
A Note on Robust Representations of

Law-Invariant Quasiconvex Functions

Samuel Drapeau∗ Michael Kupper† Ranja Reda‡

June 1, 2010

We give robust representations of law-invariant monotone quasiconvex functions.

The results are based on Jouini et al. [10] and Svindland [14], showing that law-

invariant quasiconvex functions have the Fatou property.

Key Words: Fatou property, law-invariance, risk measure, robust representation

1 Introduction

The theory of monetary risk measures dates back to the end of the twentieth century where

Artzner et al. in [1] introduced the coherent cash additive risk measures which were further

extended to the convex cash additive risk measures by Föllmer and Schied in [7] and Frittelli

and Gianin in [8]. Monetary risk measures aim at specifying the capital requirement that

financial institutions have to reserve in order to cope with severe losses from their risky financial

activities. Recently, motivated by the study of risk orders in a general framework, Drapeau

and Kupper in [4] defined risk measures as quasiconvex monotone functions. Building upon

the latter, the aim of this note is to specify the robust representation of risk measures in the

law-invariant case.

Robust representation of law-invariant monetary risk measures for bou-nded random variables

have first been studied by Kusuoka in [12], then Frittelli and Gianin in [9] and further Jouini

et al. in [10]. In a recent paper [2], Cerreia-Voglio et al. provide a robust representation for

law-invariant risk measures which are weakly1 upper semicontinuous.
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1For the weak∗ topology σ

(
L∞,L1

)
.
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In this note, we provide a robust representation of law-invariant risk measures for bounded

random variables which are norm lower semicontinuous. This is based on results by Jouini et al.

in [10] and Svindland in [14] showing that law-invariant norm closed convex sets of bounded

random variables are then Fatou closed. This robust representation takes the form

ρ (X) = sup
ψ
R

(
ψ,

∫ 1

0

q−X (s)ψ (s) ds

)
,

where R is a maximal risk function which is uniquely determined, ψ are some nondecreasing

right-continuous functions whose integral is normalized to 1, and qX is the quantile function of

the random variable X. We further provide a representation in the special case of norm lower

semicontinuous law-invariant convex cash subadditive risk measures introduced by El Karoui

and Ravanelli in [13]. Finally, we give a representation of time-consistent law-invariant mono-

tone quasiconcave functions in the spirit of Kupper and Schachermayer in [11]. We illustrate

these results by a couple of explicit computations for examples of law-invariant risk measures

given by certainty equivalents.

2 Notations, Definitions and the Fatou Property

Throughout this paper, (Ω,F ,P) is a standard probability space. We identify random variables

which are almost surely (a.s.) identical. All equalities and inequalities between random variables

are understood in the a.s. sense. As usual, L∞ := L∞ (Ω,F ,P) is the space of bounded random

variables with topological dual (L∞)∗. Following [4], a risk measure is defined as follows.

Definition 2.1 A risk measure on L∞ is a function ρ : L∞ → [−∞,+∞] satisfying for any

X,Y ∈ L∞ the axioms of

(i) Monotonicity:

ρ(X) ≥ ρ(Y ), whenever X ≤ Y,

(ii) Quasiconvexity:

ρ(λX + (1− λ)Y ) ≤ max{ρ(X), ρ(Y )}, for any 0 ≤ λ ≤ 1.

Further particular risk measures used in this paper satisfy some of the following additional

properties,

(i) cash additivity if ρ(X +m) = ρ(X)−m for any m ∈ R,

(ii) cash subadditivity if ρ(X +m) ≥ ρ(X)−m for any m ≥ 0,

(iii) convexity if ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ), for any 0 ≤ λ ≤ 1,

(iv) law-invariance if ρ (X) = ρ (Y ) whenever X and Y have the same law.
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A risk measure satisfies the Fatou property if

ρ(X) ≤ lim inf
n→∞

ρ(Xn) whenever sup
n
‖Xn‖∞ <∞ and Xn

P−→ X, (1)

where
P→ denotes convergence in probability. A reformulation of the results in [10] in the context

of quasiconvex law-invariant functions yields the following result.

Proposition 2.2 Let f : L∞ → [−∞,+∞] be a || · ||∞-lower semicontinuous, quasiconvex and

law-invariant function. Then, f is σ(L∞,L1)-lower semicontinuous and has the Fatou property.

Proof. Let C ⊂ L∞ be a || · ||∞-closed, convex, law-invariant set with polar C◦ in (L∞)∗.

In view of Proposition 4.1 in [10], it follows that C◦ ∩ L1 is σ((L∞)∗,L∞)-dense in C. Hence,

C = (C◦ ∩ L1)◦, showing that C is σ(L∞,L1)-closed.

Consider now a law-invariant, quasiconvex and || · ||∞-lower semicontinuous function f : L∞ →
[−∞,+∞]. By assumption, the level sets Am := {X ∈ L∞ | f(X) ≤ m}, m ∈ R, are || · ||∞-

closed, convex and law-invariant. Hence, Am are σ(L∞,L1)-closed, showing that f is σ(L∞,L1)-

lower semicontinuus. Finally a similar argumentation as in [3] yields the Fatou property. �

Remark 2.3 Any law-invariant, proper convex function f : L∞ → [−∞,∞] is σ(L∞,L∞)-lower

semicontinuous, see [5].

Recently, a similar result is shown in [14] in the more general setting of non-atomic probability

spaces rather than standard probability spaces.

3 Representation results for law-invariant risk measures

Throughout,

qX(t) := inf{s ∈ R|P[X ≤ s] ≥ t}, t ∈ (0, 1)

denotes the quantile function of a random variable X ∈ L∞. Further, let Ψ be the set of

nondecreasing, right-continuous functions ψ : (0, 1)→ [0,+∞) and define the subsets

Ψ1 :=

{
ψ ∈ Ψ

∣∣∣ ∫ 1

0

ψ(u) du = 1

}
,

Ψ1,s :=

{
ψ ∈ Ψ

∣∣∣ ∫ 1

0

ψ(u) du ≤ 1

}
,

and denote by Ψ∞1 and Ψ∞1,s the set of all bounded functions in Ψ1 and Ψ1,s, respectively. It

is shown in [6], Theorem 4.54, that any law-invariant cash additive risk measure ρ on L∞ that

satisfies the Fatou property has the robust representation

ρ(X) = sup
ψ∈Ψ1

(∫ 1

0

ψ(t)q−X(t) dt− αmin(ψ)

)
, X ∈ L∞, (2)

where αmin(ψ) = supX∈Aρ
∫ 1

0
ψ(t)q−X(t) dt is the minimal penalty function for the acceptance

set Aρ := {X ∈ L∞ | ρ(X) ≤ 0} .

In a first step, we derive the following representation result for law-invariant cash sub-additive

convex risk measures.

3



Proposition 3.1 Let ρ be a law-invariant cash sub-additive convex risk measure on L∞. Then

ρ has the robust representation

ρ(X) = sup
ψ∈Ψ∞1,s

(∫ 1

0

ψ(t)q−X(t) dt− αmin(ψ)

)
, X ∈ L∞,

for the minimal penalty function

αmin(ψ) = sup
X∈L∞

(∫ 1

0

ψ(t)q−X(t) dt− ρ(X)

)
, ψ ∈ Ψ1,s.

Proof. According to Theorem 4.3 in [13] it follows

ρ(X) = sup
Q∈M1,s(P)

(EQ[−X]− α̃min(Q)) ,

where α̃min(Q) = supX∈L∞(EQ[−X] − ρ(X)) and M1,s(P) denotes the set of measures Q abso-

lutely continuous with respect to P, which density satisfy E[dQ/dP] ≤ 1. By Lemma 4.55 in [6]

and the law-invariance of ρ we deduce

α̃min(Q) = sup
X∈L∞

sup
Y∼X

(EQ[−Y ]− ρ(Y ))

= sup
X∈L∞

(∫ 1

0

ψ(t)q−X(t) dt− ρ(X)

)
= αmin (ψ) ,

for any ψ ∈ Ψ1,s and Q ∈M1,s (P) with ψ = qdQ/dP. Finally, under consideration of Remark 2.3

and Lemma 4.55 in [6], it follows

ρ(X) = sup
Q∈M∞1,s(P)

(EQ[−X]− α̃min(Q))

= sup
Q∈M∞1,s(P)

sup
Q̃∼Q

(
EQ̃[−X]− α̃min(Q̃)

)
= sup
ψ∈Ψ∞1,s

(∫ 1

0

ψ(t)q−X(t)dt− αmin(ψ)

)
,

where M∞1,s(P) are those elements in M1,s(P) with a bounded Radon-Nikodým derivative. �

As a second step, we state our main result: a quantile representation for || · ||∞-lower semicon-

tinuous law-invariant risk measures. Beforehand, as in [4], we define the class of maximal risk

functions Rmax as the set of functions R : Ψ1 × R→ [−∞,+∞] which

(i) are nondecreasing and left-continuous in the second argument,

(ii) are jointly quasiconcave,

(iii) have a uniform asymptotic minimum, that is,

lim
s→−∞

R (ψ1, s) = lim
s→−∞

R (ψ2, s)

for any ψ1, ψ2 ∈ Ψ1,
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(iv) right-continuous version R+ (ψ, s) := infs′>sR (ψ, s′), are σ
(
L1,L∞

)
-upper semicontinous

in the first argument.

Theorem 3.2 Let ρ : L∞ → [−∞,+∞] be a risk measure which is || · ||∞-lower semicontinuous.

Then, there exists a unique maximal risk function R ∈ Rmax such that

ρ(X) = sup
ψ∈Ψ1

R

(
ψ,

∫ 1

0

q−X(t)ψ(t) dt

)
, X ∈ L∞

where

R (ψ, x) = sup
m∈R

{
m
∣∣∣ αmin (ψ,m) < x

}
, ψ ∈ Ψ1

for

αmin(ψ,m) = sup
X∈Am

∫ 1

0

q−X(t)ψ(t) dt

and Am = {X ∈ L∞ | ρ(X) ≤ m}.

The proof of the previous theorem is based on the following proposition.

Proposition 3.3 Suppose that A ⊂ L∞ is law-invariant, ‖ · ‖∞-closed, convex and such that

A+ L∞+ ⊂ A. Then

X ∈ A ⇐⇒
∫ 1

0

q−X(t)ψ(t) dt ≤ αmin(ψ) for all ψ ∈ Ψ1, (3)

where

αmin(ψ) := sup
X∈A

∫ 1

0

q−X(t)ψ(t) dt, ψ ∈ Ψ1.

Proof. Associated to the set A we define

ρA(X) := inf {m ∈ R | X +m ∈ A} , X ∈ L∞.

The function ρA : L∞ → [−∞,+∞] is a law-invariant, convex risk measure. Since

{X ∈ L∞ | ρA(X) ≤ m} = A−m, (4)

which by Proposition 2.2 is σ(L∞,L1)-closed, it follows that ρA is σ(L∞,L1)-l.s.c.. Moreover,

one of the following cases must be valid:

(i) A = ∅, ρA ≡ +∞ and αmin ≡ −∞;

(ii) A = L∞, ρA ≡ −∞ and αmin ≡ +∞;

(iii) A 6= ∅ and A 6= L∞, in which case ρA is real valued. Indeed, if there is X,Y ∈ L∞

such that X ∈ A and Y 6∈ A, then there is n ∈ R such that X + n 6∈ A showing that

ρA(X) ∈ R. By monotonicity and translation invariance of ρA, it follows that ρA(Z) ∈ R
for all Z ∈ L∞.

5



For the cases (i) and (ii), the equivalence (3) is obvious. As for the third case, it follows from

(2) that

ρA(X) = sup
ψ∈Ψ1

(∫ 1

0

q−X(t)ψ(t)dt− αmin(ψ)

)
,

which together with (4) implies (3). �

We are now ready for the proof of Theorem 3.2.

Proof. The risk acceptance family A = (Am)m∈R defined as

Am := {X ∈ L∞ | ρ(X) ≤ m} ,

are law-invariant, ||·||∞-closed, convex and such that A+L∞+ ⊂ A. Thus, Proposition 3.3 implies

X ∈ Am ⇐⇒
∫ 1

0

q−X(t)ψ(t)dt− αmin(ψ,m) ≤ 0 for all ψ ∈ Ψ1, (5)

for the family of penalty functions

αmin(ψ,m) = sup
X∈Am

∫ 1

0

q−X(t)ψ(t) dt, ψ ∈ Ψ1.

Since for all X ∈ L∞

ρ (X) = inf
{
m ∈ R

∣∣∣ X ∈ Am} , (6)

it follows from (5) that

ρ (X) = inf

{
m ∈ R

∣∣∣ ∫ 1

0

q−X(t)ψ(t) dt ≤ αmin(ψ,m) for all ψ ∈ Ψ1

}
. (7)

The goal is to show that

ρ (X) = sup
ψ∈Ψ1

inf
m∈R

{
m
∣∣∣ ∫ 1

0

q−X(t)ψ(t) dt ≤ αmin(ψ,m)

}
. (8)

To begin with, the equation (7) implies:

ρ (X) ≥ sup
ψ∈Ψ1

inf
m∈R

{
m
∣∣∣ ∫ 1

0

q−X(t)ψ(t) dt ≤ αmin(ψ,m)

}
.

As for the reverse inequality, suppose that ρ (X) > −∞, otherwise (8) is trivial, and fix m0 <

ρ(X). Define C = {Y ∈ L∞ | ρ(Y ) ≤ m0}, which is law-invariant, ‖ · ‖∞-closed, convex, such

that C + L∞ ⊂ C. Thus, Proposition 3.3 yields

Y ∈ C ⇐⇒
∫ 1

0

q−Y (t)ψ(t) dt ≤ αC(ψ) for all ψ ∈ Ψ1, (9)

for the penalty function αC(ψ) = supY ∈C
∫ 1

0
q−Y (t)ψ(t) dt. Since X 6∈ C, it follows from (9) that

there is ψ∗ ∈ Ψ1 such that∫ 1

0

q−X(t)ψ∗(t) dt > αC(ψ∗) ≥
∫ 1

0

q−Y (t)ψ∗(t) dt for all Y ∈ C. (10)
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Since Am ⊂ C for all m ≤ m0 and therefore αmin(ψ∗,m) ≤ αC(ψ∗), it follows∫ 1

0

q−X(t)ψ∗(t) dt− αmin(ψ∗,m) ≥ ∫ 1

0

q−X(t)ψ∗(t) dt− sup
Y ∈C

∫ 1

0

q−Y (t)ψ∗(t) dt > 0. (11)

Hence,

m0 ≤ sup
ψ∈Ψ1

inf
m∈R

{
m
∣∣∣ ∫ 1

0

q−X(t)ψ(t) dt ≤ αmin (ψ,m)

}
. (12)

Since (12) holds for all m0 < ρ(x) we deduce

ρ (X) ≤ sup
ψ∈Ψ1

inf
m∈R

{
m
∣∣∣ ∫ 1

0

q−X(t)ψ(t) dt ≤ αmin (ψ,m)

}
,

and (8) is established.

Let R (ψ, x) := supm∈R

{
m
∣∣∣ αmin (ψ,m) < x

}
be the left-inverse of αmin. Then

ρ(X) = sup
ψ∈Ψ1

R

(
ψ,

∫ 1

0

q−X(t)ψ(t) dt

)
for all X ∈ L∞. (13)

The proof of the existence is completed. The uniqueness follows from a similar argumentation

as in [4]. �

4 Time-consistent law-invariant quasiconcave functions

As an application of Proposition 2.2 we discuss an extension of the representation results for time-

consistent law-invariant strictly monotone functions given in [11]. In this subsection, we work on a

standard filtered probability space2 (Ω,F , (Ft)t∈N0 ,P). We fix −∞ ≤ a < b ≤ +∞ and denote by

L∞t (a, b) and L∞ (a, b) the set of all random variables X such that a < ess inf X ≤ ess supX < b

and which are Ft-measurable and F-measurable, respectively. A function c0 : L∞(a, b)→ R is

(i) normalized on constants if c0(m) = m for all m ∈ (a, b);

(ii) strictly monotone if X ≥ Y and P[X > Y ] > 0 imply c0(X) > c0(Y );

(iii) time-consistent if for any t ∈ N there exists a mapping ct : L∞(a, b) → L∞t (a, b) which

satisfies the local property, that is, for any X,Y ∈ L∞(a, b)

1AX = 1AY implies 1Act(X) = 1Act(Y ) for all A ∈ Ft, (14)

and

c0(X) = c0(ct(X)) for all X ∈ L∞(a, b). (15)

2Recall that a standard filtered probability space is isomorphic to
(
[0, 1]N0 ,B([0, 1]N0 ), (Ft)t∈N0

, λN0
)

where

B([0, 1]N0 ) is the Borel sigma-algebra, λN0 is the product of Borel measures, and (Ft)t∈N0
is the filtration

generated by the coordinate functions.
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Under the additional assumtion of quasiconcavity we deduce as a corallary of Theorem 1.4 in

[11]:

Theorem 4.1 A function c0 : L∞(a, b) → R is normalized on constants, strictly monotone,

|| · ||∞-continuous, law-invariant, time-consistent and quasiconcave if and only if

c0(X) = u−1 ◦ E [u(X)] , (16)

for an increasing, concave function u : (a, b)→ R. In this case, the function u is uniquely defined

up to positive affine transformations, and

ct(X) = u−1 ◦ E [u(X) | Ft] for all t ∈ N. (17)

Proof. Fix a compact interval [A,B] ⊂ (a, b). Since L∞[A,B] := {X ∈ L∞ | A ≤ X ≤ B} is

|| · ||∞-closed in L∞, it follows that

cA,B0 (X) :=

{
c0(X) if X ∈ L∞[A,B]

−∞ else
, X ∈ L∞,

is law-invariant, quasiconcave and || · ||∞-upper semicontinuous. Due to Proposition 2.2, the

function cA,B0 has the Fatou property and consequently the condition (C) in [11] is satisfied.

Hence, by Theorem 1.4 in [11] there is uA,B : (A,B)→ R such that

cA,B0 (X) = u−1
A,B ◦ E [uA,B(X)] , X ∈ L∞(A,B).

Exhausting (a, b) by increasing compact intervals, as in the proof of the “only if”-part of Theorem

1.4 in [11], yields u : (a, b) → R such that c0(X) = u−1 ◦ E[u(X)] for all X ∈ L∞(a, b). Finally,

it is shown in Lemma 2 in [2] that c0 is quasiconcave if and only if u is concave. �

5 Examples

The certainty equivalent of a random variable provides a typical example of a law-invariant risk

measure which is not necessarily convex nor cash additive. Let l : R → ]−∞,+∞] be a loss

function, that is, a lower semicontinuous proper convex nondecreasing function. By l−1 : R →
[−∞,+∞[ we denote the left inverse of l given by

l−1 (s) = inf
{
x ∈ R

∣∣ l (x) ≥ s
}
, s ∈ R.

We further denote by l (x+) := limt↘x l (t) for x ∈ R the right-continuous version of l. By

Proposition B.2 in [4], we have

l−1 (s) ≤ x ⇐⇒ s ≤ l (x+) . (18)

We now define the risk measure

ρ (X) := l−1E [l (−X)] , X ∈ L∞, (19)
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with convention that l−1 (+∞) = lims→+∞ l−1 (s). In [2, 4] it is shown that ρ is a risk measure.

Note that in [2], it is assumed that l : R → R and increasing, and therefore does not include

some of the examples below. In [4], a constructive method is given to compute the robust rep-

resentation. To be self contained, we present this method in the law-invariant context hereafter.

For simplicity we suppose that l is differentiable on the interior of its domain and first compute

the minimal penalty function at any risk level m. From relation (18) follows

αmin (ψ,m) = sup
X∈Am

∫ 1

0

q−X(s)ψ (s) ds

= sup
{X | ∫ 1

0
l(q−X(s))ds≤l(m+)}

∫ 1

0

q−X(s)ψ (s) ds

= sup
X∈L∞

∫ 1

0

[
q−X(s)ψ (s)− 1

β

(
l (q−X(s))− l (m+)

)]
ds.

(20)

for some Lagrange multiplier β := β (ψ,m) > 0. The first order conditions implies

ψ − 1

β
l′
(
q−X̂

)
= 0 ⇐⇒ q−X̂ = h (βψ) ,

for the optimizer q−X̂ of (20) where h denotes the left inverse of l′ as it is nondecreasing.

Therefore, β is determined through the equation∫ 1

0

l
(
h
(
βψ (s)

))
ds = l(m+). (21)

Plugging the optimizer q−X̂ in (20) yields

α (ψ,m) =

∫ 1

0

h (β (ψ,m)ψ (s))ψ (s) ds. (22)

We subsequently list closed form solutions for some specific l whereby we explicit the computa-

tions only for the first one.

• Quadratic Functional: Suppose that l (x) = x2/2 + x for x ≥ −1 and l (x) = −1/2

elsewhere. In this case, E [l (−X)] corresponds to a monotone version of the mean-variance

risk measure of Markowitz. Here, l−1 (s) =
√

2s+ 1− 1 if s ≥ −1/2 and −∞ elsewhere,

therefore

ρ (X) :=


√

2E
[
−X +

X2

2

]
+ 1− 1 if E [−X] +

1

2
E
[
X2
]
≥ −1

2

−∞ else

. (23)

Direct computations yields l′ (x) = x+ 1 for x ≥ −1 and l′ (x) = 0 elsewhere, h (s) = s− 1

for s ≥ 0 and h (s) = +∞ elsewhere implying l (h (s)) = 1/2
(
s2 − 1

)
for s ≥ 0 and

l (h (s)) = −1/2 elsewhere. From relation (21) follows β (ψ,m) = (m+ 1) /(
∫ 1

0
ψ(s)2 ds)1/2.

Plugging into relation (22) yields

α (ψ,m) =

∫ 1

0

β (ψ,m)ψ(s)2 ds− 1 = (1 +m)

(∫ 1

0

ψ(s)2ds

)1/2

− 1
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for m ≥ −1 and α (ψ,m) = −1 otherwise. Inverting yields

R (ψ, s) = (s+ 1) /(

∫ 1

0

ψ(s)2ds)1/2 − 1

if s > 1, and R (ψ, s) = −∞ elsewhere, and therefore

ρ (X) = sup
ψ∈Ψ1


∫ 1

0
q−X (s)ψ (s) ds+ 1(∫ 1

0
ψ(s)2ds

)1/2

∣∣∣∣∣
∫ 1

0

q−X (s)ψ (s) ds > 1

 . (24)

• Exponential Function: If l (x) = ex − 1, then

ρ (X) := ln
(
E
[
e−X

])
= sup
ψ∈Ψ1

{∫ 1

0

(
q−X (s)ψ (s)− ψ(s) logψ(s)

)
ds

}
. (25)

• Logarithm Function: If l (x) = − ln (−x) for x < 0 and l = −∞ elsewhere, then

ρ (X) := − exp (E [ln (X)])

= sup
ψ∈Ψ1

 1

exp
(∫ 1

0
lnψ(s) ds

) ∫ 1

0

q−X (s)ψ (s) ds

 . (26)

• Power Functions: If l (x) = −(−x)1−γ/ (1− γ) for x ≤ 0 and l = −∞ elsewhere whereby

0 < γ < 1, we obtain

ρ (X) = sup
ψ∈Ψ1

{(∫ 1

0

ψ(s)
γ−1
γ ds

) γ
1−γ ∫ 1

0

q−X (s)ψ (s) ds

}
. (27)
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