System (1.1)–(1.2) is a paradigmatic model for the dynamical behavior of self-
pulsating lasers under the influence of external periodically modulated optical sig-
nals. For more involved mathematical models see, e.g., [1, 7, 8, 9, 10, 17, 18] and
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for related experimental results see [6, 15]. In (1.1)–(1.2), the state variables x and
y describe the electron density and the optical field of the laser, respectively. In
particular, the absolute value |y| describes the intensity of the optical field. The
T1-equivariance of (1.3)–(1.4) is the result of the invariance of autonomous opti-
cal models with respect to shifts of optical phases. The solution (1.5) describes
a so-called self-pulsating state of the laser in the case when the laser is driven by
electric currents which are constant in time. In those states the electron density
and the intensity of the optical field are time periodic with the same frequency.
Self-pulsating states usually appear as a result of Hopf bifurcations from so-called
continuous wave states, where the electron density and the intensity of the optical
field are constant in time.

The structure of our paper is as follows. The main results are formulated in Sec. 2.
The proof is splitted into four sections. In Sec. 3 we use averaging transformations [2]
in order to eliminate the fast oscillating terms with the frequency α. It appears that
the first non-vanishing terms after the averaging procedure are of order γ2/α2. Local
coordinates in the vicinity of the stable invariant toroidal manifold are introduced
in Sec. 4 and then in Sec. 5 the existence of perturbed manifold is proved. The
global behavior of a system on the perturbed torus is described in Sec. 6. Among
others, the methods of perturbation theory [13, 14] are used in our analysis.

2. Main results. In new coordinates x = x, y = reiϕ, r, ϕ ∈ R, the unperturbed
system (1.3)–(1.4) has the form

dx

dt
= f(x) + g(x)r2, (2.1)

dr

dt
= ℜh(x)r, (2.2)

dϕ

dt
= ℑh(x). (2.3)

This system has, by assumption, the two-frequency solution

x(t) = x0(β0t), r(t) = r0(β0t) := |y0(β0t)|, ϕ(t) = α0t+ arg y0(β0t).

The subsystem (2.1)–(2.2) does not depend on ϕ and has an exponentially orbitally
stable periodic solution x(t) = x0(β0t), r(t) = r0(β0t). The corresponding varia-
tional system has the following form

dz

dψ
= A(ψ)z, z ∈ Rn+1, (2.4)

where

A(ψ) :=
1

β0

[
f ′(x0(ψ)) + g′(x0(ψ))r20(ψ) 2g(x0(ψ))r0(ψ)

ℜh′(x0(ψ))r0(ψ) ℜh(x0(ψ))

]

.

We assume that






the trivial multiplier 1 of the monodromy matrix of linear periodic
system (2.4) has multiplicity one, and the absolute values of all
other multipliers are less than 1.

(2.5)

The adjoint system
dp

dψ
= −AT (ψ)p,
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has a nontrivial periodic solution p(ψ) (AT denotes the transpose of A), which can
be normalized such that

pT (ψ)

[
x′0(ψ)
r′0(ψ)

]

= 1 for all ψ.

Let us define the function G : Rn × T1 → Rn+1 as follows

G(x, ψ) :=

[
g(x)|a(ψ)|2

0

]

. (2.6)

Our first result describes the behavior (under the perturbation by the forcing
term with γ > 0) of T2 ×R, which is an integral manifold to (1.1)–(1.2) with γ = 0,
as well as the dynamics of the system (1.1)–(1.2) on the perturbed manifold.

Theorem 2.1. Let us assume that the conditions (1.6) and (2.5) are met.
Then for all β1 < β2 there exist positive constants µ∗, α∗, δ, L and κ such that

for all (α, β, γ) with

α > α∗, β1 < β < β2 and 0 ≤ γ

α
< µ∗ (2.7)

the following holds:
(i) The system (1.1)–(1.2) has a three-dimensional integral manifold M(α, β, γ)

which can be parametrized by ψ, ϕ, t ∈ R in the form

x = x0(ψ) +
γ

α2
X1

(

ψ, ϕ, βt, αt,
1

α
, β,

γ

α

)

+
γ2

α2
X2

(

ψ, ϕ, βt, αt,
1

α
, β,

γ

α

)

,

y = r0(ψ)ei(ϕ+φ(ψ)) − i
γ

α
eiαta(βt) +

γ

α2
Y1

(

ψ, ϕ, βt, αt,
1

α
, β,

γ

α

)

+
γ2

α2
Y2

(

ψ, ϕ, βt, αt,
1

α
, β,

γ

α

)

with φ(ψ) :=
1

β0

∫ ψ

0

[ℑh(x0(ξ)) − α0]dξ.

Here Xj : R4 × U → R and Yj : R4 × U → C are Cl−4 smooth, 4π-periodic with
respect to ψ and 2π-periodic with respect to ϕ, βt and αt and

U :=

{

(ν, β, µ) ∈ R
3 : 0 < ν <

1

α∗
, β1 < β < β2, 0 ≤ µ < µ∗

}

.

(ii) The dynamics of (1.1)–(1.2) on M(α, β, γ) in coordinates ψ, ϕ and t is de-
termined by a system of the type

dψ

dt
= β0 +

γ2

α2
pT (ψ)G(x0(ψ), βt) +

γ4

α4
Ψ1

(

ψ, βt,
γ

α

)

+
γ2

α3
Ψ2

(

ψ, ϕ, βt, αt,
1

α
, β,

γ

α

)

+
γ

α3
Ψ3

(

ψ, ϕ, βt, αt,
1

α
, β,

γ

α

)

, (2.8)

dϕ

dt
= α0 +

γ2

α2
Φ1

(

ψ, βt,
γ

α

)

+
γ2

α3
Φ2

(

ψ, ϕ, βt, αt,
1

α
, β,

γ

α

)

+
γ

α3
Φ3

(

ψ, ϕ, βt, αt,
1

α
, β,

γ

α

)

, (2.9)

where the functions Ψ1,Φ1 : R2 × [0, µ∗) → R and Ψj ,Φj : R4 × U → R (j = 2, 3)
are Cl−4-smooth, 4π-periodic with respect to ψ and 2π-periodic with respect to ϕ, βt
and αt.

(iii) The integral manifold M(α, β, γ) is exponentially attracting (uniformly with
respect to (α, β, γ) satisfying (2.7)) in the following sense: For any solution (x(t), y(t))
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to (1.1)–(1.2) such that dist((x(t0), y(t0)), T2) < δ for certain t0 ∈ R there is a
unique solution (ψ(t), ϕ(t)) to (2.8)– (2.9) such that

∥
∥
∥x(t) − x0(ψ(t)) − γ

α2
X̃1(t) −

γ2

α2
X̃2(t)

∥
∥
∥+

+
∣
∣
∣y(t) − i

γ

α
eiαta(βt) − r0(ψ(t))ei(ϕ(t)+φ(ψ(t))) − γ

α2
Ỹ1(t) −

γ2

α2
Ỹ2(t)

∣
∣
∣≤

≤ Le−κ(t−t0)dist ((x(t0), y(t0)) , T2) , t ≥ t0,

where

X̃j(t) := Xj

(

ψ(t), ϕ(t), βt, αt,
1

α
, β,

γ

α

)

, j = 1, 2,

Ỹj(t) := Yj

(

ψ(t), ϕ(t), βt, αt,
1

α
, β,

γ

α

)

, j = 1, 2.

Let us define the function

G(ψ) :=
1

2π

∫ 2π

0

pT (ψ + θ)G(x0(ψ + θ), ψ)dθ

and the numbers

G+ := max
ψ∈[0,2π]

G(ψ), G− := min
ψ∈[0,2π]

G(ψ).

For the sake of simplicity we will suppose that all singular points of G are non-
degenerate, i.e.

G′′(ψ) 6= 0 for all ψ such that G′(ψ) = 0. (2.10)

This implies that the set of singular points of G consists of an even number 2N of
different points:

{ψ ∈ [0, 2π) : G′(ψ) = 0} = {ψ1, . . . , ψ2N}.
The set of singular values of G will be denoted by

S := {G(ψ1), . . . , G(ψ2N )}.
The following two theorems describe the dynamics on M(α, β, γ) in more details.

In particular, they show that for appropriate parameters (α, β, γ) there appears
an even number of two-dimensional integral submanifolds, which determine the
frequency locking behavior we are interested in.

Theorem 2.2. Assume that (1.6), (2.5) and (2.10) hold.
Then for any ε > 0 there exist positive µ∗, µ∗, and δ such that for all parameters

(α, β, γ) satisfying
µ∗

α
< γ < µ∗α, (2.11)

G− <
α2

γ2
(β − β0) < G+, (2.12)

dist

(
α2

γ2
(β − β0) , S

)

> ε (2.13)

the following statements hold:
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Figure 1. Graphs of the function G.

(i) The system (1.1)–(1.2) has an even number of two-dimensional integral man-

ifolds Nj(α, β, γ) ⊂ M(α, β, γ), j = 1, ..., 2N̂(α, β, γ), 0 < N̂(α, β, γ) ≤ N which
can be parametrized by ϕ, t ∈ R in the form

x = x0(βt+ ϑj) +
γ

α
X1j

(

ϕ, βt, αt,
1

α
, β,

γ

α

)

+
1

α
X2j

(

ϕ, βt, αt,
1

α
, β,

γ

α

)

,

y = r0(βt+ ϑj)e
iϕ+φ(βt+ϑj)

+
γ

α
Y1j

(

ϕ, βt, αt,
1

α
, β,

γ

α

)

+
1

α
Y2j

(

ϕ, βt, αt,
1

α
, β,

γ

α

)

,

where ϑj are constants, and the functions Xkj , Ykj : R4 × V → R are Cl−4-smooth
and 2π-periodic with respect to ϕ, βt and αt, and

V :=
{
(ν, β, µ) : G− < µ2(β − β0) < G+, µ

∗ν2 < µ < µ∗, dist(µ2(β − β0), S) > ε
}
.

(ii) The dynamics of (1.1)–(1.2) on Nj(α, β, γ) in coordinates ϕ and t is deter-
mined by an equation of the type

dϕ

dt
= α0 +

γ2

α3
Φ1j

(

ϕ, βt, αt,
1

α
, β,

γ

α

)

+
γ

α3
Φ2j

(

ϕ, βt, αt,
1

α
, β,

γ

α

)

,

where the functions Φkj : R3 × V → R are Cl−4 smooth and 2π-periodic in ϕ, βt
and αt.

(iii) Any solution (x(t), y(t)) to (1.1)–(1.2) such that dist((x(t0), y(t0)), T2) < δ
for certain t0 ∈ R tends to one of the manifolds Nj(α, β, γ) as t→ ∞.

Theorem 2.3. Assume that (1.6), (2.5) and (2.10) hold.
Then for any ε > 0 and ε1 > 0 there exist positive µ∗, µ∗ and δ such that for

all parameters (α, β, γ) satisfying the conditions (2.11)–(2.13) and for any solution
(x(t), y(t)) of system (1.1)–(1.2) such that dist((x(t0), y(t0)), T2) < δ for certain
t0 ∈ R there exist σ, T ∈ R such that

‖x(t) − x0(βt+ σ)‖ +
∣
∣|y(t)| − |y0(βt+ σ)|

∣
∣ < ε1 for all t > T.

The conditions (2.11)–(2.13) from Theorems 2.2 and 2.3 determine the so-called
locking region, i.e. the set of all triples (α, β, γ) for which modulation frequency
locking takes place. These domains are illustrated in the figures 1–4.
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Figure 2. Cross-sections of the locking region α = const.

Figure 3. Cross-sections of the locking region β = const.

In Fig. 1 we show two typical cases of graphs of the function G. In the case (I)
there exist one positive and one negative local extremum and in the case (II) two
positive and two negative local extrema, i.e.,

(I) : N = 1, S = {G−, G+}, G− < 0 < G+,

(II) : N = 2, S = {G−, G1, G2, G+}, G− < G1 < 0 < G2 < G+.

In Fig. 2 we show α=const sections of the locking region. In the case (I) this
section is

{

(β, γ) :
µ∗

α
< γ < µ∗α, G− + ε <

α2

γ2
(β − β0) < G+ − ε

}

.

It is bounded by two straight lines γ = µ∗/α and γ = µ∗α and by two square root
like curves

γ = α

√

β − β0

G̃
with G̃ ∈ {G− + ε,G+ − ε}.

In the case (II) the α=const section is bounded by the same two horizontal straight
lines and by six square root like curves

γ = α

√

β − β0

G̃
with G̃ ∈ {G− + ε,G1 − ε,G1 + ε,G2 − ε,G2 + ε,G+ − ε}.



8 L. RECKE, A. SAMOILENKO ET AL.

Figure 4. Intersection of a line β = const with the boundary of
the locking region.

Finally, in Fig. 3 we show β=const sections of the locking region in the (1/α, γ)
plane. We consider the parameter α in the region α > α∗ with sufficiently large
α∗ > 0

α2
∗ >

µ∗

µ∗

√

G+ − ε

G2 − ε
. (2.14)

If (2.14) is satisfied, consider the set of all β > β0 such that

µ∗

α∗
< α∗

√

β − β0

G+ − ε
and

√

β − β0

G2 − ε
< µ∗. (2.15)

For any fixed α > α∗, where α∗ satisfies (2.14), and for any fixed β > β0 with (2.15),
the line {(α, β, γ) : γ ∈ R} crosses the boundary of the locking region in two points
γ = µ1α and γ = µ∗α in case (I) and in four points γ = µ1α, γ = µ2α, γ = µ3α
and γ = µ∗α in case (II) (see also Fig. 4). Here we denoted

µ1 =

√

β − β0

G+ − ε
, µ2 =

√

β − β0

G2 + ε
, µ3 =

√

β − β0

G2 − ε
.

3. Averaging. In this section we perform changes of variables with the aim to
average the nonautonomous terms with fast oscillating arguments αt. As the result
of these transformations, we obtain an equivalent system, where the fast oscillating
terms have the order of magnitude of γ2/α2 and smaller. The principles and details
of the averaging procedure can be found e.g. in [2].

Performing the change of variables

x = x1,

y = y1 − i
γ

α
eiαta(βt)

in (1.1)–(1.2), we obtain the transformed system

dx1

dt
= f(x1) + g(x1)|y1|2 +

γ2

α2
g(x1)|a(βt)|2 −

2γ

α
g(x1)ℑ{y1e−iαta∗(βt)},(3.1)

dy1
dt

= h(x1)y1 − i
γ

α
eiαt

(

h(x1)a(βt) − β
da

dt
(βt)

)

, (3.2)
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where ∗ denotes complex conjugation. In system (3.1)–(3.2), the fast oscillatory
terms with frequency αt are now proportional to γ/α. Since the first averaging has
not produced any nontrivial contributions on the zeroth order, the second averaging
transformation is necessary:

x1 = x2 − 2
γ

α2
g(x1)ℜ{y1e−iαta∗(βt)},

y1 = y2 −
γ

α2
eiαt

(

h(x1)a(βt) − β
da

dt
(βt)

)

,

which allows eliminating fast oscillating terms of order γ/α.

dx2

dt
= f(x2) + g(x2)|y2|2 +

γ2

α2
g(x2)|a(βt)|2

+ 2
γ

α2

(
dg(x2)

dx2
f(x2) −

df(x2)

dx2
g(x2)

)

ℜ{y2e−iαta∗(βt)}

+ 2
γ

α2
g(x2)ℜ

{

eiαt(h∗(x2)a(βt) + 2β
da

dt
(βt) − h(x2)a(βt))

}

+
γ2

α3
r1(x2, y2, αt, βt,

γ

α
,
1

α
),

dy2
dt

= h(x2)y2 +
γ

α2
eiαt

(

2βh(x2)
da

dt
(βt) − h2(x2)a(βt)

− β2 d
2a

dt2
(βt) +

dh(x2)

dx2
(f(x2) + g(x2)|y2|2)a(βt)

)

− 2
γ

α2
g(x2)

dh(x2)

dx2
ℜ{y2e−iαta∗(βt)} +

γ2

α3
r2(x2, y2, e

iαt, βt,
γ

α
,
1

α
),

where the remainder terms r1, r2 are Cl−2 smooth functions in all arguments and
2π-periodic in αt and in βt.

Again, the second transformation has not produced any nontrivial contributions
of the order 1/α. Let us perform the third change of variables

x2 = x3 − 2
γ

α3

(
dg(x2)

dx2
f(x2) −

df(x2)

dx2
g(x2)

)

ℑ{y2e−iαta∗(βt)}

+ 2
γ

α3
g(x2)ℑ{eiαt(h∗(x2)a(βt) + 2β

da

dt
(βt) − h(x2)a(βt))},

y2 = y3 − i
γ

α3
eiαt

(

2h(x2)β
da

dt
(βt) − h2(x2)a(βt) − β2 d

2a

dt2
(βt)

+
dh(x2)

dx2
(f(x2) + g(x2)|y2|2)a(βt)

)

+ 2
γ

α3

dh(x2)

dx2
g(x2)ℑ{y2e−iαta∗(βt)},
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which transforms the system to the following form:

dx3

dt
= f(x3) + g(x3)|y3|2 +

γ2

α2
g(x3)|a(βt)|2

+
γ

α3
r3

(

x3, y3, αt, βt,
γ

α
,
1

α

)

+
γ2

α3
r4

(

x3, y3, αt, βt,
γ

α
,
1

α

)

, (3.3)

dy3
dt

= h(x3)y3

+
γ

α3
r5

(

x3, y3, αt, βt,
γ

α
,
1

α

)

+
γ2

α3
r6

(

x3, y3, αt, βt,
γ

α
,
1

α

)

, (3.4)

where the remainder terms r3, ..., r6 are 2π-periodic in αt and in βt, of class Cl−3 in
all variables. The obtained system (3.3)–(3.4) contains a nontrivial contribution of
the order γ2/α2 and all fast oscillatory terms of the orders γ/α3, γ2/α3 and smaller.
The next section proceeds with the analysis of the averaged system (3.3)–(3.4).

4. Local coordinates. Let us introduce two new parameters

µ :=
γ

α
, ε :=

1

α
.

We assume that µ ∈ (0, µ0) and ε ∈ (0, ε0) with some sufficiently small µ0 > 0,
ε0 > 0. The system (3.3)–(3.4) can be re-written as

dx3

dt
= f(x3) + g(x3)|y3|2 + µ2g(x3)|a(βt)|2 (4.1)

+ε2µr3(x3, y3, βt, αt, µ, ε) + εµ2r4(x3, y3, βt, αt, µ, ε),

dy3
dt

= h(x3)y3 + ε2µr5(x3, y3, βt, αt, µ, ε) + εµ2r6(x3, y3, βt, αt, µ, ε). (4.2)

After the change of variables
y3 = reiθ, (4.3)

in polar coordinates (r, θ) the system (4.1)–(4.2) takes the form

dx3

dt
= f(x3) + g(x3)r

2 + µ2g(x3)|a(βt)|2 + εµ2f1 + ε2µf2, (4.4)

dr

dt
= ℜh(x3)r + εµ2f3 + ε2µf4, (4.5)

dθ

dt
= ℑh(x3) + εµ2f5 + ε2µf6, (4.6)

where fj = fj(x3, r, θ, βt, αt, µ, ε), j = 1, . . . , 6, are Cl−3-smooth and 2π-periodic in
θ, βt, αt functions. Here we assume r ≥ r∗ = 1

2 minψ |y0(ψ)| > 0.
By substituting z = (x3, r), system (4.4) - (4.6) takes the following form

dz

dt
= F (z) + µ2G(z, βt) + εµ2F1 + ε2µF2, (4.7)

dθ

dt
= h2(z) + εµ2F3 + ε2µF4, (4.8)

where the functions h2, F , and G are defined by h2(z) := ℑh(x3),

F (z) :=

[
f(x3) + g(x3)r

2

ℜh(x3)r

]

, G(z, βt) :=

[
g(x3)|a(βt)|2

0

]

,
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Fj = Fj(z, θ, βt, αt, µ, ε), j = 1, . . . , 4 are Cl−3-smooth and 2π-periodic in θ, βt and
αt functions. The above defined function G, which is defined for z = (r, x3) ∈ Rn+1,
on the subspace r = 0, i.e. of all vectors (0, x3), is just the function G defined in
(2.6). Therefore, the use of the same notations should not lead to misunderstanding.

Equation
dz

dt
= F (z)

has the periodic solution z(t) = z0(β0t) = (x0(β0t), r0(β0t)) and the corresponding
limit cycle in Rn+1 is z = z0(ψ), ψ ∈ T1, i.e.,

dz0(ψ)

dψ
=
F (z0(ψ))

β0
, ψ ∈ T1. (4.9)

Let Ω1(ψ) be the fundamental matrix solution for the variational equation

dδz

dψ
=

1

β0

∂F (z0(ψ))

∂z
δz. (4.10)

along the periodic solution z0(ψ).
By the Floquet theorem, the fundamental matrix Ω1(ψ) can be represented in

the form

Ω1(ψ) = Φ1(ψ)eH1ψ/β0 , (4.11)

where Φ1(ψ) is 4π-periodic (n+ 1)× (n+ 1) real matrix and H1 is (n+ 1)× (n+ 1)
constant real matrix.

Since dz0(ψ)/dψ is a periodic solution of (4.10), we can choose

Ω1(ψ) =

[
dz0(ψ)

dψ
,Ω(ψ)

]

, Φ1(ψ) =

[
dz0(ψ)

dψ
,Φ(ψ)

]

,

where Ω(ψ) and Φ(ψ) are (n+1)×n matrices and H1 = diag{0, H} with n×n con-
stant matrix H. Since the periodic solution z0(ψ) is orbitally stable, all eigenvalues
of matrix H have negative real parts.

Let us find the inverse matrix for Φ1(ψ) :

Φ−1
1 (ψ) =

(

Ω1(ψ)e−H1ψ/β0

)−1

= eH1ψ/β0Ω−1
1 (ψ).

Taking into account that

Ω̃T1 (ψ)Ω1(ψ) = I, ψ ∈ R, (4.12)

where I is the identity matrix and Ω̃1(ψ) is the fundamental matrix solution of the
adjoint system

dw

dψ
= −

(
1

β0

∂F (z0(ψ))

∂ψ

)T

w, (4.13)

we conclude that Ω−1
1 (ψ) = Ω̃T1 (ψ) (see [5]). Accordingly to Floquet theorem

Ω̃1(ψ) = Φ̃1(ψ)eH̃1ψ/β0 .

It follows from (4.11) and (4.12) that

Ω̃1(ψ) =
(
Ω−1

1 (ψ)
)T

=
(
Φ−1

1 (ψ)
)T
e−H

T
1 ψ/β0 .

Hence

Φ̃T1 (ψ) = Φ−1
1 (ψ), H̃T

1 = −H1.
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Since the linear periodic system (4.10) has one nonzero linearly independent pe-
riodic solution, the adjoint system (4.13) has also one nonzero linearly independent
periodic solution. Then

Ω̃1(ψ) =
[

p(ψ), Ω̃(ψ)
]

, Φ̃1(ψ) =
[

p(ψ), Φ̃(ψ)
]

,

where p(ψ) is 2π-periodic solution of adjoint system (4.13) and Ω̃(ψ) and Φ̃(ψ) are

(n + 1) × n matrices, Φ̃(ψ) is 4π periodic. Taking into account (4.12), we obtain
that the scalar product in R

n+1 of two vectors dz0(ψ)/dψ and p(ψ) is equal to 1 for
all ψ ∈ T1.

It can be verified that

β0
dΦ1(ψ)

dψ
+ Φ1(ψ)H1 =

∂F (z0(ψ))

∂ψ
Φ1(ψ).

Then (n+ 1) × n-matrix Φ(ψ) satisfies relation

β0
dΦ(ψ)

dψ
+ Φ(ψ)H =

∂F (z0(ψ))

∂ψ
Φ(ψ). (4.14)

We introduce new coordinates ψ and h instead of z in the neighborhood of the
periodic solution z0 by the formula

z = z0(ψ) + Φ(ψ)h, (4.15)

where h ∈ Rn, ‖h‖ ≤ h0 with some h0 > 0. After substituting (4.15) into (4.7) we
obtain

(
dz0(ψ)

dψ
+
dΦ(ψ)

dψ
h

)
dψ

dt
+ Φ(ψ)

dh

dt

= F (z0(ψ) + Φ(ψ)h) + µ2G(z0(ψ) + Φ(ψ)h, βt)

+εµ2F1(z0(ψ) + Φ(ψ)h, θ, βt, αt, µ, ε))

+ε2µF2(z0(ψ) + Φ(ψ)h, θ, βt, αt, µ, ε)). (4.16)

With regard for (4.9) and (4.14), the relation (4.16) yields
(
dz0(ψ)

dψ
+
dΦ(ψ)

dψ
h

)(
dψ

dt
− β0

)

+ Φ(ψ)

(
dh

dt
−Hh

)

= F (z0(ψ) + Φ(ψ)h) − F (z0(ψ)) − ∂F (z0(ψ))

∂ψ
Φ(ψ)h

+µ2G(z0(ψ) + Φ(ψ)h, βt) + εµ2F1(z0(ψ) + Φ(ψ)h, θ, βt, αt, µ, ε)

+ε2µF2(z0(ψ) + Φ(ψ)h, θ, βt, αt, µ, ε). (4.17)

Since by our construction det
[
dz0(ψ)
dψ ,Φ(ψ)

]

= detΦ1(ψ) 6= 0 for all ψ, the matrix

[
dz0(ψ)

dψ
+
dΦ(ψ)

dψ
h,Φ(ψ)

]

is invertible for sufficiently small h. Therefore taking into account the expansion

(A+B)−1 = A−1 −A−1BA−1 +A−1BA−1BA−1 − ...,
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we obtain for sufficiently small h :
[
dz0(ψ)

dψ
+
dΦ(ψ)

dψ
h,Φ(ψ)

]−1

=

[

Φ1(ψ) +

[
dΦ(ψ)

dψ
h, 0

]]−1

= Φ−1
1 (ψ) + H̃(h, ψ, µ) = Φ̃T1 (ψ) + H̃(h, ψ, µ)

=

[
pT (ψ)

Φ̃T (ψ)

]

+

[
H̃1(h, ψ, µ)

H̃2(h, ψ, µ)

]

,

where the Cl−4-smooth function H̃(h, ψ, µ) = O(‖h‖) is periodic in ψ.
Hence, the equation (4.17) can be solved with respect to the derivatives dψ/dt

and dh/dt :

dh

dt
= Hh+ µ2[Φ̃T (ψ) + H̃2(h, ψ, µ)]G(z0(ψ) + Φ(ψ)h, βt)

+[Φ̃T (ψ) + H̃2(h, ψ, µ)][F5 + εµ2F1 + ε2µF2], (4.18)

dψ

dt
= β0 + µ2pT (ψ)G(z0(ψ), βt) + µ2H̃1(h, ψ, µ)G(z0(ψ), βt)

+[pT (ψ) + H̃1(h, ψ, µ)][µ2G1 + F5 + εµ2F1 + ε2µF2], (4.19)

where

F5(h, ψ, µ) = F (z0(ψ) + Φ(ψ)h) − F (z0(ψ)) − ∂F (z0(ψ))

∂ψ
Φ(ψ)h,

G1(h, ψ, βt, µ) = G(z0(ψ) + Φ(ψ)h, βt) − G(z0(ψ), βt).

Fj = Fj(z0 + Φ(ψ)h, θ, βt, αt, µ, ε), j = 1, 2.

We supplement this system with equation (4.8):

dθ

dt
= h2(z0(ψ) + Φ(ψ)h) + εµ2F3(z0 + Φ(ψ)h, θ, βt, αt, µ, ε)

+ε2µF4(z0 + Φ(ψ)h, θ, βt, αt, µ, ε). (4.20)

Using the equality

1

2π

∫ 2π

0

h2(z0(ψ))dψ = α0,

we replace the angular variable θ in system (4.18) – (4.20) by ϕ accordingly to the
formula

θ = ϕ+
1

β0

∫ ψ

[h2(z0(ξ)) − α0]dξ,

where
∫ ψ

is a certain antiderivative of the function h2(z0(ξ)) − α0.
As a result we obtain the following system

dh

dt
= Hh+ µ2R11 +R12 + εµ2R13 + ε2µR14, (4.21)

dψ

dt
= β0 + µ2pT (ψ)G(z0(ψ), βt) + µ2R21 + R22 + εµ2R23 + ε2µR24,(4.22)

dϕ

dt
= α0 + µ2R31 +R32 + εµ2R33 + ε2µR34, (4.23)
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where functions

R11 = R11(h, ψ, βt, µ) = [Φ̃T (ψ) + H̃2(h, ψ, µ)]G(z0(ψ) + Φ(ψ)h, βt),

R12 = R12(h, ψ, βt, µ) = [Φ̃T (ψ) + H̃2(h, ψ, µ)]F5 = O(‖h‖2),

R21 = R21(h, ψ, βt, µ) = H̃1(h, ψ, µ)G(z0(ψ), βt),

+[pT (ψ) + H̃1(h, ψ, µ)]G1(h, ψ, βt, µ) = O(‖h‖)

R22 = R22(h, ψ, βt, µ) = [pT (ψ) + H̃1(h, ψ, µ)]F5(h, ψ, βt, µ) = O(‖h‖2),

R31 = R31(h, ψ, βt, µ) =
1

β0
[α0 − h2(z0(ψ))]

(
pT (ψ)G(z0(ψ), βt) +R21

)
,

R32 = R32(h, ψ, βt, µ) = h2(z0(ψ) + Φ(ψ)h) − h2(z0(ψ))

− 1

β0
[h2(z0(ψ)) − α0]R22 = O(‖h‖)

are Cl−4-smooth, 4π-periodic in ψ and 2π-periodic in βt. R13, R14, R23, R24, R33,
and R34 are Cl−4-smooth functions of (h, ψ, ϕ, βt, αt, µ, ε), 4π-periodic in ψ and
2π-periodic in ϕβt, αt.

5. Existence of the perturbed manifold. Using the local coordinates intro-
duced in the previous section, we investigate here the existence and properties of
the perturbed manifold. In addition to the circle T1 = R/(2πZ) we will use the
notation T′

1 = R/(4πZ) for the circle of length 4π and Tk = T1 × · · · × T1
︸ ︷︷ ︸

k times

for

k−dimensional torus.

Lemma 5.1. For µ ∈ [0, µ0] and ε ∈ [0, ε0] with sufficiently small µ0 and ε0, the
system (4.21)–(4.23) has an integral manifold

Mµ,ε = {(h, ψ, ϕ, t) : h = u(ψ, ϕ, βt, αt, µ, ε), (ψ, ϕ) ∈ T
′
1 × T1, t ∈ R},

where the function u has the form

u(ψ, ϕ, βt, αt, µ, ε) = µ2u0(ψ, βt, µ) +

+εµ2u1(ψ, ϕ, βt, αt, µ, ε) + ε2µu2(ψ, ϕ, βt, αt, µ, ε) (5.1)

with Cl−4-smooth 4π-periodic in ψ, 2π-periodic in ϕ, βt, αt functions u0, u1 and u2

such that ‖uj‖Cl−4 ≤ M1, j = 0, 1, 2, where positive constant M1 does not depend
on α, µ, ε. Here ‖·‖Cl−4 is the norm of functions from Cl−4(T′

1 × T3) with fixed
parameters µ and ε.

The integral manifold Mµ,ε is asymptotically stable in the following sense: there
exists ν0 = ν0(µ0, ε0) such that for every initial value (h, ψ, ϕ) at time τ with ‖h‖ ≤
ν0, there exists a unique (ψ0, ϕ0) such that

‖N(t, τ, h, ψ, ϕ) −N(t, τ, u(ψ0, ϕ0, βτ, ατ, µ, ε), ψ0, ϕ0)‖

≤ Le−κ(t−τ)‖(h, ψ, ϕ) − (u(ψ0, ϕ0, βτ, ατ, µ, ε), ψ0, ϕ0)‖, t ≥ τ,

where constants L ≥ 1 and κ > 0 do not depend on α, µ, ε. N(t, τ, h, ψ, ϕ) is
the solution of the system (4.21) - (4.23) with an initial value N(τ, τ, h, ψ, ϕ) =
(h, ψ, ϕ).
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Proof. Setting ζ1 = βt, ζ2 = αt in the system (4.21) - (4.23), we obtain an au-
tonomous system

dh

dt
= Hh+Q1(h, ψ, ϕ, ζ1, ζ2, µ, ε), (5.2)

dψ

dt
= β0 +Q2(h, ψ, ϕ, ζ1, ζ2, µ, ε), (5.3)

dϕ

dt
= α0 +Q3(h, ψ, ϕ, ζ1, ζ2, µ, ε), (5.4)

dζ1
dt

= β,
dζ2
dt

= α, (5.5)

where Cl−4-smooth functions Q1, Q2 and Q3 are obtained from the right-hand sides
of (4.21)–(4.23) with regard in βt = ζ1, αt = ζ2. The corresponding reduced system
has the form

dh

dt
= Hh,

dψ

dt
= β0,

dϕ

dt
= α0,

dζ1
dt

= β,
dζ2
dt

= α.

The eigenvalues of the constant matrix H have negative real parts, hence

‖eHt‖ ≤ Le−κ0t, t > 0, (5.6)

where L = const ≥ 1, κ0 = const > 0.
By introducing new variables ζ = (ψ, ϕ, ζ1, ζ2) and new parameters λ = (η1, η2,

η3, µ, ε) the following system

dh

dt
= Hh+ Q̃1(h, ζ, λ), (5.7)

dζ

dt
= ω0 + Q̃(h, ζ, λ), (5.8)

coincides with (4.21)–(4.23) if η1 = µ2, η2 = εµ2, η3 = ε2µ, ζ1 = βt, ζ2 = αt, and

Q̃1(h, ζ, λ) = η1R11 +R12 + η2R13 + η3R14,

Q̃ = (Q̃2, Q̃3, Q̃4, Q̃5), ω0 = (β0, α0, β, α),

Q̃2 = η1p
T (ψ)G(z0(ψ), βt) + η1R21 +R22 + η2R23 + η3R24,

Q̃3 = η1R31 + R32 + η2R33 + η3R34, Q̃4 = Q̃5 = 0.

By [13] or [20], for all parameters λ ∈ Iλ0
= {λ : ‖λ‖ ≤ λ0}, with sufficiently

small λ0 system (5.7)–(5.8) has a unique invariant manifold

h = w0(ζ, λ), ζ ∈ T
′
1 × T3, λ ∈ Iλ0

, (5.9)

wherew0(ζ, λ) is bounded Lipschitz in ζ, λ andw0(ζ, λ) → 0 uniformly as (η1, η2, η3) →
0.

In order to show this, for λ ∈ Iλ0
the mapping Tλ : Fρ → Fρ has been used,

Tλ(w)(ζ) =

∫ 0

−∞

e−Hτ Q̃1 (w (ζτ , λ) , ζτ , λ) dτ,

where ζτ is solution of (5.8) for h = w(ζ, λ) with initial conditions ζ0 = ζ. Fρ is
the space of Lipschitz continuous functions w : T

′
1 × T3 → R

n such that ‖w‖C ≤
ρ, Lipw ≤ ρ, Lipw is Lipschitz constant of w with respect to ζ.

Denote η = η1 + η2 + η3. Let M0 be a positive constant such that

‖DjR11‖ ≤M0, ‖DjR12‖ ≤ ‖h‖2M0, ‖DjR13‖ ≤M0, ‖DjR14‖ ≤M0,
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for ‖h‖ ≤ ρ0, |λ| ≤ λ0, ζ ∈ T′
1 × T3 with some ρ0 > 0, λ0 > 0. Dj are derivatives of

order |j| ≤ l − 4 with respect to h, ζ, λ (first derivatives of R12 with respect to h
have estimate ‖h‖M0 and higher derivatives have estimate M0).

We consider the subset Fηa0
of Fρ0 which consists of functions w with ‖w‖C ≤

ηa0, Lipζw ≤ ηa0, where a0 is some positive constant.
For sufficiently small η, the mapping

Tλ(η) : Fηa0
→ Fηa0

(5.10)

is well defined. Here λ(η) means λ = (η1, η2, η3, µ, ε) with η1 + η2 + η3 = η. Really,

for w ∈ Fηa0
, the function Q̃1 has the following estimate

‖Q̃1(w(ζ, λ), ζ, λ)‖C ≤ ηM0 + η2a2
0M0,

hence, taking into account (5.6),

‖Tλ(η)(w)‖C ≤ L
κ0

(η + η2a2
0)M0. (5.11)

Let ζ1
τ and ζ2

τ be two solutions of (5.8) with h = w(ζ, λ), ‖w‖C ≤ ηa0, Lipζw ≤
ηa0 and initial values ζ1

0 and ζ2
0 . Then

‖ζ1
t − ζ2

t ‖ ≤ ‖ζ1
0 − ζ2

0‖e(ηa0LiphQ̃+LipζQ̃)t ≤ ‖ζ1
0 − ζ2

0‖eηa1t, (5.12)

where a1 is a positive constant independent on η. Inequality (5.12) permits to esti-
mate Lipschitz constant of T (w) :

‖Tλ(η)(w)(ζ1
0 ) − Tλ(η)(w)(ζ2

0 )‖ ≤

≤
∫ 0

∞

Le−κ0τ
(

LiphQ̃1Lipζw + LipζQ̃1

)

‖ζ1
τ − ζ2

τ‖dτ ≤

≤ L
κ0 − a1η

(

ηa0LiphQ̃1 + LipζQ̃1

)

‖ζ1
0 − ζ2

0‖. (5.13)

One can verify that

LiphQ̃1 ≤ ηM0 + 3ηa0M0, LipζQ̃1 ≤ ηM0 + η2a2
0M0 (5.14)

if ‖h‖ ≤ ηa0.
There exist positive a0 and η0 such that

L
κ0 − a1η

(

ηa0LiphQ̃1 + LipζQ̃1

)

≤ ηa0,
LM0

κ0
(η + η2a2

0) ≤ ηa0

for all η ≤ η0. Taking into account (5.14), to this end it suffices

a0κ0

M0L
− 1 ≥ ηa2

0,
M0L

κ0 − a1η
(1 + 4ηa2

0 + a0η) ≤ a0.

Hence, mapping (5.10) is well defined for η ≤ η0.
Analogously to [20] (Theorem 6.1), we show that the map Tλ(η)(w) is a contrac-

tion of set Fηa0
for all η ≤ η1 with some η1 ≤ η0. The mapping Tλ(η) has unique

fixed point w0(ζ, λ) for all λ ∈ Iλ0
with η ≤ η1.

Expressions in right-hand sides of (5.11) and (5.13) don’t depend on α ∈ [α0,∞)
(note, that α is contained explicitly only in equation dζ2/dt = α). Hence, values
a0 and η0 can be chosen independent on α ∈ [α0,∞). By construction, w0 satisfies
‖w0(ζ, λ)‖ ≤ ηa0 with positive constant a0 independent on α.

Note that by [20], for sufficiently small λ the map

Tλ(w) : Cl−4(T′
1 × T3,R

n) → Cl−4(T′
1 × T3,R

n)
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is well defined.
For proving Cl−4 smoothness of integral manifold w0(ζ, λ) we use the fiber con-

traction theorem [3], p. 127. At first we show that invariant manifold is C1 with
respect to ζ. The continuous differentiability with respect to λ is proved analogously.
The smoothness up to Cl−4 can be improved inductively.

Following [3], p. 336, we introduce the set F1 of all bounded continuous functions
Φ that map T

′
1 × T3 into the set of all n × 4 matrices. Let F1

ρ denote the closed

ball in F1 with radius ρ.
For w ∈ Fηa0

, we consider the map T 1
λ(w,Φ) : Fηa0

×F1
ηa2

→ F1
ηa2
,

T 1
λ(w,Φ)(ζ) =

∫ 0

−∞

e−Hτ

(

∂Q̃1(w(ζτ , λ), ζτ , λ)

∂ζ
+

+
∂Q̃1(w(ζτ , λ), ζτ , λ)

∂h
Φ(ζτ , λ)

)

W (τ, λ)dτ, (5.15)

where ζt,W (t, λ) are solutions of the system

dζ

dt
= ω0 + Q̃(w(ζ, λ), ζ, λ), (5.16)

dW

dt
=
∂Q̃(w(ζ, λ), ζ, λ)

∂ζ
W +

∂Q̃(w(ζ, λ), ζ, λ)

∂h
Φ(ζ, λ)W. (5.17)

Taking into account the structure of the function Q̃, we see that

‖∂Q̃(w, ζ, λ)

∂ζ
‖ ≤ ηK, ‖∂Q̃(w, ζ, λ)

∂h
‖ ≤ K

with some positive constantK independent on η. Choosing η such thatKη(1+a2) ≤
κ0/4 and applying Gronwall’s inequality, we obtain

‖W (t, λ)‖ ≤Me(κ0/4)(t−t0), (5.18)

where M is some positive constant.
Taking into account (5.18) and inequalities

∥
∥
∥
∥
∥

∂Q̃1

∂ζ

∥
∥
∥
∥
∥
≤M0η +M0η

2a2
0,

∥
∥
∥
∥
∥

∂Q̃1

∂h

∥
∥
∥
∥
∥
≤M0η + 3M0ηa0,

we get

‖T 1
λ(w,Φ)‖ ≤

∫ 0

−∞

Le−κ0τ (1 + ηa2
0 + ηa2 + 3ηa0a2)ηM0Meκ0τ/4dτ ≤

≤ 4LMM0

3κ0
(1 + ηa2

0 + ηa2 + 3ηa0a2)η.

There exist a2 > 0 and η2 such that the last expression is less then ηa2 for η ≤ η2.
Hence,the mapping T 1

λ(w,Φ) is well defined.
Let us consider the mapping

(w,Φ) → (Tηa0
(w), T 1

λ (w,Φ)). (5.19)

Analogously to [3], p. 337, it can be shown that (5.19) is continuous with respect
to w. Now we prove that the mapping (5.19) is a fiber contraction. For w ∈ Fηa0
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and Φ1,Φ2 ∈ F1
ηa2

we get

‖T 1
λ(w,Φ1) − T 1

λ(w,Φ2)‖ ≤

≤ ‖
∫ 0

−∞

e−Hτ

(

∂Q̃1

∂ζ
(W1 −W2) +

∂Q̃1

∂h
(Φ1W1 − Φ2W2)

)

dτ‖ ≤

≤
∫ 0

−∞

e−Hτ

(

‖∂Q̃1

∂h
‖‖W2‖‖Φ1 − Φ2‖ +

+
(

‖∂Q̃1

∂ζ
‖ + ‖∂Q̃1

∂h
‖‖Φ1‖

)

‖W1 −W2‖
)

dτ. (5.20)

By (5.17), we obtain following estimate for ‖W1 −W2‖ :

d(W1 −W2)

dt
=
∂Q̃(w, ζ, λ)

∂ζ
(W1 −W2) +

∂Q̃(w, ζ, λ)

∂h
(Φ1W1 − Φ2W2),

‖W1(t, λ) −W2(t, λ)‖ ≤
∫ t

0

(

‖∂Q̃
∂ζ

‖ + ‖∂Q̃
∂h

‖‖Φ1‖
)

‖W1(s, λ) −W2(s, λ)‖ds+

+

∫ t

0

‖∂Q̃
∂h

‖‖W2‖‖Φ1 − Φ2‖Cds.

Inserting (5.18) into the second integral and applying the Gronwall’s inequality, we
get

‖W1(t, λ) −W2(t, λ)‖ ≤ 4KM

κ0
e(κ0/2)t‖Φ1 − Φ2‖C . (5.21)

Putting (5.21) into (5.20), we obtain

‖T 1
λ(w,Φ1) − T 1

λ(w,Φ2)‖ ≤ ς‖Φ1 − Φ2‖C ,
where

ς =
2LMM0η

κ0

(

1 + a0 +
4K

κ0
(1 + ηa2

0 + ηa2 + 3ηa0a2)

)

.

We can choose ς < 1 for sufficiently small η hence the mapping (5.19) is a fiber
contraction. It has unique globally attracting fixed point (w0, w1). By (5.15), it is
easy to see that w1(ζ, λ) is bounded uniformly to α ∈ [α0,∞). Repeating [3], p.296,
one can show that w0 is continuously differentiable and Dw0 = w1.

Taking into account that the invariant manifold (5.9) for η1 = η2 = η3 = 0 equals
to zero h = 0, it can be represented as

h = η1w0(ψ, ζ1, µ, η1) + η2w1(ψ, ϕ, ζ1, ζ2, λ) + η3w2(ψ, ϕ, ζ1, ζ2, λ).

Note that w0 does not depend on ζ2, η2, η3, and ε, since system (5.7)–(5.8) is
independent on ζ2 for η2 = η3 = ε = 0. Taking into account the dependence of η1,
η2, and η3 on µ and ε, we obtain that the invariant manifold of (5.2)–(5.5) has the
following form

h = u(ψ, ϕ, ζ1, ζ2, µ, ε) = µ2u0(ψ, ζ1, µ) +

+εµ2u1(ψ, ϕ, ζ1, ζ2, µ, ε) + ε2µu2(ψ, ϕ, ζ1, ζ2, µ, ε). (5.22)

Respectively, system (4.21) - (4.23) has integral manifold Mµ,ε defined by the func-
tion u(ψ, ϕ, βt, αt, µ, ε).
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Since manifold (5.22) is smooth, it satisfies the following relation

∂u

∂ψ
(β0 +Q2(u, ψ, ϕ, ζ1, ζ2, µ, ε)) +

∂u

∂ϕ
(α0 +Q3(u, ψ, ϕ, ζ1, ζ2, µ, ε))

+
∂u

∂ζ1
β +

∂u

∂ζ2
α = Hu+Q1(u, ψ, ϕ, ζ1, ζ2, µ, ε). (5.23)

Taking into account this expression and performing the change of variables h =
h̃+ u(ψ, ϕ, ζ1, ζ2, µ, ε) in system (5.2)–(5.5), we obtain

dh̃

dt
=
(

H +Q0(h̃, ψ, ϕ, ζ1, ζ2, µ, ε)
)

h̃, (5.24)

where

Q0(h̃, ψ, ϕ, ζ1, ζ2, µ, ε)h̃ = Q1(u+ h̃, ψ, ϕ, ζ1, ζ2, µ, ε) −Q1(u, ψ, ϕ, ζ1, ζ2, µ, ε)

− ∂u

∂ψ
(Q2(u+ h̃, ψ, ϕ, ζ1, ζ2, µ, ε) −Q2(u, ψ, ϕ, ζ1, ζ2, µ, ε))

− ∂u

∂ϕ
(Q3(u+ h̃, ψ, ϕ, ζ1, ζ2, µ, ε) −Q3(u, ψ, ϕ, ζ1, ζ2, µ, ε)).

The function Q0 can be represented as a sum of two terms Q0 = Q01 + Q02 such
that Q01 = O(‖h̃‖) and Q02 = O(µ). Therefore there exist a0 > 0 and µ1 > 0 such

that ‖Q0‖C < κ0/ (2L) for all h̃ and µ with ‖h̃‖ ≤ a0 and µ ≤ µ1. Here a0 does not
depend on µ1. Taking into account (5.6) and an estimate of the fundamental solu-
tion for perturbed linear system [13], we obtain the following estimate for solutions
of (5.24):

‖h̃(t)‖ ≤ ‖h̃(t0)‖Le(−κ0+L‖Q0‖C)(t−t0) ≤ ‖h̃(t0)‖Le−(κ0/2)(t−t0). (5.25)

Since u is proportional to µ and a0 does not depend on µ, for all small enough µ1 it
holds h0 = a0 − sup0≤µ≤µ1

‖u‖C > 0. Taking into account that h = h̃+ u, one can

conclude that for all h with ‖h‖ ≤ h0 the inequality ‖h̃‖ ≤ a0 and estimate (5.25)
hold.

As result, if µ ≤ µ1 and solution (h(t), ψ(t), ϕ(t)) of (5.2)–(5.5) satisfies the
condition ‖h(t0)‖ ≤ h0 at initial moment of time t = t0 then

‖h(t) − u(ψ(t), ϕ(t), βt, αt, µ, ε)‖

≤ Le−
κ0
2

(t−t0)‖h(t0) − u(ψ(t0), ϕ(t0), βt0, αt0, µ, ε)‖ (5.26)

for all t ≥ t0.
By [13] and [19], the integral manifold Mµ,ε is asymptotically stable, i.e. there

exists ν1 = ν1(µ0, ε0) such that if ρ((h, ψ, ϕ),Mµ,ε(τ)) ≤ ν1 at time τ then there is
a unique (ψ0, ϕ0) such that

‖N(t, τ, h, ψ, ϕ) −N(t, τ, u(ψ0, ϕ0, βτ, ατ, µ, ε), ψ0, ϕ0)‖

≤ Le−κ(t−τ)‖(h, ψ, ϕ) − (u(ψ0, ϕ0, βτ, ατ, µ, ε), ψ0, ϕ0)‖, t ≥ τ,(5.27)

where constants L ≥ 1 κ > 0 don’t depend on α, µ, ε, ρ(., .) is the metric in Rn ×
T
′
1 × T1, N(t, τ, h, ψ, ϕ) is the solution of the system (4.21)–(4.23) with an initial

value N(τ, τ, h, ψ, ϕ) = (h, ψ, ϕ), and Mµ,ε(τ) is the cross-section of Mµ,ε for t = τ :

Mµ,ε(τ) = {(u(ψ, ϕ, βτ, ατ, µ, ε), ψ, ϕ) : (ψ, ϕ) ∈ T
′
1 × T1}.

Inequalities (5.26) and (5.27) assure the exponential attraction of all solutions
of (4.21)–(4.23) that start at t = t0 from a small neighborhood of the unperturbed
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manifold h = 0 to solutions on the perturbed manifold Mµ,ε with the rate of
attraction, which is independent on µ ∈ (0, µ0], ε ∈ (0, ε0], α ≥ α∗.

Corollary 1. The system (4.7)–(4.8) has the integral manifold

M
0
µ,ε = {(z0(ψ) + µ2Φ(ψ)u0(ψ, βt, µ) + εµ2Φ(ψ)u1(ψ, ϕ, βt, αt, µ, ε)

+ε2µΦ(ψ)u2(ψ, ϕ, βt, αt, µ, ε), ψ, ϕ, t) : (ψ, ϕ) ∈ T1 × T
′
1, t ∈ R}.

6. Investigation of the system on the manifold . Substituting the expression
for the invariant manifold (5.1) into the equations (4.22)–(4.23), we obtain the
system on the manifold

dψ

dt
= β0 + µ2pT (ψ)G(z0(ψ), βt) + µ4S11(ψ, βt, µ)

+εµ2S12(ψ, ϕ, βt, αt, µ, ε)) + ε2µS13(ψ, ϕ, βt, αt, µ, ε), (6.1)

dϕ

dt
= α0 + µ2S21(ψ, βt, µ) + εµ2S22(ψ, ϕ, βt, αt, µ, ε) +

+ε2µS23(ψ, ϕ, βt, αt, µ, ε), (6.2)

where Cl−4-smooth functions Sj , j = 1, 2, 3 are periodic in ψ, ϕ, βt, αt.
Now we assume that the frequencies β0 and β are close to each other

β − β0 = µ2∆.

In the system (6.1)–(6.2), we change the variables according to the formula

ψ = βt+ ψ1

and obtain the following system

dψ1

dt
= −µ2∆ + µ2pT (βt+ ψ1)G(z0(βt+ ψ1), βt) + µ4S11(βt+ ψ1, βt, µ)

+εµ2S12(βt+ ψ1, ϕ, βt, αt, µ, ε) + ε2µS13(βt+ ψ1, ϕ, βt, αt, µ, ε), (6.3)

dϕ

dt
= α0 + µ2S21(βt+ ψ1, βt, µ) + εµ2S22(βt+ ψ1, ϕ, βt, αt, µ, ε)

+ε2µS23(βt+ ψ1, ϕ, βt, αt, µ, ε). (6.4)

Performing now the change of variables

ψ1 = ψ2 +
µ2

β

∫ βt

0

[pT (ξ + ψ1)G(z0(ξ + ψ1), ξ) −G(ψ1)]dξ,

ϕ = ϕ2 +
µ2

β

∫ βt

0

[S21(ξ + ψ1, ξ, µ) − S21(ψ1, µ)]dξ,

where

G(ψ1) :=
1

2π

∫ 2π

0

pT (ξ + ψ1)G(z0(ξ + ψ1), ξ)dξ,

S̄21(ψ1, µ) :=
1

2π

∫ 2π

0

S21(ξ + ψ1, ξ, µ)dξ,
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the system (6.3)–(6.4) takes the form

dψ2

dt
= −∆µ2 + µ2G(ψ2) + µ4S̃11(ψ2, βt, µ)

+εµ2S̃12(ψ2, ϕ2, βt, αt, µ, ε) + ε2µS̃13(ψ2, ϕ2, βt, αt, µ, ε), (6.5)

dϕ2

dt
= α0 + µ2S̄21(ψ2, µ) + µ4S̃21(ψ2, βt, µ)

+εµ2S̃22(ψ2, ϕ2, βt, αt, µ, ε) + ε2µS̃23(ψ2, ϕ2, βt, αt, µ, ε), (6.6)

where the functions in the right hand side areCl−4-smooth and periodic in θ1, ϕ1, βt, αt.
Together with (6.5)–(6.6) we consider the averaged system

dψ2

dt
= −∆µ2 + µ2G(ψ2), (6.7)

dϕ2

dt
= α0 + µ2S̄21(ψ2, µ). (6.8)

Denote

G− := min
ξ∈[0,2π]

G(ξ), G+ := max
ξ∈[0,2π]

G(ξ).

Then for ∆ = (β − β0)/µ
2 ∈ [G−, G+] the equation

∆ = G(ξ)

has real solutions.
Assume that ∆ is a regular value of the map G, i.e. all pre-images ξ = ϑ0

j of

∆ by G(ξ) are non-degenerate G′(ϑ0
j ) 6= 0. Then the number of pre-images is finite

and even due to the periodicity of G(ξ). The signs of every two sequential values
G′(ϑ0

j ) and G′(ϑ0
j+1) are opposite

G′(ϑ0
2k−1) = αk > 0, G′(ϑ0

2k) = −βk < 0, k = 1, ..., N.

At every interval (ϑ0
2k−1, ϑ

0
2k) the function G(θ) − ∆ is positive and

min
θ∈[ϑ0

2k−1
+δ,ϑ0

2k
−δ]

G(θ) > ∆

for every sufficiently small δ.
Analogously, at every interval (ϑ0

2k, ϑ
0
2k+1) the function G(θ)−∆ is negative and

max
θ∈[ϑ0

2k
+δ,ϑ0

2k+1
−δ]

G(θ) < ∆

for every sufficiently small δ. Due to the periodicity of G(θ) we identify ϑ0
2N+1 with

ϑ0
1 and ϑ0

0 with ϑ0
2N .

The averaged system (6.7)–(6.8) has 2N one-dimensional invariant manifolds

Π0
j = {(ϑ0

j , ϕ2) : ϕ2 ∈ T1}.

The system on the manifold Π0
j reduces to

dϕ2

dt
= α0 + µ2S̄21(ϑ

0
j , µ).

Manifolds Π0
2k, k = 1, ..., N, are exponentially stable and manifolds Π0

2k−1, k =
1, ..., N, are exponentially unstable.
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Lemma 6.1. There exist µ0 > 0 and c0 > 0 such that for all 0 < µ ≤ µ0 and
ε ≤ c0

√
µ the system (6.5)–(6.6) has 2N integral manifolds

Πj =
{
(ψ2, ϕ2, t) : ψ2 = ϑ0

j + vj(ϕ2, βt, αt, µ, ε), ϕ2 ∈ T1, t ∈ R
}
,

where

vj = µ2vj0(βt, µ) + εvj1(ϕ2, βt, αt, µ, ε) +
ε2

µ
vj2(ϕ2, βt, αt, µ, ε),

with Cl−4 smooth, periodic in ϕ2, βt, αt functions vjk, such that ‖vjk‖Cl−4 ≤ M3

with the constant M3 independent on α, µ, ε.
The manifolds Π2k, k = 1, ..., N, are exponentially stable in the following sense:

there exists δ0 such that if |ψ20−ϑ0
2k| ≤ δ0 and ϕ0 ∈ T1, then there exists an unique

ϕ01 such that for t ≥ t0 the following inequality holds

|ψ2(t, t0, ψ20, ϕ0) − ψ2(t, t0, ϑ
0
2k + v2k(ϕ01, βt0, αt0, µ, ε), ϕ01)|

+|ϕ2(t, t0, ψ20, ϕ0) − ϕ2(t, t0, ϑ
0
2k + v2k(ϕ01, βt0, αt0, µ, ε), ϕ01)|

≤ L2e
−µ2κ2(t−t0)

(
|ϕ0 − ϕ01| + |ψ20 − ϑ0

2k − v2k(ϕ01, βt0, αt0, µ, ε)|
)
,(6.9)

where constants L2 ≥ 1 and κ2 > 0 are independent on α, µ, and ε.
The manifolds Π2k−1, k = 1, ..., N, are exponentially unstable in the following

sense: there exists δ0 such that if |ψ20 − ϑ0
2k−1| ≤ δ0 and ϕ0 ∈ T1, then there exists

a unique ϕ01 such that for t ≤ t0 the following inequality holds

|ψ2(t, t0, ψ20, ϕ0) − ψ2(t, t0, ϑ
0
2k−1 + v2k−1(ϕ01, βt0, αt0, µ, ε), ϕ01)|

+|ϕ2(t, t0, ψ20, ϕ0) − ϕ2(t, t0, ϑ
0
2k−1 + v2k−1(ϕ01, βt0, αt0, µ, ε), ϕ01)|

≤ L3e
µ2κ3(t−t0)

(
|ϕ0 − ϕ01| + |ψ20 − ϑ0

2k−1 − v2k−1(ϕ01, βt0, αt0, µ, ε)|
)
,(6.10)

where constants L3 ≥ 1 and κ3 > 0 are independent on α, µ, and ε.

Proof. Setting ζ1 = βt, ζ2 = αt in (6.5)–(6.6) we obtain the following au-
tonomous system on 4-dimensional torus T4 :

dψ2

dt
= −∆µ2 + µ2G(ψ2) + µ4S̃11(ψ2, ζ1, µ)

+εµ2S̃12(ψ2, ϕ2, ζ1, ζ2, µ, ε) + ε2µS̃13(ψ2, ϕ2, ζ1, ζ2, µ, ε), (6.11)

dϕ2

dt
= α0 + µ2S̄21(ψ2, µ) + µ4S̃21(ψ2, ζ1, µ)

+εµ2S̃22(ψ2, ϕ2, ζ1, ζ2, µ, ε) + ε2µS̃23(ψ2, ϕ2, ζ1, ζ2, µ, ε), (6.12)

dζ1
dt

= β,
dζ2
dt

= α. (6.13)

Let us consider a neighborhood of the point ψ2 = ϑ0
2k where k ∈ {1, ..., N}.

Neighborhoods of points ψ2 = ϑ0
2k−1, k = 1, ..., N, are considered analogously. In

system (6.11)–(6.13), we change the variables ψ2 = ϑ0
2k + b1 and introduce the new
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time τ = µ2t

db1
dτ

= −βkb1 + Ḡ2(b1)b
2
1 + µ2S̃11(ϑ

0
2k + b1, ζ1, µ)

+εS̃12(ϑ
0
2k + b1, ϕ2, ζ1, ζ2, µ, ε) +

ε2

µ
S̃13(ϑ

0
2k + b1, ϕ2, ζ1, ζ2, µ, ε),(6.14)

dϕ2

dτ
=
α0

µ2
+ S̄21(ϑ

0
2k + b1, µ) + µ2S̃21(ϑ

0
2k + b1, ζ1, µ)

+εS̃22(ϑ
0
2k + b1, ϕ2, ζ1, ζ2, µ, ε) +

ε2

µ
S̃23(ϑ

0
2k + b1, ϕ2, ζ1, ζ2, µ, ε),(6.15)

dζ1
dτ

=
β

µ2
,

dζ2
dτ

=
α

µ2
, (6.16)

where Ḡ2(b1)b
2
1 := (G(ϑ0

2l + b1) − ∆) + βkb1.
Extending the system (6.14)–(6.16) by introducing new parameters η1, η2, η3

and χ we obtain the system

db1
dτ

= −βkb1 + Ḡ2(b1)b
2
1 + η1S̃11(ϑ

0
2k + b1, ζ1, µ)

+η2S̃12(ϑ
0
2k + b1, ϕ2, ζ1, ζ2, µ, ε) + η3S̃13(ϑ

0
2k + b1, ϕ2, ζ1, ζ2, µ, ε),(6.17)

dϕ2

dτ
= χα0 + S̄21(ϑ

0
2k + b1, µ) + η1S̃21(ϑ

0
2k + b1, ζ1, µ)

+η2S̃22(ϑ
0
2k + b1, ϕ2, ζ1, ζ2, µ, ε) + η3S̃23(ϑ

0
2k + b1, ϕ2, ζ1, ζ2, µ, ε),(6.18)

dζ1
dτ

= χβ,
dζ2
dτ

= χα, (6.19)

which coincides with (6.14)–(6.16) for η1 = µ2, η2 = ε, η3 = ε2/µ, χ = 1/µ2. We
assume that λ = (η1, η2, η1, µ, ε) ∈ Iλ0

= {λ : ‖λ‖ ≤ λ0}, and χ ≥ χ0 with some
positive λ0 and χ0.

Let βk ∈ [βm, βM ] with some constants βM ≥ βm > 0.
We consider the function space

Cl−4(T3 × Iλ0
× [χ0,∞) × [βm, βM ]) (6.20)

of bounded together with their l − 4 derivatives functions w(ϕ2, ζ1, ζ2, λ, χ, βk) de-
fined on (ϕ2, ζ1, ζ2) ∈ T3, λ ∈ Iλ0

, χ ∈ [χ0,∞), βk ∈ [βm, βM ], and mapping

T (w) =

∫ 0

−∞

eβkξQ4(w(ϕ2ξ , ζ1ξ, ζ2ξ, λ, χ, βk), ϕ2ξ, ζ1ξ, ζ1ξ, λ)dξ,

where Q4 is the right hand side of (6.17), and ϕ2ξ = ϕ2(ξ, ϕ, ζ1, ζ2, λ), ζ1ξ = βξ+ζ1,
ζ2ξ = αξ + ζ2 is the solution of (6.18)–(6.19) for b1 = w(ϕ2, ζ1, ζ2, λ, χ, βk).

One can verify that the mapping T (w) maps the space (6.20) into itself.
Analogously to the proof of Lemma 5.1, we apply the fiber contraction theorem

and show that there exists a unique fixed point

w = η1vk1(ζ1, χ, λ) + η2vk2(ϕ2, ζ1, ζ2, χ, λ) + η3vk3(ϕ2, ζ1, ζ2, χ, λ) (6.21)

of T (w) in the neighborhood of (0, 0) ∈ Cl−4(T′
1 × T3) × Iλ0

.
Functions in right-hand side of (6.21) areCl−4 smooth and 2π-periodic in ϕ2, ζ1, ζ2,

such that ‖vkj‖Cl−4 ≤ M2, where positive constant M2 does not depend on λ, χ
and βk.
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Respectively, there exist µ0 > 0 and c0 > 0 such that for all 0 < µ ≤ µ0 and
ε ≤ c0

√
µ the system (6.14)–(6.16) possesses the invariant manifold

b1 = µ2vk1(ζ1, µ) + εvk2(ϕ2, ζ1, ζ2, µ, ε) +
ε2

µ
vk3(ϕ2, ζ1, ζ2, µ, ε). (6.22)

Here we have used the same notations vk1, vk2, and vk3 for the functions depending
on parameters λ, µ in (6.21) and the corresponding functions depending on µ, ε in
(6.22).

Therefore the system (6.5)–(6.6) has 2N integral manifolds

Πj = {(ϑ0
j + µ2vj0(βt, µ) + εvj1(ϕ2, βt, αt, µ, ε) +

+
ε2

µ
vj2(ϕ2, βt, αt, µ, ε) : ϕ2 ∈ T1, t ∈ R}.

The manifolds Π2k, k = 1, ..., N, are asymptotically stable [13, 19], i.e. there exists
ν0 = ν0(µ0, c0) such that if ρ((ψ20, ϕ20),Π2k(t0)) ≤ ν0 at time t0 then there is a
unique ϕ̃20 such that

|ψ2(t, t0, ψ20, ϕ20) − ψ2(t, t0, ϑ
0
2k + v2k(ϕ̃20, βt0, αt0, µ, ε), ϕ̃20)|

+|ϕ2(t, t0, ψ20, ϕ20) − ϕ2(t, t0, ϑ
0
2k + v2k(ϕ̃20, βt0, αt0, µ, ε), ϕ̃20)|

≤ L3e
−µ2κ3(t−t0)

(
|ϕ20 − ϕ̃20| + |ψ20 − ϑ0

2k − v2k(ϕ̃20, βt0, αt0, µ, ε)|
)
,(6.23)

where t ≥ t0, constants L3 ≥ 1 and κ3 > 0 are independent on µ, ε, α, ρ(., .) is
metric in R × T1, Π2k(t0) is the cross-section of Π2k for t = t0.

Since the function b1 = v2k(ϕ2, ζ1, ζ2, µ, ε) is a smooth invariant manifold of
(6.14)–(6.16) we obtain

∂v2k
∂ϕ2

(

α0

µ2
+ S̄21(ϑ

0
2k + v2k, µ) + µ2S̃21(ϑ

0
2k + v2k, ζ1, µ) +

+εS̃22(ϑ
0
2k + v2k, ϕ2, ζ1, ζ2, µ, ε) +

ε2

µ
S̃23(ϑ

0
2k + v2k, ϕ2, ζ1, ζ2, µ, ε)

)

+
∂v2k
∂ζ1

β

µ2
+
∂v2k
∂ζ2

α

µ2
= −βkv2k + Ḡ2(v2k)v

2
2k + µ2S̃11(ϑ

0
2k + v2k, ζ1, µ)

+εS̃12(ϑ
0
2k + v2k, ϕ2, ζ1, ζ2, µ, ε) +

ε2

µ
S̃13(ϑ

0
2k + v2k, ϕ2, ζ1, ζ2, µ, ε). (6.24)

Taking into account (6.24) and making the change of variables

b1 = v2k(ϕ2, ζ1, ζ2, µ, ε) + b2
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in (6.11)–(6.13), we obtain the following system (analogously as in the proof of
Lemma 5.1)

db2
dτ

=

[

−βk + T0b2 + µ2T1 + εT2 +
ε2

µ
T3

]

b2

dϕ2

dτ
=
α0

µ2
+ S̄21(ϑ

0
2k + v2k + b2, µ) + µ2S̃21(ϑ

0
2k + v2k + b2, ζ1, µ)

+εS̃22(ϑ
0
2k + v2k + b2, ϕ2, ζ1, ζ2, µ, ε) +

ε2

µ
S̃23(ϑ

0
2k + v2k + b2, ϕ2, ζ1, ζ2, µ, ε),

dζ1
dτ

=
β

µ2
,

dζ2
dτ

=
α

µ2
,

with Cl−4-smooth functions Tj of (b2, ϕ2, ζ1, ζ2, µ, ε), periodic in ϕ2, ζ1, ζ2 and uni-
formly bounded for b2 from some neighborhood of zero.

For sufficiently small b2, µ
2, ε, and ε2/µ, we can obtain the uniform estimate

∣
∣
∣
∣
T0b2 + µ2T1 + εT2 +

ε2

µ
T3

∣
∣
∣
∣
≤ βk/2.

Therefore the following inequality holds

|b2(t)| ≤ |b2(t0)| e−µ
2 βk

2
(t−t0) (6.25)

for all b2(t0) such that |b2(t0)| ≤ b20 with some b20 > 0. Since v2k is a sum of three
terms proportional to µ2, ε, and ε2/µ respectively and b20 is independent on these
parameters, for small enough µ2, ε, and ε2/µ, it holds b20−‖v2k‖C ≥ δ0 > 0. Using
b1 = b2 +v2k, one can conclude that for all b1 with |b1| ≤ δ0 the inequality |b2| ≤ b20
and estimate (6.25) holds.

As a result, if 0 < µ ≤ µ0 and ε ≤ c0
√
µ and solution (ψ2(t), ϕ2(t)) of the system

(6.5) – (6.6) satisfies the condition |ψ2(t0) − ϑ0
2k| ≤ δ0 at initial moment of time t0

then
∣
∣ψ2(t) − ϑ0

2k − v2k(ϕ2(t), βt, αt, µ, ε)
∣
∣

≤
∣
∣ψ2(t0) − ϑ0

2k − v2k(ϕ2(t0), βt0, αt0, µ, ε)
∣
∣ e−µ

2 βk
2

(t−t0) (6.26)

for all t ≥ t0.
Inequalities (6.23) and (6.26) assure the exponential attraction of all solutions

of (6.5)–(6.6) that start at t = t0 from a small neighborhood of the unperturbed
manifold ψ2 = ϑ0

2k to solutions of the perturbed manifold Π2k according to the
estimation (6.23).

Considering the system (6.5)–(6.6) in the neighborhood of the manifolds Π2k−1,
k = 1, . . . , N , we obtain similarly that these manifolds are exponentially unstable
according to (6.10).

Corollary 2. The system (6.1)–(6.2) has 2N integral manifolds

P0
j = {(βt+ ϑ0

j + ṽj(ϕ, βt, αt, µ, ε), ϕ, t) : ϕ ∈ T1, t ∈ R}, (6.27)

where the Cl−4-smooth function

ṽj = µ2ṽj0(βt, µ) + εṽj1(ϕ, βt, αt, µ, ε) +
ε2

µ
ṽj2(ϕ, βt, αt, µ, ε),
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is periodic in ϕ, βt, and αt. On the manifolds (6.27), the system (6.1)–(6.2) reduces
to

dϕ

dt
= α0 + µ2S21(βt+ ϑ0

j + ṽj , βt, µ) + εµ2S22(βt+ ϑ0
j + ṽj , ϕ, βt, αt, µ, ε)

+ ε2µS23(βt+ ϑ0
j + ṽj , ϕ, βt, αt, µ, ε). (6.28)

The manifolds corresponding to j = 2k, k = 1, ..., N, are exponentially stable for t→
+∞ and the manifolds corresponding to j = 2k − 1, k = 1, ..., N, are exponentially
stable for t → −∞.

Lemma 6.2. There exist µ0 > 0 and c0 > 0 such that for all 0 < µ ≤ µ0 and
ε ≤ c0

√
µ the solutions of (6.5)–(6.6) have the following properties:

(i) if a solution (ψ2(t), ϕ2(t)) at a certain time t = t0 has the value ψ2(t0) =
ϑ0

2k−1 + δ, then it reaches the value ψ2(t0 +T ) = ϑ0
2k − δ after a finite time interval

of the length T = T (δ, µ, ε);
(ii) if a solution (ψ2(t), ϕ2(t)) at a certain time t = t0 has the value ψ2(t0) =

ϑ0
2k+1 − δ, then it reaches the value ψ2(t0 +T ) = ϑ0

2k + δ after a finite time interval

of the length T = T (δ, µ, ε). (Here we identify ϑ0
2N+1 with ϑ0

1 and ϑ0
0 with ϑ0

2N ).

Proof. Let us consider the interval (ϑ0
2k−1, ϑ

0
2k). The intervals (ϑ0

2k, ϑ
0
2k+1) can

be considered similarly. Denote

m = min
ξ∈[ϑ0

2k−1
+δ,ϑ0

2k
−δ]

(G(ξ) − ∆) > 0.

The right-hand side of (6.5) can be estimated as follows

dψ2(t)

dt
= µ2(G(ψ2) − ∆) + µ4S̃11 + εµ2S̃12 + ε2µS̃13 ≥ µ2 (m−m0) ,

where m0 = m0(µ0, c0) = sup
(

µ2S̃11 + εS̃12 + ε2

µ S̃13

)

. By choosing sufficiently

small µ0 and c0 , one can obtain m0 < m. Hence

ψ2(t) ≥ ψ2(t0) + µ2(m−m0)(t− t0),

t− t0 ≤ ψ2(t) − ψ2(t0)

µ2(m−m0)
≤
ϑ0

2k − ϑ0
2k−1

µ2(m−m0)
≤ 2π

µ2(m−m0)
= T (δ, µ, ε).

Proof of Theorem 2.1. Theorem 2.1 follows from Lemma 5.1 and the following
chain of coordinate changes: averaging transformations from section 3, (4.3), and
the local coordinates (4.15) in the neighborhood of the invariant manifold T2.

Proof of Theorem 2.2. In Lemma 6.1, the existence and local stability prop-
erties of the integral manifolds Πj , j = 1, ..., 2N have been proved. The integral
manifolds Nj correspond to the manifolds Πj after the averaging and transforma-
tions (4.3) and (4.15).

It has been proved in Theorem 2.1 that all solutions from some neighborhood of
the torus T2 are approaching the perturbed integral manifold M(α, β, γ). Therefore,
for the proof of the statement 2 of Theorem 2.2 it is enough to show that the
solutions on this manifold are approaching the solutions on one of the manifolds
Nj .

Let us fix any positive ε1. For the set S of singular values of G we define two
following sets:

B(ε1) = {g ∈ [G−, G+]; dist(g, S) ≥ ε1},
A(ε1) = {θ ∈ [0, 2π] : G(θ) ∈ B(ε1)}.
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Taking into account that the sets B(ε1) and A(ε1) are compact one can prove
that there exists a positive constant ς such that

∣
∣
∣
∣

dG(θ)

dθ

∣
∣
∣
∣
≥ ς for all θ ∈ A(ε1). (6.29)

Let us consider the system (6.5)–(6.6), which describes the dynamics on the
manifold M(α, β, γ). For any α, γ and β satisfying (2.12) and (2.13) there exists a
finite number of points ϑ0

j , j = 1, ..., 2N, (solutions of the equation β−β0 = µ2G(θ)),

which define the integral manifolds Π0
j , j = 1, ..., 2N, of the averaged system (6.7) -

(6.8). Note that number N depends on the parameters α, γ and β.
By Lemma 6.1, for fixed ∆ ∈ B(ε1), there exist µ0 > 0 and c0 > 0 such that

for all 0 < µ ≤ µ0 and ε ≤ c0
√
µ the system (6.5)–(6.6) has 2N integral manifolds

Πj . Due to the uniform estimate (6.29), it follows from the proof of Lemma 6.1
that constants µ0 > 0 and c0 > 0 can be chosen the same for all ∆ ∈ B(ε1), and
therefore for all α, γ and β satisfying (2.12) and (2.13).

All the manifolds Π2k are asymptotically stable in the sense of the formula (6.9)
and the manifolds Π2k−1, 1 ≤ k ≤ N are asymptotically unstable in the sense of
the formula (6.10). Therefore, if |ψ20 − ϑ0

2k−1| < δ0 and (ψ20, ϕ20) /∈ Π2k−1 then

|b2(t)| ≥ K2e
µ2κ2(t−t0)|b2(t0)|, t ≥ t0, (6.30)

where K2 ≥ 1, κ2 > 0 are some constants and b2(t) = ψ2(t, t0, ψ20, ϕ20, ε, µ) −
ψ2(t, t0, ϑ

0
2k−1 + εv2k−1(ϕ20, βt0, αt0, ε, µ), ϕ20, ε, µ).

It follows from (6.30) that on a finite time interval T depending on values ψ20

and µ, ε the solution (ψ2(t), ϕ2(t)) of (6.5)–(6.6), whose initial value (ψ2(t0), ϕ2(t0))
for t = t0 does not belong to the manifold Π2k−1, i.e.

ψ2(t0) 6= ϑ0
2k−1 + v2k−1(ϕ2(t0), βt0, αt0, ε, µ),

and |ψ2(t0)−ϑ0
2k−1| < δ0, reaches the boundary of δ0-neighborhood of ϑ0

2k−1, more

exactly, values ψ2(t1) = ϑ0
2k−1 − δ0 or ψ2(t2) = ϑ0

2k−1 + δ0.
Then, by Lemma 6.2, on a finite time interval, this solution reaches δ0-neighborhood

of point ϑ0
2k or, respectively, δ0-neighborhood of point ϑ0

2k+2, where δ0 is defined
from Lemma 6.1.

Next, by Lemma 6.1, as t further increases, the solution is attracted to one of
the stable integral manifolds Π2k or Π2k+2.

As a result, solutions (ψ(t), ϕ(t)) of the system (6.1) – (6.2) that, at initial point
t = t0 do not belong to the unstable integral manifolds P2k−1, k = 1, ..., N, i.e.,

ψ(t0) 6= ϑ0
2k−1 + βt0 + ṽ2k−1(ϕ(t0), βt0, αt0, µ, ε),

are attracted for t ≥ t0 to solutions (ψ̄(t), ϕ̄(t)) on one of the stable integral mani-
folds P2k

ψ̄(t) = βt+ ϑ0
2k + ṽ2k(ϕ(t), βt, αt, µ, ε),

ϕ̄(t) is a solution of system (6.28) for j = 2k,

so that

|ψ(t)−ψ̄(t)|+|ϕ(t)−ϕ̄(t)| ≤ L2e
−µ2κ2(t−T )

(
|ψ(T ) − ψ̄(T )| + |ϕ(T ) − ϕ̄(T )|

)
, t ≥ T,

for some T = T (ψ(t0), µ, ε) and some L2 ≥ 1.
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If a solution (ψ(t), ϕ(t)) of (6.1)–(6.2) at the initial point t = t0 belongs to one
of integral manifolds P2k+1 then this solution has the following form

ψ(t) = βt+ ϑ0
2k+1 + ṽ2k+1(ϕ(t), βt, αt, µ, ε),

ϕ(t) is a solution of system (6.28) for j = 2k + 1.

Using the last formulas and Lemma 5.1, we conclude that any solution (h(t), ψ(t), ϕ(t))
of (4.21) – (4.23) that starts from the ν0-neighborhood of the integral manifold T2

is attracted to one of the solutions (h̄(t), ψ̄(t), ϕ̄(t)) on the integral manifold Mµ,ε

such that

h̄(t) = u(ψ̄(t), ϕ̄(t), βt, αt, µ, ε),

ψ̄(t) = βt+ ϑ0
j + ṽj(ϕ̄(t), βt, αt, µ, ε),

ϕ̄(t) is a solution of system (6.28)

with some j, 1 ≤ j ≤ 2N. More exactly, there exist constants L ≥ 1, κ > 0 and
T = T (h(t0), ψ(t0), ϕ(t0)) ≥ t0 such that for t ≥ T :

|h(t) − u(ψ̄(t), ϕ̄(t), βt, αt, µ, ε)| + |ψ(t) − ψ̄(t)| + |ϕ(t) − ϕ̄(t)| ≤
≤ Le−κ(t−T )

(

|h(T ) − u(ψ̄(T ), ϕ̄(T ), βT, αT, µ, ε)| +

+|ψ(T ) − ψ̄(T )| + |ϕ(T ) − ϕ̄(T )|
)

.

Proof of Theorem 2.3. Under the conditions of Theorem 2.3, the conditions of
Theorem 2.2 are satisfied. Therefore, every solution (x(t), y(t)) of the system (1.1)–
(1.2) that at a certain moment of time t0 belongs to a δ-neighborhood of the torus
T2 tends to some solution on one of the integral manifolds Nj(α, β, γ), j = 1, ..., 2N.
Hence, for any ε > 0 the following inequality holds

∥
∥
∥
∥
x(t) − x0(βt+ ϑ0

j )

∥
∥
∥
∥

+

∣
∣
∣
∣
|y(t)| − |y0(βt+ ϑ0

j )|
∣
∣
∣
∣
< ǫ

with some 1 ≤ j ≤ N for all moments of time starting from T (x(t0), y(t0)).
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