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1 Introduction

Local modeling is one of the most useful nonparametric methods. We refer to the book

by Fan and Gijbels (1996) for a rigorous discussion of local linear and local polynomial

estimation for regression and some other statistical models and many other references.

An extension to the local likelihood approach is discussed in Tibshirani and Hastie (1987),

Staniswalis (1989), Loader (1996), among others.

This paper proposes a new approach to local likelihood modeling which is based on

the idea of structural adaptation and extends the Adaptive Weights Smoothing (AWS)

procedure from Polzehl and Spokoiny (2000) (referred to as PS2000). The main idea of

AWS is to describe in a data-driven way a maximal local neighborhood of every point in

which the local parametric assumption is justified by the data. The method is based on a

successive increase of local neighborhoods around every point Xi and a description of the

local model within such neighborhoods by assigning weights that depend on the result

of the previous step of the procedure. The original AWS procedure was proposed for the

regression model in the context of image denoising. The numerical results from PS2000

demonstrate that the AWS method is very efficient in situations where the underlying

regression function allows a piecewise constant approximation with large homogeneous

regions. The procedure possesses a number of remarkable properties like preservation of

edges and contrasts and nearly optimal noise reduction inside large homogeneous regions.

It is dimension free and applies in high dimensional situations. However, the assumption

of the regression model with additive errors considered in PS2000 restricts its domain of

applications. Here we extend the approach from PS2000 to a broad class of nonparametric

models including the binary response model, inhomogeneous exponential and Poisson

models etc. having local exponential family structure and apply the AWS method in a

unified way to different problems like density or intensity estimation, volatility modeling,

classification, tail index estimation and establish some remarkable theoretical results on

properties of the proposed procedure.

A reference implementation of our algorithms is available as a contributed package

(aws) of the R-Project for Statistical Computing from http://www.r-project.org/ .

The paper is organized as follows. Section 2 describes the model and presents the

main examples. Local modeling is discussed in Section 3. The local likelihood AWS

procedure is introduced in Section 4. Section 5 demonstrates how the AWS method can

be used to estimate a density in IRd for d ≤ 3 . Section 6 explains how AWS can be ap-
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plied to volatility estimation of financial assets. The classification problem is considered

in Section 7. Section 8 introduces an AWS-estimate of the tail-index parameter. Sec-

tion 9 discusses main properties of the proposed method, among them the “propagation

condition” and the rate of estimation of a smoothly varying parameter. Some technical

assertions about the varying coefficient exponential family are collected in the Appendix.

2 Model and problem

This section describes the considered model and states the estimation problem. Suppose

we are given random data Z1, . . . , Zn of the form Zi = (Xi, Yi) . Here every Xi means

a vector of “features” or explanatory variables which determines the distribution of the

“observation” Yi . For simplicity we suppose that the Xi ’s are valued in the finite

dimensional Euclidean space X = IRd and the Yi ’s belong to Y ⊆ IR . An extension to

the case when both the Xi ’s and Yi ’s are valued in some metric spaces is straightforward.

The vector Xi can be viewed as a location and Yi as the “observation at Xi ”. For ease of

exposition, we restrict ourselves to the case of independent Zi . Our model assumes that

the distribution of each Yi is determined by a finite dimensional parameter θ which may

depend on the location Xi , θ = θ(Xi) . We illustrate this set-up using a few examples.

Example 2.1. (Gaussian regression) Let Zi = (Xi, Yi) with Xi ∈ IRd and Yi ∈ IR

following the regression equation Yi = θ(Xi) + εi with a regression function θ and i.i.d.

Gaussian errors εi ∼ N (0, σ2) .

Example 2.2. (Inhomogeneous Bernoulli (Binary Response) model) Let again

Zi = (Xi, Yi) with Xi ∈ IRd and Yi a Bernoulli r.v. with parameter θ(Xi) , that is,

P (Yi = 1 | Xi = x) = θ(x) and P (Yi = 0 | Xi = x) = 1 − θ(x) . Such models arise in

many econometric applications, they are widely used in classification and digital imaging.

Example 2.3. (Inhomogeneous Exponential model) Suppose that every Yi is ex-

ponentially distributed with the parameter θ = θ(Xi) , that is, P (Yi > t | Xi = x) =

e−t/θ(x) . Such models are applied in reliability or survival analysis. They also naturally

appear in the tail-index estimation theory.

Example 2.4. (Inhomogeneous Poisson model) Suppose that every Yi is valued in

the set N of nonnegative integer numbers and P (Yi = k | Xi) = θk(Xi)e−θ(Xi)/k! , that

is, Yi follows a Poisson distribution with parameter θ = θ(Xi) . This model is commonly

used in the queueing theory, it occurs in positron emission tomography, it also serves as

an approximation of the density model, obtained by a binning procedure.
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Example 2.5. (Inhomogeneous volatility model) The observations Yt follow a con-

ditional heteroscedastic model Yt = σtεt in the discrete time t . The εt ’s are independent

standard normal innovations and σt is a time dependent parameter (volatility).

All these examples are particular cases of the local exponential family model, see

Section 3.2 for more details.

Now we present a formal definition for our model. Let P = (Pθ, θ ∈ Θ) be a family

of probability measures on Y where Θ is a subset of the real line IR1 . We assume that

this family is dominated by a measure P and denote p(y, θ) = dPθ/dP (y) . Moreover,

we assume that all the densities p(y, θ) = dPθ/dP (y) for θ ∈ Θ are strictly positive,

p(y, θ) > 0 for all y ∈ Y and θ ∈ Θ . We suppose that each Yi is, conditionally on

Xi = x , distributed with the density p(·, θ(x)) for some unknown function θ(x) on X .

The aim of the data-analysis is to infer on this function θ(x) .

A standard approach is based on the assumption that the function θ is smooth

leading to its local linear (polynomial) approximation within a ball of some small radius

h centered in the point of estimation, see e.g. Tibshirani and Hastie (1987), Hastie and

Tibshirani (1993), Fan and Zhang (1999), Caroll et.al. (1998), Cai et.al. (2000). This

approach has serious problems and has to be substantially extended when functions with

discontinuities are considered, see e.g. Müller (1992) or Spokoiny (1998) for a univariate

case X = IR1 and Müller and Song (1994), Qiu (1998), Polzehl and Spokoiny (2003a) for

the bivariate case with d = 2 . Local estimation near discontinuity requires to consider

asymmetric neighborhoods of the point of estimation. In the univariate case one can

apply one-sided neighborhoods but in the bivariate case the shape of the neighborhood

should be quite flexible to provide the optimal rate of estimation, Polzehl and Spokoiny

(2003a). Here we apply a completely different approach to estimation of such functions

which is based on the idea of adaptive weights: the shape of the local model centered at a

point x is described by weights which are computed in a data-driven way. This helps to

consider in an unified way the models with smoothly varying parameters and “piecewise

smooth” models whose parameters may jump with locations. The global parametric

model is also naturally incorporated in this framework.

3 Local likelihood modeling

A global parametric structure simply means that the parameter θ does not depend on

the location, that is, the distribution of every “observation” Yi coincides with Pθ for
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some θ ∈ Θ and all i . This assumption reduces the original problem to the classical

parametric situation and the well developed parametric theory applies here for estimat-

ing the underlying parameter θ . In the sequel we consider the parametric maximum

likelihood estimate θ̂ = θ̂(X1, . . . , Xn) of θ which is defined by maximization of the

log-likelihood

θ̂ = argsup
θ∈Θ

n∑

i=1

log p(Yi, θ).

However, a global parametric assumption can be too restrictive. The classical nonpara-

metric approach is based on the idea of localization: for every point x , the parametric

assumption is only fulfilled locally in a vicinity of x . This leads to considering a local

model concentrated in some neighborhood of the point x .

3.1 Localization

We use localization by weights as a general method to describe this local model. Let, for

a fixed x , a nonnegative weight wi = wi(x) ≤ 1 be assigned to the observations Yi at

Xi , i = 1, . . . , n . The weights wi(x) determine a local model corresponding to the point

x in the sense that, when estimating the local parameter θ(x) , every observation Yi

is used with the weight wi(x) . This leads to the local (weighted) maximum likelihood

estimate

θ̂(x) = arginf
θ∈Θ

n∑

i=1

wi(x) log p(Yi, θ). (3.1)

We mention two examples of choosing the weights wi(x) . Localization by a bandwidth

is defined by weights of the form wi(x) = Kloc(li) with li = |ρ(x,Xi)/h|2 where h is a

bandwidth, ρ(x,Xi) is the Euclidean distance between x and the design point Xi and

Kloc is a location kernel.

Localization by a window simply restricts the model to a subset (window) U = U(x)

of the design space which depends on x , that is, wi(x) = 1(Xi ∈ U(x)) . Observations

Yi with Xi outside the region U(x) are not used when estimating the value θ(x) . This

kind of localization arises e.g. in the regression tree approach.

We do not assume any special structure for the weights wi(x) , that is, any configura-

tion of weights is allowed. In what follows we identify the set W (x) = {w1(x), . . . , wn(x)}
and the local model in x described by these weights and use the notation

L(W (x), θ) =
n∑

i=1

wi(x) log p(Yi, θ).
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Then θ̂(x) = argsupθ L(W (x), θ) .

In our procedure we consider a family of local models, one per design point Xi , and

denote them as Wi = W (Xi) = {wi1, . . . , win} .

3.2 Local exponential family

The examples introduced in Section 2 can be considered as particular cases of local

exponential family distributions. This means that all measures Pθ from this family are

dominated by a σ -finite measure P on Y . The density functions p(y, θ) = dPθ/dP (y)

are of the form p(y, θ) = eU(y)C(θ)−B(θ) . C(θ) and B(θ) are some given nonnegative

functions. U(y) is a known function of the observation y . The parameter θ is defined

by the equations
∫

p(y, θ)P (dy) = 1 and EθU(Y ) =
∫

U(y)p(y, θ)P (dy) = θ . The

functions B(θ) and C(θ) are connected by the differential equation B′(θ) = θC ′(θ) .

The Kullback-Leibler distance Q(θ, θ′) = Eθ log
(
p(Y, θ)/p(Y, θ′)

)
for θ, θ′ ∈ Θ satisfies

Q(θ, θ′) =
(
C(θ)− C(θ′)

) ∫
U(y)p(y, θ)P (dy)− (

B(θ)−B(θ′)
)

= θ
(
C(θ)− C(θ′)

)− (
B(θ)−B(θ′)

)
.

Next, for a given set of weights W = {w1, . . . , wn} , it holds

L(W, θ) =
n∑

i=1

wi log p(Yi, θ) = C(θ)
) n∑

i=1

wiU(Yi)−B(θ)
) n∑

i=1

wi = SC(θ)−NB(θ)

where N =
∑n

i=1 wi and S =
∑n

i=1 wiU(Yi) . Maximization of this expression w.r.t. θ

leads to the estimating equation NB′(θ) − SC ′(θ) = 0 . This and the identity B′(θ) =

θC ′(θ) yield the local MLE

θ̂ = S/N =
n∑

i=1

wiU(Yi)
/ n∑

i=1

wi .

This implies L(W, θ̂) = N
{
θ̂C(θ̂) − B(θ̂)

}
and L(W, θ̂) − L(W, θ) = NQ(θ̂, θ) for any

θ ∈ Θ . Table 1 provides the statistics U(y) and the Kullback-Leibler distance Q(θ, θ′)

for the examples from Section 2.

The procedure presented in the next section is effectively based on assigning some

measure of inhomogeneity for two different local models. We now discuss how this mea-

sure can be naturally defined via likelihood ratio tests of homogeneity for two populations.

3.3 Comparing the parameters of two local models

Consider two local models corresponding to points Xi and Xj and defined by weights

Wi = {wi1, . . . , win} and Wj = {wj1, . . . , wjn} . Suppose for a moment that a structural
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Table 1: U(y) and Q(θ, θ′) for the examples from Section 2.

Model U(y) Q(θ, θ′)

Gaussian regression y (θ − θ′)2/(2σ2)

Bernoulli model y θ log(θ/θ′) + (1− θ) log{(1− θ)/(1− θ′)}
Exponential model y θ/θ′ − 1− log(θ/θ′)

Poisson model y θ log(θ/θ′)− (θ − θ′)

Volatility model y2 0.5(θ/θ′ − 1− log(θ/θ′))

assumption is fulfilled in both local models, that is, the parameter function θ(·) is nearly

constant within the local model in x , i.e. θ(Xk) ≈ θ(x) if wk(x) > 0 . We aim to answer

the question whether these two local models can be put into one common parametric

model. This can be done by testing the hypothesis that the parameter values θi = θ(Xi)

and θj = θ(Xj) for the corresponding two local models coincide.

To compare the parameters of two local models Wi and Wj we utilize the likelihood-

ratio test statistic. First we consider the situation when both sets Wi and Wj have

zero-one entries with positive elements at disjoint positions, that is, the values wik and

wjk and wik +wjk are either zero or one for all k . This situation corresponds to the two

sample problem in which one sample consists of the observations Yk with wik = 1 and

the other one contains the observations Yk with wjk = 1 . The classical likelihood-ratio

test statistic for the hypothesis θi = θj for this situation is of the form

T ◦ij = max
θ

L(Wi, θ) + max
θ

L(Wj , θ)−max
θ

L(Wi + Wj , θ)

= L(Wi, θ̂i) + L(Wj , θ̂j)− L(Wi + Wj , θ̂ij) (3.2)

where θ̂ij = argsupθ L(Wi +Wj , θ) is the maximum likelihood estimate from a combined

model obtained by adding the weights from both models. The value T ◦ij characterizes

the difference between the two models: if T ◦ij is larger than some prescribed value λ ,

then the parameters of these two models are significantly different. A critical level λ

can be assigned using the Wilks phenomenon, see Fan et.al. (2001). It means that

under the parametric hypothesis θ(Xk) ≡ θ the distribution of 2L(Wi, θ̂i)−2L(Wi, θ) is

asymptotically χ2 with one degree of freedom as the “sample size” Ni =
∑

j wij grows

to infinity. Section 11 (Theorem 11.1) presents a nonasymptotic extension of the Wilks

results which applies to a small sample size and arbitrary weights.

Note that the value T ◦ij is “symmetric” w.r.t. Wi and Wj in the sense that T ◦ij = T ◦ji .
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In our procedure, described in the next section, we apply a slightly modified asymmetric

version of this test statistic, namely

Tij = L(Wi, θ̂i)− L(Wi, θ̂j).

It has a nice interpretation as a difference between the maximum log-likelihood L(Wi, θ̂i) =

supθ L(Wi, θ) in model Wi and the “plug-in” log-likelihood L(Wi, θ̂j) in which θ̂j comes

from the model Wj . This modification is important because Tij is used for defining the

weight wij with which the observation Yj at Xj will enter in the local model Wi cor-

responding to Xi . However, in the “balanced” situation when the “sample sizes” Ni

and Nj are of the same order, the values T ◦ij and Tij have similar properties.

For the local exponential family with a varying parameter we obtain due to Section 3.2

Tij = NiQ(θ̂i, θ̂j). (3.3)

This representation is used for the procedure described in the next section.

In our procedure, described below, we consider the value Tij as a “statistical penalty”,

that is, when computing the new weight wij at the next iteration step we strongly

penalize for a large value of Tij .

We also consider a “symmetrized” version of Tij given by T s
ij = (Tij + Tji)/2 .

4 Adaptive weights smoothing

This section presents the estimation procedure. We start with some heuristic discussion.

The basic assumption of the proposed approach is that for every point Xi , there

exists a local model described by weights Wi in which the parametric assumption is

nearly fulfilled, that is, the difference θ(Xj) − θ(Xi) is insignificant for all points Xj

with significantly positive weights wij . The procedure tries to recover these weights from

the data for all local models simultaneously in an iterative way.

We first illustrate this idea for the nonparametric regression with a local constant

structural assumption as considered in PS2000. In that case the parameter θ coincides

with the function value f(Xi) and the estimate f̂(Xi) is defined as the mean of the

observations Yj with some weights wij :

f̂(Xi) =
n∑

j=1

wijYj

/ n∑

j=1

wij . (4.1)
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These weights wij are calculated iteratively, so that the estimate from the previous

iteration is used to determine the new weights wij that in turn lead to the new estimates

f̂(Xi) due to (4.1). At the beginning of the iteration process the weights wij are taken

in the form wij = Kloc(l
(0)
ij ) where l

(0)
ij =

∣∣ρ(Xi, Xj)/h(0)
∣∣2 and Kloc is a location kernel.

If Kloc = 1(u ≤ 1) as in PS2000, then for every point Xi the weights wij vanish outside

the ball U
(0)
i of radius h(0) with the center at Xi , that is, the local model at Xi is

concentrated on U
(0)
i . Next, at each iteration k , a ball U

(k)
i with a larger bandwidth

h(k) is considered and every point Xj from U
(k)
i gets a weight w

(k)
ij which is defined by

comparing the estimates f̂ (k−1)(Xi) and f̂ (k−1)(Xj) obtained in the previous iteration.

One possible interpretation of this procedure is that at each iteration step the location

penalty l
(k)
ij is relaxed by increasing h(k) at cost of introducing a data-driven statistical

penalty which comes from comparison of parameters of different local models.

An extension of this approach to the more general local parametric assumption leads

to the comparison of the estimated parameters θ̂
(k−1)
i and θ̂

(k−1)
j . Obviously the main

ingredient of the proposed procedure is the precise way of defining the weights w
(k)
ij .

4.1 Definition of weights

For every pair (i, j) , the weight w
(k)
ij at the k th iteration of the procedure is computed

on the base of two quantities: a location penalty l
(k)
ij = |ρ(Xi, Xj)/h(k)|2 and a statistical

penalty s
(k)
ij = Tij/λ , see (3.3). It is natural to require that each of these two penalties

has an independent influence on the weight w
(k)
ij . This suggests to define the new weight

w
(k)
ij using the product

w̃
(k)
ij = Kl

(
l
(k)
ij

)
Ks

(
s

(k)
ij

)
,

where Kloc and Kst are two kernel functions on the positive semiaxis.

In the algorithm presented below in this section, we use one more (memory) parameter

η ∈ (0, 1) which controls the rate of changing the weights for every local model within

the iteration process. Namely, we define the new weight w
(k)
ij as a convex combination

ηw
(k−1)
ij +(1− η)w̃(k)

ij of the weight w
(k−1)
ij from the previous iteration step and the just

computed value w̃
(k)
ij .

Finally, to avoid an identification problem, we initialize the procedure by letting

θ̂
(0)
i = θ̂ where θ̂ is the global MLE.



10 local likelihood modeling by adaptive weights smoothing

4.2 The procedure

Now we present a formal description of the procedure. The procedure formally applies to

any parametric family P = {Pθ} , however, it can be significantly simplified for the case of

an exponential family P . We therefore present a general definition and simultaneously

give the formulas for the exponential family case. We denote Ui = U(Yi) with the

function U from the definition of the exponential family, see Section 3.2.

Important ingredients of the method are: kernels Kloc and Kst , parameters λ and

η , the initial bandwidth h(1) , the factor a > 1 and the maximal bandwidth h∗ . The

choice of the parameters is discussed in Section 4.3. The procedure reads as follows:

1. Initialization: Compute the global MLE θ̂(0) of θ :

θ̂(0) = argsup
θ∈Θ

n∑

i=1

log p(Yi, θ) =
n∑

i=1

Ui/n.

For every i , set θ̂
(0)
i = θ̂(0) , N

(0)
i = n and define W

(0)
i = (1, . . . , 1) . Set k = 1 .

2. Iteration: for every i = 1, . . . , n

• Calculate the adaptive weights: For every point Xj , compute the penalties

l
(k)
ij =

∣∣∣ρ(Xi, Xj)/h(k)
∣∣∣
2
,

s
(k)
ij = λ−1T

(k)
ij = λ−1

{
L

(
W

(k−1)
i , θ̂

(k−1)
i

)− L
(
W

(k−1)
i , θ̂

(k−1)
j

)}

= λ−1N
(k−1)
i Q

(
θ̂
(k−1)
i , θ̂

(k−1)
j

)
. (4.2)

Alternatively, the “symmetrized” statistical penalty s
(k)
ij = λ−1(T (k)

ij +T
(k)
ji )/2 can

be used. Now compute

w̃
(k)
ij = Kloc

(
l
(k)
ij

)
Kst

(
s

(k)
ij

)

and define the weight w
(k)
ij = ηw

(k−1)
ij + (1− η)w̃(k)

ij .

Denote W
(k)
i = {w(k)

i1 , . . . , w
(k)
in } , and similarly W̃

(k)
i = {w̃(k)

i1 , . . . , w̃
(k)
in } .

• Estimation: Compute the new local MLE estimate θ̂
(k)
i of θi and the value N

(k)
i :

θ̂
(k)
i = argsup

θ∈Θ
L(W (k)

i , θ) = S
(k)
i /N

(k)
i

with

N
(k)
i =

n∑

j=1

w
(k)
ij = ηN

(k−1)
i + (1− η)

n∑

j=1

w̃
(k)
ij ,

S
(k)
i =

n∑

j=1

w
(k)
ij Uj = ηS

(k−1)
i + (1− η)

n∑

j=1

w̃
(k)
ij Uj .
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3. Stopping: Stop if ah(k) > h∗ , otherwise increase k by 1, set h(k) = ah(k−1) and

continue with step 2.

4.3 Choice of parameters

The parameters of the generalized AWS method are selected similarly to PS2000. We

briefly discuss each of the parameters.

Kernels Kst and Kloc : The kernels Kst and Kloc should be nonnegative with

Kst decreasing and Kloc non-increasing on the positive semiaxis. We recommend to

take Kst(u) = e−uI{u≤6} and to apply a compactly supported localization kernel Kloc

to reduce the computational effort of the method. PS2000 used a uniform kernel, here

we apply the triangle kernel Kloc(u) = (1 − u)+ . As for kernel or local polynomial

smoothing the choice of the kernel has only a minor influence on the final results.

Parameter η : The value η ∈ (0, 1) can be used to control the stability of the AWS

procedure w.r.t. iterations. An increase of η results in a higher stability, however, it

decreases sensitivity to changes of the local structure. A value η > 0 also guarantees

that Q(θ̂i, θ̂j) < ∞ , so it also serves as regularization parameter. Our default choice is

η = 1/2 although the results change only slightly for η in the range [0, 1/2] .

Initial bandwidth h(1) , parameter a and maximal bandwidth h∗ : The initial

bandwidth h(1) should be reasonably small. In most examples we select h(1) = c/n with

some c ensuring that every ball U
(1)
i with center Xi and radius h(1) contains only the

design point Xi . The parameter a controls the growth rate of the local neighborhoods

for every point Xi . It should be selected to provide that the mean number of points inside

a ball U
(k)
i with radius h(k) grows exponentially with k with some factor agrow > 1 . If

Xi are from IRd , then the parameter a can be taken as a = a
1/d
grow . Our default choice

is agrow = 1.25 . Any value in the range [1.1, 1.3] can be taken as well.

The maximal bandwidth h∗ can be taken large so that every ball U
(k)
i contains the

whole sample for the last iteration k and the location penalty nearly vanishes. The

parameter h∗ can be used to bound the numerical complexity of the procedure, see Sec-

tion 4.4 below. In some application examples, the use of a very large final bandwidth h∗

leads to some oversmoothing of the underlying object. For such situations, a data-driven

method of optimal stopping, based, for instance, on cross-validation can be applied.

The geometric grow of the parameter h ensures that the total number of iterations

is typically bounded by C log n for some fixed constant C .
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Symmetric and asymmetric versions: In most examples, the results for the

symmetric and asymmetric versions of the procedure are very close to each other. The

symmetric version is preferable if fine structures in the model should be kept, while the

asymmetric version tends to oversmooth such fine structures but performs more stable

within large homogeneous regions. Our default choice is the symmetric procedure.

Parameter λ : The most important parameter of the procedure is λ which scales

the statistical penalty sij . Small values of λ lead to overpenalization which may results

in a random segmentation of a homogeneous target. Large values of λ may result in loss

of adaptivity of the method, i.e. less sensitivity to discontinuities. In some sense this

parameter is similar to the wavelet threshold applied in a nonlinear wavelet transform.

A reasonable way to define the parameter λ for specific applications is based on the

condition of free extension, which we refer to as “propagation condition”. This means

that in a homogeneous situation θ(Xi) ≡ θ , the impact of the statistical penalty in the

computed weights wij is negligible. This would result in a free extension of every local

model. If the value h∗ is sufficiently large, then at the last iteration all weights wij

will be close to one and every local model will essentially coincide with the global one.

Therefore, one can adjust the parameter λ simply selecting by Monte-Carlo simulations

the minimal value of λ providing a prescribed probability of getting the weights w
(k)
ij ≈ 1

at the end of the iteration process for the parametric model θ(x) ≡ θ . A theoretical

justification is given by Theorem 9.1, that claims that the choice λ = C log n with a

sufficiently large C yields the “propagation” condition whatever the parameter θ or the

sample size n is. This result suggests to take a slightly increasing λ as the sample size

n grows. However, the bound λ ≥ C log n is slightly conservative. Our numerical results

indicate that an increase of the sample size does not necessarily require to increase λ .

Therefore, we utilize as default the constant value λ = tα(χ2
1) , that is, the α -quantile of

the χ2 distribution with one degree of freedom that relies on the asymptotic distribution

of every test statistic Tij . The value α depends on the specified exponential family and

the use of an asymmetric or symmetric stochastic penalty. Defaults for α are given in

Table 2. They are computed by Monte-Carlo simulation as minimal values providing the

“propagation condition”.

Remark 4.1. A usual kernel estimate with the kernel K and the bandwidth h can be

obtained as the special case of the AWS procedure if λ is taken very large, Kloc = K

and h∗ = h . Moreover, the AWS procedure can be regarded as a sophisticated version
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Table 2: Default values for α for different families and for the procedure with symmetric
or asymmetric statistical penalty

Gaussian Bernoulli Poisson Exponential
asymmetric .966 .953 .958 .914
symmetric .985 .972 .980 .972

of the kernel estimated with an adaptive asymmetric kernel.

4.4 Numerical complexity of the procedure

The numerical complexity of the procedure is easily analyzed. If the localization kernel

Kloc is supported on [0, 1] and if M (k) denotes the maximal number of points Xj in

the neighborhood U
(k)
i = {x : ρ(x,Xi) ≤ h(k)} at the k th step of the procedure, then

the complexity of this step is of order nM (k) . The number of iterations k∗ is the largest

integer smaller than loga(h∗/h(1)) . Since the value M (k) grows exponentially the whole

complexity of the procedure is of order nM (k∗) .

5 Application to nonparametric density estimation

Suppose that observations Z1, . . . , ZL are sampled independently from some unknown

distribution P on IRd with density f(x) . The problem of adaptive estimation of f can

be successfully attacked by the AWS method. Here we consider a small d or moderate,

e.g. d ≤ 3 . Larger values of d can be handled as well but require a different treatment.

Without loss of generality we suppose that the observations are located in the cube

[0, 1]d . We do not assume that f is compactly supported or that f is bounded away

from zero on [0, 1]d . As a first step we apply a binning procedure, see e.g. Fan and

Marron (1994) or Fan and Gijbels (1996). Let the interval [0, 1] be split into M equal

disjoint intervals of length δ = 1/M . Then the cube [0, 1]d can be split into n = Md

nonoverlapping small cubes with the side length δ , which we denote by J1, . . . , Jn . Let

Xi be the center point of the cube Ji and let Yi be the number of observations lying in

the i th cube Ji . The pairs (Xi, Yi) for i = 1, . . . , n can be viewed as new observations.

The joint distribution of Y1, . . . , Yn is described by the multinomial law. This model can

be very well approximated by the Poisson model with independent observations Yi having

Poisson distribution with intensity parameter θi = Lpi = LP (Ji) . This is essentially the

approach proposed by Lindsay (1974a, 1974b), see also e.g. Efron and Tibshirani (1996).

If the value θi has been estimated by θ̂i then the target density f is estimated at
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Xi as f̂(Xi) = δ−dθ̂i/L or as f̂(Xi) = δ−dθ̂i

/∑n
j=1 θ̂j .

For estimating the values θi from the “observations” Yi we apply the AWS procedure

with the local Poisson family from Example 2.4. In addition to the standard parameter

set, we need to specify the bin length δ . A reasonable choice is δ = c/K where K is

the smallest integer satisfying Kd ≥ L and c ≤ 1 . The procedure applies even if c is

small and many bin counts Yi are zero. Using a small c reduces the discretization error

but increases the “sample size” n and therefore, the computational effort by factor c−d .

We use two simulated examples to illustrate the performance of the method. In both

examples the symmetrized version of the stochastic penalty was used with defaults for all

other parameters for the AWS procedure. For comparison we also computed the kernel

density estimates (KDE) with Gaussian kernel and the bandwidth minimizing the Mean

Absolute Error (MAE).

Example 5.1. We generate n = 200 observations from the univariate distribution with

density f(x) = 1.5 · I{0≤x<0.25} + 1.5 · I{0.75≤x≤1} + 0.5 · I{0.25≤x<0.75}.

In the upper left of Figure 1 we provide one typical realization of density estimates

using AWS (solid line) and KDE (dashed line). The AWS-estimate was obtained using

a regular grid with interval-length δ = 0.0025 and range (−.1, 1.1) . The true density

(dotted line) is given for comparison. The maximal bandwidth was chosen h∗ = 500δ =

1.25 . The lower left plot shows the pointwise MAE for both estimates obtained from 500

simulations.

Example 5.2. We generate n = 2500 observations from the 2-dimensional density

f(x1, x2) = 7.5 · x1(1 − x2
1 − x2

2)+ I{x1≥0,x2≥0} . This density possesses discontinuities

along the axis x2 = 0 and discontinuities of the first derivative along the line x1 = 0

and the boundary of the unit disk. The central upper plot of Figure 1 displays 50 contour

lines of the estimated density (solid lines) together with the border of the support of the

true density (dashed). Results were obtained using a 2-dimensional grid with 120× 120

cells on (−.1, 1.1)× (−.1, 1.1) , i.e. with a bin width δ = .01 . The maximal bandwidth

was set to h∗ = 20δ = 0.2 .

The external contour can be interpreted as the estimated support of the density. The

quality of the estimation of the density support is very good along the line x2 = 0 . It

is slightly worse along the other axis x1 = 0 where the density goes flatly to zero and

along the boundary of the unit circle. This behavior is in agreement with the theoretical

results from Korostelev and Tsybakov (1993).
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Example 5.2: Pointwise MAE for KDE

Figure 1: Density estimation: Estimates for typical realizations and simulation result.

Table 3: Simulation results for Examples 5.1 and 5.2

d = 1 : AWS d = 1 : KDE d = 2 : AWS d = 2 : KDE
0.133 0.232 0.131 0.153

The left of Figure 1 provides images of pointwise MAE of for both AWS and KDE

obtained from 500 simulations. These two images are summarized in terms of cumulative

density functions (CDF) of the MAE-values, sampled on a fine grid, in the central bottom

plot. The comparison of the CDF’s for AWS and KDE shows a clear advantage of AWS.

One can also see from the pointwise plot that the AWS does very well outside of the

density support while the KDE oversmooths near boundary. As expected, the KDE

performs slightly better in the region of the regularity of the density f .

Table 3 summarizes the results of a simulation of size 500 for both examples comparing

the behavior of the AWS and the KDE estimates with respect to MAE.

6 Application to volatility estimation

Let S1, . . . , ST be an observed stock price (exchange rate, option price etc.) process.

Log-returns are defined by Rt = log(St/St−1) . In many financial market models the

log-returns are described by the following conditional heteroskedasticity model:

Rt = σtεt (6.1)
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Table 4: Simulation results based on Example 6.1

AWS Regression tree local linear estimate
MAE 0.0953 0.0967 0.1521

where εt are, conditionally on Ft−1 = σ(S1, . . . , St−1) , standard normal distributed

innovations and σt is a time dependent predictable volatility process, that is σt ∼ Ft−1 .

Aim of the data analysis is to estimate (or forecast) the volatility process σt .

The volatility model considered in Example 2.5 is a special case of this model when

the volatility process σt is deterministic. Note, however, that the local volatility model

from Example 2.5 applies to the time dependent volatility from (6.1) in the situation of

local time homogeneity, see Mercurio and Spokoiny (2000) for more details. Therefore, we

apply the AWS method directly to the time dependent data Rt . The estimate θ̂t = σ̂2
t

of the parameter θt = σ2
t is obtained using AWS on the data R1, . . . , RT .

We use two numerical examples to illustrate the behavior of our procedure.

Example 6.1. First we produce an artificial series of returns Rt of length T = 400

following the model Rt = σtεt with σt = 1 + I{t≥100} − 1.5 · I{t≥200} + 0.5 · I{t≥300} .

The left plot in Figure 2 displays for one realization of the process Rt the absolute

values |Rt| together with the true volatility σt and estimates of the volatility σt obtained

by the asymmetric version of AWS, with default parameters and maximal bandwidth

h∗ = 500 . For a comparison we provide the results for a regression tree and for a

local linear smoother, both with smoothing parameters optimized with respect to MAE.

Following to Mercurio and Spokoiny (2000), we apply the both methods to the square

root of |Rt| , leading to a regression like model with an approximately symmetric error

distribution. The resulting estimates are then appropriately rescaled and retransformed.

The right plot shows pointwise MAE for all three procedures obtained from 500

simulations. Table 4 provides global simulation results for estimating σ .

AWS demonstrates an almost perfect quality of estimation: the piecewise constant

structure of the volatility is reconstructed up to a small error in detecting the location of

change-points. The tree based estimate performs similarly, with slightly worse behavior

inside the homogeneous regions. Both clearly outperform the local linear estimate.

Example 6.2. In the second example we analyze the exchange rate between the US $

and the German DM for the period from August 1, 1987 to February 18, 2002. The

data are (C) 2001 by Prof. Werner Antweiler, University of British Columbia, Van-



polzehl, j. and spokoiny, v. 17

0 100 200 300 400

0
1

2
3

4

time t

R
t

AWS
Regression tree
Local linear regression
true sigma

Estimates of  σ(t)

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time t

M
A

E

AWS
Regression tree
Local linear regression

Pointwise MAE

Figure 2: Artificial data set with true volatility function and estimates obtained by AWS and a
regression tree (left) and pointwise MAE from 500 simulations.
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Figure 3: Returns for exchange rate of US $ and German DM and local volatility estimate
obtained by AWS and two local linear estimates.

couver BC, Canada, and have been obtained from the Pacific Exchange Rate Service

http://pacific.commerce.ubc.ca/xr/data.html. Figure 3 provides the returns |Rt| and

estimates of the volatility σt obtained by AWS and local linear smoothing of R2
t for the

time period from January 1993 to December 1997.

Note that the estimates clearly indicate time-inhomogeneity of the volatility.

7 Application to classification

One observes a training sample (Xi, Yi) , i = 1, . . . , n , with Xi valued in a Euclidean

space x = IRd with known class assignment Yi ∈ {0, 1} . Our objective is to construct
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a discrimination rule assigning every point x ∈ x to one of the two classes.

The classification problem can be naturally treated in the context of a binary re-

sponse model. It is assumed that each observation Yi at Xi is a Bernoulli r.v. with

parameter p(Xi) , that is, P (Yi = 0) = 1− p(Xi) and P (Yi = 1) = p(Xi) . The “ideal”

discrimination rule is ρ(x) = 1 (p(x) ≥ π0) where π0 is the prior probability of the class

zero. Since the function p(x) is usually unknown it is replaced by its estimate p̂ .

Nonparametric methods of estimating the function p are based on local averaging.

Two typical examples are given by the k -nearest neighbors ( k -NN) estimate and the

kernel estimate. For a given k , define for every point x in x the subset Dk(x) of the

design X1, . . . , Xn containing the k nearest neighbors of x . Then the k -NN estimate

of p(x) is defined by averaging the observations Yi over Dk(x) :

p̃k(x) = k−1
∑

Xi∈Dk(x)

Yi .

The definition of the kernel estimate of p(x) involves a univariate kernel function K(t)

and the bandwidth h :

p̃h(x) =
n∑

i=1

K

(
ρ2(x, Xi)

h2

)
Yi

/ n∑

i=1

K

(
ρ2(x,Xi)

h2

)
.

Both methods require the choice of a smoothing parameter.

The AWS method can be viewed as a sophisticated extension of both methods us-

ing the structural adaption idea. Namely, for estimating the function p at the points

X1, . . . , Xn we can directly apply the AWS procedure corresponding to the local Bernoulli

model from Example 2.2. In order to classify additional observations Xn+1, . . . , Xn+m

the function p has to be estimated in these points. This can be easily done by applying

AWS to the “extended” sample (Xi, Yi) for i = 1, . . . , n + m , with arbitrary Yi for

i > n , and specifying all weights w
(k)
ij with j > n as zero within the iterative process.

Example 7.1. To illustrate the behavior of AWS in this context we use the data from a

simulated two-dimensional discriminant analysis example from Hastie et.al. (2001), page

13. The data and information how they are constructed are available from http://www-

stat.stanford.edu/ tibs/ElemStatLearn/. They consist of 200 training observations, 100

from each class. The probability densities for each class are mixtures of Gaussians, see

et.al. (2001), page 17, for details.

Figure 4 illustrates the classification rules for the ideal Bayes rule, the k -nearest

neighbor rule with optimal k = 7 , the classification rule obtained by the symmetric
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Figure 4: Classification rules obtained by the optimal Bayes decision, the best k-nearest neighbor
rule, adaptive weights smoothing (AWS) and the best rule based on kernel estimation.
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Figure 5: Dependence of the classification error on the main smoothing parameter rules defined
by k-nearest neighbor, AWS and kernel estimation.

version of AWS with default value of λ and h∗ = 10 , and the classification rule obtained

by the kernel estimate using an Epanechnicov kernel with optimal bandwidth h = 0.9 .

In each case the estimated, or true, function p(x) are provided together with the 0.5 -

contour line defining the classification rule.

Additionally a 10-dimensional data set has been created adding 8 i.i.d U(−1, 1)

nuisance components to each observation. Figure 5 shows graphs of error rates for d = 2

and d = 10 , as functions of the main smoothing parameter for the rules defined by k-

nearest neighbor, AWS with symmetric and a-symmetric stochastic penalty, and kernel

estimation. Error rates are obtained by classification of 6831 points in predictor space.

Numerical integration with respect to class probabilities and Monte Carlo integration are
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used in the 2D- and 10D-case, respectively. The ideal Bayes risk is given for a comparison.

Note that the AWS procedure produces the lowest classification errors between the

three methods and that the low values are obtained over a wide range of λ -values, with

our default setting, λ = 3.9 and λ = 4.8 for the a-symmetric and symmetric case,

respectively, being conservative for classification. The choice of a smoothing parameter

for the other methods is rather critical, with optimal values strongly depending on d

and a suboptimal choice leading to significant increases of the error rate.

8 Application to tail index estimation problem

Let X1, ..., Xn be a sample from a distribution F , and Xn,1 ≥ ... ≥ Xn,n be their order

statistics. The target of the analysis is the tail behavior of this distribution. A popular

approach is based on the assumption of a polynomial decay of the value 1 − F (x) in

the form 1 − F (x) = x−1/αL(x) where L(x) is a slowly varying function and α is the

parameter of interest which is usually referred to as the tail index. The popular Hill

estimate, Hill (1975), of α is defined as

α̂n,k =
1
k

k∑

i=1

log
Xn,i

Xn,k+1
,

where k is the number of upper statistics used in the estimation. There is a vast literature

on the asymptotic properties of the Hill estimate. Weak consistency was established

by Mason (1982), under the conditions that k → ∞ and k/n → 0 as n → ∞ . A

strong consistency result can be found in Deheuvels et.al. (1988). However, practical

applications of this estimate meet serious problems, see e.g. Embrechts et.al. (1997,

p.351). The main difficulty is to chose the parameter k . Another problem is related to

the treatment of L(x) which may seriously affect the performance of the estimate, see

Embrechts et.al. (1997). Grama and Spokoiny (2002) proposed a new method of adaptive

estimation of the parameter α by reducing the original problem to the inhomogeneous

exponential model and applying a pointwise adaptive estimation procedure. Here we

briefly discuss how the AWS procedure can be used for the same purpose.

Suppose that the distribution F (x) is supported on (a,∞) where a > 0 is a fixed

real number. Let the function F be strictly increasing and let it have a continuous density

f . Define the function α(x) by the equation

1
α(x)

=
xf(x)

1− F (x)
= −

d
dx log (1− F (x))

d
dx log x

, x ≥ a. (8.1)
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Since F (a) = 0 , the d.f. F can be represented as

F (x) = 1− exp
(
−

∫ x

a

dv

vα(v)

)
, x ≥ a. (8.2)

Our basic condition is that the function α(x) , x > a , can be approximated by a constant

for large values of x . This is, e.g. the case if there exists an α > 0 such that

lim
x→∞α(x) = α. (8.3)

In such a situation, α is precisely the tail index parameter, see the representation theo-

rems in Seneta (1976) or Bingham et.al. (1987).

The problem is to find a number k such that the function α(x) , x ≥ a , can be

well approximated on the set {Xn,1, ..., Xn,k} by the value α(Xn,1) and to estimate this

value. The intuitive meaning of this is to find a Pareto approximation for the tail of

the d.f. F on the data set {Xn,1, ..., Xn,k} . Note that this problem is different from

estimating the index of regular variation α = α(∞) . In many examples, the values

α(Xi) are essentially different from α(∞) for all Xi observed for reasonable sample

sizes. A typical example is delivered by the so called “Hill horror plot” corresponding to

the distribution F (x) = 1− x−1 log(x) .

The function α(·) will be estimated from the approximating exponential model at

the points Xi . The construction of the approximating exponential model employs the

following lemma, called Renyi representation of order statistics.

Lemma 8.1. Let X1, ..., Xn be i.i.d. r.v.’s with common strictly increasing d.f. F and

Xn,1 > ... > Xn,n be the order statistics pertaining to X1, ..., Xn . Then the r.v.’s

ξi = i log
1− F (Xn,i+1)
1− F (Xn,i)

, i = 1, ..., n− 1.

are i.i.d. standard exponential.

Proof. See e.g. Reiss (1989) or Example 4.1.5 in Embrechts et.al. (1997).

Let Yi = i log Xn,i

Xn,i+1
, i = 1, ..., n− 1 . Then Yi = αiξi , i = 1, ..., n− 1 , where

αi = − log
Xn,i

Xn,i+1

/
log

1− F (Xn,i)
1− F (Xn,i+1)

.

By (8.1) the value αi can be regarded as an approximation of the value of the function

α (·) at the point Xn,i+1 . More precisely, the mean value theorem implies

αi = α

(
Xn,i+1 + θn,i+1

Xn,i −Xn,i+1

Xn,i

)
,
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Table 5: MAE of tail-index estimation by AWS for some distributions.

sample size
distribution statistic 100 200 400 800 1600

Pareto MAE 0.086 0.062 0.046 0.034 0.027
Bias 0.002 0.001 -0.001 0.002 0.005

Mean(α(X1,n) ) 1.000 1.000 1.000 1.000 1.000
Normal MAE 0.269 0.197 0.155 0.132 0.110

Bias 0.268 0.196 0.155 0.132 0.110
Mean(α(X1,n) ) 0.125 0.107 0.095 0.083 0.075

t2 MAE 0.229 0.177 0.140 0.103 0.082
Bias 0.221 0.168 0.134 0.097 0.073

Mean(α(X1,n) ) 0.508 0.504 0.502 0.501 0.500
Cauchy MAE 0.238 0.166 0.129 0.103 0.077

Bias 0.192 0.126 0.100 0.081 0.057
Mean(α(X1,n) 1.000 1.000 1.000 1.000 1.000

with some θn,i+1 ∈ [0, 1] , for i = 1, ..., n − 1 . These simple considerations reduce the

original model to the following inhomogeneous exponential model

Yi = αiξi, i = 1, ..., n− 1, (8.4)

where α = (α1, ..., αn−1) is a unknown parameter vector. It can be estimated by the AWS

procedure for the local exponential model, see Example 2.3. The tail index parameter

corresponds to the most left piece of local homogeneity of the varying parameter α , or

equivalently, to the value α1 . So we use α̂1 as the estimate of the tail index parameter.

To illustrate the properties of this estimate we present some simulated results and

apply the procedure to the exchange rate data.

Example 8.1. Tail indices are estimated for four distributions, using the Pareto-distri-

bution with tail index α = 1 , the absolute values of standard normal random variables

(RV), absolute values of t2 -distributed RV’s and absolute values of Cauchy distributed

RV’s. Table 2 reports the MAE for estimating α(Xn,1) , the estimated bias, i.e. the

mean of α̂1 − α(Xn,1) , and the mean value of α(Xn,1) , with α(x) defined by (8.1).

Results are obtained from 500 simulations. The asymmetric version of the stochastic

penalty with default parameters and h∗ = 4n is used. The results are very stable and

nicely improve with the growing sample size. The bias component in the risk is due to

the error of local approximation of the function α(x) near the extreme statistic Xn,1 by

a constant within the local model W1 centered at the point Xn,1 .

Example 8.2. We reconsider the data used in Example 6.2. The estimated tail index of
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the distribution of absolute logarithmic returns |Rt| of the US $ / DM exchange rate is

0.274 . This estimate corresponds to the local model centered at the extreme statistics

|R(1)| = maxt |Rt| . Positive weights are supported on the upper 277 values |Rt| . This

means that α1 is nothing but the Hill estimate with the adaptive window size 277. The

similar tail-index estimates for the standardized absolute logarithmic returns |Rt|/σ̂t

with σ̂t being the AWS volatility estimate obtained in Example 6.2 equal to 0.1646 .

Under the hypothesis of a time homogeneous volatility in model (6.1) the P-value,

obtained by Monte-Carlo, of the observed estimate is about 0.001 , clearly rejecting this

hypothesis for the data at hand. The corresponding P-value of the tail-index estimates for

the standardized absolute logarithmic returns is 0.596 not contradicting the hypothesis

of homogeneity for the standardized returns.

9 Some important properties of AWS

This section discusses some properties of the proposed AWS procedure. In particular we

establish the “propagation condition” which means a free extension of every local model

in a homogeneous situation, leading to a nearly parametric estimate at the end of the

iteration process. Further we discuss the rate of estimation for a smooth function θ(x) .

9.1 Behavior inside homogeneous regions. Propagation condition

The procedure is designed to provide a free extension of every local model within a

large homogeneous region. An extreme case is given by a fully parametric homogeneous

model. In that case, a desirable feature of the method is that the final estimate at

every point coincides with high probability with the fully parametric global estimate.

This property which we call the “propagation” condition is proved here under some

simplifying assumptions.

The analysis of the properties of the iterative estimates θ̂
(k)
i is very difficult. The main

reason is that every estimate θ̂
(k)
i solves the local likelihood problem for the local model

defined by the weights w
(k)
ij which are random and depend on the same observations

Y1, . . . , Yn . To tackle this problem we make the following assumption:

(A0) for every step k an independent sample Y1, . . . , Yn is available so that the weights

w
(k)
ij are independent of the sample Y1, . . . , Yn for every k .

This assumption can be realized by splitting the original sample into k∗ subsamples.

Since the number of steps k∗ is only of logarithmic order this split can change the
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quality of estimation only by a logarithmic factor. Of course, such a split is only a

theoretical device, a possibility of using the same sample for all steps of the algorithm

still requires further justification.

In our study we restrict ourselves to the case of the varying coefficient exponential

family, which is in agreement with all our examples:

(A1) (Pθ, θ ∈ Θ ⊆ IR) is an exponential family with a one-dimensional parameter.

The case of a multi-parameter exponential family can be considered similarly but would

be technically much more involved. To simplify the presentation we also assume that

(A2) The statistical penalty s
(k)
ij is defined via the likelihood ratio test statistic T ◦ij

from (3.2) in Section 3.3.

In our procedure the statistic Tij from (3.3) or its symmetrized version is applied. How-

ever, the essential difference between Tij and T ◦ij may occur only in the situations when

the local models Wi and Wj are strongly unbalanced, which do not meet in the specific

cases considered in our theoretical study.

First we consider a homogeneous situation which corresponds to a global parametric

model with observations Y1, . . . , Yn following a distribution Pθ from the given exponen-

tial family. The underlying idea is to apply a nonasymptotic version of the Wilks theorem

that claims the asymptotic χ2 -distribution of the test statistic 2L(W, θ̂)− 2L(W, θ) un-

der Pθ in the homogeneous situation. The reason for using precise nonasymptotic results

is that at the beginning of the iteration process every local “sample size” Ni =
∑n

j=1 wij

is small, even if the global sample size n is large. Corollary 11.1 from the Appendix

applied with z = ρλ yields in the homogeneous situation for every local model Wi

P
(
L(Wi, θ̂i)− L(Wi, θ) > ρλ

)
≤ 2e−ρλ

for every ρ ∈ (0, 1) . This immediately implies for the statistical penalty T ◦ij

P
(
T ◦ij > 2ρλ

) ≤ P
(
L(Wi, θ̂i)− L(Wi, θ) > ρλ

)
+ P

(
L(Wj , θ̂j)− L(Wj , θ) > ρλ

)

≤ 4e−ρλ (9.1)

leading to the following results.

Theorem 9.1. Let (A0), (A1) and (A2) be fulfilled. Suppose that θ(Xi) ≡ θ . If λ ≥
C log n with a constant C depending on the kernel Kst only, then for each iteration k

P

(
min

i,j=1,...,n
Kst(s

(k)
ij ) > 1/2

)
≥ 1− 4/n.
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Proof. Define ρ by Kst(ρ) = 1/2 . The bound (9.1) implies for every iteration k

P

(
min

i,j=1,...,n
Kst(s

(k)
ij ) > 1/2

)
= P

(
max

i,j=1,...,n
T

(k)
ij ≤ ρλ

)
≥ 1−

n∑

i,j=1

2e−ρλ ≥ 1− 1/n

provided that λ ≥ 3ρ−1 log n . This yields the assertion.

This result means that the statistical penalty entering in the weights w
(k)
ij at every

iteration k does not restrict a free extension of every local model.

Corollary 9.1. Let the assumptions (A0), (A1) and (A2) be fulfilled and θ(Xi) ≡ θ . If

λ ≥ C log n and if h∗ is sufficiently large then the last step estimate θ̂i = θ̂
(k∗)
i fulfills

for every z ≥ 0

P
(
nQ(θ̂i, θ) > 2z

)
≤ 4/n + 2e−z.

Proof. If h∗ is sufficiently large then, at the final iteration k = kn , we have Kloc(l
(k)
ij ) ≈

1 for every pair (i, j) . Theorem 9.1 guarantees Kst(s
(k)
ij ) ≥ 1/2 , hence w

(k)
ij ≥ 1/2 for

all (i, j) . This yields N
(k)
i ≥ n/2 and the result follows from Theorem 11.1.

Due to this result the quantity nQ(θ̂i, θ) is bounded with a high probability. Since

Q(θ′, θ) ≈ Iθ|θ′ − θ|2/2 , this result claims the root-n consistency of the estimate θ̂i . In

fact, one can show an even stronger assertion: with a high probability it holds θ̂i ≈ θ̂

where θ̂ is the global (parametric) MLE of θ from the whole sample Y1, . . . , Yn . The

explanation is as follows. Our way of computing the statistical penalty s
(k)
ij does not take

into account that two “local” models Wi and Wj have nonzero intersection. This means

that there are some points Xl such that the weights w
(k)
il and w

(k)
jl are simultaneously

positive and hence, the estimates θ̂
(k)
i and θ̂

(k)
j are dependent and positively correlated.

In the homogeneous situation, for every two fixed points, this dependence grows with

iteration, so that the estimates θ̂
(k)
i and θ̂

(k)
j become more and more close to each other.

In the extreme case at the end of iteration process both local models become very close

to each other and the statistical penalties vanish at the end of iteration process.

The propagation condition can be easily extended to the case of a large homogeneous

region G in X . Define for every x ∈ G the distance from x to the boundary of G ,

i.e. ρG(x) = min{ρ(x,Xj) : Xj /∈ G} . At every step k we consider only internal points

Xi ∈ G which is separated from the boundary with the distance 2h(k) :

G(k) = {Xi ∈ G : ρG(Xi) ≥ 2h(k)}.

The next result claims the propagation condition (free extension) for all such points.
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Theorem 9.2. Let the assumptions (A0), (A1) and (A2) be fulfilled. Suppose that

θ(Xi) ≡ θ for all Xi from some region G in X . If λ ≥ C log n with some constant C

depending on the kernel Kst only, then for every iteration k

P

(
min

(i,j): Xi∈G(k), ρ(Xi,Xj)≤h(k)
Kst(s

(k)
ij ) > 1/2

)
≥ 1− 4/n.

Proof. It suffices to note that if Xi ∈ G(k) then the local model W
(k)
i as well as all

the models W
(k)
j for all Xj with ρ(Xi, Xj) ≤ h(k) are homogeneous. Hence, the result

follows again by Theorem 11.1.

9.2 Rate of estimation for a smooth function θ(·). Spatial adaptivity

Here we consider the case when θ(·) is a Lipschitz function in some neighborhood of a

point x ∈ X . We first show that this condition ensures a free extension of all the local

models within this neighborhood until some critical bandwidth h of order n−1/(2+d) cor-

responding to the classical nonparametric estimation. This implies the usual nonparamet-

ric rate of estimation n−1/(2+d) of the function θ(x) (corresponding to the smoothness

degree one) if the AWS procedure is performed with a control step, see Remark 9.1.

Let a design point x = Xi for some i be fixed, and let h be some bandwidth used

in the iteration procedure. We define Uh(x) = {x′ : |x′ − x| ≤ h} . We consider the

following conditions which are specified for the fixed point x and the bandwidth h :

(A3) The function θ(·) fulfills |θ(Xi)− θ(Xj)| ≤ L|Xi −Xj | for all Xj ∈ Uh(Xi) .

(A4) There are two positive constants I∗ ≤ I∗ such that I∗ ≤ Iθ(x′) ≤ I∗ for all

x′ ∈ U2h(x) , where Iθ = C ′(θ) is the Fisher information of the family (Pθ) at θ .

(A5) The design points X1, . . . , Xn are elements of the Euclidean space IRd and for

some positive constants CX1 ≤ CX2 holds

CX1 ≤ 1
nhd

n∑

j=1

Kloc(|Xi −Xj |2/h2) ≤ CX2.

(A6) The kernel Kloc is compactly supported on [0, 1] .

The smoothness condition (A3) allows to approximate the function θ(x) by a constant

within each local model with the precision Lh . For every Xi ∈ Uh(x) and every k ,

define θ
(k)
i =

∑n
j=1 w

(k)
ij θj

/∑n
j=1 w

(k)
ij . Then

∣∣θ(k)
i − θi

∣∣ ≤ Lh. (9.2)
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The next result claims the propagation condition (free extension) for the local models

W
(k)
i until h(k) ≤ h .

Theorem 9.3. Let the assumptions (A0), through (A6) be fulfilled. If λ ≥ C log n with

some constant C depending on the kernel Kst only, and if the bandwidth h fulfills

2CX2 I∗L2 nhd+2 ≤ ρλ/6 (9.3)

where ρ is defined by K(ρ) = 1/2 , then for every iteration k with h(k) ≤ h

P

(
min

j: Xj∈Uh(Xi)
Kst(s

(k)
ij ) > 1/2

)
≥ 1− 4/n, (9.4)

the estimate θ̂
(k)
i for the reference point x = Xi fulfills

P
(
N

(k)
i Q

(
θ̂
(k)
i , θ

(k)
i

)
> λ

)
≤ 2/n (9.5)

and it holds with a probability at least 1− 4/n

∣∣∣θ̂(k)
i − θi

∣∣∣ ≤ Lh + 2
√

λ/(I∗CX1nhd). (9.6)

Remark 9.1. The proof is given in the Appendix. The result (9.6) indicates that the first

k iterations of the procedure (until h(k) ≤ h ) lead to a reasonable quality of estimation

of the function θ(·) . However, the procedure has to prevent from losing the obtained

quality of estimation during further iterations. This is precisely what the additional

control step of the original AWS procedure from PS2000, in which the new estimate θ̂
(k)
i

is compared with all the previous estimates θ̂
(k′)
i for k′ < k , does. If the difference

θ̂
(k)
i − θ̂

(k′)
i became significant, the new estimate was not accepted and the previous step

estimate was used. This control step is a very useful device for proving some theoretical

properties of the procedure, because it ensures that the gained quality of estimation will

not be lost in further iterations. In the case of local exponential family, this control step

will accept the estimate θ̂
(k)
i only if

N
(k′)
i Q(θ̂(k′)

i , θ̂
(k)
i ) ≤ τ, k′ = 1, . . . , k − 1, (9.7)

that is, when the differences between the new estimate θ̂
(k)
i and all the previous ones at

the same point Xi are not significant. Our experience with the procedure only shows an

effect of the control step in very particular situations, leaving its use questionable. The

use of the “memory” parameter η can be regarded as a soft version of the control step.

Although the procedure applies a soft form of the control step, we only show how the

hard control step can be used for proving the rate result.
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Theorem 9.4. Let the conditions of Theorem 9.3 be fulfilled and let the procedure in-

volve the control step from (9.7) with τ ≥ λ . Then the last step estimate θ̂i fulfills

N
(k)
i Q

(
θ̂
(k)
i , θ̂i

) ≤ τ and hence, it holds with a probability at least 1− 4/n

∣∣∣θ̂i − θi

∣∣∣ ≤ Lh + 2
√

λ/(I∗CX1nhd) + 2
√

τ/(I∗CX1nhd). (9.8)

Proof. This result is a direct corollary of Theorem 9.3 and (9.7).

Optimization of the bandwidth h under condition (A3) leads to the choice h ≈
{4λ/(I∗nL2)}−1/(d+2) and to an accuracy of estimation of order {λ/(I∗n)}1/(d+2)L2/(d+2)

which is optimal, up to a logarithmic factor, for the problem of estimation of a Lipschitz

function at a point. This means that our procedure is pointwise adaptive in the sense

that it automatically adapts to an unknown local smoothness degree measured by the

Lipschitz constant L . As shown in Lepski et.al. (1997) this property automatically leads

to rate optimality in the Sobolev and Besov function classes B1
p,q .

10 Conclusion and outlook

This paper presents a new method of adaptive nonparametric estimation based on the

adaptive weights idea. An important feature of the AWS procedure is that it applies to

a broad class of nonparametric models in a unified way. In many cases its adjustment

to the particular situation is trivial. For all the examples in this paper, we essentially

applied the same procedure. Sometimes, a preliminary model (data) transformation is

required, as in tail index or density estimation.

The procedure can be applied to smooth functions and functions with discontinuities,

it adapts automatically to the unknown structure of the model.

The procedure allows for arbitrary dimensionality of X . This makes it feasible to

apply the procedure to e.g. image denoising or estimation of a multivariate density and

to use it in case of a multidimensional explanatory vector Xi .

The AWS procedure is computationally straightforward and the numerical complexity

can be easily controlled by restricting the largest bandwidth h∗ , see Section 4.4.

Applications of the AWS procedure are however restricted to models which allow a

good piecewise constant approximation. If the underlying model function θ is smooth

the local constant approximation may lead to a substantial bias. This problem is well

recognized in nonparametric statistics, see e.g. Fan and Gijbels (1996) and local linear

(polynomial) smoothing is preferable for such cases. An extension of the AWS approach
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to the local linear case is possible but it requires a separate treatment. In particular, the

procedure has to be significantly modified because the local likelihood equation cannot

be explicitly solved in this case. Local linear (polynomial) regression by AWS is discussed

in Polzehl and Spokoiny (2003b). AWS for a local linear exponential family is discussed

in context of generalized linear models in Grama, Polzehl and Spokoiny (2003).

11 Appendix

We present some general results for the local exponential family model. The considered

exponential family (Pθ , θ ∈ Θ ⊆ IR) is described by the functions C(θ) and B(θ) ,

with p(y, θ) = dPθ/dP (y) = exp (C(θ)y −B(θ)) and EθY =
∫

yp(y, θ)dP (y) = θ for all

θ ∈ Θ , see Section 3.2. We suppose U(y) = y to simplify our notation.

We assume the observation Yi to be Pθi -distributed with θi depending on location

Xi . Let also a local model W be described by the weights wi ∈ [0, 1] for i = 1, . . . , n .

The corresponding local MLE is given as θ̂ =
∑n

i=1 wiYi

/∑n
i=1 wi . We use the represen-

tation θ̂ = S/N with S =
∑n

i=1 wiYi , N =
∑n

i=1 wi and denote θ = N−1
∑n

i=1 wiθi .

Our first result can be regarded as a nonasymptotic local version of the Wilks theorem.

Namely, we show that the expression L(W, θ̂, θ) is uniformly bounded with a high prob-

ability. It is convenient to introduce the parameter υ = C(θ) and define υ = C(θ) and

D(υ) = B(θ) = B(C−1(υ)) . Since C ′(θ) > 0 , the new parameter υ is uniquely defined.

By simple analysis D′(υ) = θ = C−1(υ) and D′′(υ) = 1/C ′(θ) = 1/I(θ) = 1/I(C−1(υ)) .

Moreover, Q(υ1, υ2) = D(υ2)−D(υ1)− (υ2−υ1)D′(υ1) is the Kullback-Leibler distance

between two parametric distributions corresponding to the parameters υ1 and υ2 . In

what follows we use the notation q(u|υ) = Q(υ, υ + u) = D(υ + u)−D(υ)− uD′(υ) and

L(W, θ, θ′) = L(W, θ)− L(W, θ′) for any pair θ, θ′ .

Theorem 11.1. Let the Fisher information I(θ) = C ′(θ) be positive on Θ . For a given

z ≥ 0 , let U(W, z) be the set of solutions u of equation q(u|υ) =
∫ u
0 xD′′(υ + x)dx =

z/N . If there is some α > 0 such that for all µ ∈ (0, 1] and all u ∈ U(W, z)

q(±w`µu|υ`) ≤ (1 + α)w`µ
2q(u|υ), ` = 1, . . . , n, (11.1)

then

P
(
L(W, θ̂, θ) > z

)
≤ 2e−z/(1+α).

Remark 11.1. The condition (11.1) can be easily checked in many particular situations.

We give two typical examples. The first one corresponds to the homogeneous case when
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all υi coincide with their mean υ . Then (11.1) is fulfilled automatically with α = 0 .

Indeed the function q(·|υ) satisfies q′(u|υ) = D′(υ + u)−D′(υ) and q′′(u|υ) = D′′(υ +

u) = 1/I(C−1(υ + u)) > 0 and thus, it is convex. Since also q(0|υ) = 0 , it holds

q(wa|υ) ≤ wq(a|υ) for every w ∈ [0, 1] and every a implying (11.1) with α = 0 and

arbitrary u . Since this special case is used in the proof of the “propagation condition”

in Section 9, we present it as a separate statement.

Corollary 11.1. If θi ≡ θ , then P
(
L(W, θ̂, θ) > z

)
≤ 2e−z for every z > 0 .

In the general inhomogeneous situation, the Taylor expansion yields that q(wu|υ) =

D(υ + wu)−D(υ)−wuD′(υ) = 1/2w2u2D′′(υ + τwu) for some τ ∈ [0, 1] . If the Fisher

information I(θ) is bounded from zero and infinity, that is, I∗ ≤ I(θ) ≤ I∗ for all θ ∈ Θ ,

then 1/I∗ ≤ D′′(υ) ≤ 1/I∗ for all υ and one easily gets for every u ∈ U(W, z) that

u2 ≤ 2zI∗/N . Therefore, the condition (11.1) is certainly fulfilled with a small α ≥ 0

for the case when all υi are close to the mean υ or when the weights wi are very small

for all ` with a large value |υ` − υ| .
Proof of Theorem 11.1. The log-likelihood ratio can be rewritten for the new

parameter υ as

L(W, θ, θ) = L(W,υ, υ) = (υ − υ)S −N
(
D(υ)−D(υ)

)
.

The MLE υ̂ of the parameter υ is defined by maximizing L(W,υ, υ) , that is, υ̂ =

argsupυ L(W,υ, υ) .

Lemma 11.1. For given z , there exist two values υ∗ > υ and υ∗ < υ such that

{L(W, υ̂, υ) > z} ⊆ {L(W,υ∗, υ) > z} ∪ {L(W,υ∗, υ) > z}.

Proof. It holds

{L(W, υ̂, υ) > z} =
{

sup
υ

[
S(υ − υ)−N

(
D(υ)−D(υ)

)]
> z

}

⊆


S > inf

υ>υ

z + N
(
D(υ)−D(υ)

)

υ − υ



 ∪

{
−S > inf

υ<υ

z + N
(
D(υ)−D(υ)

)

υ − υ

}
.

The function f(u) =
[
z + N

(
D(υ + u)−D(υ)

)]
/u attains its minimum at some point

u satisfying the equation

z + N
(
D(υ + u)−D(υ)

)−NuD′(υ + u) = 0

or, equivalently, ∫ u

0
xD′′(υ + x)dx = z/N.
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Therefore
{

S > inf
υ>υ

z + N
(
D(υ)−D(υ)

)

υ − υ

}
=

{
S >

z + N
(
D(υ∗)−D(υ)

)

υ − υ

}

⊆ {L(W,υ∗, υ) > z}

with υ∗ = υ + u . Similarly
{
−S > inf

υ<υ

z + N
(
D(υ)−D(υ)

)

υ − υ

}
⊆ {L(W,υ∗, υ) > z}

for some υ∗ < υ .

Now we bound the probability P (L(W,υ, υ) > z) for every υ . Note that the equality

θ = D′(υ) implies for u = υ − υ

L(W,υ, υ) = u(S −Nθ)−N
[
D(υ + u)−D(υ)− uD′(υ)

]

= u(S −Nθ)−Nq(u|υ).

Now the result of the theorem is a direct corollary of the following general assertion.

Lemma 11.2. For every u and every z

r(u, z) := log P (L(W,υ + u, υ) > z)

≤ −µz − µNq(u|υ) +
n∑

`=1

q(uµw`|υ`).

Also

r1(u, z) := log P (L(W,υ + u, υ) < −z − 2Nq(u|υ))

≤ −µz − µNq(u|υ) +
n∑

`=1

q(−uµw`|υ`).

Moreover, if u fulfills (11.1) then

r(u, z) ≤ −z/(1 + α), r1(u, z) ≤ −z/(1 + α).

Proof. We apply the Chebyshev exponential inequality: for every positive µ

r(u, z) ≤ −µz − µNq(u|υ) + log E exp
(
uµ(S −Nθ)

)
.

The independence of the Y` ’s implies

log E exp
(
uµ(S −Nθ)

)
= log E exp

(
n∑

`=1

uµw`(Y` − θ`)

)
=

n∑

`=1

log Eeuµw`(Y`−θ`) .
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For every constant a and every ` ≤ n , the equalities log
∫

eυ`y−D(υ`)P (dy) = 0 and

θ` = D′(υ`) yield

log Eea(Y`−θ`) = −aθ` + log
∫

e(a+υ`)y−D(υ`)P (dy)

= −aD′(υ`) + D(υ` + a)−D(υ`) = q(a|υ`).

Therefore

r(u, z) ≤ −µz − µNq(u|υ) +
n∑

i=1

q(uµw`|υ`).

This inequality applied with µ = (1 + α)−1 and (11.1) imply

r(u, z) ≤ −µz − µNq(u|υ) + (1 + α)µ2
n∑

i=1

w`q(u|υ) ≤ −z/(1 + α).

Similarly

r1(u, z) = P
(−u(S −Nθ) + Nq(u|υ) > z + 2Nq(u|υ)

)

≤ −µz − µNq(u|υ) +
n∑

i=1

q(−uµw`|υ`).

and the lemma follows.

Next we consider the likelihood ratio test statistic T ◦ij defined in Section 3.3 for two

local models Wi and Wj . We show that if the difference between two local models

defined in terms of the Kullback-Leibler distance, is sufficiently small, then with a large

probability, T ◦ij is smaller then ρλ for some ρ ≤ 1 .

Define θi =
∑n

`=1 wi`θ`

/∑n
`=1 wi` and similarly θj . Define also the mixed model

Wij = (Wi + Wj)/2 and θij = (Niθi + Njθj)/(Ni + Nj) .

Theorem 11.2. Let ρ ∈ (0, 1] and z = ρλ/6 . Let the condition (11.1) be fulfilled for

the local model Wi with u = |C(θi) − C(θij)| and with u ∈ U(Wi, z) , and for the local

model Wj with u = |C(θj)− C(θij)| and with u ∈ U(Wj , z) . Then the condition

NiQ(θi, θij) + NjQ(θj , θij) ≤ ρλ/6 (11.2)

implies

P
(
T ◦ij > ρλ

) ≤ 4e
− ρλ

6(1+α) .

Proof. It holds

T ◦ij = L(Wi, θ̂i) + L(Wj , θ̂j)− L(Wi + Wj , θ̂ij)
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where θ̂i = Si/Ni and θ̂ij = (Si + Sj)/(Ni + Nj) . We apply this formula with θ′ = θij .

Since L(Wi + Wj , θ̂ij , θij) ≥ L(Wi + Wj , θij , θij) = 0 , it holds

T ◦ij ≤ L(Wi, θ̂i, θij) + L(Wj , θ̂j , θij).

Clearly

L(Wi, θ̂i, θij) = L(Wi, θ̂i, θi)− L(Wi, θij , θi)

Theorem 11.1 implies for every z ≥ 0 that

P
(
L(Wi, θ̂i, θi) > z

)
≤ 2e−z/(1+α).

Next, Lemma 11.2 applied with u = υi − υij = C(θi)− C(θij) implies

log P
(−L(Wi, θij , θi) > z + 2NiQ(θi, θij)

) ≤ −z/(1 + α).

Similar assertion hold for the model Wj . Therefore

P
(
T ◦ij > 4z + 2NiQ(θi, θij) + 2NjQ(θj , θij)

) ≤ 4e−z/(1+α).

This inequality with z = ρλ/6 and (11.2) imply the assertion.

We now present some sufficient conditions for separability of two local models. Namely,

we aim to establish conditions that ensure T ◦ij ≥ Aλ where A is the length of the sup-

port of the kernel Kst . With this conditions, it holds Kst(Tij/λ) = 0 and hence the new

computed weight wij will be equal to zero.

Theorem 11.3. Let ρ ∈ (0, 1] and let the condition (11.1) be fulfilled for the local model

Wi with u = |C(θi)−C(θij)| , for the model Wj with u = |C(θj)−C(θij)| and for the

mixed model Wij with u ∈ U(Wij , ρλ) . Then the conditions

NiQ(θi, θij) ≥ (6ρ + A)λ, NjQ(θj , θij) ≥ (6ρ + A)λ, (11.3)

imply

P
(
T ◦ij < Aλ

) ≤ 4e−ρλ/(1+α).

Proof. Similarly to the proof of Theorem 11.2 we use the representation

T ◦ij = L(Wi, θ̂i, θij) + L(Wj , θ̂j , θij)− L(Wi + Wj , θ̂ij , θij)

Theorem 11.1 applied to the local model Wij implies

P
(
L(Wij , θ̂ij , θij) > ρλ

)
≤ 2e−ρλ/(1+α).
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Since θ̂i maximizes L(Wi, θ, θij) and similarly for θ̂j , it follows

P
(
T ◦ij < L(Wi, θi, θij) + L(Wj , θj , θij)− 2ρλ

) ≤ 2e−ρλ/(1+α). (11.4)

Lemma 11.2 applied to L(Wi, θi, θij) = −L(Wi, θij , θi) with z = −(ρ + A/2)λ and

µ = (5ρ + A/2)/{2(6ρ + A)(1 + α)} and the conditions (11.1) and (11.3) imply

log P
(
L(Wi, θi, θij) < (ρ + A/2)λ

)

= log P
(
L(Wi, θij , θi) > −(ρ + A/2)λ

)

≤ (ρ + A/2)λµ−NiQ(θi, θij)µ + (1 + α)NiQ(θi, θij)µ2

≤ (ρ + A/2)λµ− (6ρ + A)λµ + (1 + α)(6ρ + A)λµ2

= − (5ρ + A/2)2λ
4(6ρ + A)(1 + α)

≤ − ρλ

(1 + α)
.

This and a similar inequality for L(Wj , θj , θij) yield the theorem in view of (11.4).

Proof of Theorem 9.3

The propagation condition (9.4) follows similarly to the proof of Theorem 9.2. The

only difference is that in the local Lipschitz case we apply Theorem 11.2 instead of

Corollary 11.1. Let k be such that h(k) ≤ h and Xj ∈ Uh(Xi) . We apply Theorem 11.2

to the local models W
(k)
i and W

(k)
j . For this we have to check the condition (11.2).

Assumption (A5) clearly implies N
(k)
i ≤ CX2nhd and similarly for N

(k)
j . Assumption

(A3) yields |θ(k)
i −θ

(k)
j | ≤ 2Lh . Define θ

(k)
ij =

(
N

(k)
i θ

(k)
i +N

(k)
j θ

(k)
j

)/(
N

(k)
i +N

(k)
j

)
. Now

the inequality Q(θ, θ′) ≤ I∗|θ − θ′|2/2 and condition (9.3) imply

N
(k)
i Q(θ(k)

i , θ
(k)
ij ) + N

(k)
j Q(θ(k)

j , θ
(k)
ij ) ≤ CX2nhdI∗

(∣∣θ(k)
i − θ

(k)
ij

∣∣2 +
∣∣θ(k)

j − θ
(k)
ij

∣∣2
)

/2

≤ CX2nhdI∗
∣∣θ(k)

i − θ
(k)
j

∣∣2/2

≤ 2CX2I
∗L2nhd+2 ≤ ρλ/6.

Theorem 11.2 now applies with some α ≥ 0 , see Remark 11.1, yielding

P
(
s

(k)
ij < 1/2

)
≤ e

− ρλ
6(1+α) ≤ n−2

provided that λ = C log n with C fulfilling Cρ ≥ 12(1 + α) , and (9.4) follows. The

assertion (9.5) is a corollary of Theorem 11.1.

Let now h(k) = h . By (9.4) all the weights w
(k)
ij for the local model W

(k)
i satisfy

the condition w
(k)
ij ≥ 0.5Kloc(l

(s)
ij ) with a high probability. This and Assumption (A5)

yield N
(k)
i ≥ 0.5CX1nhd . Since also Q

(
θ̂
(k)
i , θ

(k)
i

) ≥ I∗
∣∣θ̂(k)

i − θ
(k)
i

∣∣/2 , the last assertion

of the theorem follows by (9.2).
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[5] Deheuvels, P., Häusler, E. and Mason, D.M. (1988). Almost sure convergence of the Hill
estimator. Math. Proc. Cambridge Philos. Soc., 104 371–381.

[6] Efron, B., Tibshirani, R. (1996). Using specially designed exponential families for density
estimation. Ann. Statist., 24, 2431–2461.
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