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Summary. We broaden the theoretical basis for generating scenario trees in multi-
stage stochastic programming based on stability analysis. Numerical experience for
constructing trees of demand and price scenarios in electricity portfolio management
of a municipal power utility is also provided.

1 Introduction

Many solution methods for stochastic programming models in finance and
energy rely on approximating the underlying probability distribution P by a
probability measure based on a finite number of scenarios (or atoms). In case
of multi-stage models scenarios have to satisfy certain constraints due to the
nonanticipativity of decisions. Such constraints lead to tree-structured scenar-
ios. Hence, designing approximation schemes for multi-stage models requires
the generation of scenarios as well as of trees.

There is a variety of methods for generating scenarios (see also the intro-
ductory overview [Röm10]), namely,
- Monte Carlo methods (applied to statistical models or data) [Sha03b],
- Quasi-Monte Carlo methods (see [Lem09] for a recent exposition),
- optimal quantization methods for probability measures (see [GL00]),
- quadrature rules using sparse grids (e.g. [CM08])
based on the underlying probability distribution P . In general, however, the
generated scenarios will not exhibit tree structure.

Presently, there exist several approaches for generating such scenario trees.
In a number of cases the tree structure is (partially) predetermined and sce-
narios are generated sequentially by (conditional) random sampling [Dem04,
Kou01, Sha03a] or Quasi-Monte Carlo sampling [Pen09]. Alternatively, sce-
narios are generated by using bound-based constructions [Fra96, Kuh05], using
optimization methods such that certain moments are matched [HW01, GRS04]
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or such that a best approximation of P is obtained in terms of a suitable prob-
ability metric [Pfl01, HP07]. We also refer to [DCW00] and the references
therein for an overview on scenario tree generation.

The approach to scenario tree generation presented in the following does
not require restrictive conditions on P . It starts with a number of scenarios
generated by one of the methods mentioned above. The branching structure
of the tree is not predetermined, but automatically detected by the algorithms
such that a good approximation of P measured in terms of the closeness of op-
timal values is obtained. The whole approach is based on a quantitative stabil-
ity analysis of (linear) multi-stage stochastic programs (see [HRS06, HR10]).
The algorithms rely on applying scenario reduction sequentially over time
and are first analyzed in [HR09a]. In the present paper we review parts of our
earlier work in Sections 2 and 4, develop new convergence results in Section
3 and report on an application to the electricity portfolio management of a
municipal power company in Section 5. Readers which are mainly interested
in algorithms and their application may skip Sections 2 and 3.

To state the mathematical optimization model, let the periods of the time
horizon be denoted t = 1, . . . , T and ξ = (ξt)

T
t=1 be an R

d-valued stochastic
process on some probability space (Ω,F , P). The filtration (Ft(ξ))

T
t=1 associ-

ated to ξ is defined by Ft(ξ) := σ(ξt) with ξt = (ξ1, . . . , ξt) for t = 1, . . . , T .
We assume that F1 = {∅, Ω} and ξt ∈ Lr(Ω,F , P), i.e. E(|ξt|

r) < +∞ for
every t = 1, . . . , T and some r ≥ 1. By P = P ξ−1 we denote the probabil-
ity distribution of ξ and by Pt its t-th marginal probability distribution for
t = 1, . . . , T , i.e.,

Pt(Bt) = P ξ−1(Ξ1 × · · · × Ξt−1 × Bt × Ξt+1 × · · · × ΞT ) (Bt ∈ B(Ξt))

where Ξt ⊆ R
d denotes the support of ξt and B(Ξt) the σ-field of its Borel

subsets. In particular, Ξ1 denotes the singleton Ξ1 = {ξ1}.
A linear multi-stage stochastic program can be written as

min

{

E

(

T
∑

t=1

〈bt(ξt), xt〉
)

∣

∣

∣

∣

xt = xt(ξ1, ..., ξt), xt ∈ Xt,
At,0xt + At,1(ξt) = ht(ξt)

(t = 1, ..., T )

}

(1)

where xt is an R
mt-valued decision vector for time period t. The latter is

a Borel measurable function depending (only) on (ξ1, . . . , ξt) ∈ ×t
τ=1Ξτ =

Ξt, i.e. it depends on the data observed until time t (non-anticipativity). In
particular, the components of x1 are here and now decisions since x1 may only
depend on ξ1 which was assumed to be deterministic. The decisions are subject
to constraints: each xt has to be chosen within a given polyhedral set Xt.
Moreover, there are dynamic constraints involving matrices At,τ , τ ∈ {0, 1},
and right-hand sides ht. The matrices At,1(·), the cost coefficients bt(·) and
right-hand sides ht(·) may depend on ξt in an affinely linear way. E denotes
expectation with respect to P, i.e., the objective corresponds to the expected
total costs of a decision vector (x1, . . . , xT ).
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2 Stability of multi-stage stochastic programs

Studying stability of the multi-stage stochastic program (1) consists in re-
garding it as an optimization problem in the infinite dimensional linear space
×T

t=1Lr′(Ω,F , P; Rmt). This is a Banach space when endowed with the norm

‖x‖r′ :=

(

T
∑

t=1
E

[

|xt|
r′]

)1/r′

for r′ ∈ [1,+∞),

‖x‖∞ := max
t=1,...,T

ess sup |xt|,

where | . | denotes some norm on the relevant Euclidean spaces and ess sup |xt|
denotes the essential supremum of |xt|, i.e., the smallest constant C such
that |xt| ≤ C holds P-almost surely. Analogously, ξ can be understood as an
element of the Banach space ×T

t=1Lr(Ω,F , P; Rd) with norm ‖ξ‖r. For the
integrability numbers r and r′ it will be imposed that

r :=







∈ [1,+∞) , if only costs or only right-hand sides are random
2 , if only costs and right-hand sides are random
T , if all technology matrices are random

r′ :=







r
r−1 , if only costs are random

r , if only right-hand sides are random
+∞ , if all technology matrices are random

(2)

with regard to problem (1). The choice of r and the definition of r′ are moti-
vated by the knowledge of existing moments of the input process ξ, by having
the stochastic program well defined (in particular, such that 〈bt(ξt), xt〉 is inte-
grable for every decision xt and t = 1, ..., T ), and by satisfying the conditions
(A2) and (A3) (see below).

Since r′ depends on r and our assumptions will depend on both r and
r′, we will add some comments on the choice of r and its interplay with
the structure of the underlying stochastic programming model. To have the
stochastic program well defined, the existence of certain moments of ξ has
to be required. This fact is well known for the two-stage situation (see, e.g.,
[RS03, Chapter 2]). If either right-hand sides or costs in a multi-stage model
(1) are random, it is sufficient to require r ≥ 1. The flexibility in case that
the stochastic process ξ has moments of order r > 1 may be used to choose
r′ as small as possible in order to weaken the condition (A3) (see below) on
the feasible set. If the linear stochastic program is fully random (i.e., costs,
right-hand sides and technology matrices are random), one needs r ≥ T to
have the model well defined and no flexibility w.r.t. r′ remains.

Next we introduce some notation. We set s := Td and m :=
∑T

t=1 mt. Let

F (ξ, x) := E

[

T
∑

t=1

〈bt(ξt), xt〉

]
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denote the objective function defined on Lr(Ω,F , P; Rs) × Lr′(Ω,F , P; Rm)
and let

X (ξ) :=
{

x ∈ ×T
t=1Lr′(Ω, σ(ξt), P; Rmt) |xt ∈ Xt(xt−1; ξt) a.s. (t = 1, ..., T )

}

denote the set of feasible elements of (1) with x0 ≡ 0 and

Xt(xt−1; ξt) :=
{

xt ∈ R
mt : xt ∈ Xt, At,0xt + At,1(ξt)xt−1 = ht(ξt)

}

denoting the t-th feasibility set for every t = 1, ..., T . This allows to rewrite
the stochastic program (1) in the short form

min
{

F (ξ, x) : x ∈ X (ξ)
}

(3)

In the following, we need the optimal value

v(ξ) = inf
{

F (ξ, x) : x ∈ X (ξ)
}

for every ξ ∈ Lr(Ω,F , P; Rs) and, for any ε ≥ 0, the ε-approximate solution
set (level set)

Sε(ξ) :=
{

x ∈ X (ξ) : F (ξ, x) ≤ v(ξ) + ε
}

of the stochastic program (3). Since, for ε = 0, the set Sε(ξ) coincides with the
set solutions to (3), we will also use the notation S(ξ) := S0(ξ). The following
conditions will be imposed on (3):

(A1) The numbers r, r′ are chosen according to (2) and ξ ∈ Lr(Ω,F , P; Rs).
(A2) There exists a δ > 0 such that for any ξ̃ ∈ Lr(Ω,F , P; Rs) satisfying ‖ξ̃−

ξ‖r ≤ δ, any t = 2, ..., T and any xτ ∈ Lr′(Ω, σ(ξ̃τ ), P; Rmτ ) (τ = 1, ..., t−
1) satisfying xτ ∈ Xτ (xτ−1; ξ̃τ ) a.s. (where x0 = 0), there exists xt ∈
Lr′(Ω, σ(ξ̃t), P; Rmt) satisfying xt ∈ Xt(xt−1; ξ̃t) a.s. (relatively complete
recourse locally around ξ).

(A3) The optimal values v(ξ̃) of (3) with input ξ̃ are finite for all ξ̃ in a
neighborhood of ξ and the objective function F is level-bounded locally
uniformly at ξ, i.e., for some ε0 > 0 there exists a δ > 0 and a bounded
subset B of Lr′(Ω,F , P; Rm) such that Sε0

(ξ̃) is contained in B for all
ξ̃ ∈ Lr(Ω,F , P; Rs) with ‖ξ̃ − ξ‖r ≤ δ.

For any ξ̃ ∈ Lr(Ω,F , P; Rs) sufficiently close to ξ in Lr, condition (A2) implies
the existence of some feasible x̃ in X (ξ̃) and (2) implies the finiteness of the
objective F (ξ̃, ·) at any feasible x̃. A sufficient condition for (A2) to hold is the
complete recourse condition on every recourse matrix At,0, i.e., At,0Xt = R

nt ,
t = 1, ..., T . The locally uniform level-boundedness of the objective function
F is quite standard in perturbation results for optimization problems (see,
e.g., [RW98, Theorem 1.17]). The finiteness condition on the optimal value
v(ξ) is not implied by the level-boundedness of F for all relevant pairs (r, r′).
In general, the conditions (A2) and (A3) get weaker for increasing r and
decreasing r′, respectively.
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The first stability result for multi-stage stochastic programs represents a
quantitative continuity property of the optimal values. Its main observation
is that multi-stage models behave stable at some stochastic input process ξ
if both its probability distribution and its filtration are approximated with
respect to the Lr-distance and the filtration distance

Df(ξ, ξ̃) :=sup
ε>0

inf
x∈Sε(ξ)

x̃∈Sε(ξ̃)

T−1
∑

t=2

max
{∥

∥xt − E[xt|Ft(ξ̃)]
∥

∥

r′
,
∥

∥x̃t − E[x̃t|Ft(ξ)]
∥

∥

r′

}

(4)

where E[ · |Ft(ξ)] and E[ · |Ft(ξ̃)] (t = 1, ..., T ) are the corresponding con-
ditional expectations, respectively. Note that for the supremum in (4) only
small ε’s are relevant and that the approximate solution sets are bounded for
ε ∈ (0, ε0] according to (A3).

The following stability result for optimal values of program (3) is taken
from [HRS06, Theorem 2.1].

Theorem 1. Let (A1), (A2) and (A3) be satisfied and the set X1 be nonempty
and bounded. Then there exist positive constants L and δ such that the estimate

∣

∣v(ξ) − v(ξ̃)
∣

∣ ≤ L
(

‖ξ − ξ̃‖r + Df(ξ, ξ̃)
)

(5)

holds for all random elements ξ̃ ∈ Lr(Ω,F , P; Rs) with ‖ξ̃ − ξ‖r ≤ δ.

The result states that the changes of optimal values are at most proportional
to the errors in terms of Lr- and filtration distance when approximating ξ.
The corresponding constant L depends on ‖ξ‖r (i.e. the r-th moment of ξ),
but is not known in general.

The filtration distance has a simpler representation if the approximation ξ̃
of ξ is ξ-adapted, i.e., if Ft(ξ̃) ⊆ Ft(ξ) holds for every t = 1, . . . , T . The latter
is equivalent to the existence of measurable functions ft : Ξt → Ξt such that

ξ̃t = ft(ξ
t) (t = 1, . . . , T ).

For ξ-adapted approximations ξ̃ we have

Df(ξ, ξ̃) = sup
ε>0

inf
x∈Sε(ξ)

T−1
∑

t=2

∥

∥xt − E[xt|Ft(ξ̃)]
∥

∥

r′
(6)

and if, in addition, the solution set S(ξ) is nonempty, we obtain

Df(ξ, ξ̃) = inf
x∈S(ξ)

T−1
∑

t=2

∥

∥xt − E[xt|Ft(ξ̃)]
∥

∥

r′
. (7)

The latter representation allows the conclusion

Df(ξ, ξ̃) ≤
T−1
∑

t=2

∥

∥xt − E[xt|Ft(ξ̃)]
∥

∥

r′
(8)
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for any solution x = (x1, x2, . . . , xT ) of (3). For a given solution x of (3) there
exist Borel measurable functions gt : Ξt → R

mt such that

E[xt|Ft(ξ̃)] = E[xt|ξ̃
t] = gt(ξ̃

t) (t = 1, . . . , T ),

where g1(ξ̃1) = g1(ξ1) = x1 and gt(ξ
t) = xt. In general, further properties of

the functions

gt(y1, . . . , yt) = E[xt|ξ̃
t = (y1, . . . , yt)] = E[xt|ft(ξ

t) = (y1, . . . , yt)],

i.e., of the conditional expectations of xt under the condition that ξ̃t equals
(y1, . . . , yt), are not known. Since xt is a (measurable) function of ξt, the
function value gt(y1, . . . , yt) may be computed via the (multivariate) proba-
bility distribution P of ξ.
Unfortunately, in general, there is no solution x ∈ S(ξ) such that the func-
tions xt depend continuously on ξt for every t = 1, . . . , T (cf. the discussion
in [RW74]). Sometimes, however, the functional dependence of xt on ξt is of
a specific form as in the following situation [GW74, Theorem 4.3].

Proposition 1. Assume that only right-hand sides in (1) are random and
that S(ξ) is nonempty. Then there exists x = (x1, . . . , xT ) in S(ξ) such that
xt = ϕt(h1(ξ1), . . . , ht(ξt)) and ϕt is a continuous, piecewise affine function
for every t = 1, . . . , T . In particular, xt is Lipschitz continuous as function of
ξt for every t = 1, . . . , T .

This motivates the following condition on the conditional distributions of ξ
and on the ξ-adapted approximation ξ̃ of ξ.

(A4) For each t ∈ {1, . . . , T} and each pair (Φt, ft) of Lipschitz continuous
functions Φt : Ξt → R

mt and ft : Ξt → Ξt, the function

gt(y1, . . . , yt) = E[Φt(ξ
t)|ft(ξ

t) = (y1, . . . , yt)] (9)

is Lipschitz continuous on Ξt.

Then the following result is an immediate consequence of Theorem 1 and
Proposition 1 if (A4) is imposed in addition.

Corollary 1. Let (A1)-(A4) be satisfied and X1 be nonempty and bounded.
Assume that only right-hand sides in (1) are random and that S(ξ) 6= ∅. Then
there exist positive constants L̂ and δ such that

∣

∣v(ξ) − v(ξ̃)
∣

∣ ≤ L̂‖ξ − ξ̃‖r (10)

whenever ‖ξ− ξ̃‖r < δ for any ξ-adapted ξ̃ such that ξ̃t = ft(ξ
t), t = 1, . . . , T ,

with Lipschitz continuous functions ft : Ξt → R
td.

Proof: According to Proposition 1 there exists a solution x = (x1, . . . , xT ) ∈
S(ξ) such that xt = Φt(ξ

t) is a Lipschitz continuous function of ξt for every
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t = 1, . . . , T . Let ξ̃ be ξ-adapted such that ξ̃t = ft(ξ
t), t = 1, . . . , T , where

the functions ft : Ξt → Ξt are Lipschitz continuous on Ξt. According to
(A4) the functions gt from Ξt to R

mt , t = 1, . . . , T , given by (9) are Lipschitz
continuous. Hence, there exist constants Kt > 0 such that

|gt(y1, . . . , yt)−gt(ỹ1, . . . , ỹt)|≤Kt

t
∑

τ=1

|yτ−ỹτ | ((y1, . . . , yt), (ỹ1, . . . , ỹt) ∈ Ξt)

and, hence,

Df(ξ, ξ̃) ≤
T−1
∑

t=2

∥

∥gt(ξ
t) − gt(ξ̃

t)
∥

∥

r
≤

T−1
∑

t=2

Kt

t
∑

τ=1

E(|ξτ − ξ̃τ |
r)

1
r ≤ K‖ξ − ξ̃‖r

for some suitably large constant K. Together with Theorem 1 we obtain (10)
with L̂ = LK. 2

We note that our condition (A4) is similar to assumption 2.6 in [Küc08]
and Corollary 1 reminds of [Küc08, Theorem 3]. We also note that in case
of finite supports Ξt, t = 1, . . . , T , the functions gt are necessarily Lipschitz
continuous with possibly large Lipschitz constants Kt, t = 1, . . . , T , leading
to a large constant L̂ in Corollary 1.

Stability results of approximate solutions to (3) require a stronger version
of the filtration distance Df , namely,

D∗
f (ξ, ξ̃) := sup

x∈B∞

T
∑

t=2

∥

∥E[xt|Ft(ξ)] − E[xt|Ft(ξ̃)]
∥

∥

r′
, (11)

where B∞ := {x : Ω → R
m : x is F-measurable, |x(ω)| ≤ 1, P-almost surely}.

Notice that the sum is extended by the additional summand for t = T and that
the former infimum is replaced by a supremum with respect to a sufficiently
large bounded set. If we require, in addition to assumption (A3), that for
some ε0 > 0 there exist constants δ > 0 and C > 0 such that |x̃(ω)| ≤ C
for P-almost every ω ∈ Ω and all x̃ ∈ Sε0

(ξ̃) with ξ̃ ∈ Lr(Ω,F , P; Rs) and
‖ξ̃ − ξ‖r ≤ δ, we have

Df(ξ, ξ̃) ≤ C D∗
f (ξ, ξ̃). (12)

Sometimes it is sufficient to consider the unit ball in Lr′ rather than the
corresponding ball B∞ in L∞ (cf. [HR09a, HR10]). In contrast to Df the
distance D∗

f is a metric as it satisfies the triangle inequality.
Next we state a second stability result that represents a calmness property

of approximate solution sets ([HR10, Theorem 2.4]).

Theorem 2. Let (A1), (A2) and (A3) be satisfied with r′ ∈ [1,+∞) and the
set X1 be nonempty and bounded. Assume that S(ξ) 6= ∅. Then there exist
L̄ > 0 and ε̄ > 0 such that
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dl∞
(

Sε(ξ), Sε(ξ̃)
)

≤
L̄

ε

(

‖ξ − ξ̃‖r + D∗
f (ξ, ξ̃)

)

(13)

holds for every ξ̃ ∈ Lr(Ω,F , P; Rs) with ‖ξ − ξ̃‖r ≤ δ (with δ > 0 from
(A3)) and S(ξ̃) 6= ∅, and for any ε ∈ (0, ε̄). Here, dl∞ denotes the Pompeiu-
Hausdorff distance of closed bounded subsets of Lr′ = Lr′(Ω.F , P; Rm) given
by

dl∞(B, B̃) = sup
x∈Lr′

∣

∣dB(x) − dB̃(x)
∣

∣

with dB(x) denoting the distance of x to B, i.e., dB(x) = infy∈B ‖x − y‖r′ .

The most restrictive assumption in Theorem 2 is the existence of solutions to
both problems. Notice that solutions always exist if the underlying random
vector ξ has a finite number of scenarios or if r′ ∈ (1,+∞). For a more
thorough discussion we refer to [HR10, Section 2]. Notice that the constant
L̄
ε gets larger for decreasing ε and that, indeed, Theorem 2 does not remain
true for the Pompeiu-Hausdorff distance of solution sets S(ξ) = S0(ξ) and
S(ξ̃) = S0(ξ̃), respectively.

3 Tree approximation framework and convergence

We present a general framework for tree approximations of multi-stage stochas-
tic programs in case that empirical estimates of the underlying probability
distribution are available and prove convergence using the stability results of
Sect. 2.

First we show that sequences (ξ(n)) of ξ-adapted random variables con-
verging to ξ in Lr also converge to ξ in terms of the filtration distance Df .
Recall that ξ(n) is ξ-adapted if Ft(ξ

(n)) ⊆ Ft(ξ) holds for every t = 1, . . . , T .

Proposition 2. Let (A1), (A2) and (A3) be satisfied, r′ ∈ [1,+∞) and S(ξ)
be nonempty. Let (ξ(n)) be a sequence of ξ-adapted random variables converg-
ing to ξ in Lr such that the σ-fields Ft(ξ

(n)) are nondecreasing with respect
to n for every t = 2, . . . , T . Then it holds

lim
n→∞

Df(ξ, ξ
(n)) = lim

n→∞
inf

x∈S(ξ)

T−1
∑

t=2

‖xt − E[xt|Ft(ξ
(n))]‖r′ = 0.

Proof: By F̂t we denote the smallest σ-field containing Ft(ξ
(n)) for every

n ∈ N, i.e.,

F̂t := σ
(

⋃

n∈N

Ft(ξ
(n))

)

(t = 1, . . . , T ).

As Ft(ξ
(n)) ⊆ Ft(ξ) holds for every n ∈ N, we conclude

F̂t ⊆ Ft(ξ) (∀t = 1, . . . , T )
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due to the convergence of the sequence (ξ(n)) to ξ in Lr. Furthermore, the
filtration distance Df(ξ, ξ

(n)) allows the representation

Df(ξ, ξ
(n)) = inf

x∈S(ξ)

T−1
∑

t=2

‖xt − E[xt|Ft(ξ
(n))]‖r′

due to (7). As the σ-fields Ft(ξ
(n)) are nondecreasing with respect to n, we

obtain for each x ∈ S(ξ) and each t = 2, . . . , T

‖xt − E[xt|Ft(ξ
(n))]‖r′ = ‖E[xt|F̂t] − E[xt|Ft(ξ

(n))]‖r′ −→ 0

as n → ∞ by classical convergence results of conditional expectations (e.g.,
[Fet77]). This completes the proof. 2

The result remains true if the assumption that the σ-fields Ft(ξ
(n)) are

nondecreasing is replaced by the slightly weaker condition

σ
(

∞
⋃

k=1

∞
⋂

n=k

Ft(ξ
(n))

)

= σ
(

∞
⋂

k=1

∞
⋃

n=k

Ft(ξ
(n))

)

for every t = 2, . . . , T ([Fet77]). Next we show that ξ-adapted approximations
can be obtain by certain discretization techniques.

3.1 Convergence of discretizations

Let Ξt denote the closed subset supp (ξt) of R
d and Ξt = ×t

τ=1Ξτ for every t =
1, . . . , T . Now, we consider ξ to be given on the probability space (Ξ,B(Ξ), P ),
where Ξ = ΞT and B(Ξ) is the σ-field of Borel subsets of the sample space
Ξ. Furthermore, the σ-fields Ft(ξ) are of the form

Ft(ξ) =
{

ξ−1 (Bt × Ξt+1 × · · · × ΞT ) : Bt ∈ B(Ξt)
}

. (14)

Decomposition of the sample space

We aim at approximating the stochastic process ξ by a certain sequence of
discrete processes, i.e., by processes having a finite number of scenarios. The
approach is based on finite decompositions of the sample space Ξ. Let us
consider a sequence

D
(n)
t ⊂ B(Ξt), n ∈ N.

It will be called a sequence of finite segmentations of Ξt if the following con-
ditions are satisfied:

(C1) The elements of D
(n)
t are pairwise disjoint for all n ∈ N,

(C2) D
(n)
t is finite and it holds Pt

(

∪
Dt∈D

(n)
t

Dt

)

= 1, n ∈ N.
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(C3) For δt,n := sup
{

|ξt − ξ̃t| : Dt ∈ D
(n)
t , ξt, ξ̃t ∈ Dt, |ξt|, |ξ̃t| ≤ n

}

it holds lim
n→∞

δt,n = 0 for every t = 1, . . . , T .

Conditions (C1) and (C2) ensure that the sets D
(n)
t define finite partitions

of the sample space Ξt for every n ∈ N such that P -almost every element of

Ξt can be associated with a unique set in D
(n)
t . Condition (C3) says that the

partition sets get arbitrarily small uniformly within increasing balls of radii n
in Ξt.

Next we define a sequence of finite segmentations in Ξ by

D(n) :=
{

D1 × . . . × DT : Dt ∈ D
(n)
t , t = 1, . . . , T

}

, n ∈ N. (15)

Discretization of the stochastic process

Using the sequence D(n) we will define a sequence of approximate stochas-

tic processes ξ(n) = (ξ
(n)
1 , . . . , ξ

(n)
T ). To this end, we select nonanticipative

elements

ξ̂D1,...,Dt,n
t ∈ Dt with |ξ̂D1,...,Dt,n

t | ≤ C max
{

1, inf{|yt| : yt ∈ Dt}
}

(16)

for every n ∈ N, t ∈ {1, . . . , T} and every set D1 × · · · × DT ∈ D(n), where
the boundedness condition in (16) has to be satisfied for some fixed constant
C ≥ 1. In this way we obtain a well-defined scenario

ξ̂
(n)
D1×···×DT

:=
(

ξ̂D1,n
1 , . . . , ξ̂D1,...,DT ,n

T

)

.

for every n ∈ N and D1×· · ·×DT ∈ D(n) and define an approximate stochastic
process by

ξ(n)(ω) := ξ̂
(n)
D1×···×DT

if ω ∈ ξ−1(D1 × · · · × DT ) (17)

and have ξ(n) well-defined on Ω P-almost surely. The stochastic processes ξ(n)

are approximations of ξ in the following sense.

Proposition 3. Let ξ ∈ Lr(Ω,F , P; Rs) and (C1), (C2) and (C3) be satisfied
for each t = 1, . . . , T . Then each stochastic process ξ(n) defined by (17) is
ξ-adapted and it holds

lim
n→∞

‖ξ − ξ(n)‖r = 0 .

If, in addition, (A1), (A2) and (A3) are satisfied, r′ ∈ [1,+∞), S(ξ) is

nonempty and D
(n+1)
t is a refinement of D

(n)
t for each n ∈ N, one has

lim
n→∞

Df(ξ, ξ
(n)) = 0 .
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Proof: Due to the construction of ξ(n), the sets

{

ξ−1
(

D1 × · · · × Dt × Ξt+1 × · · · × ΞT

)

: Dτ ∈ D(n)
τ , τ = 1, . . . , t

}

generate the σ-fields Ft(ξ
(n)). Thus, it holds Ft(ξ

(n)) ⊆ Ft(ξ) according to
(14) for every n ∈ N and t = 1, . . . , T .

Next we show the Lr-convergence of (ξ(n)). To this end, let

Bγn
(0) :=

{

y ∈ Ξ : max
t=1,...,T

|yt| ≤ γn

}

the closed ball in Ξ around the origin with radius

γn := n − max
t=1...,T

δt,n .

Then, by using (C1) and (C2) we obtain

‖ξ − ξ(n)‖r
r =

∫

Ω

|ξ(ω) − ξ(n)(ω)|rP(dω)

=
∑

D1×···×DT ∈D(n)

∫

D1×···×DT

|ξ − ξ̂
(n)
D1,...,DT

|rP (dξ)

≤ cr

∑

D1×···×DT ∈D(n)

∫

D1×···×DT

T
∑

t=1

|ξt − ξ̂D1,...,Dt,n
t |rP (dξ),

where cr is a suitable (norm equivalence) constant. Splitting the integration
interval with respect to Bγn

(0) and its complement, using (C3) and the bound-
edness condition (16) allows to estimate

‖ξ − ξ(n)‖r
r ≤ cr

T
∑

t=1

δr
t,n + cr

∫

Ξ\Bγn (0)

T
∑

t=1

(|ξt|(1 + C))rP (dξ)

≤ Ĉ
(

max
t=1,...,T

δr
t,n +

∫

Ξ\Bγn (0)

|ξ|rP (dξ)
)

,

where Ĉ > 0 is some constant not depending on n. Because both summands
of the last estimate tend to zero whenever n tends to infinity, the first part is
proved. The second part is a consequence of Prop. 2. 2

Prop. 3 and Theo. 1 provide a convergence result for discretizations of (1),
namely,

lim
n→∞

v(ξ(n)) = v(ξ) . (18)

Of course, this is not surprising when recalling the convergence results for
discretizations of multi-stage stochastic programs in [Pen05, Pen09].
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To determine the probabilities of the scenarios of ξ(n) for some n ∈ N, one
has to compute

P (D1 × · · · × DT ) for every D1 × · · · × DT ∈ D(n).

This might be difficult in general. However, if additional structure on ξ is
available, the discretization scheme may be adapted such that the probabil-
ities are computationally accessible. For example, let the stochastic process
ξ be driven by a finite number of mutually independent R

dt -valued random
variables zt with probability distributions Pt, t = 2, . . . , T , i.e.,

ξt = gt(ξ1, . . . , ξt−1, zt),

where the gt, t = 2, . . . , T , denote certain measurable functions from R
(t−1)d×

R
dt to R

d (see, e.g., [Kuh05], [Pen09]). Then there exists a measurable function

G such that ξ = G(z2, . . . , zT ). If D
(n)
t is now a partition of the support of zt

in R
dt , t = 2, . . . , T , then ξ(n) may be defined by

ξ
(n)
t = gt(ξ

(n)
1 , . . . , ξ

(n)
t−1, z

(n)
t ) ,

where z
(n)
t , t = 2, . . . , T , has a finite number of given scenarios in every

Dt ∈ D
(n)
t . The probability distribution of ξ(n) is then known if Pt(Dt) can

be computed for all Dt ∈ D
(n)
t , t = 2, . . . , T . This covers situations, where ξ

is a Gaussian process or is given by certain time series models.

3.2 Convergence of discrete and empirical measures

Our next result deals with convergence properties of discrete probability dis-
tributions.

Proposition 4. Let P be a probability distribution on R
Td supported by a

finite set of scenarios Ξ = {ξ1, . . . , ξN} ⊆ R
Td with positive probabilities pi :=

P ({ξi}). Moreover, let (P (n))n∈N be a sequence of probability distributions on

R
Td supported by Ξ with probabilities p

(n)
i := P (n)({ξi}) such that

lim
n→∞

p
(n)
i = pi, i = 1, . . . , N.

Then there exist random variables ξ and (ξ(n))n∈N defined on some prob-
ability space (Ω,F , P) having probability distributions P and P (n), n ∈ N,
respectively, such that

(i) ‖ξ − ξ(n)‖r → 0 (n → ∞) and

(ii) D∗
f (ξ, ξ(n)) = sup

x∈B∞

T
∑

t=2

‖E[xt|Ft(ξ)] − E[xt|Ft(ξ
(n))]‖r′ → 0 (n → ∞),
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for all 1 ≤ r < ∞ and 1 ≤ r′ < ∞, where B∞ is given by

B∞ := {x = (x1, . . . , xT ) ∈ Lr′(Ω,F , P; Rm) : |xt(ω)| ≤ 1, P-a.s.} (19)

and denotes the set of all functions essentially bounded by 1.

Proof: The sequence (P (n))n∈N converges weakly to P on R
Td. Hence, there

exists a probability space (Ω,F , P) and there exist R
Td-valued random vari-

ables ξ and ξ(n), n ∈ N, defined on it with probability distributions P and
P (n), n ∈ N, respectively, such that it holds

ξ(n) → ξ P-a.s.

(see e.g. [Dud89, Theorem 11.7.1]). Since the random variables are supported
by the finite set Ξ, almost sure convergence also implies convergence in the
r-th mean, i.e.,

lim
n→∞

‖ξ − ξ(n)‖r = 0 .

It remains to show limn→∞ D∗
f (ξ, ξ(n)) = 0. To this end, we introduce parti-

tions {Etk}k∈It
and {E

(n)
tk }k∈It

in Ω, which generate the σ-fields Ft(ξ) and
Ft(ξ

(n)), respectively. Let

Etk := {ω ∈ Ω : (ξ1, . . . , ξt)(ω) = (ξk
1 , . . . , ξk

t )}, k ∈ It,

E
(n)
tk := {ω ∈ Ω : (ξ

(n)
1 , . . . , ξ

(n)
t )(ω) = (ξk

1 , . . . , ξk
t )}, k ∈ It,

where It ⊆ {1, . . . , N} denotes the index set of distinguishable scenarios at
time t = 2, . . . , T . We set

Ē
(n)
tk := Etk ∩ E

(n)
tk and Ω̄

(n)
t := Ω \ ∪k∈It

Ē
(n)
tk ,

and observe that
∫

Ω

|ξ − ξ(n)|rP(dω) ≥

∫

Etk\Ē
(n)
tk

|ξ − ξ(n)|r +

∫

E
(n)
tk

\Ē
(n)
tk

|ξ − ξ(n)|r

≥ Cmin

(

P(Etk \ Ē
(n)
tk ) + P(E

(n)
tk \ Ē

(n)
tk )

)

,

where Cmin := min
{

|ξi − ξj |r : i, j ∈ {1, . . . , N}, ξi 6= ξj
}

denotes the mini-
mal distance between two varying scenarios. Hence, by the Lr-convergence of

ξ(n) we conclude for all k ∈ It that P(Etk \ Ē
(n)
tk ) and P(E

(n)
tk \ Ē

(n)
tk ) tend to

zero whenever n tends to infinity. Moreover, the latter implies that P(E
(n)
tk )

as well as P(Ē
(n)
tk ) converge to P(Etk). Let ptk = P(Etk) and p

(n)
tk = P(E

(n)
tk ).

Then we have for any x ∈ B∞
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‖E[xt|Ft(ξ)]−E[xt|Ft(ξ
(n))]‖r′

r′ =

∫

Ω

|E[xt|Ft(ξ)] − E[xt|Ft(ξ
(n))]|r

′

P(dω)

=
∑

k∈It

∫

Ē
(n)
tk

|E[xt|Ft(ξ)] − E[xt|Ft(ξ
(n))]|r

′

P(dω)

+

∫

Ω̄
(n)
t

|E[xt|Ft(ξ)] − E[xt|Ft(ξ
(n))]|r

′

P(dω)

≤
∑

k∈It

P(Ē
(n)
tk )

∣

∣

∣

∣

∫

Etk
xtP(dω)

ptk
−

∫

E
(n)
tk

xtP(dω)

p
(n)
tk

∣

∣

∣

∣

r′

+ 2P(Ω̄
(n)
t )

≤
∑

k∈It

P(Ē
(n)
tk )

(∣

∣

∣

∣

∫

Ē
(n)
tk

xt(p
(n)
tk − ptk)P(dω)

p
(n)
tk ptk

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Etk\Ē
(n)
tk

p
(n)
tk xtP(dω)

p
(n)
tk ptk

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

E
(n)
tk

\Ē
(n)
tk

ptkxtP(dω)

p
(n)
tk ptk

∣

∣

∣

∣

)r′

+2P(Ω̄
(n)
t )

≤
∑

k∈It

P(Ē
(n)
tk )

(

P(Ē
(n)
tk )|p

(n)
tk − ptk|

p
(n)
tk ptk

+
P(Etk \ Ē

(n)
tk )

ptk

+
P(E

(n)
tk \ Ē

(n)
tk )

p
(n)
tk

)r′

+ 2P(Ω̄
(n)
t ) ,

where we used the almost sure boundedness |xt| ≤ 1. The latter estimate
does not depend on x and due to the fact that all summands tend to zero,
D∗

f (ξ, ξ(n)) converges to 0. 2

Prop. 4 will be used in the proof of Theo. 3 to compare two stochastic processes
having identical scenarios, but different probabilities.

Empirical distributions and sampling

Let ξ be a Ξ-valued stochastic process defined on some probability space
(Ω,F , P) with induced distribution P . Furthermore, let (ξk)k∈N be a sequence
of independent and identically distributed Ξ-valued random variables on some
probability space (Ω∗,F∗, P∗) such that P = P

∗ ξ−1
1 . We consider the random

empirical measures

P (k)(ω∗)(B) :=
1

k

k
∑

j=1

δξj(ω∗)(B), n ∈ N, ω∗ ∈ Ω∗, B ∈ B(Ξ), (20)

where δz denotes the probability measure on Ξ placing unit mass at z ∈ Ξ.
Then the sequence (P (k)(ω∗)) converges P

∗-almost surely to P in the sense of
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weak convergence (see, e.g., [Dud89, Chapter 11.4]). The portmanteau theo-
rem (e.g., [Dud89, Theorem 11.1.1]) offers several equivalent characterizations
of weak convergence, one of them is recalled in the following for later use.

Proposition 5. Let (P (k)) be a sequence of empirical measures according to
(20). Then it holds

lim
k→∞

P (k)(ω∗)(B) = P (B), for all B ∈ B(Ξ) with P (∂B) = 0,

for P
∗-almost every ω∗ ∈ Ω∗, where ∂B denotes the (topological) boundary of

the Borel set B in the space R
s.

Prop. 5 allows to estimate probabilities of Borel sets in R
s empirically, e.g.,

by sampling. In particular, the probability of any set belonging to a finite seg-
mentation D(n) of Ξ (see (15)), can be estimated by sampling if its boundary
has Lebesgue measure zero and P is absolutely continuous.

3.3 Application to scenario tree construction

The following conceptual algorithm represents a general approach to con-
structing scenario trees for multi-stage stochastic programs.

Algorithm 1. Let ξ be the original Ξ-valued stochastic input process of the
stochastic program (1) defined on some probability space (Ω,F , P) and let P
be the probability distribution of ξ.

Step [1]: Determine a sequence of finite segmentations D(n) in Ξ such

that assumptions (C1), (C2) and (C3) are satisfied (cf. Sect.

3.1) and choose a reasonably large n ∈ N.

Step [2]: Determine the empirical measure P (k) based on k independent

and identically P -distributed random variables.

Step [3]: Compute the probabilities p(n,k) = P (k)(D1 × · · · × DT ) for every

D1 × · · · × DT ∈ D(n) according to formula (20).

Step [4]: Choose nonanticipative scenarios whose t-th components belong

to Dt for any D1 × · · · × DT ∈ D(n) according to (16).

Step [5]: Finally, define the stochastic scenario tree process ξtr := ξ
(n,k)
tr

with scenarios chosen in Step 4 endowed with the empirical

probabilities p(n,k) from Step 3.

Next we study the asymptotic behavior of the approximate scenario trees

(ξ
(n,k)
tr )n,k∈N constructed by Algo. 1. Note that the parameters n and k mea-

sure the quality of the discretization D(n) of Ξ and of the empirical probabil-
ities, respectively.
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Theorem 3. Let (A1), (A2) and (A3) be satisfied and X1 be nonempty and
bounded. Let 1 ≤ r′ < ∞ and assume that for some constant C > 0 the
estimate

Df(ξ̂, ξ̃) ≤ CD∗
f (ξ̂, ξ̃) (21)

holds for all ξ̂ and ξ̃ in a neighborhood of ξ in Lr. Assume that the sequence

(ξ
(n,k)
tr )n,k∈N is constructed by Algo. 1. Furthermore, assume for the sequence

(D(n))n∈N of partitions of Ξ that D(n+1) is a refinement of D(n) and that

Pt(∂Dt) = 0 for all Dt ∈ D
(n)
t (t = 1, . . . , T ). Then it holds

lim
n→∞

(

lim
k→∞

v(ξ
(n,k)
tr )

)

= v(ξ) P ∗-almost surely, (22)

where v(ξ
(n,k)
tr ) and v(ξ) denote the optimal values of the stochastic program

(1) with input ξ
(n,k)
tr and ξ, respectively, and (Ω∗,F∗, P∗) is the probability

space on which the random empirical measures P (k), k ∈ N, are defined.

Proof: We use the constructions and notations of Sect. 3.1 and consider, for
each n ∈ N, the (discrete) stochastic processes ξ(n) possessing the scenarios

ξ̂
(n)
D1×···×DT

with probabilities P (D1×· · ·×DT ) for every D1×· · ·×DT ∈ D(n).

Due to Prop. 3 the processes ξ(n) are ξ-adapted and it holds

lim
n→∞

‖ξ − ξ(n)‖r = 0 and lim
n→∞

Df(ξ, ξ
(n)) = 0 .

Hence, we obtain from (5) in Theo. 1

|v(ξ) − v(ξ(n))| ≤ εn

for some sequence (εn) tending to zero as n → ∞.
Let Ω̂∗ be the subset of Ω∗ such that P ∗(Ω̂∗) = 1 and the sequence

(P (k)(ω∗)) of random empirical measures converges weakly for every ω∗ ∈ Ω̂∗.

Now, let ω∗ ∈ Ω̂∗ and let ξ
(n,k)
tr = ξ

(n,k)
tr (ω∗) be the process determined

by Algo. 1. We will show that for any large n ∈ N there exists k(n) ∈ N

(depending on ω∗) such that

|v(ξ(n)) − v(ξ
(n,k)
tr (ω∗))| ≤

1

n

for all k ≥ k(n). Then the triangle inequality would imply

|v(ξ) − v(ξ
(n,k)
tr (ω∗))| ≤ εn +

1

n
(k ≥ k(n))

and, hence, the proof were complete.
To this end, let n ∈ N be sufficiently large and fixed. We consider the

processes ξ(n) and ξ
(n,k)
tr (k ∈ N) and observe that both processes possess

identical scenarios which do not depend on k. In general, only the probabilities
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p
(n)
D1×···×DT

= P (D1 × · · · × DT ) and p
(n,k)
D1×···×DT

= P (k)(ω∗)(D1 × · · · × DT ),

associated to scenario ξ̂
(n)
D1×···×DT

are different.

It holds P (∂(D1 × · · · × DT )) ≤
∑T

t=1 Pt(∂Dt) = 0 since for every boundary
point x of D1×· · ·×DT there exists t ∈ {1, . . . , T} such that xt ∈ ∂Dt. Hence,
Prop. 5 implies

p
(n,k)
D1×···×DT

→ p
(n)
D1×···×DT

(k → ∞),

and Prop. 4 yields the existence of a common probability space such that

‖ξ(n) − ξ
(n,k)
tr ‖r → 0 and D∗

f (ξ(n), ξ
(n,k)
tr ) → 0 (k → ∞).

Then estimate (21) implies that the inequality

Df(ξ
(n), ξ

(n,k)
tr ) ≤ CD∗

f (ξ(n), ξ
(n,k)
tr )

holds for large n and k. By making use of Theo. 1 (applied to ξ(n) instead of
ξ), we obtain

|v(ξ(n)) − v(ξ
(n,k)
tr )| ≤ L(ξ(n))

(

‖ξ(n) − ξ
(n,k)
tr ‖r + D∗

f (ξ(n), ξ
(n,k)
tr )

)

for some constant L(ξ(n)) and all sufficiently large k ∈ N. This implies

|v(ξ(n)) − v(ξ
(n,k)
tr )| → 0 (k → ∞)

and, in particular, the existence of k(n) such that

|v(ξ(n)) − v(ξ
(n,k)
tr )| ≤

1

n

for all k ≥ k(n). 2

We note that the limits in (22) cannot be interchanged. This may be inter-
preted such that it makes no sense to choose n very large, i.e., to choose a
very fine partition of Ξ if for some reason k is not sufficiently large. In Sect. 4
we will discuss a variant of the general scenario tree construction approach
provided by Algo. 1 that is based on successive scenario reduction.

4 Scenario tree construction based on scenario reduction

Next we discuss a method for generating scenario trees which is developed in
[HR09a] and motivated by Algo. 1. It is based on a procedure of successive
scenario reduction and bundling steps for increasing time stages applied to
a sufficiently large scenario set. The latter is typically obtained by sampling
from the underlying distribution. The stage-wise reduction may be viewed as
a simultaneous realization of Steps 1, 3, and 4 of Algo. 1. Before describing
the details, we briefly recall the ideas of optimal scenario reduction.
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4.1 Optimal scenario reduction

The basic idea of scenario reduction consists in determining a (nearly) best
approximation in terms of a suitable probability metric of the underlying dis-
crete probability distribution by a probability measure with smaller support.
The metric is associated to the stochastic programming model in a natural
way such that the model behaves stable with respect to changes of the prob-
ability distribution. Such natural metrics are provided in [Röm03] for several
classes of stochastic programs.

Originally, the concept of scenario reduction was developed in [DGKR03,
HR03]. More recently, it has been improved for two-stage models in [HR07]
and extended to mixed-integer and chance constrained models in [HKR08,
HKR09] as well as to multi-stage models in [HR09b]. The concept does not
impose special conditions on the underlying probability distribution except
the existence of certain moments.

Scenario reduction aims at reducing the number of scenarios in an optimal
way. If ξ is a given random vector on some probability space (Ω,F , P) with
finite support, i.e., represented by the scenarios ξi and probabilities pi, i =
1, . . . , N , then one may be interested in finding a suitable index subset J ⊂
{1, . . . , N} and a new random vector ξ̂ supported only by the scenarios ξj ,

j /∈ J , such that ξ̂ is the best approximation to ξ. Here, we consider the norm
‖ · ‖r in Lr as the natural distance function.

If J is given, the best approximation to ξ can be given explicitly. To show
this, let Ai = ξ−1(ξi) ∈ F , i = 1, . . . , N . Then

‖ξ − ξ̂‖r
r =

N
∑

i=1

∫

Ai

|ξi − ξj(i)|rP(dω) =
N

∑

i=1

pi|ξ
i − ξj(i)|r

for some mapping j : {1, . . . , N} → {1, . . . , N}\J and the best approximation
problem reads

min

{ N
∑

i=1

pi|ξ
i − ξj(i)|r

∣

∣

∣
j : {1, . . . , N} → {1, . . . , N} \ J

}

. (23)

Since the lower bound

N
∑

i=1

pi|ξ
i − ξj(i)|r ≥

∑

i∈J

pi min
j /∈J

|ξi − ξj |r

is always valid, the minimum in (23) is attained for the mapping j :
{1, . . . , N} → {1, . . . , N} \ J defined by

j(i) ∈ arg min
j /∈J

|ξi − ξj | , i ∈ J.

Hence, the best approximation ξ̂ is supported by the scenarios ξj with prob-
abilities qj , j /∈ J , where
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‖ξ − ξ̂‖r
r =

∑

i∈J

pi min
j /∈J

|ξi − ξj |r , (24)

qj = pj +
∑

i∈J
j(i)=j

pi . (25)

In other words, the redistribution rule (25) consists in assigning the new prob-
ability to a preserved scenario to be equal to the sum of its former probability
and of all probabilities of deleted scenarios that are closest to it.

Finding the optimal index set J , say, with prescribed cardinality, such that
it solves the combinatorial optimization problem

min
{

∑

i∈J

pi min
j /∈J

|ξi − ξj |r : J ⊆ {1, . . . , N}, |J | = N − n
}

(1 ≤ n < N),

is much more complicated. The latter problem represents a metric k-median
problem which is known to be NP-hard, hence, (polynomial-time) approxi-
mation algorithms and heuristics become important. Simple heuristics may
be derived from formula (24) for the approximation error. The result are two
heuristic algorithms to compute nearly optimal index sets J with given car-
dinality N − n.

Algorithm 2. (Forward selection)

[Initialization]
Set J := {1, . . . , N}.

[Index Selection]
Determine an index l ∈ J such that

l ∈ arg min
u∈J

∑

k∈J\{u}

pk min
j /∈J\{u}

|ξk − ξj |r

and set J := J \{l}. If the cardinality of J equals N −n go to the termination
step. Otherwise continue with a further index selection step.

[Termination]
Determine scenarios ξj , j /∈ J , and apply the redistribution rule (25) for the
final index set J .

Algorithm 3. (Backward reduction)

[Initialization]
Set J := ∅.

[Index Selection]
Determine an index u /∈ J such that

u ∈ arg min
l/∈J

∑

k∈J∪{l}

pk min
j /∈J∪{l}

|ξk − ξj |r
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and set J := J∪{u}. If the cardinality of J equals N−n go to the termination
step. Otherwise continue with a further index selection step.

[Termination]
Determine scenarios ξj , j /∈ J , and apply the redistribution rule (25) for the
final index set J .

Optimal scenario reduction allows two interesting interpretations. The first
is that it may actually be considered as a problem of optimal quantization
of probability measures (in the sense of [GL00]) when applied to a discrete
probability measure (with N atoms) and using the rth order Wasserstein
distance (see also [HR09a, Lemma 2.1]). Secondly, scenario reduction leads
to a canonical decomposition of the sample space R

s. To illustrate this fact
assume that {ξj : j /∈ J} has been computed to reduce the original scenario
set {ξ1, . . . , ξN} contained in R

s. Then the so-called Voronoi regions defined
by

V (ξj) :=
{

ξ ∈ R
s : |ξ − ξj | < min

k/∈J∪{j}
|ξ − ξk|

}

, j /∈ J,

represent disjoint subsets of R
s. It is known that for strictly convex norms | · |

the union of the closures of V (ξj) cover R
s and the boundaries ∂V (ξj) have

Lebesgue measure λs zero. The latter holds for the lp-norms with 1 < p < ∞
and for p = 2 Voronoi regions are even convex (see [GL00, Section 1]). Voronoi
regions are a suitable choice for the sets Dt in Sect. 3.1.

Fig. 1 shows the Voronoi decomposition of the space R2 obtained by sce-
nario reduction starting from N = 1000 samples from the two-dimensional
standard normal distribution computed with Algo. 2.
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Fig. 1. Illustration of scenario reduction starting from 1 000 sample scenarios of
the two-dimensional standard normal distribution (left) reduced to 100 scenarios
(middle) and further reduced to 50 scenarios (right). Displayed are the correspond-
ing decompositions of R

2 into Voronoi regions obtained by the forward selection
algorithm with respect to the Euclidean norm.
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4.2 Scenario tree construction

The idea of the tree construction method is to apply the scenario reduction
techniques to a set of scenarios successively for increasing and decreasing
time stages, respectively. This leads to forward or backward variants of a tree
generation method that aims at recovering the original information structure
approximately. Next we present a detailed description of the forward variant,
the backward approach may be found in [HR09a].

In the following, let I := {1, . . . , N} be the index set of the given set of
scenarios ξi. Then the successive scenario reduction technique is applied to
the time horizons {1, . . . , t} with increasing time t ∈ {1, . . . , T}. It computes
partitions of I of the form

Ct := {C1
t , . . . , Ckt

t } , kt ∈ N,

successively such that

Ck
t ∩ Ck′

t = ∅ for k 6= k′ , and

kt
⋃

k=1

Ck
t = I

holds for every t. The elements of a partition Ct are called (scenario) clusters.
The following algorithm allows to generate different scenario tree processes
depending on the parameter settings for the reductions in each step.

Algorithm 4. (Forward construction)

[Initialization]
Define C1 = {I} and set t := 2.

[Cluster computation]

Let Ct−1 = {C1
t−1, . . . , C

kt−1

t−1 }. For every k ∈ {1, . . . , kt−1} apply scenario
reduction to the scenario subsets {ξi

t}i∈Ck
t−1

(at time t). This yields disjoint

subsets of remaining and deleted scenarios Ik
t and Jk

t , respectively. Next,
obtain the mappings jk

t : Jk
t → Ik

t such that

jk
t (i) ∈ arg min

j∈Ik
t

|ξi
t − ξj

t | , i ∈ Jk
t ,

according to the reduction procedure (cf. Sect. 4.1). Finally, define an overall
mapping αt : I → I by

αt(i) =

{

jk
t (i), i ∈ Jk

t for some k = 1, . . . , kt−1,
i, otherwise.

(26)

A new partition at t is defined now by

Ct :=
{

α−1
t (i)

∣

∣ i ∈ Ik
t , k = 1, . . . , kt−1

}
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Fig. 2. Demonstration of the forward tree construction for an example containing
T = 5 time periods. Displayed are the stepwise changes of the scenarios tree structure
starting with a fan of individual scenarios.

which is in fact a refinement of the partion Ct−1. If t < T set t := t + 1
and continue with a further cluster computation step, otherwise go to the
termination step.

[Termination]
According to the partition set CT and the mappings (26) define a scenario
tree process ξtr supported by the scenarios

ξk
tr =

(

ξ∗1 , ξ
α2(i)
2 , . . . , ξ

αt(i)
t , . . . , ξ

αT (i)
T

)

for any i ∈ Ck
T ,

and probabilities qk :=
∑

i∈Ck
T

pi, for each k = 1, . . . , kT .

Both heuristic algorithms from Sect. 4.1 may be used to compute the scenario
reduction within every cluster computation step. According to (24) the error
of the cluster computation step t is

errt :=

kt−1
∑

k=1

∑

i∈Jk
t

pi min
j∈Ik

t

|ξi
t − ξj

t |
r.
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Furthermore, as shown in [Hei07, Proposition 6.6], the estimate

‖ξ − ξtr‖r ≤

(

T
∑

t=2

errt

)

1
r

holds for the total approximation error. The latter estimate allows to control
the construction process by prescribing tolerances εt for errt for every t =
2, . . . , T .

5 Application to electricity management

The deregulation of energy markets has lead to an increased awareness of
the need for profit maximization with simultaneous consideration of financial
risk, adapted to individual risk aversion policies of market participants. Math-
ematical modeling of such optimization problems with uncertain input data
results in large-scale stochastic programming models with a risk functional
in the objective. When considering a medium-term planning horizon, one is
faced with consecutive decisions based on consecutive observations, thus, the
stochastic programs need to be multi-stage.

Next we report on some experiences with constructing scenario trees for a
multi-stage stochastic optimization model that is tailored to the requirements
of a typical German municipal power utility, which has to serve an electricity
demand and a heat demand of customers in a city and its vicinity. The power
utility owns a combined heat and power (CHP) facility that can serve the heat
demand completely and the electricity demand partly. Further electricity can
be obtained by purchasing volumes for each hour at the (day ahead) spot
market of the European Energy Exchange (EEX), or by signing a supply
contract for a medium term horizon with a larger power producer. The latter
possibility is suspected to be expensive, but relying on the spot market only
is known to be extremely risky. Spot price risk, however, may be reduced by
obtaining electricity futures at EEX. The optimization aims to maximize the
mean overall revenue and, simultaneously, to minimize a risk functional on a
basis of a hourly discretized optimization horizon of one year. Details of the
optimization model can be found in [ERW05].

Electricity demand and heat demand as well as spot and future prices
are not known in advance, but statistical information is available due to his-
torical observations. A very heterogeneous statistical model is employed. It
is adapted to historical data in a rather involved procedure. It consists of
a cluster classification for the intra-day (demand and price) profiles and a
three dimensional time series model for the daily average values. The latter
consists of deterministic trend functions and a trivariate ARMA model for
the (stationary) residual time series; see [ERW05] for further details. An ar-
bitrary number of three dimensional sample paths (scenarios) can easily be
obtained by simulating white noise processes for the ARMA model and by
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Fig. 3. Yearly scenario profiles of the trivariate stochastic process with components
electricity demand (top), spot prices (center), and heat demand (bottom)
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adding on the trend functions and matched intra-day profiles from the clus-
ters afterwards. However, such a bunch of sample paths does not reflect the
information structure in multi-stage stochastic optimization, i.e., it neglects
the fact that information is revealed gradually over time. For this reason, fi-
nally, tri-variate scenario tree processes has been computed by the approach
of recursive forward scenario reduction (see Section 4). Table. 1 displays the

Table 1. Dimension of simulation scenarios

Components Horizon Scenarios Time steps Nodes

3 (trivariate) 1 year 100 8 760 875 901

size of the three dimensional (electricity demand, heat demand, spot price)
scenarios which serve as inputs for the tree construction (Algo. 4). We per-
formed a couple of test series for generating scenario trees. Due to the fact
that electricity future products can only be traded monthly, branching was
allowed only at the end of each month which leads to scenario trees of at most
12 stages. Because stochastic data enters both the objective and right hand
sides of the model Algo. 4 is used with r = r′ = 2 (cf. (2)). Moreover, different
relative reduction levels εrel have been chosen. The relative levels are given by

εrel :=
ε

εmax
and εrel,t :=

εt

εmax
,

where εmax is given as the best possible Lr-distance of the stochastic process

Table 2. Results of Algo. 4 for yearly demand-price scenario trees

εrel Scenarios Nodes Stages Time (sec)
initial tree initial tree

0.20 100 100 875 901 775 992 4 24.53 s
0.25 100 100 875 901 752 136 5 24.54 s
0.30 100 100 875 901 719 472 7 24.55 s

0.35 100 97 875 901 676 416 8 24.61 s
0.40 100 98 875 901 645 672 10 24.64 s
0.45 100 96 875 901 598 704 10 24.75 s

0.50 100 95 875 901 565 800 9 24.74 s
0.55 100 88 875 901 452 184 10 24.75 s
0.60 100 87 875 901 337 728 11 25.89 s

represented by all scenarios and their probabilities and of one of its scenarios
endowed with probability 1. The individual tolerances εt at branching points
is computed such that

εr
t =

2εr

T − 1

(

q + (1 − 2q)
t − 2

T − 2

)

, t = 2, . . . , T, (27)
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Fig. 4. Yearly demand-price scenario trees obtained by Algo. 4

where q ∈ [0, 1] is a parameter that affects the branching structure of the
constructed trees. Note that a value q < 1

2 generates a sequence εr
t with linear

growth while q > 1
2 results in a decreasing sequence εr

t , t = 1, . . . , T .
Table 2 displays the results of our test runs with different relative reduc-

tion levels. As expected, for very small reduction levels, the reduction affects
only a few scenarios. Furthermore, the number of nodes decreases consider-
ably if the reduction level is increased. The computing times of less than 30
seconds already include approximately 20 seconds for computing distances of
all scenario pairs that are needed in all calculations.

Fig. 4 illustrates the scenario trees obtained for reduction levels of 40
percent and 55 percent, respectively. Observe that in all computations the
maximal number of 12 stages is not reached even at higher reduction levels.
This phenomenon could be caused by the low level of heat demand during the
summer period (see Fig. 3) such that branching occurs less frequently.
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