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Abstract

Many applications give rise to matrix polynomials whose coefficients have a kind of
reversal symmetry, a structure we call palindromic. Several properties of scalar palin-
dromic polynomials are derived, and together with properties of compound matrices,
used to establish the Smith form of regular and singular T -palindromic matrix polyno-
mials, over arbitrary fields. The invariant polynomials are shown to inherit palindromic-
ity, and their structure is described in detail. Jordan structures of palindromic matrix
polynomials are characterized, and necessary conditions for the existence of structured
linearizations established. In the odd degree case, a constructive procedure for building
palindromic linearizations shows that the necessary conditions are sufficient as well.
The Smith form for ∗-palindromic polynomials is also analyzed. Finally, results for
palindromic matrix polynomials over fields of characteristic two are presented.
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1 Introduction

Polynomial eigenvalue problems arise in many applications, and often the underlying matrix
polynomial is structured in some way. An example of particular interest are matrix poly-
nomials P (λ) =

∑k
i=0 λiAi that have palindromic structure. Informally, coefficients of such

polynomials have symmetry under certain involutions: Ai 7→ εAT
k−i in the T -palindromic

case, or Ai 7→ εA∗k−i in the ∗-palindromic case, where ε = ±1. T -palindromic polynomials
arise in the vibrational analysis of railroad tracks excited by high speed trains [11, 19], and
in the modelling and numerical simulation of periodic surface acoustic wave (SAW) filters
[12, 27]. Complex ∗-palindromic polynomials occur when the Crawford number of two Her-
mitian matrices is computed [10], as well as in the solution of discrete-time linear-quadratic
optimal control problems via structured eigenvalue problems [2].
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The standard computational approach to solving polynomial eigenproblems is by lin-
earization. However, when the original polynomial is structured, it can be both theoretically
and numerically advantageous to use a linearization with the same structure, thereby pre-
serving any spectral symmetries that may be present.

Linearizations that reflect the structure of regular palindromic polynomials were intro-
duced in [20], where sufficient criteria for the existence of strong palindromic linearizations
were presented, along with a systematic method for constructing them. The analysis in [20]
revealed a disparity between T -palindromic and ∗-palindromic structure which arises even
in the 1× 1 case, as the following example illustrates.

Example 1.1. [20] Consider the palindromic 1 × 1 matrix polynomial P (λ) = λ2 − 1.
A T -palindromic linearization for P (λ) would be a 2 × 2 matrix polynomial of the form
Lε(λ) = λZ + εZT where ε = ±1, and with +1 and −1 as its only eigenvalues, each with
multiplicity one. This means Z would have to be invertible, and thus det(εZ−1ZT ) =
ε2 det(Z−1ZT ) = (detZ)−1 det Z = 1. But εZ−1ZT has only the simple eigenvalues +1 and
−1, so det(εZ−1ZT ) = −1, a contradiction.

On the other hand, a ∗-palindromic linearization would have the form Lε(λ) = λZ+εZ∗,
and the same argument, mutatis mutandis, yields no contradiction, since now det(εZ−1Z∗)
may lie anywhere on the unit circle in the complex plane and so can be equal to −1.

In fact, it was proved in [20] that all regular ∗-palindromic polynomials have palindromic
linearizations. Thus a complete study of the Jordan structures of ∗-palindromic polynomials
can be carried out in the regular case by exploiting their structured linearizations, as was
done by Lancaster, Prells and Rodman in [16] for ∗-palindromic polynomials with nonsin-
gular leading coefficient. Investigating the Jordan structures of T -palindromic polynomials
and characterizing which polynomials admit palindromic linearizations remained an open
problem even for the regular case, while the singular case was not considered at all.

It is these issues that we turn to in this paper, using Smith forms and compound matrices
as the key tools. The structured linearization question is completely settled for all odd
degree T -palindromic polynomials, both regular and singular, while the even degree case
is settled only for regular T -palindromics over the real and complex fields. We do this by
following the path in [21], where the analogous questions were investigated for T -alternating
matrix polynomials, i.e., matrix polynomials P satisfying P (−λ) = ±P T (λ). Although
the overall strategy in this paper is quite similar to the one in [21], the palindromic case
shows some fundamental differences which require a separate treatment of the subject. In
particular, a key fact in [21] was the observation that the Euclidean algorithm for computing
the greatest common divisor of scalar polynomials preserves T -alternating structure, since
whenever two T -alternating scalar polynomials are divided, then the remainder and quotient
are also T -alternating. Unfortunately, the corresponding statements are not true in the case
of T -palindromic polynomials, leading to subtle differences in the theories of alternating and
palindromic scalar polynomials. Also, in [21] necessary and sufficient conditions for a Smith
form to be that of a T -alternating matrix polynomial could be given. The T -palindromic
case turns out to be more complicated, as shown in Section 7.

The outline of the remainder of the paper is as follows. In Section 2, we review some
facts from matrix theory used in the proofs of the main results. In Section 4, the earlier
definition of palindromic matrix polynomials from [20] is extended to allow zero leading
coefficients. This requires a more careful consideration of the degree and the reversal of
matrix polynomials, a task that is performed in Section 3. Key ingredients needed for
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the proofs of the main theorems are results on scalar palindromic polynomials and the
structure of determinants and minors of palindromic matrix polynomials, developed in
Sections 5 and 6, respectively. Section 7 then presents one of the main results of this paper,
laying out necessary conditions for a Smith form to be that of a T -palindromic matrix
polynomial over an arbitrary field of characteristic different from two. For completeness,
the simpler case of the Smith form of ∗-palindromic polynomials over the complex field is
also analyzed. Section 8 then characterizes the possible Jordan structures of T -palindromic
matrix polynomials, which lead in turn to necessary conditions for a T -palindromic matrix
polynomial to have a T -palindromic linearization in Section 9. In the odd-degree case, these
conditions turn out to be sufficient as well. It is worth pointing out that most results apply
to singular as well as regular T -palindromic matrix polynomials. Finally, the Smith form
for palindromic polynomials over fields of characteristic two is discussed in Appendix A.

2 Notation and Matrix Theory Tools

Throughout the paper we use N to denote the set of non-negative integers, F to denote an
arbitrary field, and F[x] to denote the ring of polynomials in one variable with coefficients
from the field F. Matrix polynomials are of the form P (λ) =

∑k
i=0 λiAi, where Ak, . . . , A0 ∈

Fm×n. Equivalently, P (λ) can also be viewed as a matrix with polynomial entries. Some
well-known tools and results from matrix theory that we need are now briefly reviewed.
Detailed proofs can be found in standard monographs like [7, Ch.VI], [9, Part IV], [18].

2.1 Smith form, elementary divisors, and partial multiplicity sequences

Recall that two m × n matrix polynomials P (λ), Q(λ) are called equivalent if there exists
unimodular matrix polynomials E(λ) and F (λ) of size m×m and n× n, respectively, such
that

Q(λ) = E(λ)P (λ)F (λ). (2.1)

Here, an n×n matrix polynomial E(λ) is called unimodular if detE(λ) is a nonzero constant,
independent of λ.

Theorem 2.1 (Smith form (Frobenius, 1878)[6]).
Let P (λ) be an m×n matrix polynomial over an arbitrary field F. Then there exists r ∈ N,
and unimodular matrix polynomials E(λ) and F (λ) of size m×m and n× n, respectively,
such that

E(λ)P (λ)F (λ) = diag(d1(λ), . . . , dmin {m,n}(λ)) =: D(λ), (2.2)

where d1(λ), . . . , dr(λ) are monic (i.e., the highest degree terms all have coefficient 1),
dr+1(λ), . . . , dmin {m,n}(λ) are identically zero, and d1(λ), . . . , dr(λ) form a divisibility chain,
that is, dj(λ) is a divisor of dj+1(λ) for j = 1, . . . , r − 1. Moreover, D(λ) is unique.

The nonzero diagonal elements dj(λ), j = 1, . . . , r in the Smith form of P (λ) are called
the invariant factors or invariant polynomials of P (λ) and have an important interpretation
in terms of greatest common divisors of minors of P (λ) [7, 9, 18]. Recall that a minor of
order k of an m×n matrix A is the determinant of a k× k submatrix of A, i.e., of a matrix
obtained from A by deleting m− k rows and n− k columns.

For d(x) 6= 0 we write d(x)|p(x) to mean that d(x) is a divisor of p(x). When S is a set
of scalar polynomials, we write d|S to mean that d(x) divides each element of S, i.e., d(x) is
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a common divisor of the elements of S. The greatest common divisor (or GCD) of a set S
containing at least one nonzero polynomial is the unique monic polynomial g(x) such that
g(x)|S, and if d(x)|S then d(x)|g(x).

Theorem 2.2 (Characterization of invariant polynomials).
Let P (λ) be an m × n matrix polynomial over an arbitrary field F with Smith form as in
(2.2). Set p0(λ) ≡ 1. For 1 ≤ j ≤ min(m,n), let pj(λ) ≡ 0 if all minors of P (λ) of order j
are zero; otherwise, let pj(λ) be the greatest common divisor (GCD) of all minors of P (λ)
of order j. Then the number r in Theorem 2.1 is the largest integer such that pr(λ) 6≡ 0,
i.e., r = rankP (λ). Furthermore, the invariant polynomials d1(λ), . . . , dr(λ) of P (λ) are
ratios of GCDs given by

dj(λ) =
pj(λ)

pj−1(λ)
, j = 1, . . . , r,

while the remaining diagonal entries of the Smith form of P (λ) are given by

dj(λ) = pj(λ) ≡ 0 , j = r + 1, . . . ,min {m,n}.

Definition 2.3 (Partial Multiplicity Sequences).
Let P (λ) be an m × n matrix polynomial of rank r over a field F. For any λ0 ∈ F, the
invariant polynomials di(λ) of P for 1 ≤ i ≤ r can each be uniquely factored as

di(λ) = (λ− λ0)αi pi(λ) with αi ≥ 0 , pi(λ0) 6= 0 .

The sequence of exponents (α1, α2, . . . , αr) satisfies the condition 0 ≤ α1 ≤ α2 ≤ · · · ≤ αr

by the divisibility chain property of the Smith form, and is called the partial multiplicity
sequence of P at λ0.

Note that this sequence is allowed to consist of r zeroes; in fact this happens for all but
a finite number of elements of F. We say λ0 ∈ F is an eigenvalue of P whenever its partial
multiplicity sequence (α1, α2, . . . , αr) is not the zero sequence. The elementary divisors
for an eigenvalue λ0 of P are the collection of factors (λ − λ0)αi with αi > 0, including
repetitions. Observe that the algebraic multiplicity of an eigenvalue λ0 is just the sum
of the terms in its partial multiplicity sequence α1 + α2 + . . . + αr, while the geometric
multiplicity is simply the number of nonzero terms in this sequence. Matrix polynomials
may also have infinite eigenvalues; these will be discussed in Section 3.

2.2 Compound matrices and their properties

Compound matrices were used in [21] to obtain Smith forms of T -even and T -odd matrix
polynomials. They will once again play an important role in establishing the main results in
this paper. For references on compound matrices, see [13, Section 0.8], [22, Chapter I.2.7],
[23, Section 2 and 28]. We use a variation of the notation in [13] for submatrices of an m×n
matrix A. Let η ⊆ {1, . . . , m} and κ ⊆ {1, . . . , n} be arbitrary index sets of cardinality
j ≤ min(m,n). Then Aηκ denotes the j × j submatrix of A in rows η and columns κ, and
the ηκ-minor of order j of A is detAηκ. Note that A has

(
m
j

) · (n
j

)
minors of order j.

Definition 2.4 (Compound Matrices).
Let A be an m × n matrix with entries in an arbitrary commutative ring, and let r ≤
min(m,n) be a positive integer. Then the rth compound matrix (or the rth adjugate) of
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A, denoted Cr(A), is the
(
m
r

)× (
n
r

)
matrix whose (η, κ)-entry is the r × r minor detAηκ of

A. Here, the index sets η ⊆ {1, . . . ,m} and κ ⊆ {1, . . . , n} of cardinality r are ordered
lexicographically.

Observe that we always have C1(A) = A, and, if A is square, Cn(A) = detA. Basic
properties of Cr(A) are listed in the next theorem.

Theorem 2.5 (Properties of compound matrices).
Let A be an m × n matrix with entries in a commutative ring, and let r ≤ min(m,n) be a
positive integer. Then

(a) Cr(AT ) =
(Cr(A)

)T ;

(b) Cr(µA) = µrCr(A), where µ ∈ F;
(c) det Cr(A) = (detA)β, where β =

(
n−1
r−1

)
, provided that m = n;

(d) Cr(AB) = Cr(A)Cr(B), provided that B ∈ Fn×p and r ≤ min(m,n, p).

We are especially interested in compounds of matrices with polynomial entries. Note
that such a compound can be thought of either as a polynomial with matrix coefficients, or as
a matrix with polynomial entries, leading to the natural identification Cr(P )(λ) := Cr(P (λ)).
The next theorem, established in [21], shows how the first r + 1 invariant polynomials of
P (λ) determine the first two invariant polynomials of Cr(P )(λ).

Theorem 2.6 (First two invariant polynomials of the rth compound [21]).
Suppose the Smith form of an n× n matrix polynomial P (λ) is

D(λ) = diag
(
d1(λ) , . . . , dr−1(λ) , dr(λ) , dr+1(λ) , . . . , dn(λ)

)
,

and 2 ≤ r < n. If C(λ) =
(
c1(λ) , c2(λ) , . . . , c(n

r)
(λ)

)
is the Smith form of Cr(P )(λ),

then the first two invariant polynomials of Cr(P )(λ) are given by

c1(λ) = d1(λ) · · · dr−1(λ)dr(λ) and c2(λ) = d1(λ) · · · dr−1(λ)dr+1(λ) .

3 Reversal Operator Revisited

From now on we consider only square matrix polynomials P (λ) =
∑k

i=0 λiAi, where
Ak, . . . , A0 ∈ Fn×n with F an arbitrary field, but we allow leading coefficient matrices
to be zero as well as P to be singular. Consequently, we have to ensure that eigenvalues
and their multiplicities are well-defined. Consider, for example, the polynomial

P (λ) = A = λ0n + A, (3.1)

with A ∈ Fn×n nonsingular. As we shall see, the spectrum of P (λ) depends on whether
P (λ) is being viewed as A or as λ0n + A. It must therefore be clarified whether P (λ) is to
be viewed as a constant matrix or a matrix pencil, or even as a matrix polynomial of higher
“degree”. We do this by specifying the grade of a matrix polynomial, which is an integer
at least as large as its degree. (Considered by Gohberg, Kaashoek, and Lancaster in [8],
this notion was called “extended degree” in [15].) Clearly, a polynomial of grade k can also
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be viewed as a polynomial of any grade higher than k, so the grade under consideration
must be made explicit. When the grade is not specified, we assume that it is the same as
the degree. Note that the grade of a matrix polynomial P (λ) constitutes an aspect of P (λ)
in addition to its degree. It does not replace the notion of degree, which retains its usual
meaning as the largest m such that the coefficient of λm in P (λ) is nonzero.

Example 3.1. The ordered list of coefficients of an n × n matrix polynomial of degree 1
and grade 3 has the form (A3, A2, A1, A0) = (0n, 0n, A1, A0), with A1 6= 0.

The term pencil will be reserved for matrix polynomials of grade one, and they will
usually be denoted by L(λ). Most numerical methods for solving polynomial eigenproblems
first turn the matrix polynomial into a pencil via linearization, which we now define. While
the classical definition [9] involves the degree of the matrix polynomial, allowing leading
coefficient matrices to be zero means that linearizations must now be defined with respect
to the grade of the polynomial.

Definition 3.2 (Linearization).
Let P (λ) be a nonzero n × n matrix polynomial of grade k ≥ 1. A matrix pencil L(λ) =
λX +Y with X, Y ∈ Fkn×kn is a linearization of P (λ) with respect to grade k if there exist
unimodular (i.e., with constant nonzero determinant) matrix polynomials E(λ), F (λ) such
that

E(λ)L(λ)F (λ) =

[
P (λ) 0

0 I(k−1)n

]
. (3.2)

A linearization L of P has the same eigenvalues as P , but the partial multiplicity
sequences of L and P at the eigenvalue infinity (see Definition 3.4 below) may differ. Hence
a more restrictive notion of linearization was introduced in [8] and called strong linearization
in [17], where it was shown that ordinary linearizations in the sense of Definition 3.2 can have
Jordan structure at ∞ that is arbitrarily different (except for equal algebraic multiplicity)
from that of P . Though considered only for regular matrix polynomials in [8, 17], the
notion of strong linearization is applicable to singular polynomials as well. To define these
concepts, we begin with the notion of reversal.

Definition 3.3 (j-reversal).
Let P be a nonzero matrix polynomial of degree d ≥ 0. For j ≥ d, the j-reversal of P is the
matrix polynomial revj P given by

(revj P )(λ) := λjP (1/λ). (3.3)

In the special case when j = d, the j-reversal of P is called the reversal of P and denoted
by revP .

Definition 3.4 (Infinite eigenvalues).
Let P be a nonzero matrix polynomial of grade k. We say λ0 = ∞ is an eigenvalue of P
whenever 0 is an eigenvalue of revk P , and the partial multiplicity sequence of P at λ0 = ∞
is defined to be the same as that of the eigenvalue 0 for revk P . The elementary divisors of
λ0 = ∞ are the same as those of the eigenvalue 0 of revk P .

Example 3.5. Let A ∈ Fn×n be invertible. Then the constant polynomial P (λ) = A of
grade 0 has no eigenvalues — there are no finite eigenvalues because P (λ) has a trivial
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Smith form (all its invariant polynomials are 1), and since (rev0 P )(λ) = A, the invertibility
of A means that P does not have∞ as an eigenvalue either. On the other hand when viewed
as the matrix pencil P (λ) = λ0n + A, we have (rev1 P )(λ) = λA + 0n. Since A ∈ Fn×n

is invertible, rev1 P has the eigenvalue 0 with algebraic multiplicity n. Thus when viewed
as a pencil, P has no finite eigenvalues, but it does have the eigenvalue ∞ with algebraic
multiplicity n.

Definition 3.6 (Strong linearization [8]).
Let P (λ) be a nonzero matrix polynomial of grade k ≥ 1 and degree d ≥ 0. A matrix
pencil L(λ) is called a strong linearization for P (λ) if L(λ) is a linearization for P (λ), and
(rev1 L)(λ) is a linearization for (revk P )(λ).

Any strong linearization L(λ) of a regular polynomial P (λ) was shown in [8] to preserve
the partial multiplicity sequences of all eigenvalues of P (λ), both finite and infinite.

It is well known that elementary divisors are closely related to Jordan blocks. For
example, there is a one-to-one correspondence between the elementary divisors of λIn − A
and the Jordan blocks of the matrix A ∈ Cn×n. Therefore, for a matrix polynomial P over
a field F, we will refer to the collection of all the finite and infinite elementary divisors of
P , including repetitions, when P is viewed as a polynomial over the algebraic closure F,
as the Jordan structure of P . Clearly, the Jordan structure can be read from the partial
multiplicity sequences of the finite and infinite eigenvalues of P .

We end this section with some observations on j-reversals, and two lemmas that list some
useful properties. Taking the reversal puts the coefficients of P in reverse order without
increasing the degree. Taking the j-reversal can be viewed as a kind of “shifted reversal”,
and the degree may increase, decrease, or stay the same. For example, the 2-reversal of the
matrix polynomial of degree one P (λ) = λA1+A0, where A0 6= 0, is rev2P (λ) = λ2A0+λA1,
a polynomial of higher degree. Taking the 2-reversal again now lowers the degree to one,
and brings us back to P , illustrating an involutory property that holds in general.

Lemma 3.7 (Properties of Reversals).
Let P be a nonzero matrix polynomial, and j ≥ deg P .

(a) deg(revP ) ≤ deg P and deg(revj P ) ≤ j, with equality in either case if and only if
P (0) 6= 0.

(b) rev(revP ) = P ⇔ P (0) 6= 0.

(c) revj (revj P ) = P .

(d) (revj P )(λ) = λj−k(revP )(λ), where k = deg P .

Proof. The proof follows directly from the defining equation (3.3) of j-reversals.
Note that in Lemma 3.7 there is no contradiction between parts (b) and (c), even though

(b) has the condition P (0) 6= 0 and (c) does not (taking j = deg P in (c)). The key difference
between (b) and (c) is that deg(revP ) might not be the same as deg P , and so the second
rev operation in (b) may not be the same as the second revj operation in (c), as illustrated
in the following example.

Example 3.8. Let P (λ) = λ2A2 + λA1, where A2 6= 0n, A1 6= 0n. Since deg P =
2, we have (revP )(λ) = (rev2 P )(λ) = λA1 + A2, which is a polynomial of degree 1.
This means (rev(revP ))(λ) = rev1 (λA1 + A2) = λA2 + A1 6= P (λ). On the other hand,
(rev2 (rev2 P ))(λ) = rev2 (λA1 + A2) = λ2A2 + λA1 = P (λ).
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We remark that Lemma 3.7 will be particularly useful in Section 5 when applied to or-
dinary scalar polynomials. Another result that will be needed is the multiplicative property
of reversals of scalar polynomials. The proof follows directly from the definition of reversal
and so is omitted.

Lemma 3.9 (Reversals of products).
Let p(x) and q(x) be scalar polynomials, and let j ≥ deg p, ` ≥ deg q. Then rev(j+`) (p q) =
revj p · rev` q. In particular, with j = deg p and ` = deg q, we have rev(p q) = revp · revq.

Extending Lemma 3.9 to matrix polynomials requires additional hypotheses, as the
product of nonzero matrices may be zero. We will not need such results in this paper.

4 Palindromic Matrix Polynomials

Many applications, several of which are summarized in [2, 19, 20], give rise to matrix
polynomials with T -palindromic structure. We now generalize the definition introduced in
[19].

Definition 4.1 (Palindromic).
A nonzero n × n matrix polynomial P of degree d ≥ 0 is said to be T -palindromic if
(revj P )(λ) = ±P T (λ) for some integer j, with j ≥ d.

By allowing j to be larger than the degree of the polynomial, and permitting a sign
change, this definition extends the notion of palindromicity from the usage established in
[19, 20], where T -palindromic polynomials were only those satisfying (revP )(λ) = P T (λ).
Extending the definition as we have done here helps to formulate the results of this paper
with greater clarity and conciseness.

Now if P is T -palindromic, what can be said about the admissible values of j in Definition
4.1? Consider the following example.

Example 4.2. P (λ) = λ2A− λAT is T -palindromic, since (rev3 P )(λ) = −P T (λ).

Observe that j = 3 is the only grade that will work for P (λ) in Example 4.2. The next
lemma establishes the uniqueness of j in general; this unique j will be referred to as the
grade of palindromicity of P (λ).

Proposition 4.3 (Uniqueness of the grade of palindromicity).
Let P (λ) be a nonzero T -palindromic matrix polynomial. Then there exists a unique non-
negative integer j such that (revj P )(λ) = ±P T (λ). Furthermore, if P (λ) = λ`Q(λ) where
` ∈ N, and Q(0) 6= 0, then j = ` + deg P = 2` + deg Q.

Proof. By hypothesis, there exists j ≥ m = deg P such that

(revj P )(λ) = ±P T (λ). (4.1)

Since P (λ) = λ`Q(λ) with Q(0) 6= 0, we conclude deg P = ` + deg Q, with the lowest
nonzero coefficient of P being A`. Forming the j-tuple of coefficients of P we get

(Aj , . . . , Am+1, Am, . . . , A`, A`−1, . . . , A0) = (0n×n, . . . , 0n×n, Am, . . . , A`, 0n×n, . . . , 0n×n).
(4.2)
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By (4.1), the number ` of trailing zero matrices must be the same as the number of leading
zero matrices, which is j −m. Thus ` = j − deg P , and substituting deg P = ` + deg Q, we
get j = ` + deg P = 2` + deg Q is uniquely determined.

Clearly, a nonzero T -palindromic polynomial over a field F with charF 6= 2 cannot
simultaneously satisfy revj P = P T and revj P = −P T , and thus the following notion is
well-defined.

Definition 4.4 (Palindromic Type).
The palindromic type ε(P ) of a nonzero T -palindromic matrix polynomial P over a field F
with charF 6= 2 is defined by

ε(P ) =
{

+1 if (revj P )(λ) = P T (λ)
−1 if (revj P )(λ) = −P T (λ) ,

where j is the (unique) grade of palindromicity.

We will abbreviate palindromic type to type for expediency. The expression ‘P is
T -palindromic with grade of palindromicity j ’ will usually be abbreviated to ‘P is T -
palindromic of grade j’. This signifies that the grade of P as well as the grade of palin-
dromicity of P is j. Thus, for example, the polynomial λ2A − λAT is T -palindromic of
grade 3. When j = deg P , we sometimes say ‘P is T -palindromic with respect to degree’. If
ε(P ) = −1, it may sometimes be convenient to say ‘P is T -anti-palindromic’, following the
usage in [20]. By convention, every zero matrix polynomial is T -palindromic with respect
to all grades j ∈ N.

The next corollary addresses the effect of removing all λ-factors from a palindromic
polynomial.

Corollary 4.5. Let P (λ) = λ`Q(λ) be a nonzero T -palindromic polynomial, where ` ∈ N,
and Q(0) 6= 0. Then Q is T -palindromic with respect to degree, of the same type as P .

Proof. Examining (4.2), we see that the tuple of coefficients of Q is just (Am, . . . , A`). The
result now follows directly from the T -palindromicity of P .

Theorem 4.6 (Compounds of palindromic matrix polynomials).
If P is an n × n T -palindromic matrix polynomial of grade k and 1 ≤ r ≤ n, then the rth
compound of P is also T -palindromic, of grade kr and type

(
ε(P )

)r.

Proof. Using the properties of compound matrices given in Theorem 2.5(a)(b), we have

P T (λ) = ε(P )λkP (1/λ) =⇒ Cr

(
P T (λ)

)
= Cr

(
ε(P )λkP (1/λ)

)

=⇒
(
Cr

(
P (λ)

))T
=

(
ε(P )

)r
λkrCr

(
P (1/λ)

)

=⇒
(
Cr

(
P

)
(λ)

)T
=

(
ε(P )

)r
(
revkr

(Cr(P )
))

(λ),

from which the desired result is immediate.
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5 Palindromic Scalar Polynomials

Palindromic scalar polynomials will play an important role in the investigation of possible
Smith forms for T -palindromic matrix polynomials. For a nonzero polynomial p(x) in F[x],
the reversal operations (revj p)(x) := xjp(1/x), and (revp)(x) are just a special case of
Definition 3.3, and so palindromic scalar polynomials can be defined, mutatis mutandis, via
Definition 4.1 for matrix polynomials. Since the transpose operation is now superfluous,
the terminology can be simplified.

Definition 5.1 (Palindromic scalar polynomials).
A nonzero polynomial p(x) ∈ F[x] is palindromic if revj p = ±p for some integer j, with
j ≥ deg p.

As before, we can say ‘p is palindromic of grade j ’ to specify that j is the unique grade
of palindromicity, as well as the grade of p. Because this arises frequently in the context of
scalar polynomials, we will instead use the simpler abbreviation ‘p is j-palindromic’. Every
nonzero constant polynomial is 0-palindromic, and, by convention, the zero polynomial is
palindromic with respect to all grades j ∈ N. The type of palindromicity, ε(p), is defined
in accordance with Definition 4.4.

Example 5.2. Let P (λ) be a nonzero T -palindromic matrix polynomial of grade k. Then
the diagonal entries of P (λ), which in general may be of varying individual degrees, are all
k-palindromic scalar polynomials of the same type as P (λ).

5.1 Products, Quotients, Factorizations

It will be useful to know when palindromicity is preserved under multiplication and division,
and to describe a factorization of scalar palindromic polynomials into irreducibles. For
alternating (i.e., even or odd) matrix polynomials, the strategy in [21] hinged upon a key
fact: if p(x) and d(x) are alternating scalar polynomials with deg d ≤ deg p, then the
division p(x) = q(x)d(x)+r(x) always yields an alternating quotient q(x) and an alternating
remainder r(x).

Unfortunately, palindromicity is not preserved under division: when the palindromic
p(x) = x3 +x2 +x+1 is divided by the palindromic d(x) = x2 +3x+1, neither the quotient
q(x) = x− 2 nor the remainder r(x) = 6x + 3 are palindromic. Here is what we can say.

Lemma 5.3 (Products and Quotients).
Let p, q ∈ F[x] be nonzero polynomials such that p is j-palindromic and q is k-palindromic.

(a) If j < k, then p is not divisible by q.

(b) The product p q is (j + k)-palindromic of type ε(p)ε(q).

(c) If q divides p, then j ≥ k and the quotient p(x)
q(x) is (j−k)-palindromic of type ε(p)ε(q).

Proof. (a): Write p(x) = x`p1(x), q(x) = xmq1(x), with p1(0) 6= 0, q1(0) 6= 0, and `,m ∈ N.
When ` < m, the result follows immediately. So consider the case ` ≥ m. By Proposition
4.3 we have j = 2` + deg p1, and k = 2m + deg q1. Now j < k and ` ≥ m implies

deg p1 < deg q1 .
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Thus p1 cannot be divisible by q1, and hence p is not divisible by q either.
(b), (c): The proofs are immediate from the definitions of palindromicity and of reversals,
and from the additive property of the degrees of scalar polynomials under multiplication
and division.

Lemma 5.4 (Reversals of irreducibles).
Suppose d(x) ∈ F[x] is nonconstant and irreducible over F, and d(x) 6= x. Then revd(x)
is also nonconstant and irreducible over F. Moreover, the product p(x) = d(x) · revd(x) is
j-palindromic of type +1, with j = deg p = 2 deg d.

Proof. Since d(x) is irreducible and d(x) 6= x, we have d(0) 6= 0, so deg(revd) = deg d
and rev(revd) = d by Lemma 3.7. Now suppose that revd was not irreducible, and had a
nontrivial factorization revd(x) = r(x)s(x). Then r and s are both polynomials of degree
at least 1 with r(0) 6= 0 and s(0) 6= 0, since revd(0) 6= 0. Taking rev of both sides of the
equation revd(x) = r(x)s(x), we see that

d(x) = rev
(
r(x) s(x)

)
= revr(x) revs(x)

displays a nontrivial factorization of d(x), contradicting its irreducibility. The calculation

revp(x) = rev
(
d(x) · revd(x)

)
= revd(x) · rev(revd(x)) = revd(x) · d(x) = p(x)

shows that p(x) is palindromic with respect to degree, of type +1. Since deg(revd) = deg d,
we have j = deg p = 2deg d.

Lemma 5.5 (Irreducible factors of palindromic polynomials).
Suppose p(x) ∈ F[x] is palindromic with respect to degree and d(x) is a nonconstant irre-
ducible factor of p(x). Then revd(x) is also a nonconstant irreducible factor of p(x). If d(x)
is not palindromic, then d(x) and revd(x) are distinct (i.e., relatively prime) irreducibles,
and the product f(x) = d(x) · revd(x) is a j-palindromic factor of p(x) of type +1, where
j = deg f = 2 deg d.

Proof. If p(x) = d(x)q(x), then p(x) = ±revp(x) = ±rev
(
d(x)q(x)

)
= ±rev d(x) rev q(x)

shows that revd(x) is also a factor of p(x). Since p(x) is palindromic with respect to degree,
we have p(0) 6= 0 by Proposition 4.3, and hence d(x) 6= x. Thus revd(x) is a nonconstant
irreducible factor of p(x) by Lemma 5.4. The irreducible factors d(x) and revd(x) will be
distinct as long as d(x) 6= α revd(x) for any constant α. But d(x) = α revd(x) occurs if
and only if revd(x) = rev

(
α revd(x)

)
= α d(x) = α2 revd(x) if and only if α2 = 1, or in

other words if and only if d(x) is palindromic. Thus when d(x) and revd(x) are distinct
irreducibles, then both are factors of p(x), so that f(x) = d(x) · revd(x) is a palindromic
factor of p(x). That f(x) is palindromic with respect to degree and of type +1, with
deg f = 2 deg d, follows from Lemma 5.4.

Observe that there are only two monic irreducible palindromic polynomials of degree
1, viz., (x + 1) and (x − 1). Unless charF = 2, these are distinct polynomials, and they
play a special role in the analysis of Smith forms of T -palindromic matrix polynomials. For
the rest of this section, we assume charF 6= 2, and establish factorizations for palindromic
scalar polynomials over such fields. We will use the convention that the parity of an integer
j is (−1)j .
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Lemma 5.6 (Presence of (x + 1), (x− 1) factors).
Let q ∈ F[x] be a nonzero j-palindromic polynomial, where charF 6= 2.

(a) If ε(q) and the parity of j have opposite sign, i.e., if (−1)jε(q) = −1, then (x + 1) is
a factor of q.

(b) If ε(q) = −1, then (x− 1) is a factor of q .

Proof. (a): Evaluating xjq(1/x) = ε(q)q(x) at x = −1 gives us (−1)jq(−1) = ε(q)q(−1).
Since (−1)jε(q) = −1, we must have q(−1) = 0, i.e., (x + 1) is a factor of q.
(b): Evaluating xjq(1/x) = −q(x) at x = 1 immediately yields the desired result.

Lemma 5.7 (Multiplicity of (x + 1) and (x− 1)).
Let p(x) ∈ F[x] be a nonzero j-palindromic polynomial, where charF 6= 2.

(a) The multiplicity of (x + 1) as a factor of p has

(i) the same parity as j, if ε(p) = 1.

(ii) the opposite parity as j, if ε(p) = −1.

(b) The multiplicity of (x− 1) as a factor of p is independent of the palindromic grade j,
and its parity has the same value as ε(p).

Proof. (a): Write p(x) = (x + 1)`q(x), where q(−1) 6= 0, so (x + 1) is not a factor of q.
Now (x + 1)` is `-palindromic of type +1 for any ` ∈ N, by Lemma 5.3(b). Hence q(x) is
(j − `)-palindromic of the same type as p(x), by Lemma 5.3(c).

Now consider the case when ε(p) = 1. Then ε(q) = 1. If j and ` have opposite parity,
then k := j − ` is odd, so (−1)kε(q) = −1. By Lemma 5.6(a), q must have (x + 1) as a
factor, a contradiction. A similar argument establishes (ii).

(b): Write p(x) = (x−1)kq(x), where q(1) 6= 0, so (x−1) is not a factor of q. Now (x−1)k

is palindromic by Lemma 5.3(b), and hence so is q, by Lemma 5.3(c). As (x − 1) is not a
factor of q, we conclude by Lemma 5.6(b) that ε(q) = 1. This means that the palindromic
types of p and (x−1)k must agree, by Lemma 5.3(c). Thus ε(p) = ε((x−1)k) = (ε(x−1))k =
(−1)k, as desired.

Theorem 5.8 (Irreducible palindromic factorization).
A polynomial p(x) ∈ F[x] with charF 6= 2 is palindromic if and only if it admits an irre-
ducible factorization in F[x] of the form

p(x) = c0 · xk1(x− 1)k2(x + 1)k3 ·
µ∏

i=1

bi(x)mi ·
κ∏

j=1

(
cjdj(x)revdj(x)

)nj , (5.1)

where c0, c1, . . . , cκ ∈ F are nonzero, k1, k2, k3 ∈ N, m1, . . . ,mµ, n1, . . . , nκ ∈ N are nonzero,
and the irreducible factors bi(x), dj(x) and revdj(x) are distinct with the following proper-
ties:

(a) Each bi(x) and each dj(x) is monic with bi(0) 6= 0, bi(±1) 6= 0, and dj(0) 6= 0,
dj(±1) 6= 0. The nonzero constants cj ∈ F are chosen so that cj revdj(x) is also
monic, for j = 1, . . . , κ.
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(b) Each bi(x) has even degree, with deg bi ≥ 2, and each bi(x) is palindromic with respect
to degree, of type ε(bi) = 1.

(c) The factors dj(x) and revdj(x) are not palindromic, and may have any degree, with
deg dj = deg revdj ≥ 1.

The parities of k2 and k3 are as stated in Lemma 5.7. The factorization (5.1) is unique
up to reordering of the bi(x)’s amongst themselves, the dj(x)’s amongst themselves, and
exchanging the roles of dj(x) and cjrevdj(x) within each dj(x), revdj(x) pair.

Proof. ⇐ : If p has a factorization of the form (5.1), then p is palindromic by Lemma 5.3(b).
⇒ : Write p(x) = c0 xk1(x− 1)k2(x + 1)k3q(x) where c0 ∈ F is nonzero, k1, k2, k3 ∈ N, q(x)
is monic, and q(0) 6= 0, q(±1) 6= 0. Then q is palindromic by Lemma 5.3(c), and q(0) 6= 0
implies that q must be palindromic with respect to its degree (by Corollary 4.5).

Since (x−1) is not a factor of q, we must have ε(q) = 1 by Lemma 5.6(b). Furthermore,
every palindromic factor of q must also be of type +1, for the same reason. In addition, no
factor of q can vanish at x = 0,±1, since q is not zero at these values.

The proof proceeds by induction on the degree of the monic, palindromic polynomial q
of type +1. If deg q = 0, then we are done. Otherwise, deg q ≥ 2, since (x + 1) is the only
monic palindromic of degree 1 and type +1. Let d(x) be a monic irreducible factor of q(x).

If d(x) is palindromic, then q(x) = d(x)q̃(x), where q̃ is palindromic by Lemma 5.3(c).
Since (x− 1) is not a factor of q̃, we must have ε(q̃ ) = 1 by Lemma 5.6(b), and therefore,
ε(d) = 1. Now d is palindromic with respect to its degree, since d(0) 6= 0. If deg d were
odd, then by Lemma 5.6(a), (x + 1) would be a factor of d, since ε(d) = 1. Hence deg d is
even. Note also that because q and d are monic, so is q̃.

On the other hand, if d(x) is not palindromic, then q(x) = d(x)revd(x)q̂(x), by Lemma
5.5. Here q̂ is palindromic and of type ε(q̂ ) = 1 by Lemma 5.3(c). Now revd may not be
monic. Choose c ∈ F so that c is nonzero and c(revd) is monic. Then we have q(x) =
d(x) · c revd(x) · 1

c q̂ (x). Since q, d and c(revd) are all monic, q̃ := 1
c q̂ is also monic. Since

q̂ is of type +1, so is q̃.
Thus in both cases (whether d is palindromic or not), we can apply the inductive hypoth-

esis to the monic palindromic polynomial q̃(x) of type +1, yielding the desired factorization.
Finally we note that the factorization (5.1) implies that the polynomial p is (k1 +

deg p)-palindromic. The parities of k2 and k3 now follow from Lemma 5.7. Since the
factorization of an arbitrary polynomial in F[x] into monic irreducibles is unique up to
reordering of the factors, the uniqueness of the factorization (5.1) up to the described
reordering is immediate.

If the underlying field is algebraically closed, then combining the previous results yields
the following factorization of palindromic polynomials.

Corollary 5.9 (Factorization of palindromic polynomials).
Let F be an algebraically closed field with with charF 6= 2. A polynomial p(x) ∈ F[x] is
palindromic if and only if p can be expressed as a product of linear factors of the form

p(x) = cxk1(x + 1)k2(x− 1)k3

m∏

i=1

(
(x− λi)(x− λ−1

i )
)`i , (5.2)

where c ∈ F \ {0}, k1, k2, k3, `1, . . . , `m ∈ N, and where λ1, . . . , λm, λ−1
1 , . . . , λ−1

m ∈ F \ {0}
are distinct. Moreover, the parities of k2 and k3 are as stated in Lemma 5.7.
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5.2 GCDs

It is standard notation to write d | p to mean that the polynomial d divides the polynomial
p. Here we extend that notation to a set S of polynomials, and write d |S to mean that d
divides each element of S, or in other words that d is a common divisor of the elements of S.
The greatest common divisor (GCD) of a set S containing at least one nonzero polynomial
is then the unique monic polynomial gcd(S) satisfying gcd(S) |S and q |S ⇒ q | gcd(S) .
We follow the convention that the GCD of the set consisting of only the zero polynomial is
the zero polynomial.

Proposition 5.10 (GCD of palindromic polynomials).
Let S be a nonempty, finite set of palindromic polynomials over an arbitrary field F. Then
gcd(S) is palindromic. (The polynomials in S may be of varying degrees, and they may be
palindromic with respect to different grades and have different types.)

Proof. If S contains only one polynomial, then clearly we are done. Otherwise, let S ={
p1(x), p2(x), . . . , pr(x)

}
where each pi is palindromic. We prove the result by induction

on maxdeg pi.
If max deg pi = 0, then clearly gcd(S) = 1, which is palindromic. Next, make the induc-

tive hypothesis that gcd(S) is palindromic for every finite set S of palindromic polynomials
pi with maxdeg pi ≤ n.

Now consider a finite set S of palindromic polynomials pi such that max deg pi = n + 1.
If gcd(S) = 1 then we are done. Otherwise, let d(x) be an irreducible common factor of
S, of degree at least one. By Lemma 5.5 we know that either d(x) itself is palindromic, or
d(x) · revd(x) is a palindromic common factor of S. Letting a(x) denote d(x) in the first
case, or d(x)·revd(x) in the second case, we have S =

{
a(x)q1(x), a(x)q2(x), . . . , a(x)qr(x)

}
where each qi(x) is palindromic by Lemma 5.3(c), and deg qi(x) ≤ n. Thus

gcd(S) = a(x) gcd
{

q1(x), q2(x), . . . , qr(x)
}

= a(x)b(x) ,

where b(x) is palindromic by the induction hypothesis. Hence gcd(S) is palindromic by
Lemma 5.3(b), and the induction is complete.

Another notion that will be useful is that of reversal pairs.

Definition 5.11 (Reversal pairs).
Nonzero polynomials p, q ∈ F[x] form a j-reversal pair if revj p = ±q for some integer j
with j ≥ max{deg p,deg q}.

Observe that the j-reversal pair relation is symmetric in p and q, since revj p = ±q if
and only if revj q = ±p, by Lemma 3.7(c).

Example 5.12. In a T -palindromic matrix polynomial P (λ) of grade j, the off-diagonal
entries P (λ)ik and P (λ)ki always form a j-reversal pair of scalar polynomials.

Lemma 5.13 (Characterization of reversal pairs).
Let p, q, s ∈ F[x] be nonzero polynomials such that p(x) = x`q(x) with q(0) 6= 0. Then the
following are equivalent:

(a) p and s form a j-reversal pair.

(b) s(x) = ±xkrevq(x) with k = j − `− deg q ≥ 0.
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Proof. p(x) and s(x) form a j-reversal pair if and only if

s(x) = ±revj p(x) = ±xjp(1/x) = ±xjx−`q(1/x) = ±xj−`−deg qrevq(x).

The GCD of a j-reversal pair of scalar polynomials turns out to be palindromic, a fact
which will have a key influence on the GCD of minors of a palindromic matrix polynomial.
We first establish a special case.

Lemma 5.14. Let q ∈ F[x], with q(0) 6= 0. Then gcd
{
q(x), revq(x)

}
is palindromic.

Proof. If q and revq are relatively prime, then we are done, since any constant polynomial
is clearly palindromic. Otherwise, q and revq have at least one factor in common. Choose
d(x), an irreducible common factor of degree at least 1. We can therefore write

q(x) = d(x)w(x), (5.3a)
revq(x) = d(x)v(x). (5.3b)

Note that every factor of q has a nonzero constant term since q(0) 6= 0. Taking reversals of
both equations (5.3) and using Lemmas 3.9 and 3.7(b) we obtain

revq(x) = revd(x)revw(x), (5.4a)
q(x) = revd(x)revv(x), (5.4b)

revealing that revd(x) is also a common factor of q and revq. If d(x) is palindromic, then
revd(x) = ±d(x) and so from (5.3a) and (5.4a) we conclude

gcd
{
q(x), revq(x)

}
= d(x) gcd

{
w(x), revw(x)

}
. (5.5)

If d(x) is not palindromic, we need to find an analog to (5.5). As d(x) is irreducible with
d(0) 6= 0, by Lemma 5.4, revd(x) is also irreducible. Since d(x) and revd(x) are distinct
irreducible factors of q, we can factor the term w(x) in (5.3a), and then use the reversal to
get

q(x) = d(x)revd(x)w̃(x), (5.6a)
revq(x) = revd(x)d(x)revw̃(x), (5.6b)

thus obtaining the desired analog of (5.5)

gcd
{
q(x), revq(x)

}
= d(x)revd(x) gcd

{
w̃(x), revw̃(x)

}
. (5.7)

Now repeat this argument. With the role of q(x) being played by w(x) or w̃(x), as ap-
propriate, each iteration produces a new palindromic factor of p := gcd

{
q, revq

}
until the

GCD on the right-hand-side of (5.5) or (5.7) is 1. At this point, p has been expressed
as a product of palindromic factors (in at most deg(p) iterations). Since the product of
palindromic polynomials is again palindromic the proof is complete.

Proposition 5.15 (GCD of reversal pairs).
The GCD of a j-reversal pair of nonzero polynomials is palindromic.

Proof. Let p(x) and s(x) form a j-reversal pair. Then by Lemma 5.13 there exists q(x) with
q(0) 6= 0 such that p(x) = xmq(x) and s(x) = ±xkrevq(x) for some m, k ≥ 0. Thus we have
gcd

{
p(x), s(x)

}
= xµ gcd

{
q(x), revq(x)

}
where µ = min{k, m}. Now xµ is 2µ-palindromic,

and so the result follows by Lemma 5.14 and Lemma 5.3(b).
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6 Determinants and Minors

As Theorem 2.2 shows, the minors of a matrix polynomial are intimately connected with
its Smith form. We begin with the n × n minor, i.e., the determinant of P (λ), which can
be directly shown to inherit palindromicity.

Proposition 6.1 (Determinant of T -palindromic polynomials).
If P (λ) is an n×n T -palindromic polynomial of grade k, then detP (λ) is a kn-palindromic
polynomial. If P (λ) is regular, then ε(detP ) = (ε(P ))n.

Proof. For any n × n polynomial P (λ) of grade k we have kn ≥ deg(detP ). Since P is
T -palindromic,

det P (λ) = det
[
ε(P )λkP T (1/λ)

]
=

(
ε(P )

)n
λkn det P (1/λ) =

(
ε(P )

)n(
revkn (detP )

)
(λ),

from which the desired result immediately follows.

Recall that Aηκ denotes the `× ` submatrix of an m×n matrix A in rows and columns
η and κ where η ⊆ {1, . . . , m}, and κ ⊆ {1, . . . , n} are subsets of cardinality ` ≤ min{m,n}.
Submatrices of A and AT are easily seen to satisfy (AT )ηκ = (Aκη)T , generalizing the
defining property of the transpose, (AT )ij = Aji. When η = κ, then Aηκ is a principal
submatrix of A. When η 6= κ, we refer to Aηκ and Aκη as a dual pair of submatrices of A,
and their determinants as dual minors. Reversal pairs arise naturally in the investigation
of dual minors as the following lemma shows.

Lemma 6.2 (Dual minors of T -palindromic polynomials).
If P (λ) is an n × n T -palindromic polynomial of grade j, then any pair of dual minors of
P (λ) of size ` ≤ n forms a j`-reversal pair.

Proof. For any index sets η and κ of size ` we wish to show that the dual minors detPηκ(λ)
and detPκη(λ) form a j`-reversal pair. From P (λ) being T -palindromic of grade j we
immediately have [

λjP T (1/λ)
]
ηκ

= ±Pηκ(λ) .

The basic relation (AT )ηκ = (Aκη)T between dual submatrices then implies that

λj
[
Pκη(1/λ)

]T
= ±Pηκ(λ) .

Taking determinants we see that

λj` det
(
Pκη(1/λ)

)
= ±det Pηκ(λ) . (6.1)

Since the degree of any `× ` minor of P (λ) is at most j`, equation (6.1) is the same as
(
rev j` (detPκη)

)
(λ) = ±detPηκ(λ) ,

showing that det Pκη(λ) and detPηκ(λ) form a j`-reversal pair.

16



To obtain the invariant polynomials in the Smith form, we need the GCDs of minors of
the matrix polynomial. The following lemma, whose straightforward proof can be found in
[21], will be helpful in showing that when we start with a T -palindromic matrix polynomial,
then the GCD’s of interest are also palindromic.

Lemma 6.3 (Subset Collapsing Lemma for GCD’s).
Suppose S is a finite set of polynomials, and S = S1 ∪ S2 for some nonempty subsets S1

and S2 (not necessarily disjoint). Then gcd(S) = gcd
(
S1 ∪ {gcd(S2)}

)
.

Theorem 6.4 (GCD of `× ` minors of T -palindromic polynomials).
If P is an n × n T -palindromic matrix polynomial of grade k, then for each ` = 1, . . . , n,
the GCD of the set of all `× ` minors of P is palindromic.

Proof. The set of all ` × ` minors of P (λ) may be grouped into the principal minors and
the dual minor pairs. By Proposition 6.1 any principal `× ` minor of P (λ) is palindromic
(specifically, k`-palindromic). By Lemma 6.2 each `× ` dual minor pair is a reversal pair
(in particular, a k`-reversal pair), and by Proposition 5.15 the GCD of any reversal pair
is palindromic. Thus by the “subset collapsing” Lemma 6.3, the GCD of the set of all
` × ` minors of P (λ) is the same as the GCD of a set consisting entirely of palindromic
polynomials. By Proposition 5.10 this GCD must be palindromic.

7 P-Smith1 form

The results established so far immediately show that palindromicity of a matrix polynomial
is inherited by its invariant polynomials: by Theorem 2.2 each invariant polynomial is a
ratio of GCD’s, by Theorem 6.4 each of these GCD’s is palindromic, and by Lemma 5.3(c)
each of these ratios is palindromic. The next proposition formally states this result.

Proposition 7.1. Suppose that D(λ) = diag(d1(λ), d2(λ), . . . , dn(λ)) is the Smith form of
a T -palindromic matrix polynomial P (λ). Then each di(λ) is palindromic.

Note that while each diagonal entry of P has the same grade of palindromicity as P
(Example 5.2), the diagonal entries of D will likely have varying grades of palindromicity.

For the rest of this section, we will assume that the underlying field F has charF 6= 2 ;
the case of charF = 2 will be discussed in Appendix A. It will be useful to know how the
grade and the palindromic type are altered under some simple transformations.

Lemma 7.2. If P is a T -palindromic matrix polynomial of grade j over a field F with
charF 6= 2, then

(a) R(λ) := (λ− 1)P (λ) is T -palindromic of grade (j + 1) and opposite palindromic type,
that is, ε(R) = −ε(P ).

(b) Q(λ) := P (−λ) is T -palindromic of the same grade j, and palindromic type ε(Q) =
(−1)jε(P ), that is, the palindromic type switches when the grade is odd.

1By contrast with [26], here the P is not silent.
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Proof. (a): We have

(
revj+1 R

)
(λ) = λj+1R(1/λ) = λλj

(
1
λ
− 1

)
P (1/λ) = −(λ− 1)(revj P )(λ)

Since P is T -palindromic, (revj P )(λ) = ε(P )P T (λ). Hence

(revj+1 R)(λ) = −ε(P )(λ− 1)P T (λ) = −ε(P )RT (λ)

showing R is T -palindromic of grade (j + 1) and palindromic type ε(R) = −ε(P ).
(b): We have
(
revj Q

)
(λ) = λjQ(1/λ) = λjP (−1/λ) = (−1)j(−λ)jP (−1/λ) = (−1)j(revj P )(−λ)

Since P is T -palindromic, (revj P )(−λ) = ε(P )P T (−λ), and so
(
revj Q

)
(λ) = (−1)jε(P )QT (λ) ,

yielding the desired result.

The relation between the elementary divisors of P , Q and R as introduced in Lemma 7.2
is straightforward, and can be conveniently stated using the notion of partial multiplicity
sequence from Definition 2.3.

Lemma 7.3. Let P be an arbitrary matrix polynomial over a field F with charF 6= 2, and
let the partial multiplicity sequence of P at λ0 ∈ F be (α1, α2, . . . , α`). Define R(λ) :=
(λ− λ0)P (λ) and Q(λ) := P (−λ). Then

(a) the partial multiplicity sequence of R at λ0 is (α1 + 1, α2 + 1, . . . , α` + 1),

(b) the partial multiplicity sequence of Q at −λ0 is (α1, α2, . . . , α`).

Proof. If D(λ) = E(λ)P (λ)F (λ) is the Smith form of P , where E, F are unimodular, then
(λ − λ0)D(λ) = E(λ)R(λ)F (λ) is the Smith form of R, yielding (a). Next, the identity
D(−λ) = E(−λ)Q(λ)F (−λ) shows that D(−λ) is almost the Smith form of Q; it only
remains to make all its diagonal entries monic. But this is easily done by multiplying by an
appropriate constant matrix. Since any factor (λ−λ0) in D(λ) effectively becomes (λ+λ0)
in D(−λ), result (b) now follows.

Definition 7.4 (Pairing Property Φ).
Let α1 ≤ α2 ≤ . . . ≤ α` be any ordered sequence. Then a subsequence

αh1 ≤ αh2 ≤ · · · ≤ αhν with h1 < h2 < · · · < hν

has the pairing property Φ if ν = 2m > 0 is even, and the following conditions hold:

(a) Adjacency pairing of terms : h2 = h1 + 1, h4 = h3 + 1, . . . , h2m = h2m−1 + 1.

(b) Equality pairing of adjacent terms : αh2 = αh1 , αh4 = αh3 , . . . , αh2m = αh2m−1 .

Example 7.5. In the sequence (0, 0,1,1, 2, 4, 4,5,5,5,5, 8,9,9), the subsequence of all odd
integers (indicated in bold face) has the pairing property Φ.
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We are now ready to state one of the main results of this paper — the influence of
the T -palindromicity of P on its invariant polynomials. Note that when deg P (λ) = 0, the
nonzero diagonal entries of its Smith form are just 1.

Theorem 7.6 (P-Smith form).
Let P (λ) be a nonzero n× n T -palindromic matrix polynomial of grade k over an arbitrary
field F with charF 6= 2. Suppose that the Smith form of P (λ) is expressed as

D(λ) = diag
(
(λ− 1)α1(λ + 1)β1p1(λ), . . . , (λ− 1)α`(λ + 1)β`p`(λ), 0, . . . , 0

)
, (7.1)

where ` ≤ n, 0 ≤ α1 ≤ · · · ≤ α` and 0 ≤ β1 ≤ · · · ≤ β` are nonnegative integers,
pj(λ) is monic with pj(1) 6= 0 and pj(−1) 6= 0 for j = 1, . . . , `, and pj(λ) | pj+1(λ) for
j = 1, . . . , `− 1. Then

(1) pj(λ) is palindromic of type ε(pj) = +1, for j = 1, . . . , `.

(2) the pairing property Φ holds for the following partial multiplicity subsequences of P at
λ0 = 1 and λ0 = −1 :

P (λ) Partial mult. subsequences of P with property Φ

Type ε(P ) Grade k At λ0 = 1 At λ0 = −1

+1
even (a) All odd αi’s (e) All odd βj’s
odd (b) All odd αi’s (f) All even βj’s

−1
even (c) All even αi’s (g) All even βj’s
odd (d) All even αi’s (h) All odd βj’s

We emphasize that “all even” in (c), (d), (f ), (g), includes any and all occurrences of the
exponent 0.

Proof. (1): That each pj is palindromic follows from Proposition 7.1 and Lemma 5.3(c). If
pj was anti-palindromic, then (λ − 1) would be a factor by Lemma 5.6(b), contradicting
pj(1) 6= 0. Hence ε(pj) = 1, for j = 1, . . . , `.

(2): Suppose we have established (a) and (b) for all palindromic polynomials of type
+1. Then (c) – (h) follow using previous lemmas. In particular, if P (λ) is anti-palindromic,
then Lemma 7.2(a) says that the palindromic polynomial R(λ) := (λ−1)P (λ) has opposite
type, and grade of opposite parity. Applying (a), (b) to R and using Lemma 7.3(a) yields
(d) and (c), respectively, for P . Next, setting Q(λ) := P (−λ), we deduce from the second
parts of Lemmas 7.2 and 7.3 that (a) implies (e), (b) implies (h), (c) implies (g), and finally,
(d) implies (f).

Thus it only remains to prove (a) and (b). So let P (λ) be a non-constant palindromic
polynomial with ε(P ) = 1. Making no assumption on the parity of its grade k, we show
that the subsequence

αh1 ≤ αh2 ≤ · · · ≤ αhν

of all odd terms in the partial multiplicity sequence of P at λ0 = 1 has the pairing property
Φ.

The strategy is similar to the one used in the proof of [21, Theorem 3.10]. We first show
that if α1 is odd, then α2 = α1. Next we use the results from Section 2.2 on compound
matrices to push the pairing properties down the diagonal of D(λ).

19



Step 1: We show that if α1 is odd, then n ≥ 2, ` ≥ 2, and α2 = α1.
Since α1 is odd, d1(λ) is a nonzero anti-palindromic polynomial. From Theorem 2.2 we
know that d1(λ) is the GCD of all the entries of P (λ). Now the diagonal entries of any T -
palindromic matrix polynomial P (λ) are scalar palindromic polynomials of the same type
as P (λ), so in this case they are palindromic of type +1. Thus by Lemma 5.7(b), each
diagonal entry must contain an even number of (λ − 1) factors. We can therefore write
P (λ)jj = (λ − 1)α1+1rj(λ) where each rj(λ) is palindromic of type +1, by Lemma 5.3(c).
(Note that we allow rj to be zero.) But d1(λ) = (λ − 1)α1(λ + 1)β1p1(λ) being the GCD
of all the entries of P (λ) implies that there must be some off -diagonal entry P (λ)ij with
i > j of the form (λ− 1)α1s(λ) with s(1) 6= 0, and consequently that n ≥ 2. Let η = {i, j}
and consider the corresponding 2× 2 principal submatrix

P (λ)ηη =
[
(λ− 1)α1+1 ri(λ) revk P (λ)ij

P (λ)ij (λ− 1)α1+1 rj(λ)

]
.

Now with P (λ)ij = (λ− 1)α1s(λ) we have

revk P (λ)ij = λk(1/λ− 1)α1s(1/λ) = (−1)α1λk−α1(λ− 1)α1s(1/λ),

so that

detP (λ)ηη = (λ− 1)2α1

[
(λ− 1)2ri(λ)rj(λ) + (−1)α1+1λk−α1s(λ)s(1/λ)︸ ︷︷ ︸

=: w(λ)

]
. (7.2)

Now observe that w(λ) is a nonzero polynomial, as s(1) 6= 0 implies that w(1) 6= 0. Thus
det P (λ)ηη is a nonzero polynomial, and hence the GCD g(λ) of all the 2 × 2 minors is
nonzero, so ` ≥ 2. Furthermore, from (7.2) we see that g(λ) contains a power of (λ− 1) no
higher than 2α1. Now recall from Theorem 2.2 that

g(λ) = d1(λ)d2(λ) = (λ− 1)α1+α2(λ + 1)β1+β2p1(λ)p2(λ)

Since p(1) 6= 0 and p2(1) 6= 0, we must have α1 + α2 ≤ 2α1. By hypothesis, α1 ≤ α2, and
so α2 = α1 as desired.

Step 2: Push forward down the diagonal.
Assume the contrary, i.e., the positions h1 < h2 < · · · < hν where the odd exponents of
the factor (λ − 1) occur do not satisfy the pairing property Φ. Let r := h2j−1 be the first
position where Φ fails. Then one of the following must occur:

• ν = 2j − 1 so that h2j does not exist, or

• h2j exists, but adjacency-pairing fails, i.e., h2j 6= h2j−1 + 1, or

• h2j exists and h2j−1, h2j are adjacent, but αh2j 6= αh2j−1 .

First observe that if r = n, then det D(λ), and hence also detP (λ), have an odd number of
(λ − 1) factors. This contradicts Lemma 5.7(b), since det P (λ) is palindromic of type +1,
by Proposition 6.1. Hence r < n.

Now consider the rth compound matrix of P (λ). By Theorem 2.6, the first two invariant
polynomials of Cr

[
P (λ)

]
are

c1(λ) = d1(λ) · · · dr−1(λ)dr(λ) and c2(λ) = d1(λ) · · · dr−1(λ)dr+1(λ).
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Since dr(λ) is the (2j − 1)st nonzero invariant polynomial P (λ) with an odd number of
(λ − 1) factors, we see that c1(λ) must also be nonzero and have an odd number of (λ −
1) factors. Now Cr

[
P (λ)

]
is T -palindromic of type +1, by Theorem 4.6. Since its first

invariant polynomial c1(λ) has an odd number of (λ − 1) factors, by Step 1 the second
invariant polynomial c2(λ) must have exactly the same number of (λ− 1) factors as c1(λ).
Consequently dr+1(λ) must be nonzero with the same (odd) number of (λ − 1) factors as
dr(λ), so that the ratio dr+1(λ)/dr(λ) is not divisible by (λ− 1). Thus h2j = r + 1 exists,
is adjacent to h2j−1, and αh2j−1 = αh2j , contradicting the assumption that Φ fails at h2j−1.
The proof is now complete.

In contrast to the situation for T -alternating polynomials [21, Theorems 3.10, 3.11], the
conditions in Theorem 7.6 are necessary but not sufficient for a diagonal matrix to be the
Smith form of some T -palindromic matrix polynomial. This is illustrated by the following
example.

Example 7.7. Consider the matrix D(λ) = diag
(
1, λ2 + 1, (λ2 + 1)(λ4 + λ2 + 1)

)
. Its

diagonal entries are monic, palindromic of type +1, and satisfy the divisibility requirements
to be a Smith form. Since ±1 are not eigenvalues, D(λ) satisfies all the conditions of Theo-
rem 7.6. Observe, however, that each diagonal entry has a different grade of palindromicity
(0, 2, and 6, respectively), so D itself cannot be T -palindromic (Example 5.2). But neither
can D be the Smith form of a 3 × 3 T -palindromic polynomial of any grade k. If it were,
then by Proposition 6.1, detD(λ) would have to be 3k-palindromic. However, det D(λ) is
8-palindromic, by Lemma 5.3(b).

Thus we see that a condition of a more “global” nature, involving both the grade of palin-
dromicity and the size of the matrix is required for sufficiency. Determining conditions that
are both necessary and sufficient for a given diagonal matrix to be the Smith form of some
T -palindromic matrix polynomial remains an open problem.

Remark 7.8. It is interesting to note the presence of some non-trivial facts hiding inside the
P-Smith theorem, disguised in the seemingly trivial form of partial multiplicity sequences
consisting of all zeroes. For example, suppose P (λ) is T -anti-palindromic (i.e., ε(P ) = −1)
and λ0 = 1 is not an eigenvalue, so that the partial multiplicity sequence of P at λ0 = 1 is
all zeroes. Then we are in case (c) or (d) of the table in Theorem 7.6, and can conclude that
` = rankP (λ) must be even! If in addition deg P is zero (more apparent triviality), then a
T -anti-palindromic P (λ) is just a skew-symmetric matrix (with no eigenvalues as a matrix
polynomial at all), and so we unexpectedly recover as a very special case of Theorem 7.6
the well-known but non-trivial result that any skew-symmetric matrix over a field F with
charF 6= 2 has even rank.

7.1 The ∗-palindromic case

Theorem 7.6 naturally leads one to ask what the necessary conditions on the Smith form of
∗-palindromic polynomials might be. Because all regular ∗-palindromic polynomials have
palindromic linearizations [20], we expect that there will be fewer conditions on the Smith
form, and a simpler story to tell, as we now see.

A matrix polynomial over the field of complex numbers is ∗-palindromic when there
exists an integer j ≥ deg(P ) such that revj P (λ) = P ∗(λ). Note that it is sufficient to only
consider ∗-palindromic matrix polynomials of type +1, because any ∗-palindromic matrix
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polynomial of type −1, i.e., one satisfying revj P (λ) = −P ∗(λ), can be transformed into a
∗-palindromic matrix polynomial of type +1 by multiplying with the scalar i.

In the scalar case a polynomial p is ∗-palindromic if revj p(x) = p(x), and we say p is
conjugate palindromic of grade j.

Several results established for scalar palindromic polynomials also hold for conjugate
palindromic polynomials p(x), after some straightforward modifications. For example, every
irreducible factor d(x) 6= x that is not a scalar multiple of a conjugate palindromic comes
paired with a distinct irreducible factor of the form revd(x). Then d(x) · revd(x) is a
conjugate palindromic factor of p(x) of grade equal to twice the degree of d (the analog of
Lemma 5.5).

There is a significant difference, however, when one considers conjugate palindromic
polynomials of degree one: d(x) = αx + α is conjugate palindromic for any α ∈ C, so
the polynomials x − 1 and x + 1 no longer play a distinguished role. Consequently, the
factorization of a conjugate palindromic scalar polynomial into a product of irreducibles
takes on a different look:

Theorem 7.9 (Irreducible ∗-palindromic factorization).
A polynomial p(x) ∈ C[x] is conjugate palindromic if and only if it admits an irreducible
factorization of the form

p(x) = c · xk ·
µ∏

i=1

(aix + ai)mi ·
ν∏

j=1

(
(x + bj)(bjx + 1)

)nj , (7.3)

where c ∈ R, ai, bj ∈ C, |ai| = 1, |bj | 6= 1, k, m1, . . . , mµ, n1, . . . , nν ∈ N.

A j-conjugate-reversal pair of scalar polynomials p and q is a pair of nonzero polynomials
that satisfy revj p = q for some j ≥ max{deg p,deg q}. One can show that the GCD of such a
reversal pair is conjugate palindromic up to a scalar multiple (since the GCD is by definition
monic). It follows that for each ` = 1, . . . , n, the GCD of the set of all ` × ` minors of an
n×n ∗-palindromic matrix polynomial is conjugate palindromic up to a scalar multiple (the
analog of Theorem 6.4). Then as before, one can show that ∗-palindromicity of a matrix
polynomial is inherited by its invariant polynomials, modulo multiplication by constants.
The proofs are straightforward modifications of the analogs for the T -palindromic case, and
so are omitted.

Theorem 7.10 (Smith form for ∗-palindromic polynomials).
Let P (λ) be a nonzero n × n matrix polynomial over F = C that is ∗-palindromic. Sup-
pose the Smith form of P (λ) is given by D(λ) = diag(d1(λ), d2(λ), . . . , dn(λ)). Then there
exist nonzero constants ci ∈ C such that each cidi(λ) is conjugate palindromic, that is,(
rev(cidi)

)
(λ) = cidi(λ).

In contrast to the T -palindromic case, there are no additional restrictions on the ele-
mentary divisors corresponding to the eigenvalues ±1, or, more generally, corresponding
to eigenvalues on the unit circle. Indeed, suppose that c1d1(λ), . . . , c`d`(λ) are nonzero
conjugate palindromic scalar polynomials, where ci ∈ C are nonzero constants, and di are
monic polynomials with the divisibility property di | di+1, i = 1, . . . , ` − 1. If there is a
∗-palindromic matrix polynomial with these di as its invariant polynomials, then it follows
from Theorem 7.9 that elementary divisors associated with any finite nonzero eigenvalue
λ0 not lying on the unit circle occur in pairs (λ − λ0)m, (λ − 1/λ0)m, whereas there is
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no enforced pairing for elementary divisors associated with eigenvalues on the unit circle.
After pairing up each elementary divisor λk with an infinite elementary divisor of the same
degree, one can immediately construct a ∗-palindromic pencil having exactly this collection
of elementary divisors by using [24, Theorem 2]. In particular, the invariant polynomials of
such a pencil will be d1(λ), . . . , d`(λ), except possibly for additional leading ones.

8 Jordan structure

Now that we know the structure of the Smith forms of T -palindromic matrix polynomials, we
can interpret these results in terms of their Jordan structure. In earlier work [20, Theorem
2.2] it was shown that the eigenvalues of a regular complex T -palindromic polynomial P
occur in (λ, 1/λ) pairs with the same algebraic, geometric and partial multiplicities. This
earlier proof cannot be adapted to the singular case, as it relies on the strict equivalence of
the first and second companion forms, which was recently shown to completely break down
whenever P is singular [3, Corollary 5.11], [4, Corollary 6.2]. By contrast, the proof of
Theorem 7.6 establishing the structured Smith form makes no assumption on the regularity
of P . Consequently we can extend the reciprocal pairing symmetry of the elementary
divisors to all T -palindromic polynomials, singular as well as regular.

Corollary 8.1 (Reciprocal pairing).
Let λ0 be an eigenvalue of a T -palindromic polynomial P (λ), over an arbitrary field F with
charF 6= 2. Then 1/λ0 is also an eigenvalue of P (λ). Furthermore, the partial multiplicity
sequences of P at λ0 and 1/λ0 are the same, and hence their algebraic and geometric
multiplicities agree. (Here, we interpret 0 and ∞ as reciprocal pairs.)

Proof. If λ0 = ±1, then there is nothing to prove. Otherwise, let D(λ) as in (7.1) be the
Smith form of P . By Theorem 7.6, each pi(λ) is palindromic, and hence has a factorization
of the form (5.1). This means that whenever (λ − λ0)α with λ0 6= 0 is a factor of pi, then
so is (λ− 1/λ0)α. Hence 1/λ0 is also an eigenvalue of P with the same partial multiplicity
sequence as λ0, proving the result for nonzero finite eigenvalues. Since P is T -palindromic,
revk P = ±P T , so revk P and P have the same Smith form D, yielding the desired pairing
for zero and infinite eigenvalues as well.

While Corollary 8.1 adds no information about the special elementary divisors (λ±1)α,
Theorem 7.6 specifies conditions when the partial multiplicity sequences at λ0 = ±1 have
subsequences with the pairing property Φ. As an immediate consequence, we have the
following situations when the elementary divisors (λ±1)α necessarily have even multiplicity.

Corollary 8.2 (Even multiplicity of (λ± 1)α).
Let P be a nonzero T -palindromic matrix polynomial of degree at least 1 and grade k, over
an arbitrary field F with charF 6= 2. Let (λ− λ0)α be an elementary divisor of P , for some
positive integer α. For λ0 = ±1, the following table gives conditions when (λ − λ0)α must
have even multiplicity.
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P (λ)
Elementary divisors (λ− λ0)α

with guaranteed even multiplicity

Type ε(P ) Grade k For λ0 = 1 For λ0 = −1

+1
even odd α odd α

odd odd α even α

−1
even even α even α

odd even α odd α

With k = 1 as a special case, we can now obtain results on the Jordan structure of
T -palindromic matrix pencils. For eigenvalues λ0 6= ±1, the reciprocal pairing detailed
in Corollary 8.1 directly applies. Using Corollary 8.2 with k = 1 yields Corollary 8.3,
telling us when (λ ± 1)α must have even multiplicity. Our results over arbitrary fields
give independent proofs of the elementary divisor pairing results presented in [24, 25] for
T -palindromic pencils over the fields F = C and F = R. See also the related results in [14].

Corollary 8.3 (Even multiplicity of (λ± 1)α for pencils).
Let L(λ) = λZ ± ZT be a non-zero T -palindromic pencil over an arbitrary field F with
charF 6= 2. Let (λ−λ0)α be an elementary divisor of L, for some positive integer α. When
λ0 = ±1, the following table gives conditions when (λ− λ0)α must have even multiplicity.

Elementary divisors (λ− λ0)α

L(λ) with guaranteed even multiplicity

λ0 = 1 λ0 = −1

λZ + ZT odd α even α

λZ − ZT even α odd α

9 Structured linearizations

We can now use Theorem 7.6 on the P-Smith form and the corollaries in Section 8 on the
elementary divisor structure of T -palindromic matrix polynomials to address the question
that was the original motivation for this paper — when does a T -palindromic polynomial
have a T -palindromic linearization? A necessary condition for the existence of such a
structured linearization is immediately clear.

Theorem 9.1 (Compatibility of Jordan structures at λ0 = ±1).
In order for a T -palindromic polynomial P to have a T -palindromic linearization, the ele-
mentary divisors of P at λ0 = ±1 must be compatible with those of T -palindromic pencils,
as described in Corollary 8.3.

One striking feature clearly displayed in Corollary 8.2 is that the elementary divisor
structure of a T -palindromic P depends only on the palindromic type of P and the parity
of the grade of P . As a consequence, for the structured linearization question we see a
fundamental dichotomy between the behavior of even grade and odd grade palindromic
polynomials. It is possible for an even grade palindromic polynomial to have an elementary
divisor structure that is incompatible with every palindromic pencil, of either +1 or −1
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type, and thus to have no palindromic linearization of any kind. This is illustrated in the
following example.

Example 9.2. Consider the type +1 quadratic T -palindromic polynomial

Q(λ) =
[

λ2 + 1 2λ
2λ λ2 + 1

]
.

Using the GCD characterization of invariant polynomials described in Theorem 2.2, it is
not hard to see that the Smith form of Q(λ) is diag

(
1, (λ − 1)2(λ + 1)2

)
. The elementary

divisors are (λ − 1)2 and (λ + 1)2, both occurring once, so both have odd multiplicity.
By Corollary 8.3 this elementary divisor structure cannot occur in any palindromic pencil,
so Q(λ) has no palindromic linearization. The same type of argument also explains why
the palindromic polynomial P (λ) = λ2 − 1 from Example 1.1 cannot have a palindromic
linearization, either.

On the other hand, the kind of incompatibility seen in Example 9.2 can never occur
for an odd grade palindromic polynomial. In fact, a comparison of Corollaries 8.2 and 8.3
strongly suggests that every palindromic polynomial of odd grade should have a palindromic
linearization of the same palindromic type. We will see in Section 9.1 that this is indeed
the case.

The even grade case is more difficult, and requires considerably more work to settle. We
briefly discuss some of the issues in Section 9.2, but the complete resolution of the problem
is currently under investigation.

9.1 The odd grade case

We now describe a simple procedure to construct a strong T -palindromic linearization for
any T -palindromic matrix polynomial P (λ) of odd grade. The construction works equally
well for regular and singular P (λ) of odd grade k, over an arbitrary field F with charF 6= 2.
It exploits a family of block-tridiagonal kn×kn pencils SP (λ) that are built directly from the
matrix coefficients of P (λ). These pencils were introduced and analyzed in [21], extending
and simplifying results in [1]. For example, to P (λ) = λ3A3 + λ2A2 + λA1 + A0 of grade 3
we associate the 3n× 3n pencil

SP (λ) =




λA1 + A0 λI
λI 0 I

I λA3 + A2


 ,

and to P (λ) = λ5A5 + λ4A4 + λ3A3 + λ2A2 + λA1 + A0 of grade 5 we associate the pencil

SP (λ) =




λA1 + A0 λI
λI 0 I

I λA3 + A2 λI
λI 0 I

I λA5 + A4




.

In general, for a matrix polynomial P (λ) of odd grade k = 2` + 1, we express P (λ) as
P (λ) = λkAk + λk−1Ak−1 + P̂ (λ) where P̂ (λ) has odd grade k − 2 = 2`− 1, and construct
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the associated block-tridiagonal kn× kn pencil SP (λ) inductively by

SP (λ) =




S bP (λ)

λI

λI 0 I

I λAk + Ak−1




. (9.1)

Clearly SP satisfies
(SP (λ)

)T = SP T (λ), so SP is a symmetric pencil whenever P is a
symmetric polynomial. Moreover, SP was shown in [21] to have several additional key
properties, described here in Lemma 9.3. In the rest of this section Rk will denote the
kn× kn symmetric matrix

Rk :=

[
In

. . .
In

]
.

Observe that premultiplying a block k × k matrix A (composed of n × n blocks) by Rk

reverses the order of the block rows of A.

Lemma 9.3 ([21]). Let P (λ) be any n × n matrix polynomial of odd grade k, regular or
singular, structured or unstructured, over an arbitrary field F (of any characteristic). Then

(a) SP (λ) is a strong linearization for P (λ).

(b) Rk · (rev1SP ) = (Srevk P ) ·Rk .

Based on these properties of SP , we can now construct a T -palindromic strong lineariza-
tion for any T -palindromic polynomial of odd grade. However, due to the incompatibility
between the admissible elementary divisor structures of odd grade T -palindromic polyno-
mials having different type (see Corollary 8.2), it is not possible to have a single uniform
construction that works for both types of such polynomials. The best we can hope to do is
linearize all type +1 palindromics with a type +1 pencil, and all type −1 palindromics with
a type −1 pencil. This is achieved in the next theorem. But first, we need an elementary
lemma.

Lemma 9.4. Suppose L(λ) is a strong linearization for a polynomial P (λ) of grade k. Let
P̂ (λ) := P (−λ), and L̂(λ) := L(−λ). Then L̂ is a strong linearization for P̂ .

Proof. That L̂ is a linearization for P follows immediately by replacing λ by −λ in (3.2).
It remains to show that rev1 L̂ is a linearization for revk P̂ . Let L(λ) = λX + Y . Then
rev1 L = λY + X, and so (rev1 L)(−λ) = −λY + X. Now L̂(λ) := L(−λ) = −λX + Y , thus

rev1 L̂(λ) = λY −X = −(rev1 L)(−λ). (9.2)

Next, revk P̂ (λ) = λkP̂ (1/λ) = λkP (−1/λ), and so

(revk P )(−λ) = (−λ)kP (−1/λ) = (−1)k(revk P̂ )(λ). (9.3)

Since rev1 L is a linearization for revk P , we know there exist unimodular matrices E(λ),
F (λ) such that

E(λ) · (rev1 L)(λ) · F (λ) = diag
(
(revk P )(λ), Ik(n−1)

)
.
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Replacing λ by −λ and using (9.2) and (9.3) we obtain

−E(−λ) · (rev1 L̂)(λ) · F (−λ) = diag
(
(−1)k(revk P̂ )(λ), Ik(n−1)

)
.

It follows that rev1 L̂ is a linearization for revk P̂ by multiplying both sides by the constant
matrix diag

(
(−1)kIn, Ik(n−1)

)
, and using the fact that E(−λ) and F (−λ) are unimodular.

Theorem 9.5 (Existence of palindromic linearizations – odd grade case).
Suppose P (λ) is a T -palindromic polynomial with odd grade k, regular or singular, over an
arbitrary field F with charF 6= 2.

(a) If ε(P ) = +1, then the pencil LP (λ) := RkSP (λ) is a strong linearization for P that
is also T -palindromic of type +1.

(b) If ε(P ) = −1, let Q(λ) := P (−λ). Then the pencil L̂P (λ) := LQ(−λ) = RkSQ(−λ)
is a strong linearization for P that is T -palindromic of type −1.

Proof. (a) That LP (λ) := RkSP (λ) is a strong linearization for P follows immediately from
the fact that LP is strictly equivalent to the strong linearization SP . We then have

rev1 LP (λ) = rev1

(
RkSP (λ)

)
= Rk

(
rev1SP

)
(λ) = Srevk P (λ) Rk ,

by Lemma 9.3(b). But P is palindromic of type +1, so we may continue the calculation

Srevk P (λ) Rk = SP T (λ) Rk =
(SP (λ)

)T
Rk =

(
Rk SP (λ)

)T = LT
P (λ) .

Thus rev1 LP (λ) = LT
P (λ), so L is T -palindromic of type +1.

(b) From Lemma 7.2(b) we know that Q(λ) is T -palindromic of type +1, so by part (a)
the pencil LQ(λ) is a strong linearization for Q(λ) that is also T -palindromic of type +1.
Then by Lemma 9.4, LQ(−λ) = L̂P (λ) is a strong linearization for Q(−λ) = P (λ). Finally,
LQ(−λ) is T -palindromic of type −1, since LQ(λ) is of type +1.

Note that LP (λ) := RkSP (λ) is just the pencil SP (λ) with its block-rows “turned upside
down”, as illustrated by the following example for grade 5 palindromic polynomials P of
type +1:

LP (λ) =




I λA5 + A4

λI 0 I
I λA3 + A2 λI

λI 0 I
λA1 + A0 λI




. (9.4)

The corresponding example for grade 5 palindromic polynomials P of type −1 from part(b)
of Theorem 9.5 is

L̂P (λ) =




I λA5 + A4

−λI 0 I
I λA3 + A2 −λI

−λI 0 I
λA1 + A0 −λI




. (9.5)
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Remark 9.6. A larger family of T -palindromic strong linearizations for T -palindromic
polynomials of odd grade, distinct from the linearizations developed in this section, is
constructed in [5]. These palindromic linearizations are based on the Fiedler pencils and
the analysis of their properties given in [4].

Remark 9.7. It is not difficult to show that the pencil LP (λ) defined in Theorem 9.5 is
∗-palindromic whenever P is, and thus provides a structured strong linearization for any
∗-palindromic matrix polynomial of odd grade.

9.2 The even grade case

The results of Section 9.1 show that every T -palindromic polynomial P of odd grade has
a strong T -palindromic linearization, regardless of whether P is regular or singular, and
irrespective of the underlying field F. By contrast, there are several obstructions that may
prevent a T -palindromic polynomial P of even grade from having any T -palindromic lin-
earization at all. One such obstruction arises from the possible incompatibility between the
elementary divisor structures of P and any T -palindromic pencil, as described in Corol-
lary 8.2 and illustrated in Example 9.2. A completely different type of obstruction can
occur when P is singular, relating to the special structure of the minimal indices of singu-
lar T -palindromic polynomials. Since the Smith form contains no information about the
minimal indices of a singular polynomial, this issue is outside the scope of this paper. Fi-
nally there is the question of whether the underlying field F plays any role in the existence
or non-existence of T -palindromic linearizations. The complete story, addressing all these
issues, is currently under investigation. We are, however, in a position to establish results
for the important special cases when F = R or F = C and the polynomial P is regular.

Theorem 9.8 (Existence of palindromic linearizations – even grade case).
Suppose P (λ) is a regular T -palindromic matrix polynomial of even grade k ≥ 2, over the
field F = R or F = C. Then P (λ) has a strong T -palindromic linearization if and only if
the elementary divisors of P at λ0 = +1 and at λ0 = −1 satisfy the conditions described in
Corollary 8.3 for either the elementary divisors of a T -palindromic pencil of type +1 or for
one of type −1.

Proof. The necessity of the conditions given in Corollary 8.3 is just a special case of Theo-
rem 9.1.

To prove sufficiency, we start with a regular matrix polynomial P (λ) whose set D of finite
and infinite elementary divisors satisfy the conditions in Corollary 8.1 and Corollary 8.3.
From the canonical forms given in [24, 25] it follows that there exists a T -palindromic regular
matrix pencil having D as its set of elementary divisors. (Here, the elementary divisors are
allowed to be complex when the polynomial P is real, but the canonical form is nevertheless
a real pencil.) Now by Lemma 2.3 of [3], a regular pencil L(λ) is a strong linearization of
a regular P (λ) if and only if L(λ) and P (λ) have the same finite and infinite elementary
divisors, so sufficiency is proved.

Thus we see that the necessary condition of the compatibility of Jordan structures de-
scribed in Theorem 9.1 is, at least in the case of regular real and complex T -palindromic
polynomials, also sufficient to guarantee the existence of a structured strong linearization.
Establishing necessary and sufficient conditions for the case of general T -palindromic poly-
nomials of even grade over an arbitrary field remains an open problem.
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10 Conclusions

We have extended the theory of palindromic matrix polynomials with new results that apply
to singular as well as regular polynomials over arbitrary fields. Zero leading coefficients
were accommodated by introducing the grade of a polynomial. The notion of reversal was
broadened, and the class of palindromic polynomials expanded from the one introduced in
[19, 20].

Given any T -palindromic matrix polynomial, we have determined the conditions that
its Smith form must satisfy: all the invariant polynomials are palindromic, and certain
subsequences of the partial multiplicity sequences of the eigenvalues +1 and −1 each have
a particular pattern of repetition. This result allows us to characterize the possible Jordan
structures of T -palindromic matrix polynomials, which in turn yields necessary conditions
for the existence of T -palindromic linearizations. When the grade of the polynomial is odd,
these conditions are shown to be sufficient as well.

A Palindromic matrix polynomials when charF = 2

Can a story analogous to the charF 6= 2 case be told for T -palindromic polynomials over
a field of characteristic two? To begin with, in any such field we have −1 = +1, so there
are no longer two different types of T -palindromicity, and thus we are led to the following
simplified definition.

Definition A.1 (Palindromic polynomial when charF = 2).
A nonzero n× n matrix polynomial P of degree d ≥ 0 over a field F with charF = 2 is said
to be T -palindromic if (revj P )(λ) = P T (λ) for some integer j, with j ≥ d.

Almost all the results developed in Sections 4, 5, 6, and 7 as the means to prove the
P-Smith form in Theorem 7.6 for charF 6= 2 remain valid when charF = 2 (deleting
the statements about palindromic type). The exceptions are Lemmas 5.6 and 5.7, and
Theorem 5.8, but fortunately suitable replacements can be formulated; these are presented
in Lemma A.2, Lemma A.3, and Theorem A.4, respectively. This gives us all that is needed
to prove the charF = 2 analog of the P-Smith form in Theorem A.5.

Lemma A.2 (Presence of (x + 1) factors).
Let q ∈ F[x] be a nonzero j-palindromic polynomial, where charF = 2. If j is odd, then
(x + 1) is a factor of q. If q is irreducible with deg(q) ≥ 2, then q has even degree.

Proof. If j is odd, we may write j = 2m + 1 and express the j-palindromic polynomial q in
the form

q(x) = a0x
j + a1x

j−1 + · · ·+ amxj−m + amxm + am−1x
m−1 + · · ·+ a1x + a0 .

Then clearly q(1) = 2(a0 + a1 + · · ·+ am), or equivalently q(1) = 0 since charF = 2, and so
(x + 1) must be a factor of q(x).

Now if q is irreducible with deg(q) ≥ 2, then q(0) 6= 0, so j = deg q. We have just shown
that a polynomial with an odd grade of palindromicity cannot be irreducible. Hence deg q
must be even.
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Lemma A.3 (Multiplicity of (x + 1) factors).
Let p(x) ∈ F[x] be a nonzero j-palindromic polynomial, where charF = 2. Then the multi-
plicity of (x + 1) as a factor of p has the same parity as j.

Proof. The polynomial p may be expressed as p(x) = (x + 1)αr(x), where r(1) 6= 0. Then
by Lemma 5.3(c) we know that r(x) is (j−α)-palindromic. But since (x+1) is not a factor
of r(x), by Lemma A.2 (j − α) must be even, and hence j and α have the same parity.

Theorem A.4 (Irreducible palindromic factorization in characteristic 2).
A polynomial p(x) over a field F with charF = 2 is palindromic if and only if it admits an
irreducible factorization in F[x] of the form

p(x) = c0 · xk1(x + 1)k2 ·
µ∏

i=1

bi(x)mi ·
κ∏

j=1

(
cj dj(x) revdj(x)

)nj , (A.1)

where c0, c1, . . . , cκ ∈ F are nonzero, k1, k2 ∈ N, m1, . . . , mµ, n1, . . . , nκ ∈ N are nonzero,
and the irreducible factors bi(x), dj(x) and revdj(x) are distinct with the following proper-
ties:

(a) Each bi(x) and each dj(x) is monic with bi(0), bi(1), dj(0), dj(1) all nonzero. The
nonzero constants cj ∈ F are chosen so that cj revdj(x) is also monic, for j = 1, . . . , κ.

(b) Each bi(x) has even degree deg bi ≥ 2, and is palindromic with respect to degree.

(c) The factors dj(x) and revdj(x) are not palindromic, and may have any degree, with
deg dj = deg revdj ≥ 1.

The parity of k2 is as stated in Lemma A.3. The factorization (A.1) is unique up to re-
ordering of the bi(x)’s amongst themselves, the dj(x)’s amongst themselves, and exchanging
the roles of the monic irreducibles dj(x) and cj revdj(x) within each dj(x), revdj(x) pair.

Proof. The proof is essentially just a simplified version of the proof of Theorem 5.8. No
new ideas are required, but one needs to use Lemma A.2 (for charF = 2) in place of
Lemma 5.6(a) (for charF 6= 2).

Observe how the irreducible factorization in Theorem 5.8 simplifies when going to the
charF = 2 version in Theorem A.4. Effectively the (x − 1) factors get absorbed into the
factors (x + 1) factors, since −1 = +1.

With these preliminaries in hand, we can now establish the analog of the P-Smith form
(Theorem 7.6) for T -palindromic polynomials over fields of characteristic two. Again we
see that the result is simpler in the charF = 2 case.

Theorem A.5 (P-Smith form when charF = 2).
Let P (λ) be an n×n T -palindromic matrix polynomial of grade k and degree at least 1, over
a field F with charF = 2. Suppose that the Smith form of P (λ) is expressed as

D(λ) = diag
(
(λ + 1)β1p1(λ), . . . , (λ + 1)β`p`(λ), 0, . . . , 0

)
, (A.2)

where 0 ≤ β1 ≤ · · · ≤ β` are nonnegative integers, pj(λ) is monic with pj(1) 6= 0 for
j = 1, . . . , `, and pj(λ) | pj+1(λ) for j = 1, . . . , `− 1. Then
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(1) pj(λ) is palindromic for j = 1, . . . , `.

(2) The subsequence consisting of all βi’s with parity opposite to that of the grade k has
the pairing property Φ. In other words, the pairing property Φ holds for the following
partial multiplicity subsequences of

(
β1, β2, . . . , β`

)
:

Grade k Partial multiplicity subsequences
of P (λ) of P at λ0 = 1 with property Φ

even All odd βj’s

odd All even βj’s

We emphasize that the phrase “all even βj’s” includes any and all occurrences of 0.

Proof. (1): The palindromicity of each pj(λ) follows from Proposition 7.1 and Lemma 5.3(c),
both of which hold without change when charF = 2.

(2): We follow a two-part strategy analogous to that used in the proof of (2) in Theorem 7.6,
making some important adaptations to handle the characteristic 2 case.

Step 1: Show that if β1 and k have opposite parity, then n ≥ 2, ` ≥ 2, and β2 = β1.
Since each diagonal entry P (λ)jj is k-palindromic, the multiplicities of the (λ + 1) factors
occurring in every P (λ)jj are of the same parity as k, by Lemma A.3. But P (λ)jj is
divisible by d1(λ), so (λ + 1) must occur as a factor of each diagonal entry at least β1 + 1
times. We can therefore write P (λ)jj = (λ + 1)β1+1rj(λ), where rj is palindromic. Since
d1(λ) = (λ + 1)β1p1(λ) is the GCD of all the entries of P (λ), this implies that there
must exist some off -diagonal entry P (λ)ij = (λ + 1)β1s(λ) with i > j and s(1) 6= 0, and
hence n ≥ 2. Letting η = {i, j}, a calculation analogous to that in Step 1 of the proof of
Theorem 7.6 yields

detP (λ)ηη = (λ + 1)2β1

[
(λ + 1)2ri(λ)rj(λ) + λk−β1s(λ)s(1/λ)︸ ︷︷ ︸

=: v(λ)

]

in place of (7.2). We see that v(λ) is a nonzero polynomial, since s(1) 6= 0 implies that
v(1) 6= 0. Hence det P (λ)ηη is a nonzero polynomial, and the rest of the argument in Step 1
of Theorem 7.6 shows, mutatis mutandis, that ` ≥ 2 and β2 = β1. (Note that when k is
odd, β1 may be zero. The proof of Step 1 remains valid, yielding β2 = β1 = 0 in this case.)

Step 2: Push forward down the diagonal.
Let h1 < h2 < · · · < hν be all the positions on the diagonal where the parity of the exponent
βhi is opposite to that of the grade k, i.e., where βhi is odd if k is even, or where βhi is
even if k is odd. As in the proof of Step 2 in Theorem 7.6, we assume for purposes of
contradiction that the pairing property Φ fails for the subsequence

(
βh1 , βh2 , . . . , βhν

)
, and

let r := h2j−1 ≤ n be the first position on the diagonal of D(λ) where Φ fails. We now
argue that r < n. There are certainly 2j − 1 positions (h1, h2, . . . , h2j−1) where the factor
(λ+1) has exponent βi whose parity is opposite to k. If r = h2j−1 = n, then there would be
exactly n− (2j−1) positions where the exponent βi has the same parity as k, and therefore
the total number γ of (λ + 1) factors in detD(λ), and hence also in detP (λ), would satisfy

γ ≡ (2j − 1)(k + 1) + (n− 2j + 1)(k) mod 2
≡ (1)(k + 1) + (n + 1)(k) mod 2
≡ (kn + 1) mod 2 ,
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which is opposite in parity to kn. This contradicts Lemma A.3, since by Proposition 6.1
det P (λ) is kn-palindromic. Hence r < n.

Next consider the rth compound matrix Cr

[
P (λ)

]
, and its first two invariant polynomials

given from Theorem 2.6 by

c1(λ) = d1(λ) · · · dr−1(λ)dr(λ) and c2(λ) = d1(λ) · · · dr−1(λ)dr+1(λ).

Another mod 2 count establishes that the total number γ̂ of (λ + 1) factors in c1(λ) has
opposite parity to kr:

γ̂ ≡ (2j − 1)(k + 1) + (r − 2j + 1)(k) ≡ (kr + 1) mod 2 . (A.3)

Since Cr

[
P (λ)

]
is T -palindromic of grade kr by Theorem 4.6, we may invoke the result

of Step 1 to conclude that c2(λ) must also be nonzero, with the same number of (λ + 1)
factors as c1(λ). The desired result now follows using the same closing argument that was
employed in Step 2 of Theorem 7.6.

Finally it should be noted that the construction of Theorem 9.5(a) is still valid when
charF = 2, and thus provides a T -palindromic strong linearization for any T -palindromic
polynomial of odd grade, even for T -palindromic polynomials over a field of characteristic
two.
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