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Abstract

Motivated by the analysis of passive control systems, we undertake a detailed per-
turbation analysis of Hamiltonian matrices that have eigenvalues on the imaginary axis.
We construct minimal Hamiltonian perturbations that move and coalesce eigenvalues of
opposite sign characteristic to form multiple eigenvalues with mixed sign characteristics,
which are then moved from the imaginary axis to specific locations in the complex plane by
small Hamiltonian perturbations. We also present a numerical method to compute upper
bounds for the minimal perturbations that move all eigenvalues of a given Hamiltonian
matrix outside a vertical strip along the imaginary axis.
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1 Introduction

In this paper we discuss the perturbation theory for eigenvalues of Hamiltonian matrices and
the explicit construction of small perturbations that move eigenvalues from the imaginary
axis. With Fk,ℓ denoting the vector space of real (F = R) or complex (F = C) k× ℓ matrices,

a matrix H ∈ F2n,2n is called Hamiltonian if (HJn)⋆ = HJn, where Jn =
[

0
−In

In
0

]
and In

is the n× n identity matrix, (we suppress the subscript n, if the dimension is clear from the
context). In order to simplify the presentation and to treat the real and the complex case
together, we use ⋆ to denote T in the real case and ∗ in the complex case.

1.1 The distance to bounded-realness

It is well-known [22, 30] that the spectrum of Hamiltonian matrices is symmetric with respect
to the imaginary axis, i.e., eigenvalues occur in pairs (λ,−λ̄) in the complex case or quadruples
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‡Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911-Leganés,

Spain email: jmoro@math.uc3m.es. Research partially supported by the Spanish Ministerio de Ciencia y
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(λ,−λ, λ̄,−λ̄) in the real case. This eigenvalue symmetry degenerates if there are eigenvalues
on the imaginary axis. The existence of purely imaginary eigenvalues typically leads to
difficulties for numerical methods in control [5, 30]. If purely imaginary eigenvalues occur,
then in some applications (see, e.g., Section 1.2) one perturbs the Hamiltonian matrix in such
a way that the eigenvalues are moved away from the imaginary axis. We formulate this as
our first problem.

Problem A: Given a Hamiltonian matrix H that has purely imaginary eigenvalues, de-
termine (in some norm to be specified) the smallest Hamiltonian perturbation ∆H such that
for the resulting perturbed matrix H + ∆H an arbitrary small generic Hamiltonian pertur-
bation will move all the eigenvalues off the imaginary axis. Since checking the existence of
purely imaginary eigenvalues of a Hamiltonian matrix is used in the context of the Bounded
Real Lemma [2] we call this distance the distance to bounded-realness.

The converse of this problem, i.e., to determine the smallest Hamiltonian perturbation
of a Hamiltonian matrix so that all eigenvalues of the resulting perturbed matrix are purely
imaginary, i.e., the distance to non-bounded-realness, has been recently studied on the basis
of so called µ-values and spectral value sets in [18].

While the distance to bounded-realness is an important quantity that has to be determined
in order to characterize whether it is possible to find a perturbation that moves all eigenvalues
off the imaginary axis, in applications (see, e.g., Section 1.2) often a modified question is more
important.

Problem B: Given a Hamiltonian matrix H that has purely imaginary eigenvalues,
determine (in some norm to be specified) the smallest Hamiltonian perturbation ∆H such
that the resulting perturbed matrix H + ∆H has all eigenvalues robustly bounded away from
the imaginary axis, i.e., all eigenvalues λ̃ of H + ∆H lie outside of an open vertical strip
Sτ = {z ∈ C | − τ < ℜz < τ} (τ ≥ 0) along the imaginary axis.

In this paper we discuss numerical procedures for the solution of both Problems A and
B, and obtain upper bounds for the smallest perturbations. We mention that determination
of the minimal perturbation is in general a difficult non-convex optimization problem, see [8].

1.2 Passivation

The main motivation for studying the perturbation problems that we have discussed in the
previous subsection is the following. Consider a linear time-invariant control system

ẋ = Ax+Bu, x(0) = 0,

y = Cx+Du, (1)

with matrices A ∈ Fn,n, B ∈ Fn,m, C ∈ Fp,n, D ∈ Fp,m. Here u is the input, x the state, and
y the output.

Suppose that the homogeneous system is asymptotically stable, i.e., all eigenvalues of A
are in the open left half complex plane and that D is square and nonsingular. Then, see e.g.,
[2], the system is called passive, if there exists a nonnegative scalar valued function Θ such
that the dissipation inequality

Θ(x(t1))−Θ(x(t0)) ≤
∫ t1

t0

u⋆y + y⋆u dt

holds for all t1 ≥ t0, i.e., the system absorbs supply energy.
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In real world applications the system model (1) is typically subject to several approxi-
mations. Often the real physical problem, e.g., the determination of the electric or magnetic
field associated with an electronic device is infinite dimensional and it is approximated by a
finite element or finite difference model [17], or the system is nonlinear and the linear model
is obtained by a linearization. The system may also be obtained by a realization or system
identification [6, 16, 39] or it may be the result of a model reduction procedure [2].

If one uses an approximated model, then it is in general not clear that the property of
passivity will be preserved, and typically it is not, i.e., the approximation process makes
the passive system non-passive. Since passivity is an important physical property (a passive
system does not generate energy), one then approximates the non-passive system by a (hope-
fully) nearby passive system, by introducing small (minimal) perturbations of A,B,C,D, see
[6, 8, 15, 39, 40].

Typically, one has an estimate or even a bound for the approximation error in the original
system approximation and then one tries to keep the perturbations within these bounds. So
from the application point of view it may not be necessary to really determine the minimal
perturbation, a perturbation that stays within the range of the already committed approxi-
mation errors is sufficient. But from a system theoretical point of view, it is also interesting to
find a value or a bound for the smallest perturbation that makes a non-passive system passive.
In general it is an open problem to determine this minimal perturbation explicitly, instead
one uses optimization methods, see [6, 8, 9] or ad hoc perturbation methods [14, 15, 39, 38],
see also [40] for a recent improvement of the method in [15].

The converse problem, i.e., to compute the smallest perturbation that makes a passive
system non-passive has recently been studied in [33], again using optimization techniques.

At first sight the passivation problem seems not related to the perturbation problem for
Hamiltonian matrices. However, it is well known [2, 15] that one can check whether an
asymptotically stable system is passive by checking whether the Hamiltonian matrix

H =

[
F G
H −F⋆

]
:=

[
A−BR−1C −BR−1B⋆

−C⋆R−1C −(A−BR−1C)⋆

]
(2)

has no purely imaginary eigenvalues, where we have set R = D +D⋆. Thus one can use the
distance to bounded-realness, i.e., perturbations that solve Problems A and B, to construct
perturbations that make the system passive. This topic will be discussed in forthcoming work.

The paper is organized as follows: In Section 2 we introduce the notation and briefly
present some preliminary results. The perturbation theory for eigenvalues, in particular
purely imaginary eigenvalues of Hamiltonian matrices is reviewed in Section 3. Hamiltonian
perturbations moving purely imaginary eigenvalues of a Hamiltonian matrix to specific points
in the complex plane are discussed in Section 4. The minimal perturbations or bounds of min-
imal perturbations are discussed in Section 5. A numerical method to compute approximate
solutions of Problems A and B for the spectral norm ∥ · ∥2 is discussed in Section 6.

2 Preliminaries

By C+ and C−, respectively, we denote the positive right half and negative left half complex
plane. For X ∈ Fn,m of full column rank, we denote by X+ := (X⋆X)−1X⋆ the Moore-
Penrose inverse of X, see e.g. [13]. For A ∈ Fn,n, a subspace X ⊆ Fn is said to be A-invariant
if Ax ∈ X for any x ∈ X . In this case we denote by Λ(A|X ) the spectrum of the restriction
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of the linear operator A to the subspace X . Let X ∈ Fn,d be a full column rank matrix such
that X = range(X). Then X is A-invariant if AX = XR for some R ∈ Fd,d, and we then
have Λ(A|X ) = Λ(R).

It is well-known [32, 35, 36] that the Hermitian form

(x, y) 7→ ix⋆Jy, x, y ∈ F2n (3)

plays an important role in the perturbation theory of Hamiltonian eigenvalues. If x⋆Jy = 0,
then x and y are said to be J-orthogonal. Subspaces X , Y ⊆ F2n,2n are said to be J-orthogonal
if x⋆Jy = 0 for all x ∈ X , y ∈ Y. A subspace X ⊆ F2n,2n is said to be J-neutral if x⋆Jx = 0
for all x ∈ X . X is said to be J-nondegenerate if for any x ∈ X \ {0} there exists y ∈ X such
that x⋆Jy ̸= 0.

Nondegenerate invariant subspaces for Hamiltonian matrices are characterized by the
following theorem, where for a set of complex numbers Ξ = {ξ1, . . . , ξk} we denote by Ξ the
set of conjugates of the elements of Ξ.

Theorem 2.1 Let X1 and X2 be invariant subspaces of the Hamiltonian matrix H ∈ F2n,2n.

Suppose that Λ(H|X1) ∩
(
−Λ(H|X2)

)
= ∅. Then x⋆1Jx2 = 0 for all x1 ∈ X1, x2 ∈ X2.

Suppose, additionally, that X1 ⊕X2 = F2n. Then X1 and X2 are J-nongenerate.

Proof. Let Xk ∈ F2n,pk be a matrix whose columns form a basis of Xk, k = 1, 2. Then
HXk = XkRk, and the matrix Rk ∈ Fpk,pk satisfies Λ(Rk) = Λ(H|Xk). Consider the Sylvester
operator S(Z) = R⋆

1Z + Z R2, Z ∈ Fp1,p2 . We have

S(X⋆
1 JX2) = R⋆

1X
⋆
1 JX2 +X⋆

1 JX2R2

= −(JX1R1)
⋆X2 +X⋆

1 (JX2R2)

= −(JHX1)
⋆X2 +X⋆

1 (JHX2)

= −X⋆
1 (JH)⋆X2 +X⋆

1 (JH)X2

= 0.

Furthermore, by assumption 0 ̸∈ Λ(R⋆
1 ) + Λ(R2) and, thus, the Sylvester operator S is

nonsingular [24]. Hence, we have X⋆
1 JX2 = 0 and this completes the proof of the first claim.

For the second part, suppose that X1 ⊕ X2 = F2n and that X1 is degenerate. Then there
exists x1 ∈ X1 \ {0} such that x⋆1Jx = 0 for all x ∈ X1. However, we also have x⋆1Jx = 0 for
all x ∈ X2. This yields x

⋆
1J = 0, contradicting the nonsingularity of J .

If in Theorem 2.1 we have X1⊕X2 = F2n, and if there exists a basis {s1, . . . , sn, sn+1, . . . , s2n} ⊂
F2n such that span{s1, . . . , sn} = X1 and span{sn+1, . . . , s2n} = X2, then the matrix S =
[s1, . . . , s2n] is symplectic, i.e., S⋆JS = J . In this case the basis {s1, . . . , sn, sn+1, . . . , s2n}
can even be chosen so that S is unitary (orthogonal in the real case) and symplectic, i.e. S is
symplectic and S⋆S = I, see [3, 27].

We immediately have the following corollary, see e.g. [22].

Corollary 2.2 Let H ∈ F2n,2n be Hamiltonian. Let iα1, . . . , iαp ∈ iR be the purely imaginary
eigenvalues of H and let λ1, . . . , λq ∈ C be the eigenvalues of H with negative real part. Then
the H-invariant subspaces ker(H− iαk I)

2n and ker(H−λj I)
2n⊕ker(H+λj I)

2n are pairwise
J-orthogonal. All these subspaces are J-nondegenerate. The subspaces

X−(H) :=
⊕q

j=1ker(H− λj I)
2n,

X+(H) :=
⊕q

j=1ker(H+ λj I)
2n

4



are J-neutral.

There are several viewpoints that can be taken to perform the perturbation analysis for
Hamiltonian matrices. We will mostly work with the quadratic form (3). However, to set
things in perspective, and to introduce some of the necessary terminology we also use the
normal and condensed forms for Hamiltonian matrices. For this we need the matrices

Pr =

 1
..
.

1

 , P̂r =

 (−1)0
. .
.

(−1)r−1

 , Nr =


0 1 0

. . .
. . .
. . . 1

0

 ,

and

Nr(a) = aIr +Nr, Nr(a, b) = Ir ⊗
[

a b
−b a

]
+Nr ⊗ I2.

Theorem 2.3 ([10, 11, 23, 25]) For a Hamiltonian matrix H ∈ C2n,2n there exists a non-
singular matrix S such that

S−1HS = diag(H1, . . . ,Hm), S⋆JnS = diag(Z1, . . . , Zm),

where each pair (Hj , Zj) is of one of the following forms:

a) Hj = iNnj (γj), Zj = isjPnj , where γj ∈ R and sj = ±1, corresponding to an nj × nj

Jordan block for the purely imaginary eigenvalue iγj.

b) Hj =

[
Nnj (λj) 0

0 −[Nnj (λj)]
⋆

]
, Zj =

[
0 Inj

−Inj 0

]
= Jnj , where λj = aj + ibj

with aj , bj ∈ R and aj ̸= 0, corresponding to an nj × nj Jordan block for each of the
eigenvalues λj, −λ̄j.

The scalars sj in Theorem 2.3 are called the sign characteristic of the pair (H, J) associated
with the purely imaginary eigenvalues, and they satisfy

∑2n
j=1 sj = 0. The sign characteristics

play an important role in the structured perturbation analysis of Hamiltonian matrices see
e.g. [12, 22, 32, 34].

In the real case the canonical form is as follows.

Theorem 2.4 ([11, 23, 25, 42]) Let H ∈ R2n,2n be a Hamiltonian matrix. Then there
exists a real nonsingular matrix S such that

S−1HS = diag(H1, . . . , Hm), STJnS = diag(Z1, . . . , Zm),

where each pair (Hj , Zj) is of one of the following forms:

(a.1) Hj = tj


0 (−1)0 0

. . .
. . .
. . . (−1)2nj−2

0

 , Zj = P̂2nj where tj = ±1, corresponding to

a 2nj × 2nj Jordan block for the eigenvalue 0,
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(a.2) Hj =

[
N2nj+1 0

0 −NT
2nj+1

]
, Zj =

[
0 I2nj+1

−I2nj+1 0

]
= J2nj+1, corresponding to

two (2nj + 1)× (2nj + 1) Jordan blocks for the eigenvalue 0.

b) Hj =

[
0 Nnj (γj)

−Nnj (γj) 0

]
, Zj = sj

[
0 Pnj

−Pnj 0

]
, where 0 < γj ∈ R and sj =

±1, corresponding to an nj×nj Jordan block for each of the purely imaginary eigenvalues
±iγj.

c) Hj =

[
Nnj (βj) 0

0 −[Nnj (βj)]
T

]
, Zj =

[
0 Inj

−Inj 0

]
= Jnj where 0 < βj ∈ R,

corresponding to an nj × nj Jordan block for each of the real eigenvalues βj and −βj.

d) Hj =

[
Nnj (aj , bi) 0

0 −[Nnj (aj , bj)]
T

]
, Zj =

[
0 I2nj

−I2nj 0

]
= J2nj where 0 <

aj , bj ∈ R, corresponding to an nj×nj Jordan block for each of the eigenvalues aj + ibj,
−aj + ibj, aj − ibj and −aj − ibj.

It should be noted that in the real case we have two sets of sign characteristics {tj}, {sj} for
the pair (H, J).

Note further that both in the real and complex case, an analogous canonical form can
be constructed where the transformation matrix is symplectic, see [25]. The normal form
under symplectic transformations forms the basis for the computation of eigenvalues, sign
characteristics, eigenvectors and invariant subspaces of Hamiltonian matrices. But since the
group of symplectic matrices is not compact, to obtain backward stable numerical methods
it is important to use unitary (orthogonal) symplectic matrices for the transformations. In
this case, in general, we cannot get the complete spectral information but only a condensed
form, the (partial) Hamiltonian Schur form.

Lemma 2.5 [26, 30] Given a Hamiltonian matrix H ∈ F2n,2n, there exist a unitary symplectic
(real orthogonal symplectic if F = R) matrix Q ∈ F2n,2n such that

H1 = Q⋆HQ =


F11 F12 G11 G12

0 F22 G21 G22

0 0 −F⋆
11 0

0 H22 −F⋆
12 −F⋆

22

 , (4)

where F11 is upper triangular (quasi-upper triangular in the real case) and has only eigenvalues
in the open left half plane, while the submatrix[

F22 G22

H22 −F⋆
22

]
,

has only purely imaginary eigenvalues.
If there are no purely imaginary eigenvalues, then this latter block is void, and this becomes

a Hamiltonian Schur form.

Under further conditions, see [7, 25, 26] a Hamiltonian Schur form also exists if purely
imaginary eigenvalues occur.

We now discuss the perturbation theory for purely imaginary eigenvalues of Hamiltonian
matrices.
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3 Perturbation theory for Hamiltonian matrices

In this section we discuss perturbation results for Hamiltonian matrices. In particular, we
analyze how purely imaginary eigenvalues of Hamiltonian matrices behave under Hamilto-
nian perturbations and then we characterize when small perturbations allow to move purely
imaginary eigenvalues away from the imaginary axis, see also [21, 32, 34, 35, 36]). To be more
precise, given a Hamiltonian matrix H ∈ F2n,2n with a purely imaginary eigenvalue iα, our
primary aim is to determine a minimal Hamiltonian perturbation ∆H such that iα moves
away from the imaginary axis to some specified location in the complex plane, when H is
perturbed to H +∆H. By minimal perturbation we mean that ∆H has the smallest norm,
either in the Frobenius or in the spectral norm.

It is well-known that the spectral perturbation theory for Hamiltonian matrices [32, 34, 35],
in particular for the purely imaginary eigenvalues, is substantially different from the well-
known classical perturbation theory for eigenvalues and eigenvectors of unstructured matrices,
see e.g. [41]. This is demonstrated by the following example, see e.g. [32].

Example 3.1 The Hamiltonian matrices

H1 =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , H2 =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


both have a pair of purely imaginary eigenvalues ±i with algebraic multiplicity 2.

For H1, where i is a double eigenvalue with opposite sign characteristic, a small Hamilto-
nian perturbation will generically move the eigenvalue i off the imaginary axis [28, 29], while
for H2, where the sign characteristic of both eigenvalues is the same, only a large Hamiltonian
perturbation can achieve this.

Let H ∈ F2n,2n be Hamiltonian and suppose that iα is a purely imaginary eigenvalue of H.
Let X be a full column rank matrix so that the columns ofX span the right invariant subspace
ker(H− iαI)2n associated with iα, i.e.,

HX = XR, (5)

where Λ(R) = {iα}. By using the fact that H is Hamiltonian, we also have

X⋆JH = −R⋆X⋆J. (6)

Since also Λ(−R⋆) = {iα}, it follows that the columns of the full column rank matrix J⋆X
span the left invariant subspace associated with iα. Hence, (J⋆X)⋆X = X⋆JX is nonsingular
and the matrix

Z = iX⋆JX (7)

associated with the Hermitian form (3) is nonsingular. Based on this observation in [32] the
following results for the spectral norm ∥ · ∥2 was shown.

Theorem 3.2 [32] Consider a Hamiltonian matrix H ∈ F2n,2n with a purely imaginary eigen-
value iα of algebraic multiplicity p. Suppose that X ∈ F2n,p satisfies rankX = p and (5), and

that Z as defined in (7) is congruent to
[
Iπ
0

0
−Iµ

]
(with π + µ = p).
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If ∆H is Hamiltonian and ||∆H||2 is sufficiently small, then H + ∆H has p eigenvalues
λ1, . . . , λp (counting multiplicity) in the neighborhood of iα, among which at least |π − µ|
eigenvalues are purely imaginary. In particular, we have the following cases.

1. If Z is definite, i.e. either π = 0 or µ = 0, then all λ1, . . . , λp are purely imaginary with
equal algebraic and geometric multiplicity, and satisfy

λj = i(α+ δj) +O(||∆H||22),

where δ1, . . . , δp are the real eigenvalues of the pencil λZ −X⋆(J∆H)X.

2. If there exists a Jordan block associated with iα of size larger than 2, then generically
for a given ∆H some eigenvalues of H+∆H will no longer be purely imaginary.

If there exists a Jordan block associated with iα of size 2, then for any ϵ > 0, there
always exists a Hamiltonian perturbation matrix ∆H with ||∆H||2 = ϵ such that some
eigenvalues of H+∆H will have nonzero real part.

3. If iα has equal algebraic and geometric multiplicity and Z is indefinite, then for any
ϵ > 0, there always exists a Hamiltonian perturbation matrix ∆H with ||∆H||2 = ϵ such
that some eigenvalues of H+∆H will have nonzero real part.

We now revisit the perturbation results in Theorem 3.2 and present them in a form that
we can directly use in the construction of small perturbations. In what follows, we show
that an imaginary eigenvalue of H can be moved off the imaginary axis by an arbitrary small
Hamiltonian perturbation if and only if H has a J-neutral eigenvector corresponding to the
imaginary eigenvalue. We then describe how to construct such a Hamiltonian perturbation.

Suppose that we wish to construct a Hamiltonian perturbation matrix E of smallest norm
such that an eigenvalue ofH moves to µ, whenH is perturbed toH+E . If we have constructed
such a perturbation, then there exists a vector u such that (H+ E)u = µu. This means that
Eu = µu − Hu = r. Thus, the resulting E is a solution of the following structured mapping
problem, see [1]. Given x, b ∈ F2n find a Hamiltonian matrix G of smallest norm ∥G∥ such
that Gx = b. Here ∥ · ∥ is either the spectral norm or the Frobenius norm.

To solve this problem in a more general framework, for X ∈ F2n,p and B ∈ F2n,p, we
introduce

η(X,B) := inf{∥H∥ : H ∈ F2n,2n, (JH)⋆ = JH and HX = B}, (8)

denoting η(X,B) by ηF (X,B) for the Frobenius norm and by η2(X,B) for the spectral norm.
The following result of [1] provides a complete solution of the Hamiltonian structured mapping
problem.

Theorem 3.3 [1]

a) 1. Let x ∈ F2n and b ∈ F2n. Then there exists a Hamiltonian matrix H ∈ F2n,2n such that
Hx = b if and only if x⋆Jb ∈ R.

2. If x⋆Jb is real, then

ηF (x, b) =
√

2∥b∥22/∥x∥22 − |x⋆Jb|2/∥x∥42
η2(x, b) = ∥b∥2/∥x∥2.
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Furthermore, the matrix

G(x, b) := bx⋆ + Jxb⋆J

∥x∥22
+

(x⋆Jb) Jxx⋆

∥x∥42

is the unique Hamiltonian matrix such that G(x, b)x = b and ∥G(x, b)∥F = ηF (x, b).

3. If ∥x∥2∥b∥2 ̸= |x⋆Jb|, then form the Hamiltonian matrix

F(x, b) := G(x, b)− x⋆Jb

∥b∥22∥x∥22 − |x⋆Jb|2
J(I − xx⋆

x⋆x
)Jbb⋆J(I − xx⋆

x⋆x
),

otherwise, set F(x, b) := G(x, b). Then F(x, b)x = b and ∥F(x, b)∥2 = η2(x, b).

b) 1. Let B ∈ F2n,p and X ∈ F2n,p. Suppose that rankX = p. Then there exists a Hamiltonian
matrix H ∈ F2n,2n such that HX = B if and only if X⋆JB is Hermitian.

2. If X⋆JB is Hermitian, then

η2(X,B) = ∥B(X⋆X)−1/2∥2

ηF (X,B) =
√

2∥B(X⋆X)−1/2∥2F − ∥(X⋆X)−1/2X⋆JB(X⋆X)−1/2∥2F .

3. The matrix

G(X,B) := BX+ + J(X+)⋆B⋆J + JXX+JBX+, (9)

is the unique Hamiltonian matrix such that G(X,B)X = B and ∥G(X,B)∥F = ηF (X,B).

4. Set Z := (X⋆X)−1/2X⋆JB(X⋆X)−1/2 and ρ := η2(X,B). If ρ2I − Z2 is nonsingular,
then consider the Hamiltonian matrix

F(X,B) := G(X,B) + J(I −XX+)KZK⋆(I −XX+),

where K := JB(X⋆X)−1/2(ρ2I−Z2)−1/2. Then F(X,B) is a Hamiltonian matrix such
that F(X,B)X = B and ∥F(X,B)∥2 = η2(X,B).

In order to construct a real Hamiltonian matrix H satisfying HX = B we need the following
lemma.

Lemma 3.4 Let A,B ∈ Cn,p. Then [A Ā][B B̄]+ is a real matrix.

Proof. Let P =

[
0 I
I 0

]
∈ R2p,2p. Then [A Ā]P = [Ā A]. Since P−1 = P⋆ = P we have

P [B B̄]+ = ([B B̄]P )+ = [B̄ B]+. Hence [A Ā][B B̄]+ = [A Ā]P 2[B B̄]+ = [A Ā][B B̄]+.
We then have the following minimal real perturbations.

Corollary 3.5 Let B ∈ C2n,p, X ∈ C2n,p and suppose that rank[X X̄] = 2p. Then there
exists a real Hamiltonian matrix H ∈ R2n,2n such that HX = B if and only if X⋆JB is
Hermitian and X⋆JB̄ is symmetric, i.e., (X⋆JB̄)⊤ = X⋆JB̄.

If the latter two conditions are satisfied, then with G as defined in (9), the matrix GR :=
G([X X̄], [B B̄]) is a real Hamiltonian matrix with GRX = B. Furthermore, among all real
Hamiltonian matrices H with HX = B the matrix GR has the smallest Frobenius norm.
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Proof. If H is any real matrix with HX = B then also HX̄ = B̄. Hence H[X X̄] =
[B B̄]. By Theorem 3.3 a Hamiltonian matrix H satisfying this relation exists if and only if
[X X̄]⋆J [B B̄] =: Z is Hermitian. It is easily verified that Z is Hermitian if and only if X⋆JB
is Hermitian and X⋆JB̄ is symmetric. If these conditions are satisfied then by Theorem 3.3
the matrix GR is Hamiltonian and GR[X X̄] = [B B̄]. Moreover, among all Hamiltonian
matrices H with H[X X̄] = [B B̄] the matrix GR has smallest Frobenius norm. The realness
of GR follows from Lemma 3.4.

In this section, we have discussed the structured mapping theorem for Hamiltonian ma-
trices and used it to construct solutions of minimal Frobenius and spectral norm. In the next
section we use these results to construct Hamiltonian perturbations that move eigenvalues
away from the imaginary axis.

4 Moving eigenvalues by small perturbations

We now discuss in detail how to move an eigenvalue (resp., a group of eigenvalues) of a Hamil-
tonian matrix by a small Hamiltonian perturbation to a specific location (resp., locations) in
the complex plane. We construct Hamiltonian perturbations under the assumption that a J-
neutral eigenvector (resp., J-neutral invariant subspace) exists corresponding the eigenvalue
(resp., group of eigenvalues).

Theorem 4.1 Let σ be a set of eigenvalues of a Hamiltonian matrix H ∈ C2n,2n and X ∈
C2n,d be a full column rank matrix such that X⋆JX = 0 and HX = XR for some R ∈ Cd,d

with Λ(R) = σ. Then for any D ∈ Cd,d, the matrix E = G(X,XD), where G(·, ·) is defined by
(9), has the following properties.

i) The matrix E is Hamiltonian and satisfies E = XDX+ + J(X+)⋆D⋆X⋆J, EX = XD,
∥E∥2 = ∥XD(X⋆X)−1/2∥2 and ∥E∥F =

√
2 ∥E∥2. Further,

(H+ tE)X = X(R+ tD), (10)

for all t ∈ R, i.e., Λ(R+ tD) ⊂ Λ(H+ tE) for all t ∈ R.

ii) When H is real and the eigenvalues in σ are real, then the matrix X can be chosen to
be real, so that E is a real Hamiltonian matrix provided that D is real.

iii) When H is real and σ ∩ σ̄ = ∅, then the matrix K = G([X X̄], [XD XD]) is real
Hamiltonian and satisfies KX = XD, where σ̄ := {λ̄ : λ ∈ σ}. Further, for all t ∈ R
we have

(H+ tK)X = X(R+ tD), (11)

i.e., Λ(R+ tD) ⊂ Λ(H+ tK) for all t ∈ R.

Proof. Since X⋆J(XD) = 0 is Hermitian, by Theorem 3.3, E is a well defined Hamiltonian
matrix, E = XDX+ + J(X+)⋆D⋆X⋆J , EX = XD, ∥E∥2 = ∥XD(X⋆X)−1/2∥2 and ∥E∥F =√
2 ∥E∥2. This proves i).
The assertion in ii) is obvious. So, suppose that H is real and that σ ∩ σ̄ = ∅. Then

we have HX = XR and HX̄ = X̄ R̄ with Λ(R) ∩ Λ(R̄) = ∅. Hence rank[X, X̄] = 2d
and by Theorem 2.1 the spaces spanned by the columns of X and X̄ are J-orthogonal. Thus,
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X⋆JX̄ = 0. SinceX⋆JXD = 0 is Hermitian andX⋆JXD = 0 is symmetric, by Corollary 3.5,
the matrix K is real and Hamiltonian with KX = XD. This proves iii).

Theorem 4.1 shows that an eigenvalue (resp., a group of eigenvalues) of a Hamiltonian
matrix H can be moved by a small Hamiltonian perturbation if the eigenvalue (resp., group of
eigenvalues) is associated with a J-neutral eigenvector (resp., J-neutralH-invariant subspace).

Remark 4.2 If λ ∈ C\iR is a non-imaginary eigenvalue of H and v is an associated eigenvec-
tor then v is J-neutral, that is, v⋆Jv = 0. Thus by Theorem 4.1, a non-imaginary eigenvalue
of H can be moved in any direction in the complex plane by a small Hamiltonian perturba-
tion. More generally, let σ be a set of eigenvalues of H such that σ ⊂ C− (or equivalently
σ ⊂ C+). Then by Corollary 2.2, there is a full column rank matrix X such that X⋆JX = 0
and HX = XR with Λ(R) = σ, for some matrix R. Hence by Theorem 4.1, the group of
eigenvalues σ can be moved en block by a small Hamiltonian perturbation. Moreover, when
H is real and σ ∩ σ̄ = ∅, then the Hamiltonian perturbation can be chosen to be real.

In view of Remark 4.2 we conclude that a non-imaginary eigenvalue (that is, an eigen-
value with nonzero real part) of a Hamiltonian matrix can be moved in any direction in the
complex plane by a small Hamiltonian perturbation. However, this property does not hold
in the same generality for purely imaginary eigenvalues. Indeed, suppose that iα is an imag-
inary eigenvalue of H and v is an associated eigenvector, that is, Hv = iαv. Then by the
Hamiltonian eigenvalue symmetry, Jv is a left eigenvector of H corresponding to iα, that is,
(Jv)⋆H = iα(Jv)⋆. Thus if v is J-neutral then (Jv)⋆v = −v⋆Jv = 0. Hence it follows that
the algebraic multiplicity of iα must be at least 2. However, the algebraic multiplicity being
at least 2 is not enough to remove an imaginary eigenvalue from the imaginary axis by a
small Hamiltonian perturbation. The crux of the matter is that the existence of a J-neutral
eigenvector is both necessary and sufficient condition for moving an eigenvalue (imaginary or
not) of a Hamiltonian matrix in any direction in the complex plane by a small Hamiltonian
perturbation. More generally, we have the following result.

Theorem 4.3 Let σ := {λ1, . . . , λm} be a set of eigenvalues of a Hamiltonian matrix H ∈
C2n,2n. Then there exists a Hamiltonian matrix E such that H(t) := H + tE has a p-
dimensional H(t)-invariant subspace X (t) with σ(t) := Λ(H(t)|X (t)) ⊂ C− (or equiva-
lently σ(t) ⊂ C+) for 0 < t ≤ 1 and σ(t) → σ as t → 0 if and only if the generalized
eigenspace

⊕m
k=1 ker (H−λk I)

2n contains a p-dimensional J-neutral H-invariant subspace X
with Λ(H|X ) = σ.

Proof. Suppose that HX = XR with Λ(R) = σ and X⋆JX = 0, where X ∈ C2n,p is a full
column rank matrix. Then the desired result follows from Theorem 4.1.

Conversely, suppose that there exists a Hamiltonian matrix E such that H(t) := H +
tE has a p-dimensional H(t)-invariant subspace X (t) with σ(t) := Λ(H(t)|X (t)) ⊂ C− for
0 < t ≤ 1 and σ(t) → σ as t → 0. Let X(t) ∈ C2n,p be a matrix with orthonormal
columns such that span(X(t)) = X (t). Then H(t)X(t) = X(t)R(t) for some R(t) with
Λ(R(t)) = σ(t). By multiplying the former equation from the left with X(t)⋆, it follows that
R(t) = X(t)⋆H(t)X(t). Since for t > 0, the set σ(t) contains no purely imaginary eigenvalue
of H(t), the invariant subspace X (t) is J-neutral by Corollary 2.2. Thus X(t)⋆JX(t) = 0
for t > 0. Since the set of 2n-by-p matrices with orthonormal columns is compact, the limit
X = limk→∞X(tk) exists for some sequence {tk} with tk → 0. By continuity, it follows that
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X⋆JX = 0 andHX = XR, where R = limR(tk). Furthermore, Λ(R) = limσ(tk) = σ. Hence
X := span(X) is a J-neutral H-invariant p-dimensional subspace of

⊕m
k=1 ker (H − λk I)

2n

with Λ(H|X ) = σ.
A J-neutral H-invariant subspace of ker (H − iαI)2n of maximal dimension can be con-

structed from the canonical form displayed in Theorem 2.4. We, however, will not discuss the
construction here because such a subspace is not needed for our purpose.

Corollary 4.4 An eigenvalue λ of a Hamiltonian matrix H can be removed from the imag-
inary axis by an arbitrarily small Hamiltonian perturbation if and only if H has a J-neutral
eigenvector corresponding to λ.

Note that an imaginary eigenvalue of a Hamiltonian matrix may or may not have a
J-neutral eigenvector associated with it. So, if an imaginary eigenvalue does not have a J-
neutral eigenvector associated with it then in such a case the eigenvalue cannot be removed
from the imaginary axis by a small Hamiltonian perturbation, it has to be combined with
another eigenvalue of opposite sign characteristic. In our algorithmic construction we remove
one imaginary eigenvalue at a time. Therefore, we first briefly discuss the removal from the
imaginary axis of an imaginary eigenvalue by a Hamiltonian perturbation under the assump-
tion that a J-neutral eigenvector exists and then we discuss how to achieve this property. We
have the following result which follows from Theorem 4.1.

Theorem 4.5 Let iα be an imaginary eigenvalue of a Hamiltonian matrix H ∈ C2n,2n. Let
v be a normalized and J-neutral eigenvector of H corresponding iα, i.e., ∥v∥2 = 1, v⋆Jv = 0
and Hv = iαv. For any µ ∈ C, consider the matrices

Eµ = G(v, µv) and Kµ = G([v v̄], [µv µv]),

where G(·, ·) is defined by (9). Then Eµ and Kµ have the following properties.

i) The matrix Eµ is Hamiltonian and satisfies Eµ = µvv⋆ + µ̄Jvv⋆J , ∥Eµ∥2 = |µ| and
∥Eµ∥F =

√
2|µ|. Furthermore, (H + tEµ)v = (iα + tµ)v for all t ∈ R, i.e., iα + tµ ∈

Λ(H+ tEµ) for all t ∈ R.

ii) If H is a real matrix and α = 0, then the vector v can be chosen to be real in which case
Eµ is real for all µ ∈ R.

iii) Suppose that H is a real matrix and α ̸= 0. Then Kµ is a real Hamiltonian matrix
satisfying (H + tKµ)v = (iα + tµ)v and (H + tKµ)v̄ = (−iα + tµ̄)v̄. Hence {iα +
tµ,−iα+ tµ̄} ⊂ Λ(H+ tKµ) for all t ∈ R.

The perturbations Eµ and Kµ constructed in Theorem 4.5 move the imaginary eigenvalue
iα away from the imaginary axis. Note, however, that these perturbations may also move
the other eigenvalues of H to unspecified positions. For our algorithmic construction, it
is desirable to move eigenvalues one-by-one without affecting the other eigenvalues. The
following result provides Hamiltonian perturbations which move only the eigenvalue iα and
leave the other eigenvalues unchanged.

Theorem 4.6 Let iα be an imaginary eigenvalue of a Hamiltonian matrix H ∈ C2n,2n. Let
v be a normalized and J-neutral eigenvector of H corresponding iα, i.e., ∥v∥2 = 1, v⋆Jv = 0
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and Hv = iαv. Let w ∈ ker (H− iαI)2n be such that w⋆Jv = 1. For any µ ∈ C, consider the
matrices

Êµ = (µvw⋆ + µ̄wv⋆)J and K̂µ = Êµ + Êµ.

Then Êµ and K̂µ have the following properties.

i) The matrix Êµ is Hamiltonian and (H+ tÊµ)v = (iα+ tµ)v for all t ∈ R. Furthermore,
(H+ tÊµ)x = Hx for any x ∈ ker (H− λI)2n and λ ∈ Λ(H) \ {iα}.

ii) Suppose that H is a real matrix and α = 0. Then the vectors v and w can be chosen to
be real in which case Êµ is real for all µ ∈ R.

iii) Suppose that H is a real matrix and α ̸= 0. Then the matrix K̂µ is a real Hamiltonian
matrix satisfying (H+tK̂µ)v = (iα+tλ)v, (H+tK̂µ)v̄ = (−iα+tλ̄)v̄, and (H+tK̂µ)x =
Hx for any x ∈ ker (H− λI)2n and λ ∈ Λ(H) \ {iα,−iα}.

Proof. Since the Hermitian form (x, y) 7→ −ix⋆Jy is non-degenerate on ker (H − iαI)2n,
there exists w ∈ ker (H − iαI)2n such that w⋆Jv = 1. Hence Êµ is well defined. Obviously,
Êµv = µv, whence (H + tEµ)v = (iα + tµ)v. Since ker (H − iαI)2n is J-orthogonal to the
other generalized eigenspaces of H, we have v⋆Jx = w⋆Jx = 0 for any x ∈ ker (H − λI)2n

and λ ∈ Λ(H) \ {iα}. Thus Êµx = 0. This completes the proof of i). Assertion ii) is obvious,

and iii) follows from the identity ker (H + iαI)2n = ker (H− iαI)2n and the J-orthogonality
of the generalized eigenspaces.

For the construction of Hamiltonian matrices that move eigenvalues off the imaginary
axis, we need a J-neutral eigenvector. We now address the issue of existence of J-neutral
eigenvectors corresponding to an imaginary eigenvalue of a Hamiltonian matrix. First, we
show that a J-neutral eigenvector of H corresponding to an imaginary eigenvalue exists if the
eigenvalue is defective.

Proposition 4.7 Suppose that v1, v2 . . . , vℓ, ℓ ≥ 2, is a Jordan chain of the Hamiltionian
matrix H associated with an imaginary eigenvalue iα, i.e., Hvk = iα vk + vk−1 for k =
1, . . . , ℓ, where v0 := 0. Then the subspace span{v1, . . . , v⌊ℓ/2⌋} is J-neutral. In particular the
eigenvector v1 is J-neutral.

Proof. We have J(H − iαI) = −(H − iαI)⋆J , vk = (H − iαI)ℓ−kvℓ for k = 1, . . . , ℓ, and
(H − iαI)qvℓ = 0 for q ≥ ℓ. Hence, if k + j ≤ ℓ, then v⋆j Jvk = v⋆ℓ ((H − iαI)⋆)ℓ−jJ(H −
iαI)ℓ−kvℓ = (−1)ℓ−jv⋆ℓ J(H− iαI)2ℓ−k−jvℓ = 0.

Proposition 4.7 shows that the first vector in a Jordan chain of length at least 2 is a J-
neutral vector, but this may or may not be true for semi-simple purely imaginary eigenvalues.
To characterize when this is the case, we need the sign characteristic of the purely imaginary
eigenvalue (see Theorem 2.3), which allows to classify the purely imaginary eigenvalues into
three distinct groups.

Definition 4.8 Let iα be an imaginary eigenvalue of H. Let X be a full column rank matrix
such that span(X) = ker((H− iαI)2n). Consider the matrix Z := −iX⋆JX. Then iα is said
to have positive sign characteristic, negative sign characteristic, or mixed sign characteristics,
depending on whether Z is positive definite, negative definite or indefinite, respectively.

The following result characterizes the existence of a J-neutral eigenvector of a Hamiltonian
matrix corresponding to an imaginary eigenvalue.
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Proposition 4.9 Let iα be an imaginary eigenvalue of a Hamiltonian matrix H. Then H has
a J-neutral eigenvector corresponding to iα if and only if iα has mixed sign characteristics.

Proof. Recall that the Hermitian form (x, y) 7→ −ix⋆Jy is non-degenerate on ker (H−iαI)2n
and hence the matrix Z = −iX⋆JX in Definition 4.8 is nonsingular. Suppose that there exists
a J-neutral eigenvector associated with iα. Then clearly Z is indefinite. Hence iα has mixed
sign characteristics.

Conversely, suppose that iα has mixed sign characteristics, that is, Z is indefinite. By
Proposition 4.7, a J-neutral eigenvector exists if the eigenvalue iα is defective. So, suppose
that iα is semi-simple. Since Z is indefinite, there exist eigenvectors v0 and v1 such that
−iv⋆0 Jv0 > 0 and −iv⋆1 Jv1 < 0. Hence by continuity there exists an eigenvector v of the form
v = cos(t)v0 + sin(t)v1, for some t ∈ R, such that v⋆Jv = 0.

Note that if an imaginary eigenvalue of a Hamiltonian matrix is simple then it has either
positive or negative sign characteristic. Indeed, when iα is simple, we have Z = −ix⋆Jx
which is either positive or negative. In fact, assuming that x⋆x = 1 we have Z = sj , where
sj = ±1 is given by Theorem 2.3. Hence if iα has mixed sign characteristics, then iα is
necessarily multiple. Note, further, that if iα is defective then by Proposition 4.7, iα has
mixed sign characteristics. However, when iα is a non-defective multiple eigenvalue, it may
or may not have mixed sign characteristics, see Example 3.1.

5 Minimal Hamiltonian perturbations

In this section we investigate how to move purely imaginary eigenvalues which are neither
defective nor have mixed sign characteristics off the imaginary axis by suitable Hamiltonian
perturbations. We begin with the problem of moving an eigenvalue of a Hamiltonian matrix
to a specified point in the complex plane by a minimal Hamiltonian perturbation. This will
play an important role in moving eigenvalues to specific points outside a strip Sτ as required
in Problem B.

We have already seen that a purely imaginary eigenvalue can be moved off the imaginary
axis by a small Hamiltonian perturbation if and only if it has a J-neutral eigenvector and
that such an eigenvector exists if and only if the eigenvalue has mixed sign characteristic.
Also, we have seen that a purely imaginary eigenvalue has mixed sign characteristics if and
only if the eigenvalue is associated with a J-neutral eigenvector.

In order to move a purely imaginary eigenvalue having either positive or negative sign
characteristic from the imaginary axis by a Hamiltonian perturbation, we therefore first need
to coalesce it with another purely imaginary eigenvalue of opposite sign characteristic.

Thus, in this case we split the construction of perturbations that move the eigenvalues
off the imaginary axis into two steps. First, we construct a minimal Hamiltonian pertur-
bation that coalesces two eigenvalues having negative and positive sign characteristics into
an imaginary eigenvalue having mixed sign characteristics. This moves the eigenvalues on
the boundary of the set required in Problem A. Second, we move the resulting imaginary
eigenvalue with mixed sign characteristics off the imaginary axis by a small Hamiltonian
perturbation as required in Problem B.

Since we have already addressed the second stage of the problem in the previous section,
we now address the first step of the construction.

For this purpose, we make use of both the backward error for the Hamiltonian eigenvalue
problem and of Hamiltonian pseudospectra. These quantities are introduced and discussed
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in the following subsections. In the third subsection we then determine perturbations of
minimum norm which remove a pair of eigenvalues from the imaginary axis.

5.1 Backward errors

We begin with the construction of backward errors for eigenvalues of a Hamiltonian matrix.
The Hamiltonian backward error associated with a complex number λ ∈ C is defined by

ηHam(λ,H) := inf{ ∥E∥ : E ∈ F2n,2n Hamiltonian, λ ∈ Λ(H+ E)}. (12)

Note that in general η(z,H) will be different for F = C and for F = R. We use the notation
ηHam
F (λ,H) and ηHam

2 (λ,H), when the norm in (12) is the Frobenius norm and the spectral
norm, respectively.

Theorem 5.1 Let H ∈ C2n,2n be a Hamiltonian matrix, and let λ ∈ C be such that Reλ ̸= 0.
Then we have

ηHam
F (λ,H) = min

∥x∥2=1

{√
2∥(H− λI)x∥22 − |x⋆JHx|2

: x ∈ C2n, x⋆Jx = 0
}
, (13)

ηHam
2 (λ,H) = min

∥x∥2=1
{∥(H− λI)x∥2 : x ∈ C2n, x⋆Jx = 0}. (14)

In particular, we have ηHam
2 (λ,H) ≤ ηHam

F (λ,H) ≤
√
2 ηHam

2 (λ,H).
Suppose that the minima in (13), and (14) are attained for u ∈ C2n and v ∈ C2n, re-

spectively. Let E := G(u, (λI − H)u) and K := F(v, (λI − H)v), where G and F are as in
Theorem 3.3. Then

∥E∥F = ηHam
F (λ,H) and (H+ E)u = λu,

∥K∥2 = ηHam
2 (λ,H) and (H+K)v = λv.

Proof. Let x ∈ Cn be nonzero. Then by Theorem 3.3 there exists a Hamiltonian matrix
E ∈ C2n,2n such that (H + E)x = λx if and only if x⋆Jx = 0. Indeed, setting r = λx −Hx,
it follows that x⋆Jr is real if and only if x⋆Jx = 0. So, suppose that x⋆Jx = 0 and w.l.o.g.
that x⋆x = 1. Then by Theorem 3.3, E := G(x, r) is the unique Hamiltonian matrix such
that (H+ E)x = λx and E has minimal Frobenius norm given by

∥E∥F =
√

2∥(H− λI)x∥22 − |x⋆J(H− λI)x|2.

Similarly, by Theorem 3.3, K := F(x, r) is a Hamiltonian matrix such that (H+K)x = λx
and K has minimal spectral norm given by

∥K∥2 = ∥(H− λI)x∥2.

Then the claim follows by taking the minimum over all x ∈ C2n such that x⋆Jx = 0.
Note that it is a nontrivial task to determine the minimal values ηHam

2 (λ,H) and ηHam
F (λ,H),

when λ ∈ C and Reλ ̸= 0. In contrast, it is relatively simple to determine these minimal
values for purely imaginary values λ = iω with ω ∈ R. The construction in Proposition 5.3
below is based on the following observation.

15



Observation 5.2 Let H ∈ C2n,2n be Hamiltonian, and let λ1, . . . , λ2n ∈ R denote the eigen-
values of the Hermitian matrix JH. Let v1, . . . , v2n ∈ C2n be an orthonormal basis of eigen-
vectors of JH, such that JH vk = λk vk. Then |λ1|, . . . , |λ2n| are the singular values of H and
the vectors vk are the associated right singular vectors. The associated left singular vectors
are uk = −sign(λk) Jvk. Indeed, the matrices V = [v1, . . . , v2n], U = [u1, . . . , u2n] are unitary,
and from JH V = V diag(λ1, . . . , λ2n) it follows that H = Udiag(|λ1|, . . . , |λ2n|)V ⋆.

Proposition 5.3 Let H ∈ C2n,2n be Hamiltonian and ω ∈ R. Let v be a normalized eigen-
vector of the Hermitian matrix J(H − iωI) corresponding to an eigenvalue λ ∈ R. Then |λ|
is a singular value of the Hamiltonian matrix H − iωI and v is an associated right singular
vector.

Further, the matrices

E = λJvv⋆, (15)

K = λJ [v v̄] [v v̄]+ (16)

are Hamiltonian, K is real and we have (H + E)v = (H +K)v = iωv. Furthermore, ∥E∥2 =
∥K∥2 = |λ| and ∥K∥F =

√
2 ∥E∥F =

√
2 |λ|.

Moreover, suppose that λ is an eigenvalue of J(H − iωI) of smallest absolute value and
let σmin(H − iωI) be the smallest singular value of H − iωI. Then |λ| = σmin(H − iωI) and
we have

ηHam
F (iω,H) = ηHam

2 (iω,H) = |λ| = ∥E∥2, when F = C,
ηHam
F (iω,H) =

√
2 ηHam

2 (iω,H) =
√
2|λ| = ∥K∥F , when F = R.

Proof. The first assertion follows by applying Observation 5.2 to the Hamiltonian matrix
H− iωI. By construction, H and K are Hamiltonian and (H+ E)v = (H+K)v = iωv. Note
that by Lemma 3.4, K is real. Obviously, we have ∥E∥2 = ∥K∥2 = |λ| and ∥K∥F =

√
2∥E∥F =√

2|λ|.
Now if λ has the smallest absolute value then by Observation 5.2 we have σmin(H−iωI) =

|λ|. Since ∥K∥2 = ∥E∥F = ∥E∥2 = σmin(H− iωI) and ηHam
F (iω,H) ≥ ηHam

2 (iω,H) ≥ σmin(H−
iωI), the desired result follows for the case when F = C.

For the Frobenius norm and the case when F = R, by Corollary 3.5 we conclude that
K = G([v, v̄], λJ [v, v̄]) and that ∥K∥F =

√
2∥K∥2 =

√
2|λ| =

√
2σmin(H − iωI). Hence the

desired result follows.
Proposition 5.3 in particular states that a Hamiltonian perturbation of H of smallest

norm that moves an eigenvalue to the point iω can be constructed from an eigenpair (v, λ) of
J(H−iωI), where λ has the smallest absolute value. Our next results shows that the eigenpair
(v, λ) can be chosen as a piecewise analytic (but not necessarily continuous) function of ω.

Proposition 5.4 Let H ∈ C2n,2n be Hamiltonian, let F (ω) = J(H − iωI) and f(ω) =
σmin(H− iωI) for ω ∈ R. There exist a finite number ℓ of real values γ1 < γ2 < . . . < γℓ and
functions λmin : R → R, v : R → C2n which are analytic on R \ {γ1, . . . , γℓ} and have the
following properties.

a) F (ω)v(ω) = λmin(ω)v(ω), |λmin(ω)| = min{ |λ| : λ ∈ Λ(F (ω))} and ∥v(ω)∥2 = 1 for all
ω ∈ R.
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b) For each k ∈ {0, 1, . . . , ℓ} either λmin(ω) = f(ω) for all ω ∈ (γk, γk+1) or λmin(ω) =
−f(ω) for all ω ∈ (γk, γk+1), where we set γ0 = −∞ and γℓ+1 =∞.

c) The vector v(ω) is a right singular vector of the matrix H − iωI associated with the
smallest singular value.

d) The derivative of λmin(·) at ω ∈ R \ {γ1, . . . , γℓ} satisfies

λ′
min(ω) = −iv(ω)⋆Jv(ω).

e) At each of the (exceptional) points γk the left and the right limits of λmin(·) and v(·) exist.
Suppose that λmin(·) is continuous at γk. Then the left and the right side derivative of
λmin(·) at γk both exist and satisfy

lim
ω→γk±

λmin(ω)− λmin(γk)

ω − γk
= lim

ω→γk±
λ′
min(ω).

Proof. Note that F (ω) = J(H − iωI), ω ∈ R, is a Hermitian matrix. By [37, pp. 29-33]
there exist analytic functions ω 7→ v1(ω), . . . , v2n(ω) ∈ C2n and ω 7→ λ1(ω), . . . , λ2n(ω) ∈ R
such that for each ω the vectors vj(ω) form an orthonormal basis of C2n and F (ω)vj(ω) =
λj(ω)vj(ω). The derivative of λj at ω satisfies

λ′
j(ω) =

d

dω

(
vj(ω)

⋆F (ω)vj(ω)
)

= vj(ω)
⋆F ′(ω)vj(ω) + v′j(ω)

⋆F (ω)vj(ω) + vj(ω)
⋆F (ω)v′j(ω)

= −ivj(ω)⋆Jvj(ω) + λj(ω) (v
′
j(ω)

⋆vj(ω) + vj(ω)
⋆v′j(ω))︸ ︷︷ ︸

= d
dω

∥vj(ω)∥2=0

= −ivj(ω)⋆Jvj(ω). (17)

For each pair of indices j, k the analytic functions λj(·), λk(·) are either identical or meet in
a discrete set Pj,k ⊂ R. Analogously the functions −λj(·), λk(·), are either identical or meet
in a discrete set Qj,k ⊂ R. Since the union of the graphs of the functions ±λj(·) equals the
algebraic curve {(ω, λ) ∈ R2 | det((F (ω)− λI)(F (ω) + λI)) = 0}, both the sets Pj,k and Qj,k

are finite. Let {γ1, . . . , γr}, γk < γk+1, denote the union of the sets Pjk and the sets Qjk.
By the third claim of Proposition 5.3, we have that f(ω) = minj=1,...,2n |λj(ω)|. It follows
that to each interval Ik = (γk, γk+1) there exists an index j such that either λj(ω) = f(ω)
for all ω ∈ Ik or λj(ω) = −f(ω) for all ω ∈ Ik. Define λmin(ω) := λj(ω), v(ω) := vj(ω) for
ω ∈ Ik and λmin(γk) := λj(γk), v(γk) := vj(γk). Then the functions λmin(·) and v(·) have the
required properties.

Example 5.5 The upper diagram of Figure 1 shows the eigenvalue curves ω 7→ λj(ω) of the

Hermitian matrix function ω 7→ J(H1 − iωI) for ω ∈ [−16, 16] and H1 :=

[
0 G1

H1 0

]
, where

G1 :=


7 −4 2 −11 0
−4 −37 31 −8 0
2 31 −28 4 0
−11 −8 4 28 0
0 0 0 0 −3

 , H1 :=


11 16 16 5 0
16 21 30 8 0
16 30 48 8 0
5 8 8 −1 0
0 0 0 0 3

 .
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The spectrum of H1 is Λ(H1) = {±3i,±5i ± 10i,±15i} and the eigenvalues ±10i have mul-
tiplicity 2, while the other eigenvalues are simple. At the real parts of the eigenvalues of
H1 the eigenvalue curves λj(·) cross the real axis. Observe that, according to (17), the sign
characteristics of the eigenvalues of H1 can be read off from the slopes of the curves λj(·).
The λj-curves crossing the real axis at −15,−3 and 5 have positive slope, i.e., the eigenvalues
−15i,−3i and 5i have positive sign characteristic. The λj(·)-curves crossing the real axis
at −5, 3 and 15 have negative slope i.e., the eigenvalues −5i, 3i and 15i have negative sign
characteristic. At the points ±10 there are two λj-curves crossing the real axis with positive
and negative slopes. Thus, the eigenvalues ±10i both have mixed sign characteristic. The
graph of the function ω 7→ λmin(ω) = λmin(J(H1 − iωI)) from Proposition 5.4 is depicted
by thick curves. Note that this function is piecewise analytic but discontinuous. The lower
diagram of Figure 1 shows the singular value curves of the pencil ω 7→ H1 − iωI. The graph
of the continuous function ω 7→ σmin(H1 − iωI) is depicted as a thick curve. Note that
σmin(H1 − iωI) = |λmin(ω)|.

−15 −10 −5 0 5 10 15

−3

−2

−1

0

1

2

3

−15 −10 −5 0 5 10 15

−3

−2

−1

0

1

2

3

Figure 1: Eigenvalue and singular value curves for Example 5.5

The following proposition characterizes the existence of J-neutral eigenvectors in terms of the
local extrema of the eigenvalue curves.
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Proposition 5.6 Suppose the function λmin : R→ R of Proposition 5.4 is continuous at ω0 ∈
R and attains a local extremum at ω0. Then there exists a J-neutral normalized eigenvector
v0 of the Hermitian matrix J(H− iω0I) corresponding to the eigenvalue λmin(ω0).

Proof. If ω0 ∈ R \ {γ1, . . . , γr} then the derivative of λmin(·) at ω0 satisfies 0 = λ′
min(ω0) =

−iv(ω0)
⋆Jv(ω0). Hence, v0 := v(ω0) is J-neutral if λmin attains a local extremum at ω0.

Suppose now that ω0 ∈ {γ1, . . . γr}. Assume w.l.o.g. that ω0 is a local maximum. Then
the left sided derivative of λmin(·) at ω0 is nonnegative and the right sided derivative is
non-positive. Hence, it follows from claim e) of Proposition 5.4 that

0 ≤ lim
ω→ω0−

λ′
min(ω) = lim

ω→ω0−
(−iv(ω)⋆Jv(ω)) = −iv⋆−Jv−,

0 ≥ lim
ω→ω0+

λ′(ω) = lim
ω→ω0−

(−iv(ω)⋆Jv(ω)) = −iv⋆+Jv+,

where v± = limω→ω0± v(ω). Suppose that v+ and v− are linearly dependent. Then−iv⋆−Jv− =
−iv⋆+Jv+ = 0, i.e., v0 := v+ has the required properties. If v+ and v− are linearly independent,
then let ut = tv++(1−t)v−. In this case for all t ∈ R, ut ̸= 0 and J(H−iω0I)ut = λmin(ω0)ut.
Furthermore, −iu⋆0Ju0 ≤ 0 and −iu⋆1Ju1 ≥ 0. By continuity there exists t0 ∈ [0, 1] such that
−iu⋆t0Jut0 = 0, and hence, v0 := ut0/∥ut0∥ has the required properties.

5.2 Pseudospectra

Let A ∈ Cn,n and let ϵ ≥ 0. Then the ϵ-pseudospectrum of A is defined as

Λϵ(A,F) =
∪

∥E∥2≤ϵ

{Λ(A+ E) : E ∈ Fn,n }.

It is well-known [43] that in the complex case when F = C, we have

Λϵ(A,C) = { z ∈ C : σmin(A− z I) ≤ ϵ },

where σmin(·) denotes the minimum singular value. Since we are interested in structured
perturbations, we also consider the Hamiltonian ϵ-pseudospectrum defined by

ΛHam
ϵ (H,F) =

∪
∥E∥2≤ϵ

{Λ(H+ E) : E ∈ F2n,2n and (JE)⋆ = JE }.

It is obvious that

ΛHam
ϵ (H,C) = { z ∈ C : ηHam

2 (z,H) ≤ ϵ },

where ηHam
2 (z,H) is the Hamiltonian backward error as defined in (12).

Note that the pseudospectra so defined will in general be different for F = C and for F = R,
however, for purely imaginary eigenvalues, the following result is an immediate consequence
of Proposition 5.3.

Corollary 5.7 Let H ∈ C2n,2n be Hamiltonian. Consider the pseudospectra Λϵ(H;F) and
ΛHam
ϵ (H;F). Then,

ΛHam
ϵ (H;C) ∩ iR = ΛHam

ϵ (H;R) ∩ iR = Λϵ(H;C) ∩ iR = Λϵ(H;R) ∩ iR
= {iω : ω ∈ R, σmin(H− iωI) ≤ ϵ}
= {iω : ω ∈ R, |λmin(J(H− iωI))| ≤ ϵ},

where λmin(·) denotes the eigenvalue function from Proposition 5.4.
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In Definition 4.8 we have associated sign characteristics to the purely imaginary eigenvalues
of a Hamiltonian matrix. We now associate sign characteristics to the connected components
of a Hamiltonian pseudospectrum.

Definition 5.8 Let H ∈ F2n,2n. Then a connected component Cϵ(H) of ΛHam
ϵ (H,F) is said to

have positive (resp., negative) sign characteristic if for all Hamiltonian perturbations E with
∥E∥2 ≤ ϵ each eigenvalue of H + E that is contained in Cϵ(H) has positive (resp., negative)
sign characteristic.

Observe that if a component Cϵ(H) of ΛHam
ϵ (H,F) has positive (resp., negative) sign charac-

teristic then Cϵ(H) ⊂ iR and all eigenvalues of H that are contained in Cϵ(H) have positive
(resp., negative) sign characteristic. We now show that the sign characteristic of Cϵ(H) is
completely determined by the sign characteristic of the eigenvalues of H that are contained
in Cϵ(H).

Theorem 5.9 Let H ∈ F2n,2n and Cϵ(H) be a connected component of ΛHam
ϵ (H,F). For a

Hamiltonian matrix E ∈ F2n,2n with ∥E∥2 ≤ ϵ, let XE be a full column rank matrix whose
columns form a basis of the direct sum of the generalized eigenspaces ker(H + E − λI)2n,
λ ∈ Cϵ(H) ∩ Λ(H+ E). Set ZE := −iX⋆

E JXE . Then the following conditions are equivalent.

a) The component Cϵ(H) has positive (resp., negative) sign characteristic.

b) All eigenvalues of H that are contained in Cϵ(H) have positive (resp., negative) sign
characteristic.

c) The matrix Z0 associated with E = 0 is positive (resp., negative) definite.

d) The matrix ZE is positive (resp., negative) definite for all Hamiltonian matrix E with
∥E∥2 ≤ ϵ.

Proof. Without loss of generality suppose that Cϵ(H) has positive sign characteristic. Then
obviously all eigenvalues of H that are contained in Cϵ(H) have positive sign characteristic.
This proves a) ⇒ b).

Next, suppose that Λ(H)∩Cϵ(H) contains p distinct eigenvalues iα1, . . . , iαp each of which
has positive sign characteristic. Let Xk be a full column rank matrix whose columns form
a basis of ker(H − iαk)

2n for k = 1, . . . , p. Then the columns of JXk forms a basis of
the left generalized eigenspace of H corresponding to the eigenvalue iαk. Hence X⋆

k JXl =
−(JXk)

⋆Xl = 0 for l ̸= k. Since iαk has positive sign characteristic, the matrix −iX⋆
k JXk

is positive definite for k = 1, . . . , p. Now considering X := [X1, . . . , Xp] it follows that
−iX⋆JX = diag(−iX⋆

1 JX1, . . . ,−iX⋆
p JXp) is positive definite. Since X0 = XM for some

nonsingular matrix M, it follows that Z0 is congruent to −iX⋆JX. Hence Z0 is positive
definite. This proves b) ⇒ c).

Now suppose that Z0 is positive definite. Since Cϵ(H) is a closed and connected component
of ΛHam

ϵ (H,F), there is a simple closed rectifiable curve Γ such that Γ ∩ ΛHam
ϵ (H,F) = ∅ and

that the component Cϵ(H) lies inside the curve Γ. Let E be a Hamiltonian matrix with
∥E∥2 ≤ ϵ. Consider the matrix H(t) := H + tE for t ∈ C. Then by [II.3-II.4, page 66-
68, [20]] there exists a matrix XE(t) such that XE(t) is analytic in DΓ := {t ∈ C : |t|∥E∥2 <
minz∈Γ σmin(H−zI)}. Further, for each t ∈ DΓ, the matrixXE(t) has full column rank and the
columns form a basis of the direct sum of the generalized eigenspaces ker(H(t) − λI)2n, λ ∈
Λ(H(t)) ∩ Cϵ(H) =: σE(t). Since ∥E∥2 ≤ ϵ and minz∈Γ σmin(H − zI) > ϵ, it follows that
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[0, 1] ⊂ DΓ. Hence the matrix XE(t) is smooth on [0, 1]. Set ZE(t) := −iXE(t)
⋆JXE(t) for

t ∈ [0, 1]. Then ZE(t) is continuous and, by Corollary 2.2, XE(t) is nonsingular for t ∈ [0, 1].
Indeed, since σE(t) is symmetric with respect to the imaginary axis, the columns of XE(t)
form a basis of the direct sum of the J-nondegenerate and pairwise J-orthogonal subspaces
ker(H(t)− iα I)2n, iα ∈ σE(t), and ker(H(t)− λ I)2n ⊕ ker(H(t) + λ̄ I)2n, λ ∈ σE(t) \ iR, see
Corollary 2.2. It follows that span(XE(t)) is J-nondegenerate. Thus, ZE(t) is nonsingular for
all t ∈ [0, 1]. Since ZE(0) is positive definite and ZE(t) is nonsingular for all t in the connected
set [0, 1], it follows that ZE(t) is positive definite for all t ∈ [0, 1]. This shows that ZE is
positive definite. Since E is arbitrary, we conclude that the assertion in d) holds. This proves
c) ⇒ d).

Finally, suppose that the assertion in d) holds. Then obviously for all Hamiltonian ma-
trices E with ∥E∥2 ≤ ϵ, the eigenvalues in Λ(H + E) ∩ Cϵ(H) are purely imaginary and have
positive sign characteristic. In other words, Cϵ(H) has positive sign characteristic. This
completes the proof.

The following result is an immediate consequence of the proof of Theorem 5.9.

Corollary 5.10 Let H ∈ F2n,2n and Cϵ(H) be a connected component of ΛHam
ϵ (H,F). For

a Hamiltonian matrix E ∈ F2n,2n with ∥E∥2 ≤ ϵ, let XE be a full column rank matrix whose
columns form a basis of the direct sum of the generalized eigenspaces ker(H + E − λI)2n,
λ ∈ Cϵ(H) ∩ Λ(H+ E). Set ZE := −iX⋆

E JXE . Then the following holds.

i) The rank of XE is constant for all Hamiltonian matrices E with ∥E∥2 ≤ ϵ.

ii) If Cϵ(E) ∩ iR = ∅ then ZE = 0 for all Hamiltonian matrices E with ∥E∥2 ≤ ϵ.

iii) If Cϵ(H) ∩ iR ̸= ∅, then Cϵ(H) = −Cϵ(H) and ZE is nonsingular for all Hamiltonian
matrices E with ∥E∥2 ≤ ϵ. Furthermore, the matrix ZE has the same inertia for all such
E.

iv) If ZE is positive (resp., negative) definite for some Hamiltonian matrix E with ∥E∥2 ≤ ϵ
then Cϵ(H) ⊆ iR and Cϵ(H) has positive (resp., negative) sign characteristic.

The results in Theorem 5.9 and Corollary 5.10 provide an important insight into the evolu-
tion of purely imaginary eigenvalues of a Hamiltonian matrix subject to Hamiltonian pertur-
bations. With a view to further understanding the evolution of purely imaginary eigenvalues
of a Hamiltonian matrix, we now analyze the coalescence of pseudospectral components.

5.3 Coalescence of pseudospectral components

Consider the Hamiltonian pseudospectrum ΛHam
ϵ (H,F) of a Hamiltonian matrix H ∈ F2n,2n.

Then obviously the set valued map ϵ 7→ ΛHam
ϵ (H,F) is monotonically increasing, i.e., if ϵ < δ

then ΛHam
ϵ (H,F) ⊂ ΛHam

δ (H,F). Furthermore, for ϵ > 0, the pseudospectrum ΛHam
ϵ (H,F)

consists of at most 2n connected components and each component contains at least one
eigenvalue of H. Thus when ϵ is sufficiently small, then each component of ΛHam

ϵ (H,F)
contains exactly one eigenvalue of H and as ϵ increases, these components expand in size and
at some stage coalesce with each other. So, let iα be a purely imaginary eigenvalue of H and
let Cϵ(H, iα) denote the connected component of ΛHam

ϵ (H,F) which contains iα. Then for a
sufficiently small ϵ the component Cϵ(H, iα) contains only iα, i.e., Cϵ(H, iα) ∩ Λ(H) = {iα}.
Thus, if iα has either positive or negative sign characteristic, then by Theorem 5.9 we have
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Cϵ(H, iα) ⊂ iR. This means that the eigenvalue iα cannot be removed from the imaginary
axis by a Hamiltonian perturbation E of H such that ∥E∥2 ≤ ϵ.

Next, let iβ be another purely imaginary eigenvalue of H with α < β and suppose that
Cϵ(H, iβ) is a component of ΛHam

ϵ (H,F) containing iβ such that Cϵ(H, iβ) ∩ Λ(H) = {iβ}.
Suppose further that iβ has either positive or negative sign characteristic so that by The-
orem 5.9 we have Cϵ(H, iβ) ⊂ iR. Assume that H does not have an eigenvalue iγ with
γ ∈ (α, β) and that the component Cϵ(H, iα) coalesces with the component Cϵ(H, iβ) at iω0

as ϵ tends to ϵ0, i.e., Cϵ(H, iα) ∩ Cϵ(H, iβ) = ∅ for ϵ < ϵ0 and Cϵ0(H, iα) ∩ Cϵ0(H, iβ) = {iω0}.
We now investigate the geometry of the connected component Cϵ0+δ(H, iα) = Cϵ0+δ(H, iβ) of
ΛHam
ϵ0+δ(H,F) in a neighborhood of iω0 for a small δ > 0. In particular, we show that when

iα and iβ have opposite sign characteristics, then the pseudospectrum ΛHam
ϵ0+δ(H,F) contains

a disk centered at iω0. Furthermore, in this case we show that there exists a Hamiltonian
matrix E with ∥E∥2 = ϵ0 such that when H is perturbed to H+E , then the eigenvalues iα and
iβ coalesce at iω0 to form an eigenvalue of H+ E of mixed sign characteristics. This multiple
eigenvalue can then be removed from the imaginary axis by an arbitrarily small Hamiltonian
perturbation of H+ E .

We say that two purely imaginary eigenvalues iα and iβ of H are adjacent if H does not
have an eigenvalue iγ with min{α, β} < γ < max{α, β}.

Theorem 5.11 Let iα and iβ be adjacent imaginary eigenvalues of a Hamiltonian matrix
H ∈ F2n,2n with α < β. Let f(ω) := σmin(H − iωI) for ω ∈ R, and let ω0 ∈ (α, β) be such
that f(ω0) = max{f(ω) : ω ∈ [α, β]}. Set ϵ0 := f(ω0). Suppose that the following conditions
are satisfied.

i) For all ϵ < ϵ0 the connected components Cϵ(H, iα) and Cϵ(H, iβ) of ΛHam
ϵ (H,F) con-

taining the eigenvalues iα and iβ, respectively, have either positive or negative sign
characteristic.

ii) If ω ∈ [α, β] then iω ∈ Cf(ω)(H, iα) ∪ Cf(ω)(H, iβ).

Then the following assertions hold.

a) The function f is strictly increasing in [α, ω0] and strictly decreasing in [ω0, β]. For
ϵ < ϵ0, we have iω0 /∈ ΛHam

ϵ (H,F), Cϵ(H, iα) ∩ Cϵ(H, iβ) = ∅ and iω0 ∈ Cϵ0(H, iα) =
Cϵ0(H, iβ) = Cϵ0(H, iα) ∪ Cϵ0(H, iβ).

b) Let λmin(·) be the function given in Proposition 5.4. If iα has positive sign characteris-
tic and iβ has negative sign characteristic then λmin(ω) = f(ω) for all ω ∈ [α, β]. On
the other hand, if iα has negative sign characteristic and iβ has positive sign charac-
teristic then λmin(ω) = −f(ω) for all ω ∈ [α, β]. In both cases there exists a J-neutral
normalized eigenvector v0 of J(H− iω0I) corresponding to the eigenvalue λmin(ω0).

c) Suppose that the eigenvalues iα and iβ have opposite sign characteristic. Then for any
δ > 0 there is an η > such that ΛHam

ϵ0+δ(H,F) contains the disk {z ∈ C : |z − iω0| ≤ η}.

d) Suppose that the eigenvalues iα and iβ have the same sign characteristic. Then for
ϵ ≥ ϵ0, Cϵ(H, iα) is a connected component of ΛHam

ϵ (H,F) containing the eigenvalues
iα and iβ. If Cϵ0(H, iα) contains no other eigenvalues of H except iα and iβ then
Cϵ0(H, iα) ⊂ iR and has the same sign characteristic as that of iα. Moreover, in such
a case, there is a δ0 > 0 such that Cϵ0+δ(H, iα) ⊂ iR for all 0 ≤ δ < δ0.
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Proof. a) Observe that if ϵ < ϵ0 = f(ω0) then iω0 /∈ ΛHam
ϵ (H,F), and hence by assumption

i) and Corollary 5.10 we have that Cϵ(H, iα) ∩ Cϵ(H, iβ) = ∅, and that Cϵ(H, iα) ⊂ iR and
Cϵ(H, iβ) ⊂ iR. By assumption ii) it follows that Cϵ0(H, iα) ∪ Cϵ0(H, iβ) is a connected
component of ΛHam

ϵ0 (H,F) and hence iω0 ∈ Cϵ0(H, iα) = Cϵ0(H, iβ).
First, we show that f is strictly increasing in [α, ω0]. Let γ1, γ2 ∈ [α, ω0] be such that

γ1 < γ2. Then by assumption ii), we have iγ2 ∈ Cf(γ2)(H, iα) ∪ Cf(γ2)(H, iβ). Now, suppose
that f(γ2) < ϵ0 = f(ω0). Then, as we have just seen, Cf(γ2)(H, iα) ∩ Cf(γ2)(H, iβ) = ∅, and
hence iγ2 ∈ Cf(γ2)(H, iα) ⊂ iR. Let E ∈ F2n,2n be a Hamiltonian matrix such that ∥E∥2 =

f(γ2) and iγ2 ∈ Λ(H+ E). Setting H(t) := H+ tE , it follows that Λ(H(t)) ⊂ ΛHam
f(γ2)

(H,F) for
t ∈ [0, 1]. Since iα ∈ Λ(H(0)) and iγ2 ∈ Λ(H(1)), by the continuity of eigenvalues it follows
that Λ(H(t)) ∩ Cf(γ2)(H, iα) ̸= ∅ for t ∈ [0, 1] and that iγ1 ∈ Λ(H(t0)) for some t0 ∈ (0, 1).
Hence f(γ1) ≤ ∥t0E∥2 < ∥E∥2 = f(γ2).

Next, suppose that f(γ2) = ϵ0 = f(ω0). If γ2 = ω0 then there is nothing to prove. So,
suppose that γ2 < ω0. Then there exists γ3 ∈ (γ2, ω0) such that f(γ3) < f(ω0) = ϵ0. Since
γ2, γ3 ∈ [α, ω0] with γ2 < γ3 and f(γ3) < ϵ0, as we have just proved above, we have that
ϵ0 = f(γ2) < f(γ3), which is a contradiction. Hence, we conclude that f is strictly increasing
in [α, ω0]. By similar arguments, it follows f is strictly decreasing in [ω0, β]. This concludes
the proof of a).

b) Note that f(α) = f(β) = 0 and that for any ω ∈ [α, β]\{ω0} the connected components
Cf(ω)(H, iα) and Cf(ω)(H, iβ) are disjoint, and

i[α, ω] ⊆ Cf(ω)(H, iα) if ω ∈ [α, ω0),

i[ω, β] ⊆ Cf(ω)(H, iβ) if ω ∈ (ω0, β].
(18)

Now consider the functions λmin(·) and v(·) given in Proposition 5.4. There exist finitely
many numbers −∞ = γ0 < γ1 < . . . < γr < γr+1 = ∞ and signs sk ∈ {−1, 1} such that
λmin(·) is analytic on (γk, γk+1) and f(ω) = sk λmin(ω) for ω ∈ (γk, γk+1). Then E(ω) =
λmin(ω)Jv(ω)v(ω)

⋆ is Hamiltonian, ∥E(ω)∥2 = f(ω) and (H + E(ω))v(ω) = iωv(ω). Let
ω ∈ (α, ω0). Then by (18) the eigenvalue iω of H + E(ω) lies in the connected component
Cf(ω)(H, iα) which has the same sign characteristic as that of iα.

Suppose that iα has positive sign characteristic. Then Cf(ω)(H, iα) has positive sign
characteristic. Thus, iω has positive sign characteristic and hence, −iv(ω)⋆Jv(ω) > 0. Anal-
ogously we have −iv(ω)⋆Jv(ω) < 0 for all ω ∈ (ω0, β]. Now, for ω ∈ [α, β] \ {γ1, . . . , γr}, we
have

−sk iv⋆(ω)Jv(ω) = sk λ
′
min(ω) = f ′(ω)

{
≥ 0 if ω ∈ [α, ω0] ∩ (γk, γk+1),

≤ 0 if ω ∈ [ω0, β] ∩ (γk, γk+1).

The latter inequalities are consequences of a). It follows that sk = 1 and hence, f(ω) =
λmin(ω) for all ω ∈ [α, β]. Our derivation of the latter identity was based on the assumption
that iα has positive sign characteristic and iβ has negative sign characteristic. In the opposite
case an analogous argument leads to the conclusion that f(ω) = −λmin(ω) for all ω ∈ [α, β].
Since f is a continuous function, it now follows from Proposition 5.6 that there exists a J-
neutral unit vector v0 such that J(H − iω0I)v0 = λmin(ω0)v0. This concludes the proof of
b).

c) Let µ ∈ C and consider E := λmin(ω0)Jv0v
⋆
0 + G(v0, µ v0) when F = C, and E :=

λmin(ω0)J [v0, v0][v0, v0]
+ + G([v0, v0], [µv0, µv0]), when F = R, where G(·, ·) is defined as in
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Theorem 3.3. Then E is Hamiltonian and (H+ E)v0 = (iω0 + µ)v0. Moreover, E is real when
F = R. Furthermore, by Theorem 4.5, ∥G(v0, µ v0)∥2 = |µ| and ∥G([v0, v0], [µ v0, µv0])∥2 ≤
|µ|(1+ |vT0 v0|). Therefore, setting η := δ when F = C, and η := δ/(1+ |vT0 v0|) when F = R, it
follows that the disk {iω0 + µ : µ ∈ C : |µ| ≤ η} is contained in ΛHam

ϵ0+δ(H,F). This proves c).
d) Finally, w.l.o.g. suppose that both the eigenvalues iα and iβ have positive sign char-

acteristic. Then both components Cϵ(H, iα) and Cϵ(H, β) have positive sign characteristic for
all ϵ < ϵ0. Hence Cϵ(H, iα)∪Cϵ(H, iβ) ⊂ iR for all ϵ < ϵ0. Recall that Cϵ0(H, iα) = Cϵ0(H, iβ)
is a connected component of ΛHam

ϵ0 (H,F). Since Cϵ0(H, iα)∩Λ(H) = {iα, iβ}, by Theorem 5.9
the component Cϵ0(H, iα) has positive sign characteristic. Hence by Corollary 5.10, we have
Cϵ0(H, iα) ⊂ iR.

Note that the map ϵ 7→ ΛHam
ϵ (H,F) is continuous and monotonically increasing and that

the components of ΛHam
ϵ (H,F) are closed connected sets. Hence there is a δ0 > 0 such that

the component Cϵ(H, iα) remains disjoint from the rest of the components of ΛHam
ϵ (H,F)

for all ϵ0 ≤ ϵ < ϵ0 + δ0. This shows that Cϵ0+δ(H, iα) ∩ Λ(H) = {iα, iβ} for all 0 ≤ δ <
δ0. Consequently, by Theorem 5.9, Cϵ0+δ(H, iα) has positive sign characteristic and hence
Cϵ0+δ(H, iα) ⊂ iR for all 0 ≤ δ < δ0. This completes the proof.

Now consider the special case that all eigenvalues of a Hamiltonian matrix H are purely
imaginary and each eigenvalue has either positive or negative sign characteristic. Then by
Theorem 5.11 we conclude that a purely imaginary eigenvalue of H can be moved off from
the imaginary axis only after the eigenvalue is made to coalesce with an imaginary eigenvalue
of H of opposite sign characteristic. With a view to analyzing this issue further, we proceed
as follows.

Let H ∈ F2n,2n be a Hamiltonian matrix whose eigenvalues are all purely imaginary, and
define

ρF(H) := inf{ ∥E∥2 : E ∈ F2n,2n, (JE)⋆ = JE ,
H+ E has a non-imaginary eigenvalue },

RF(H) := inf{ ∥E∥2 : E ∈ F2n,2n, (JE)⋆ = JE ,
H+ E has a J-neutral eigenvector }

Obviously, ρF(H) ≥ RF(H). The following result shows how to compute ρF(H) and RF(H)
using the singular value function ω 7→ σmin(H− iω), ω ∈ R.

Theorem 5.12 Let H ∈ F2n,2n be a Hamiltonian matrix whose eigenvalues are all purely
imaginary, and let f(ω) = σmin(H− iωI), ω ∈ R. Then the following assertions hold.

i) If at least one eigenvalue of H has mixed sign characteristic then RF(H) = ρF(H) = 0.

ii) Suppose that each eigenvalue of H has either positive or negative sign characteristic.
Let iI1, . . . , iIq ⊂ iR denote the closed intervals on the imaginary axis whose end points
are adjacent eigenvalues of H with opposite sign characteristics. Then we have

RF(H) = ρF(H) = min
1≤k≤q

max
ω∈Ik

f(ω). (19)

Consider an interval I ∈ {I1, . . . , Iq} satisfying

min
1≤k≤q

max
ω∈Ik

f(ω) = max
ω∈I

f(ω) = f(ω0), ω0 ∈ I. (20)
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Suppose that iI is given by iI = [iα, iβ]. Then the claims a) and b) of Theorem 5.11
hold. For the J-neutral unit vector v0 of claim b) in Theorem 5.11, consider the matrices

E0 := λmin(ω0)Jv0v
⋆
0 ,

K0 := λmin(ω0)J [v0 v0][v0, v0]
+,

Eµ := G(v0, µv0),
Kµ := G([v0 v0], [µv0 µv0]), µ ∈ C,

(21)

where G(·, ·) is defined as in Theorem 3.3. Then E0 is Hamiltonian, K0 is real and
Hamiltonian, (H + E0)v0 = (H + K0)v0 = iω0v0 and ∥E0∥2 = ∥K0∥2 = f(ω0) For any
µ ∈ C the matrix Eµ is Hamiltonian, and (H+ E0 + Eµ)v0 = (iω0 + µ)v0. If ω0 = 0 and
H is real then v0 can be chosen as a real vector. Then E0 + Eµ is a real matrix for all
µ ∈ R. If ω0 ̸= 0 and H is real then for any µ ∈ C, Kµ is a real Hamiltonian matrix
satisfying (H+K0 +Kµ)v0 = (iω0 + µ)v0.

Proof. Part i) is obvious.
For part ii), let ν denote the right hand side of (19), let ωk ∈ Ik be such that f(ωk) =

maxω∈Ik f(ω) and let the numbering be such that ω1 < ω2 < . . . < ωq. Then, for 0 ≤ ϵ < ν
and all k we have ϵ < f(ωk), and hence ΛHam

ϵ (H,F) ∩ {iω1, . . . , iωq} = ∅. Furthermore, by
the definition of the intervals Ik, the numbers iωk separate the eigenvalues of H of different
sign characteristic. More precisely, for any k, all eigenvalues of H that are contained in
the interval i(ωk−1, ωk) ⊂ iR have the same sign characteristic (here we use the notation
ω0 = −∞, ωq+1 = ∞). Let H(t) = H + tE , where t ∈ R and E is Hamiltonian with
∥E∥2 ≤ ϵ. Furthermore, let t0 = sup{θ ∈ [0, 1] | Λ(H(t)) ⊂ iR for all t ∈ [0, θ] } and let
Λ0 =

∪
t∈[0,t0] Λ(H(t)). Suppose that t0 < 1. Then by Theorem 4.3 the matrix H(t0) has a

J-neutral eigenvector. However, we have Λ0 ⊆ ΛHam
ϵ (H,F) and hence, Λ0∩{iω1, . . . , iωq} = ∅.

Thus, each connected component C ⊂ iR of Λ0 does not contain eigenvalues of H = H(0) of
opposite sign characteristic. Hence, each connected component C of Λ0 has either positive
or negative sign characteristic. This contradicts the assumption that H(t0) has a J-neutral
eigenvector. Thus, t0 = 1. It follows that ν ≤ RF(H), ν ≤ ρF(H) and ΛHam

ϵ (H,F) ⊂ iR for
all ϵ < ν. Furthermore, each connected component of ΛHam

ϵ (H,C), ϵ < ν, has either positive
or negative sign characteristic.

Now, let ω0 and I be as in (20). Since iI = [iα, iβ] and the eigenvalues iα and iβ have
oppositive sign characteristic, the assumptions i) and ii) of Theorem 5.11 are automatically
satisfied and hence the assertions a), b) and c) of Theorem 5.11 hold. The statements about
the matrices E0, Eµ,K0,Kµ imply that RF(H) ≤ ν and ρF(H) ≤ ν which follows from Theo-
rem 4.5 and Proposition 5.3.

Example 5.13 The eigenvalues ±10i of the matrix H1 from Example 5.5 have mixed sign
characteristics. Thus RF(H1) = ρF(H1) = 0.

Example 5.14 Consider the Hamiltonian matrices

H3 =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −4 0 0

 , H4 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 4 0 0

 .
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Both matrices have the same spectrum Λ(Hk) = {±i,±2i}, k = 3, 4 and their eigenvalue
curves ω 7→ λj(J(Hk − iωI)) and singular value curves ω 7→ σj(Hk − iωI) are depicted in
Figure 2.

Here the singular value curves for H3 and H4 coincide and the graphs of the functions
ω 7→ σmin(Hk − iωI) and ω 7→ λmin(Hk − iωI) are depicted as thick curves. From the
slopes of the λj-curves at their crossing points with the real axis we can again read off
the sign characteristics of the eigenvalues ±i,±2i and we see that for the matrix H3 the
eigenvalues −2i and −i have negative sign characteristic, while the eigenvalues i and 2i have
positive sign characteristic. Thus, the only pair of adjacent eigenvalues of H3 with opposite
sign characteristic is (−i, i). The maximum of the function f(ω) = σmin(H3 − iωI) in the
corresponding interval [−1, 1] is 1. Thus RF(H3) = ρF(H3) = 1.

For the matrix H4 the eigenvalues −2i and i have positive sign characteristic while the
eigenvalues −i and 2i have negative sign characteristic. The pairs of adjacent eigenvalues
of H4 of opposite sign characteristic are (−2i,−i), (−i, i), (i, 2i), and the maxima of the
function f(ω) = σmin(H3 − iωI) in the corresponding intervals [−2,−1], [−1, 1], [1, 2] are
ν, 1, ν, respectively, where ν ≈ 0.43. Thus RF(H4) = ρF(H4) = ν.

In this section we have discussed the process of constructing the perturbations that move
the eigenvalues off the imaginary axis. These will be used in the algorithm of the next section.

6 An algorithm to compute a bound for the distance to bounded-
realness.

In this section we discuss a numerical method to approximately solve Problems A and B,
i.e., to compute an upper bound for the smallest perturbation that moves all eigenvalues of
a Hamiltonian matrix off the imaginary axis or outside a strip Sτ parallel to the imaginary
axis. We cover both problems A and B by different choices of τ , i.e., Problem A is the case
when τ = 0.

In general it is an open problem to analytically classify the smallest perturbation that
solves these two problems. Instead, we determine an upper bound for the smallest perturba-
tion by solving small problems of size 2× 2 or 4× 4 in the real case. We also only discuss the
special case that the Hamiltonian matrix has only purely imaginary eigenvalues. Numerically
we can restrict ourselves to the latter case, because we can first use the methods in [5, 31] to
compute a partial Hamiltonian Schur form of the matrix H as in (2), i.e., we determine an
orthogonal (unitary) and symplectic matrix Q0 such that for the transformed Hamiltonian
matrix

Q⋆
0HQ0 =


F11 F12 G11 G12

0 F22 G21 G22

0 0 −F⋆
11 0

0 H22 −F⋆
12 −F⋆

22

 ,

we have that F11 is upper triangular in the complex case or quasi-upper triangular in the
real case and contains those eigenvalues of H which lie (within the perturbation analysis of
Hamiltonian matrices) [32] outside of the strip Sτ = {z ∈ C | − τ < ℜz < τ}.

By restricting the perturbations to the Hamiltonian submatrix

H̃2 =

[
F22 G22

H22 −F⋆
22

]
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Figure 2: Eigenvalue and singular value curves for Example 5.14.
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which contains all the eigenvalues that lie within the strip Sτ , we determine an upper bound
for the smallest perturbation to the full matrix. The reason why it may not be the small-
est perturbation is that it may be possible that the smallest perturbation first moves two
eigenvalues of F11 that lie outside the strip Sτ into Sτ and then combines them with other
eigenvalues in Sτ to get the globally smallest perturbation. We, however, do not know an
example where this is the case.

There are several possibilities for the parameter τ that describes the width of the strip
Sτ . It can either be preassigned to achieve a robust bounded-realness margin, or if we only
want to make sure that the eigenvalues are robustly off the imaginary axis, within the usual
round-off error analysis, then, since an O(ϵ) perturbation to a 2×2 Jordan block can produce
an O(ϵ1/2) change in the eigenvalue, it seems reasonable to choose τ = O(u1/2), where u is
the round-off unit. If there is reason to think that some of the non-imaginary eigenvalues
close to the imaginary axis are the effect of round-off errors on a k × k Jordan block, then
one should choose τ = O(u1/k).

Since, due to round-off errors, we cannot be sure whether eigenvalues of H̃2 are on or
off the imaginary axis, in view of the discussed perturbation analysis we first regularize the
problem by perturbing H̃2 to H2 = H̃2 +∆H2 with

∆H2 =

[
∆F22 ∆G22

∆H22 −∆F⋆
22

]
so that all eigenvalues of H2 = H̃2 + ∆H2 are on the imaginary axis. In this way the
following approach, which combines nearest purely imaginary eigenvalues of opposite sign, is
not restricted and we do not have to make a preliminary decision as to which eigenvalues are
purely imaginary and which are not.

For each eigenvalue pair that the partial Hamiltonian Schur form produces outside the
imaginary axis, a minimal perturbation E2 that performs this task is given by Proposition 5.3.
In the following we recursively work on the matrixH2 and perturb one pair of purely imaginary
eigenvalues at a time. Again this may have the effect of increasing the bound for the minimal
perturbation, since there may be a smaller perturbation that moves several pairs at the same
time.

For each chosen pair of purely imaginary eigenvalues with opposite sign characteristic
(which pair of purely imaginary eigenvalues is to be chosen is discussed below) we first compute
the smallest perturbation that leads to a coalescence of the pseudospectral components as
described in Theorem 5.12. In this way we produce an eigenvalue of mixed sign characteristic
at a point iγ. If we want to solve Problem A, then this perturbation is sufficient. If we
want to solve Problem B, then we move this pair of eigenvalues to the pair ±τ + iγ on the
boundary of Sτ . In both cases we save the perturbation E2. By taking a direct sum with an
appropriate 0 matrix we generate a perturbation E to the matrix H as well as its norm δ.
Since in both cases the perturbed eigenvalue belongs to the part where a Hamiltonian Schur
form exists, we can deflate this eigenvalue pair from H2 and continue with a smaller problem
H2, for which we proceed as before.

Algorithm 1 Input: A Hamiltonian matrix H ∈ F2n,2n that has only purely imaginary
eigenvalues and a value τ > 0 for the width of the strip Sτ around the imaginary axis.

Output: A Hamiltonian matrix E ∈ F2n,2n, such that at least one pair (quadruple in
the real case) of eigenvalues of H+ E is outside of the open strip Sτ .
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Step 1: Compute the eigenvalues iαk, αk ∈ R, k = 1, . . . , 2n and associated eigenvectors
vk ∈ C2n of H. Order the eigenvalues (and eigenvectors) such that αk ≤ αk+1.

Step 2: Compute the sign characteristics of the eigenvalues (i.e., the signs of i v⋆k Jvk,
k = 1, . . . , 2n).

Step 3: If there is a multiple eigenvalue of mixed sign characteristic, i.e., αk = αk+1, and
sign(i v⋆k Jvk) sign(i v

⋆
k+1Jvk+1) < 0, say, then let v− := vk, v+ := vk+1 and go to step 6.

Step 4: For each pair of adjacent eigenvalues iαk, iαk+1 with opposite sign character-
istic compute the maximum mk := maxω∈[αk,αk+1] f(ω), where f(ω) = σmin(H − iω I) =
|λmin(J(H− iωI))|, ω ∈ R.
Remark: Since f satisfies |f(ω)− f(ω̃)| ≤ |ω − ω̃| the maxima can be found by evaluating f
on a coarse grid.

Step 5: From the eigenvalues found in Step 4 select an eigenvalue iαk0 such that mk0 =
minmk. By Theorems 5.11 and 5.12 there is an ω0 ∈ [αk0 , αk0+1] such that the function f is
strictly increasing in [αk0 , ω0] and strictly decreasing in [ω0, αk0+1] (hence f(ω0) = mk0). By
using a trisection method, determine a small interval [ω−, ω+] that contains ω0. Let v± be
eigenvectors to the eigenvalues λmin(J(H−iω± I)). The real numbers −iv⋆±Jv± are the slopes
of the curve ω 7→ λmin(ω) := λmin(J(H− iω I)) at ω = ω±. Again by Theorems 5.11 and 5.12
either f(ω) = λmin(ω) for all ω ∈ [αk0 , αk0+1] or f(ω) = −λmin(ω) for all ω ∈ [αk0 , αk0+1].
Thus, sign(iv⋆+Jv+) sign(iv

⋆
−Jv−) < 0.

Step 6: Compute t ∈ [0, 1] such that u⋆t Jut = 0, where ut = tv++(1− t)v−, and let v0 =
ut/∥ut∥. Then v0 is an approximate J-neutral eigenvector to the eigenvalue λmin(J(H−iω0 I)).

Step 7: Let µ = τ .
Step 8: Let Ẽ = E0 + Eµ in the complex case, and Ẽ = K0 + Kµ in the real case, where

E0, Eµ,K0,Kµ are defined by (21). Then by Theorem 5.12, H + Ẽ has (approximately) the
two eigenvalues iω0 ± µ in the complex case, and the four eigenvalues ±iω0 ± µ in the real
case. Due to rounding errors Ẽ may have a slight departure from being Hamiltonian. A
Hamiltonian matrix close to Ẽ is E = −1

2J(J Ẽ + (J Ẽ)⊤).
Step 9: Check whether at least two eigenvalues of H+ E are outside the strip Sτ . If this

is not the case increase µ and return to step 8.

Applying this algorithm recursively we obtain (as a sum of all the single perturbation
matrices) a perturbation matrix ∆H such that, at least in theory, all eigenvalues of the
perturbed Hamiltonian matrix H ← H+∆H lie outside the strip Sτ . Due to round-off errors
in the computations, however, it may happen that some eigenvalues of H have moved back
towards the imaginary axis. Therefore, as in Step 9, it is advisable to check the spectrum
of H to see whether the eigenvalues are safely removed from the imaginary axis in the sense
that a Hamiltonian perturbation up to the size of round-off error cannot move the eigenvalues
back to the imaginary axis.

So, suppose that H is the Hamiltonian matrix obtained by a successive application of
Algorithm 1 until all eigenvalues have been moved off the imaginary axis. Then for a given
tolerance τ we would like to test that the eigenvalues of H are robustly away from the imagi-
nary axis in the sense that H+E does not have an imaginary eigenvalue for any Hamiltonian
perturbation E such that ∥E∥2 ≤ τ . Given a Hamiltonian matrix H ∈ F2n,2n, define

βF(H) := min{∥E∥2 : E ∈ F2n,2n, (JE)⋆ = JE and Λ(H+ E) ∩ iR ̸= ∅}.

Then βF(H) is the distance from H to the Hamiltonian matrices having a purely imaginary
eigenvalue. Moreover, it follows from Corollary 5.7 that βF(H) = min{ϵ : ΛHam

ϵ (H,F) ∩ iR ̸=
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∅} = Λϵ(H,C) ∩ iR ̸= ∅}. This shows that βF(H) is the same for F = R and F = C and that
it can be read off from the unstructured pseudospectrum Λϵ(H,C) of H.

For the Hamiltonian matrix H computed by this procedure, we need to test whether or
not βF(H) > τ . This can be done by computing the Hamiltonian pseudospectrum Λτ (H,C)
with the method of [19] and testing whether or not Λτ (H,C) ∩ iR = ∅. Alternatively, we
compute the eigenvalues of H − τJ and H + τJ . If these matrices do not have a purely
imaginary eigenvalue then by [Theorem 2, [4]] we have βF(H) > τ and hence the eigenvalues
of H are robustly away from the imaginary axis.

The computational costs of Algorithm 1 can be significantly reduced by modifying the
choice of the nearest purely imaginary eigenvalues that are brought to coalescence using the
following idea which may, however, in some rare cases, lead to a larger perturbation than
necessary. To choose the pair (iγ1, iγ2) or in the real case a quadruple (iγ1,−iγ1, iγ2,−iγ2)
of purely imaginary eigenvalues that are moved together at a point ±τ + iγ we may proceed
as follows. Assuming that the eigenvalues of H are all simple, we choose a pair of purely
imaginary eigenvalue (iγj , iγl) of opposite sign characteristic for which the ratio

|γj − γl|
κ(γj) + κ(γl)

(22)

is the smallest among all such pairs, where κ(γj) is the condition number of the eigenvalue
iγj . We arrive at this choice from the first order perturbation analysis of the eigenvalues.
Indeed, by first order perturbation of eigenvalues, it follows that the component of ΛHam

ϵ (H,F)
containing iγj and iγl are approximately the intervals i[γj − κ(λj)ϵ, γj + κ(γj)ϵ] and i[γl −
κ(λl)ϵ, γl+κ(γl)ϵ], respectively, for all small ϵ. Therefore, if the ratio (22) is the smallest, as ϵ
increases gradually these two components are likely to coalesce before the other components.

6.1 A numerical example

To illustrate our procedure, we apply Algorithm 1 to the matrix

H =



−73 −86 54 −99 93 −58 80 77
1 −4 59 54 −58 −61 4 1
−24 −31 −4 −86 80 4 27 26
−26 −24 1 −73 77 1 26 24
−24 −26 −1 −77 73 −1 24 26
−26 −27 −4 −80 86 4 31 24
−1 −4 61 58 −54 −59 4 −1
−77 −80 58 −93 99 −54 86 73


.

The matrix H has the purely imaginary spectrum

Λ(H) = {±4i,±10i,±16i,±18i}.

The intervals bounded by adjacent eigenvalues with opposite sign characteristic are iI1 =
[−16i,−10i], iI2 = [−10i,−4i], iI3 = [−4i, 4i], iI4 = [4i, 10i], iI5 = [10i, 16i].

Algorithm 1 computes the maximum of the function ω 7→ f(ω) = |λmin(H − iωI)| in
each of the intervals Ik. The minimum of these maxima is attained in the interval I1 at
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ω0 ≈ −13.9356. A corresponding normalized J-neutral eigenvector (see Step 6) is

v0 =



0.5854− 0.2940i
−0.1559− 0.1188i
−0.1238− 0.0445i
−0.1145− 0.0459i
−0.1081− 0.0593i
−0.1130− 0.0673i
−0.1907− 0.0449i
−0.5988− 0.2655i


.

For the width of the strip Sτ we choose τ = 0.1. Then the output of the algorithm is the
matrix (for layout reasons displayed only with 3 digits)

E = 10−2 ∗



5.74 3.38 0.81 0.02 2.46 2.68 0.81 4.30
3.78 5.26 −0.21 −0.93 2.68 3.49 −4.74 0.10
0.61 −3.70 −2.21 −1.40 −0.81 −4.74 7.39 5.17
3.88 −1.13 −1.01 −3.48 4.30 0.10 5.17 7.27
−2.93 −0.61 −0.72 3.19 −5.74 −3.78 −0.61 −3.88
−0.61 −1.55 −2.75 0.19 −3.38 −5.26 3.70 1.33
−0.72 −2.75 2.35 1.88 −0.81 0.21 2.21 1.01
3.19 0.19 1.88 1.88 −0.02 0.93 1.40 3.48


.

The eigenvalues of H+ E are

Λ(H+ E) ≈ {0.1000± 13.9356i,−(0.1000± 13.9356i),±17.6162i,±4.3627i}.

A Hamiltonian Schur decomposition of H+ E yields

Q⋆
0 (H+ E)Q0 =


F11 F12 G11 G12

0 F22 G21 G22

0 0 −F⋆
11 0

0 H22 −F⋆
12 −F⋆

22

 ,

where Q0 is symplectic and orthogonal, and

F22 =

[
7.7958 −5.9178
7.3945 −3.3404

]
, G22 =

[
−30.8492 −2.5331
−2.5331 0.8874

]
,

H22 =

[
11.0658 −5.5371
−5.5371 −0.5170

]
.

These blocks correspond to the purely imaginary eigenvalues of H+E . By applying Algorithm

1 again to the matrix H̃ =

[
F22 G22

H22 −F⋆
22

]
we obtain the output

Ẽ =


0.0707 1.2227 0.7015 0.0862
1.2227 0.0306 0.0862 0.6986
−2.1346 0.0862 −0.0707 −1.2227
0.0862 −2.1375 −1.2227 −0.0306

 .
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The computed eigenvalues of H̃+ Ẽ are

Λ(H̃+ Ẽ) = {0.1000± 10.7368i,−(0.1000± 10.7368i)}.

Thus all eigenvalues of H̃+ Ẽ are outside of the open strip Sτ . Hence, there is a real Hamil-
tonian matrix ∆H with norm

∥∆H∥2 ≤ ∥E∥2 + ∥Ẽ∥2 ≈ 3.005

such that all eigenvalues of H+∆H are outside of Sτ .

7 Conclusion

We have presented a detailed perturbation analysis for eigenvalues of Hamiltonian matrices
and discussed the construction of structured perturbations to Hamiltonian matrices that move
eigenvalues off the imaginary axis and thereby discussed the computation of upper bounds
for the distance to (robust) bounded-realness. The application of this new approach in the
context of passivation problems will be discussed in forthcoming work.
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