
Supporting Global Numerical Optimization of Rational

Functions by Generic Symbolic Convexity Tests

Winfried Neun∗, Thomas Sturm†, Stefan Vigerske‡

Abstract

Convexity is an important property in nonlinear optimization since it allows to ap-
ply efficient local methods for finding global solutions. We propose to apply symbolic
methods to prove or disprove convexity of rational functions over a polyhedral domain.
Our algorithms reduce convexity questions to real quantifier elimination problems. Our
methods are implemented and publicly available in the open source computer algebra
system Reduce. Our long term goal is to integrate Reduce as a “workhorse” for symbolic
computations into a numerical solver.

1 Introduction

Convexity is an important property in nonlinear optimization since it allows to apply efficient
local methods for finding global solutions. However, proving convexity of a general nonlinear
function is a non-trivial task, for which no general methods are known. In this paper we
propose to apply methods originated in computer logic to prove or disprove convexity in the
special case of rational functions.

A nonlinear optimization problem (NLP) is a problem of the following form:

minimize g0(x), (P)
such that gi(x) ≤ 0, i = 1, . . . ,m,

x ∈ X,

where X ⊆ Rn is polyhedral and gi : Rn → R, i = 0, . . . ,m, are functions that are dif-
ferentiable for all x ∈ X. The function g0 is the objective function, and the gi(x) ≤ 0 for
i = 1, . . . ,m are constraints. The feasible set of (P) is the set of feasible points in X that
satisfy all constraints. In the following we assume that the feasible set is non-empty.

Nonlinear optimization problems arise in various applications, e.g., engineering design,
logistics, manufacturing, and the chemical and biological sciences [2, 12, 13, 14, 21].

We recall that a set A is called convex, if for all x, y ∈ A and for all λ ∈ [0, 1] we have
λx + (1 − λ)y ∈ A. Further, a function f : Rn → R is called convex on a convex set A ⊆ Rn

if for all x, y ∈ A and for all λ ∈ [0, 1] we have

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y).
∗Zuse Institute Berlin, Takustraße 7, 14195 Berlin, Germany, neun@zib.de
†Departamento de Matemáticas, Estad́ıstica y Computación, Universidad de Cantabria, 39071 Santander,

Spain, sturmt@unican.es
‡Humboldt University Berlin, Unter den Linden 6, 10099 Berlin, Germany, stefan@math.hu-berlin.de,

supported by the DFG Research Center Matheon Mathematics for key technologies in Berlin

1



A feasible point x̄ of (P) is said to be a global optimum of (P), if there is no other feasible
point that has a lower objective value than x̄. Further, a feasible point x̄ is said to be a local
optimum of (P), if there exists no other feasible point in a neighbourhood of x̄ which has a
lower objective value than x̄. Clearly, every global optimum of (P) is also a local optimum.
However, in general, not every local optimum is also a global optimum.

Under some regularity conditions, there exist efficient numerical algorithms to find a local
optimum of (P) [17]. On the other hand, finding a global optimum solution of (P) is very
difficult in general. However, if the set of feasible points is convex and the objective function
g0(x) is convex on the feasible set, then it can be easily seen that also every local optimum
of (P) is a global optimum. Thus, in case that an NLP is known to be convex, methods
for finding local optima can be applied for the global optimization of an NLP. A sufficient
condition for the feasible set to be convex is that every function gi(x), i = 1, . . . ,m, is convex
on X.

Even algorithms for solving nonconvex NLPs [1, 21] can profit from information about
convexity of a subset of the constraint functions. Such methods usually construct a convex
relaxation of (P), the optimal value of which yields a lower bound on the global optimum of
(P). The lower bound allows to evaluate the quality of a feasible solution of (P) and to direct
the search for a better solution. The convex relaxation is thereby obtained by replacing each
function gi(x), i = 0, . . . ,m, by a convex underestimator ği(x) that is convex and pointwise
less than or equal to gi(x) on X. The tighter these underestimators are, the better are
the lower bounds that can be expected. Unfortunately, there exists no method to construct
a tightest convex underestimator for a given function in general. Clearly, if the algorithm
knows that a function gi(x) is already convex, then ği(x) can be chosen to equal gi(x).

Existing deterministic methods for proving or disproving the convexity of a function (given
as composition of elementary expressions) with respect to bounds on its variables are based
on walking an expression tree and applying convexity rules for function compositions [11],
or estimating the spectra of the Hessian matrix or its sign in case of a univariate function
[15, 16], or deciding positive semidefiniteness of the interval Hessian [16].

All these approaches may give inconclusive results. For example, the method from [11]—
even though very fast—may fail to detect convexity of the function f(x) = −x/(1 + x) on
the set X = [0, 1], since it includes no rules for concluding convexity of a quotient of two
non-constant functions. Formulating the function as f(x) = 1/(1+x)−1, however, convexity
is proven, since the enumerator of 1/(1+x) is a positive constant, and the denominator 1 + x
is concave. The second and third method, in contrast, have no problem in proving convexity
for f(x), since they only need to prove positivity of the second derivative f ′′(x) = 2/(1 + x)3.

Nevertheless, for the function f(x) = 2x7 − 7x4 + 84x2 + 42 a method like [16] may fail
to prove convexity of f(x) on the interval [−1, 2]. In this example the second derivative is
f ′′(x) = 84(x5 − x2 + 2). Replacing each occurrence of x by [−1, 2] and applying rules for
interval arithmetic yields f ′′(x) ∈ 84 · ([−1, 32]− [0, 4] + [2, 2]) = 84 · [−3, 34], which allows no
conclusive result.

Finally, when proving or disproving convexity of a function over a set all these methods
can consider only simple bound constraints on the variables xi. These are constraints directly
bounding xi by a number. For instance, the function f(x) = (x − y)3 is obviously convex on
the set

X = { (x, y) ∈ R2 | x, y ∈ [0, 1], x ≥ y }.

However, [11] would fail to prove convexity of f(x, y) since it only considers the simple bounds

2



x, y ∈ [0, 1] and thus does not “see” that x − y ≥ 0 on X.
In this paper, we present a novel symbolic method to prove or disprove convexity of rational

functions over polyhedral sets. The key idea is to reduce convexity problems to first-order
sentences over the reals and to decide these sentences by quantifier elimination methods. Our
original contributions are the following:

• We devise a new complete symbolic method for deciding the convexity of rational func-
tions over polyhedral domains.

• Unlike existing methods, our approach is not restricted to simple bound constraints but
can process arbitrary multi-linear constraints.

• We apply positive quantifier elimination, which has been successfully used for existential
problems in the past [18, 19], to universal problems.

• All our methods discussed throughout the paper are efficiently implemented and publicly
available in the open-source computer algebra system Reduce.

• We provide and discuss a comprehensive set of benchmark computations to demonstrate
the feasibility of our method for established benchmark suites from the NLP community.

The plan of the paper is as follows: In Section 2 we make precise the special case of
the convexity problem addressed in this paper. In Section 3 we motivate and develop our
various reductions of the problem to suitable first-order sentences. In Section 4 we introduce
the concept of positive quantifier elimination and provide an algorithmic reduction of certain
convexity problems to make these accessible to this more efficient variant of quantifier elimi-
nation. In Section 5 we give asymptotic upper bounds on the time complexity of our method.
Section 6 illuminates our work from a software systems point of view and discusses some
future plans for our project. In Section 7 we discuss and analyze comprehensive benchmarks
carried out for our method. In Section 8 we finally summarize and evaluate our results.

2 Problem Definition

We are now going to precisely state the particular problem addressed in the remainder of our
paper. Recall that the exact role of this problem for nonlinear global optimization has been
made explicit in the Introduction.

We consider rational functions f ∈ Q(x1, . . . , xn) as formal objects that establish defining
terms for real functions f : Rn → R. The domain of f = p/q ∈ Q(x1, . . . , xn), denoted by
domf , is the set of all points x ∈ Rn for which the denominator q does not vanish. Note that
every real function defined in term of sums, products, and divisions of variables and rational
constants can be described by a rational function.

A set X ⊆ Rn is called polyhedral, if it can be written as the intersection of finitely many
halfspaces

X = {x ∈ Rn | Ax ≤ b }, A ∈ Qn×m, b ∈ Qm.

A rational function f is called convex on a polyhedral set X if for all x, y ∈ X and for all
λ ∈ [0, 1] we have

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y). (1)

The question we aim to answer is the following: Given a rational function f ∈ Q(x1, . . . , nn)
and a polyhedral set X ⊆ domf ⊆ Rn, decide whether or not f is convex on X.

3



3 Method

We are going to encode various criteria for convexity into first-order sentences over the lan-
guage (0, 1, +,−, ·) of ordered rings, which is also known as the Tarski algebra [20]. These
sentences are then checked automatically using real quantifier elimination procedures.

Recall our problem statement in the previous section: We are given f ∈ Q(x1, . . . , xn),
which has got integer coefficients. In addition, we are given X ⊆ domf polyhedral, which
is naturally described by a conjunction γ of linear constraints, i.e. a quantifier-free formula
in our language. To start with, our definition (1) above can be directly translated into a
first-order formula:

Lemma 1 (Naive Convexity Condition). Consider a function f = p
q ∈ Q(x1, . . . , xn) and a

formula γ in x1, . . . , xn describing a polyhedral set X = {x ∈ Rn | γ(x) } ⊆ domf . Let y1,
. . . , yn, λ be new variables, and denote:

δ = γ[y1/x1, . . . , yn/xn],
f0 = f(λx1 + (1 − λ)y1, . . . , λxn + (1 − λ)yn),
f1 = λf + (1 − λ)f(y1, . . . , yn),

where f0, f1 are obtained via evaluation homomorphisms into Q(x1, . . . , xn, y1, . . . , yn) and
computation in that field. Denote by N and D the numerator and the denominator of f0−f1,
respectively. Then f is convex on X if and only if the following first-order sentence holds:

Φ1(f, γ) = ∀x1 . . . ∀xn∀y1 . . . ∀yn∀λ(γ ∧ δ −→ ND ≤ 0).

This formulation has got 2n + 1 universal quantifiers. As we will make precise in theory
in Section 5 and demonstrate by means of comprehensive example computations in Section 7,
the number of quantifiers is the dominant measure of complexity for real quantifier elimination
in our case.

As a first optimization we are now going to reduce the number of quantifiers from 2n+1 to
n + 1. Under some natural conditions, convexity of f is directly related to certain properties
of its Hessian ∇2f . Recall that a matrix A ∈ Rn×n is positive semidefinite if zAz ≥ 0
and positive definite if zAz > 0 for all z ∈ Rn. Assume now that f is twice continuously
differentiable on X. Then the following are equivalent:

(i) f is convex on X,

(ii) for all x ∈ X the matrix (∇2f)(x) ∈ Rn×n is positive semidefinite,

(iii) for all x ∈ X the matrix (∇2f)(x) ∈ Rn×n has got exclusively non-negative eigenvalues.

This gives rise to the following algorithm, which produces an alternative first-order sentence
describing convexity:

Subalgorithm 1 (Non-negative Eigenvalues).

Input a formula γ in variables x1, . . . , xn and a function f = p
q ∈ Q(x1, . . . , xn) that is twice

continuously differentiable on X = {x ∈ Rn | γ(x) } ⊆ domf , which must be polyhedral.

Output a first-order sentence that is equivalent to true if and only if f is convex over X.

4



1. Compute ∇2f ∈ Q(x1, . . . , xn)n×n. Notice that due to the differentiation rules, the
denominators of the entries of ∇2f are powers of q.

2. Compute the characteristic polynomial

χ = det(∇2f − λI) ∈ Q(x1, . . . , xn)[λ]

where I denotes the n × n unit matrix.

3. Since χ is a linear combination of products of the entries of the matrix ∇2f − λI ∈
Q(x1, . . . , xn)[λ]n×n, it follows that all denominators occurring in the coefficients of
χ are once more powers of the denominator q of f and thus do not vanish over X.
Let ∆ denote the gcd of all these coefficient denominators and rewrite χ = χ̃

∆ , where
χ̃ ∈ Q[x1, . . . , xn, λ], ∆ ∈ Q[x1, . . . , xn]. Then for any choice x1, . . . , xn ∈ X we have
χ(λ) = 0 if and only if χ̃(λ) = 0.

Altogether we finally obtain:

Φiii(f, γ) := ∀x1 . . . ∀xn∀λ(γ −→ λ < 0 −→ χ̃ ̸= 0).

Recall from the problem statement in the previous section our definition (1) of convexity
of a function f : Rn → R on a convex set X ⊆ domf . Similarly to this, f is called strictly
convex on X if for all x, y ∈ X with x ̸= y and all λ ∈ [0, 1] we have

f(λx + (1 − λ)y) < λf(x) + (1 − λ)f(y). (2)

It is easy to see that strict convexity implies convexity. We are now going to exploit this fact
for a heuristic test that requires only n quantifiers.

Quite naturally, a similar equivalence as above holds for strict positiveness, but here yet
another equivalent enters the stage, which is most interesting from an algorithmic point of
view:

(i′) f is strictly convex on X,

(ii′) for all x ∈ X the matrix (∇2f)(x) ∈ Rn×n is positive definite,

(iii′) for all x ∈ X the matrix (∇2f)(x) ∈ Rn×n has got exclusively positive eigenvalues,

(iv′) for all x ∈ X the determinants of all principal subminors of (∇2f)(x) ∈ Rn×n are
positive.

This new condition (iv′) can then be effectively expressed as a first-order formula in the Tarski
algebra, which gives rise to the following algorithm:

Subalgorithm 2 (Positive Principal Subminors).

Input a formula γ in variables x1, . . . , xn and a function f = p
q ∈ Q(x1, . . . , xn) such that

f is twice continuously differentiable on X = {x ∈ Rn | γ(x) } ⊆ domf , which must be
polyhedral.

Output a first-order sentence that is equivalent to true if and only if f is strictly convex
over X.

5



1. Compute ∇2f ∈ Q(x1, . . . , xn)n×n. Notice that due to the differentiation rules, the
denominators of the entries of ∇2f are powers of q.

2. Compute the determinants u1
v1

, . . . , un
vn

∈ Q(x1, . . . , xn) of the principal subminors of
∇2f .

3. From the Leibniz formula for the determinant it is clear that the denominators v1, . . . , vn

are again powers of q. Since f is differentiable on X it is in particular continuous.
Consequently q does not vanish on X and neither do the v1, . . . , vn. Hence for x1,
. . . , xn ∈ X a condition ui

vi
> 0 can be equivalently rewritten as uivi > 0.

Altogether we finally obtain:

Φiv′(f, γ) := ∀x1 . . . ∀xn

(
γ −→

n∧
i=1

uivi > 0

)
.

On the basis that this algorithm yields only a sufficient condition for convexity, the im-
provement from n + 1 to n quantifiers might not appear too striking. There is, however,
another measure of complexity that turns Subalgorithm 2 considerably superior to Subalgo-
rithm 1: The degrees of the terms in the formula. The degrees in Φiv′ only depend on the
degrees in the input f and γ. In Φiii, in contrast, there is additionally the numerator χ̃ of
the characteristic polynomial, the degree of which is bounded from below by the number n
of variables.

The degrees are well-known to be a relevant measure for the complexity of real quantifier-
elimination [3]. Even more important, low degrees are crucial for the success of the efficient
virtual substitution methods [22, 23] primarily used by our implementation. If these methods
fail, our implementation has to fall back to partial cylindrical decomposition methods [7],
which are not only single but double exponential in the number of universal quantifiers.

Our main algorithm now combines the two subalgorithms in the obvious way:

Algorithm 1 (Convexity).

Input a formula γ in variables x1, . . . , xn and a function f = p
q ∈ Q(x1, . . . , xn) such that

f is twice continuously differentiable on X = {x ∈ Rn | γ(x) } ⊆ domf , which must be
polyhedral.

Output true if f is convex over X, false else.

1. Φ := Φiv′(f, γ) by Subalgorithm 2.

2. Φ′ := realQuantifierElimination(Φ)

3. if Φ′ = true then return true.

4. Φ := Φiii(f, γ) by Subalgorithm 1.

5. Φ′ := realQuantifierElimination(Φ)

6. return Φ′

6



4 Positive Quantifier Elimination for Universal Formulas

As indicated in the previous section, we employ quantifier elimination procedures contained
in the Redlog [10] package of the open source computer algebra system Reduce to finally
decide our sentences. The default real quantifier elimination procedure there applies virtual
substitution methods [22, 23] as long as the degrees of the quantified variables admit this and
then falls back to partial cylindrical algebraic decomposition [7]. We are going to refer to this
procedure as QE in the following.

Besides QE, we take an alternative novel approach: We use a dual version of positive
quantifier elimination. Positive quantifier elimination had been originally developed by the
second author for existential sentences. This original version has been successfully applied for
discovering oscillations in gene regulatory networks in the area of algebraic biology, where it
clearly outperformed QE by all means [18, 19].

The essential idea of positive quantifier elimination is to consider problems, where all con-
tained variables are known to be positive. Within virtual substitution methods this knowledge
can be heuristically exploited in numerous ways; see [18, 19] for details. For the partial cylin-
drical algebraic decomposition [7] we exploit positivity to some extent as well though much less
systematically so far. In the following we are going to refer to positive quantifier elimination
as PQE.

In the situation of this paper, we can systematically arrive at a positive situation in many
cases:

Lemma 2 (Shift to the 1. Hyper-Quadrant). Consider a function f ∈ Q(x1, . . . , xn) and a
formula γ in x1, . . . , xn describing a polyhedral set X = {x ∈ Rn | γ(x) } ⊆ domf . Assume
that γ bounds xi from below by some a ∈ Q. We set γ̂ = γ[xi−a/xi]∧xi > 0 silently dropping
a (positive) denominator after substitution and obtain f̂ ∈ Q(x1, . . . , xn) by plugging xi − a
for xi into f . Then xi is positive on the polyhedral set X̂ described by γ̂, and f̂ is convex on
X̂ if and only if f is convex on X.

Proof. If xi is strictly bounded from below by a, then we have just moved our problem along
the xi-axis via a simple linear transformation. If, in contrast, γ guarantees only a ≤ xi then
we have turned this in addition into a strict order relation. Since, however, f is smooth on
domf , convexity—in contrast to strict convexity—remains invariant.

Of course the argument about the smoothness of f in the proof could be avoided by
shifting by a + 1 instead of a. We have observed, however, that this leads to slightly more
complicated terms, which can be disadvantageous for the quantifier elimination procedures.

By iterative application of the lemma, we finally arrive at a completely positive situation
provided that all variables are explicitly bounded from below. As our examples in Section 7
will demonstrate this is frequently the case for NLP.

In the positive case, we in addition have to take care of the variables λ in Φ1 from
Lemma 1 and in Φiii from Subalgorithm 1. To Φ1 we conjunctively add within the scope of
the quantifiers the case λ = 0 via substitution. In Φiii we substitute within the scope of the
quantifiers −λ for λ.

7



5 Complexity

The complexity of our method is dominated by the quantifier elimination step. This is asymp-
totically bounded by an exponential function in the number of quantifiers, i.e. essentially the
dimension n of the domain Rn of f . As there are no quantifier alternations in our case, that
bound is only single exponential [8, 22]. Notice that when we have to use Subalgorithm 1
in contrast to Subalgorithm 2, the additional quantifier ∀λ contributes exponentially to the
complexity. Either do the quantifiers ∀y1, . . . , ∀yn with the naive approach according to
Lemma 1.

6 System Architecture

The computations of the entities needed here, such as derivatives, matrices, and Hessians
are done using the computer algebra system Reduce. The system is the well-known host of
the Redlog1 software system which is essential for the algorithms presented above. Reduce
is free software since January 2009 which allows us to manage the communication between
several independent tasks, e.g., by modifications and technical add-ons to the base system.
The system is hosted at SourceForge2. Information on the Reduce system in general can be
found at its website3. It is considered to make the PSL-based Reduce system available also
as a linkable library in the near future, which could be easily used by other (e.g. numerical)
software systems.

For the experiments that are discussed in the next section, we have let a numerical opti-
mization software write the function f and the linear inequalities that state the set X into
a file, which is then read in by Reduce. The interpretation of the generated outputs is done
automatically by using standard Linux tools. However, to allow a seamless integration of
Reduce as a service for symbolic computations in an optimization software, a more efficient
mechanism for communication is currently developed. We have chosen as basis to send bi-
nary objects via shared memory, which avoids the overhead of coding and decoding character
strings. In our case the data send to Reduce is relatively large (f and X) compared to the
results (convex, strictly convex, not convex, or unknown).

It is an interesting option to run this software on a parallel system, since the evaluations
of convexity issues for multiple formulas are independent from each other. In fact, we have
run our examples on a 16 processors (2.8 GHz each) x86 64 machine with 256 GB of memory
under Linux.

7 Examples

In order to evaluate our different convexity test methods, we assembled a test set of NLPs
and MINLPs from various sources; an MINLP is an NLP where some variables are addition-
ally restricted to take only integer variables. Firstly, the COPS testset [9] is a collection of
difficult NLP models which have their origin in various applications. It is frequently used
to benchmark NLP solvers. From COPS, we selected instantiations of the models bearing,
catmix, gasoil, glider, robot, and rocket. Secondly, we picked some models from the

1http://www.redlog.eu
2http://reduce-algebra.sourceforge.net
3http://www.reduce-algebra.com

8



“CMU-IBM Cyber-Infrastructure for MINLP” webpage [6], which collects MINLP models
from real-world applications. We selected the models “Periodic Scheduling of Continuous
Multiproduct Plants” (#34), “Stabilizing controller design and the Belgian chocolate prob-
lem” (#57), “The Delay Constrained Routing Problem” (#63), and “Simultaneous Cyclic
Scheduling and Control of a Multiproduct CSTR” (#71). Thirdly, we took two instances
from a recent paper on solvers for convex MINLPs [4] and one instance from the MINLPLib
[5]. These are a constrained layout problem (clay), a stochastic service system design prob-
lem (sssd), and the instance du-opt5. Further, we selected a formula for so-called “second-
order isotherms” as they appear in the modeling of chromatographic separation processes
[2]. Finally, we added the three convex functions that were mentioned in the Introduction as
counterexamples to the completeness of existing approaches.

For each NLP, we selected those constraints that are nonlinear and rational functions. For
equational constraints gi(x) = 0 we considered also −gi(x) in order to check for concavity of
gi(x) too. Sets of functions that differ only in the naming of the variables were replaced by
one representative.

For each example obtained this way, we have proceeded as follows:

1. (a) Compute Φ1 according to Lemma 1, and apply QE.

(b) Compute Φiv′ according to Subalgorithm 2, and apply QE.

(c) If Φiv′ did not yield true, i.e. strict convexity, then compute Φiii according to
Subalgorithm 1, and apply QE.

2. If the variables in the example are bounded from below, then move the problem to the
first hyper-quadrant, and proceed as in 1. (a)–1. (c) but with PQE instead of QE.

For every single computation 1. (a), . . . , 2. (c) we imposed a timelimit of 10 minutes after
which non-finished computations were automatically interrupted. The steps (b) and (c) re-
flect our proposed Algorithm 1, while the steps (a) are supposed to demonstrate that our
algorithmic ideas formulated in Subalgorithm 1 and Subalgorithm 2 outperform the naive
approach from Lemma 1. Finally, by considering 1. vs. 2., we are able to judge the efficiency
of PQE compared to regular QE.

In Table 1 there are results given for all examples, where PQE is used whenever possible
and regular QE else. The columns example and function show the names of the NLP and the
function f = p/q in the NLP that are considered in this line, respectively. The columns n,
deg p, and deg q show the number of variables in f , the total degree of the polynomial p, and
the total degree of the polynomial q, respectively. The column curvature shows whether f
was proven to be strictly convex, convex, not convex. It states “unknown”, if no method was
able to give a result within the time limit. Column PQE indicates whether there was positive
quantifier elimination applied. The columns Φ1, Φiv′ , Φiii present the corresponding running
times in milliseconds, while “⊥” is printed if the method hit the time limit of 10 minutes.
Recall that Φiii is not considered if Φiv′ already yields that the function is strictly convex. In
that case we have “–” instead of a running time.

Note that our method was able to prove convexity for all examples mentioned in the
introduction including the example f = (x− y)3, where convexity is only given on the region
defined by the linear condition x − y ≥ 0. Furthermore, we were able to decide convexity
for the formulas in the instances catmix100 and robot50, whereas [11] reported inconclusive
results.

9



For those examples, where PQE could be used and Table 1 thus gives PQE timings instead
of QE timings, Table 2 explicitly compares the computation times of PQE and regular QE.

8 Conclusions

Our benchmarking has confirmed that our proposed Algorithm 1 is the most suitable combi-
nation of the methods introduced throughout this paper. Furthermore, PQE should probably
be used rather than regular QE, although the difference in performance is not at all as striking
as with the examples previously reported in the literature [18, 19]. Of course, we do not con-
sider our symbolic method a stand-alone solution which should replace more efficient though
incomplete approaches. We think that it would be a reasonable scheme to first try the very
fast convexity rules from [11], then to try to disprove convexity numerically, and finally—in
the case of rational functions—apply our Algorithm 1. A conclusive result on nonconvexity
can be obtained numerically by computing the Hessian H in some points of X, and using a
robust numerical algorithm to find a vector z such that zT Hz < 0 [11, Sec. 5]. Altogether
we consider our work described here an encouraging milestone in our research on integrating
Reduce as a symbolic library with state-of-the-art numerical NLP solvers.

References

[1] C. S. Adjiman and C. A. Floudas. Rigorous convex underestimators for general twice-
differentiable problems. Journal of Global Optimization, 9:23–40, 1997.

[2] M. Ballerstein, D. Michaels, A. Seidel-Morgenstern, and R. Weismantel. A theoreti-
cal study of continuous counter-current chromatography for adsorption isotherms with
inflection points. Accepted for publication in Computers & Chemical Engineering, 2009.

[3] S. Basu, R. Pollack, and M.-F. Roy. On the combinatorial and algebraic complexity of
quantifier elimination. Journal of the ACM, 43(6):1002–1045, 1996.

[4] P. Bonami, M. Kilinç, and J. Linderoth. Algorithms and software for convex
mixed integer nonlinear programs. available at Optimization Online, http://www.
optimization-online.org/DB_HTML/2009/10/2429.html, 2009.

[5] M. R. Bussieck, A. S. Drud, and A. Meeraus. MINLPLib - A Collection of Test Models for
Mixed-Integer Nonlinear Programming. INFORMS Journal on Computing, 15(1):114–
119, 2003. http://www.gamsworld.org/minlp/minlplib.htm.

[6] CMU-IBM cyber-infrastructure for MINLP. http://www.minlp.org, 2009.

[7] G. E. Collins and H. Hong. Partial cylindrical algebraic decomposition for quantifier
elimination. Journal of Symbolic Computation, 12(3):299–328, Sept. 1991.

[8] J. H. Davenport and J. Heintz. Real quantifier elimination is doubly exponential. Journal
of Symbolic Computation, 5(1–2):29–35, Feb.–Apr. 1988.

[9] E. D. Dolan, J. J. Moré, and T. S. Munson. Benchmarking optimization software with
COPS 3.0. Technical Report ANL/MCS-273, Mathematics and Computer Science Divi-
sion, Argonne National Laboratory, 2004. http://www.mcs.anl.gov/~more/cops.

10



[10] A. Dolzmann and T. Sturm. Redlog: Computer algebra meets computer logic. ACM
SIGSAM Bulletin, 31(2):2–9, June 1997.

[11] R. Fourer, C. Maheshwari, A. Neumaier, D. Orban, and H. Schichl. Convexity and
concavity detection in computational graphs: Tree walks for convexity assessment. IN-
FORMS Journal on Computing, Articles in Advance, 2009.

[12] I. E. Grossmann, editor. Global Optimization in Engineering Design. Kluwer Academic
Publishers, 1996.

[13] I. E. Grossmann and Z. Kravanja. Mixed-integer nonlinear programming: A survey
of algorithms and applications. In A. Conn, L. Biegler, T. Coleman, and F. Santosa,
editors, Large-Scale Optimization with Applicationa, Part II:Optimal Design and Control.
Springer, 1997.

[14] M. Jüdes, G. Tsatsaronis, and S. Vigerske. Optimization of the design and partial-load
operation of power plants using mixed-integer nonlinear programming. In J. Kallrath,
P. Pardalos, S. Rebennack, and M. Scheidt, editors, Optimization in the Energy Industry,
chapter 9. Springer, 2009.

[15] M. Mönnigmann. Efficient calculation of bounds on spectra of hessian matrices. SIAM
Journal on Scientific Computing, 30(5):2340–2357, 2008.

[16] I. P. Nenov, D. H. Fylstra, and L. V. Kolev. Convexity determination in the Microsoft
Excel solver using automatic differentiation techniques. Technical report, Frontline Sys-
tems Inc., 2004.

[17] J. Nocedal and S. Wright. Numerical Optimization. Springer, 2000.

[18] T. Sturm and A. Weber. Investigating generic methods to solve Hopf bifurcation problems
in algebraic biology. In K. Horimoto, G. Regensburger, M. Rosenkranz, and H. Yoshida,
editors, Algebraic Biology – Third International Conference (AB 2008), Castle of Ha-
genberg, Austria, volume 5147 of Lecture Notes in Computer Science, pages 200–215.
Springer-Verlag, Berlin, Heidelberg, Germany, 2008.

[19] T. Sturm, A. Weber, E. O. Abdel-Rahman, and M. El Kahoui. Investigating algebraic and
logical algorithms to solve Hopf bifurcation problems in algebraic biology. Mathematics
in Computer Science, 2(3):493–515, March 2009.

[20] A. Tarski. A decision method for elementary algebra and geometry. Prepared for publi-
cation by J. C. C. McKinsey. RAND Report R109, August 1, 1948, Revised May 1951,
Second Edition, RAND, Santa Monica, CA, 1957.

[21] M. Tawarmalani and N. V. Sahinidis. Convexification and Global Optimization in Con-
tinuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and
Applications. Kluwer Academic Publishers, 2002.

[22] V. Weispfenning. The complexity of linear problems in fields. Journal of Symbolic
Computation, 5(1&2):3–27, Feb.–Apr. 1988.

[23] V. Weispfenning. Quantifier elimination for real algebra—the quadratic case and beyond.
Applicable Algebra in Engineering Communication and Computing, 8(2):85–101, 1997.

11



Table 1: Results and timings of tests for convexity. All times are given in milliseconds, ⊥
indicates computations that did not finish within 10 minutes of CPU time.

example function n deg p deg q curvature PQE Φ1 Φiv′ Φiii

Introduction
intro −x/(1 + x) 1 1 1 strictly convex X 20 10 –

2x7 − 7x4 + 84x2 + 42 1 7 0 convex X ⊥ < 10 10

(x1 − x2)3 2 3 0 convex X 100 10 < 10

COPS test set [9]
bearing e10_0 3 5 0 not convex X 3610 < 10 ⊥

e10_1 1 2 0 strictly convex X 10 < 10 –
e13 2 2 0 not convex X 10 < 10 < 10
e2 2 2 0 not convex X 20 10 10
e3_1 2 2 0 not convex X 10 < 10 < 10
e4 2 2 0 not convex X < 10 < 10 10
e5_0 3 3 0 not convex X 210 10 590
e6 4 2 0 not convex X 290 < 10 < 10
-e13 2 2 0 not convex X 20 < 10 < 10
-e2 2 2 0 not convex X 20 < 10 10
-e3_1 2 2 0 not convex X 10 < 10 10
-e4 2 2 0 not convex X < 10 < 10 < 10
-e5_0 3 3 0 not convex X 2060 < 10 180
-e6 4 2 0 not convex X 120 10 10

catmix100 e103 6 2 0 not convex – 10 < 10 < 10
e3 6 2 0 not convex – 20 10 < 10
-e103 6 2 0 not convex – 10 10 10
-e3 6 2 0 not convex – 20 < 10 10

gasoil50 e1100_0 2 3 0 not convex – 20 < 10 < 10
e1100_1 2 2 0 not convex – 10 < 10 10
e899 194 2 0 unknown – ⊥ ⊥ ⊥
e900 3 3 0 not convex – 40 < 10 < 10
-e1100_0 2 3 0 not convex – 20 < 10 < 10
-e1100_1 2 2 0 not convex – 10 10 < 10
-e900 3 3 0 not convex – 30 < 10 10

glider50 e207 2 4 0 not convex X 3650 < 10 30
e307 2 3 0 not convex X 30 < 10 < 10
e309 5 2 1 not convex – 60 10 10
e3 1 2 0 not convex X 10 10 < 10
e561 4 2 0 not convex – 10 10 10
e610 3 2 0 not convex – < 10 10 10
-e207 2 4 0 not convex X 149570 < 10 30
-e307 2 3 0 not convex X 40 < 10 < 10
-e309 5 2 1 not convex – 40 10 10
-e3 1 2 0 strictly convex X < 10 < 10 –
-e561 4 2 0 not convex – 20 < 10 < 10
-e610 3 2 0 not convex – 10 10 < 10

robot50 e203 5 3 2 not convex – 4790 < 10 ⊥
e3 3 2 0 not convex – 10 < 10 10
e400 1 2 0 not convex X 10 < 10 < 10
-e203 5 3 2 not convex – 60840 < 10 ⊥
-e3 3 2 0 not convex – < 10 < 10 < 10
-e400 1 2 0 strictly convex X < 10 < 10 –

rocket50 e105 3 2 0 not convex X 10 < 10 < 10
e154 6 3 1 not convex X 760 10 480
e253 3 2 0 not convex X 20 < 10 < 10
e53 1 0 2 not convex X 30 < 10 < 10
-e105 3 2 0 not convex X 10 < 10 < 10
-e154 6 3 1 not convex X 760 < 10 480
-e253 3 2 0 not convex X 10 < 10 < 10
-e53 1 0 2 strictly convex X 30 < 10 –

minlp.org [6]
minlp_org_34a balrecs_i1_k2_t1_ 3 2 1 not convex X 20 < 10 50

balrecs_i1_k2_t4_ 4 2 1 not convex X 50 < 10 900
-balrecs_i1_k2_t1_ 3 2 1 not convex X 60 < 10 80
-balrecs_i1_k2_t4_ 1 1 0 unknown X ⊥ ⊥ ⊥
-balrecs_i1_k2_t5_ 4 2 1 not convex X 30 10 640
-object 45 2 0 unknown – ⊥ 3010 ⊥
object 45 2 0 unknown – ⊥ 2810 ⊥

minlp_org_34b defrate_i1_k2_ 3 2 0 not convex X 10 < 10 < 10
-defrate_i1_k2_ 3 2 0 not convex X 10 < 10 10
-object 11 3 0 unknown – ⊥ 50 ⊥
object 11 3 0 unknown – ⊥ 50 ⊥

minlp_org_57 defrx_3_1_ 3 2 1 not convex X 50 < 10 720
-defrx_3_1_ 3 2 1 not convex X 30 < 10 360
-polyy2 6 3 0 not convex X 810 < 10 ⊥
-polyy3 7 4 0 unknown X ⊥ 20 ⊥

minlp_org_71 fecolc_1_1_1_ 4 2 0 not convex – 20 40 100
-fecolc_1_1_1_ 4 2 0 not convex – 20 40 110
-obj 611 3 1 unknown X ⊥ ⊥ ⊥
-odec_20_3_5_ 2 3 0 not convex X 20 < 10 10
odec_20_3_5_ 2 3 0 not convex X 140 < 10 10

miscellaneous [2, 4, 5]
clay0203h e107 3 3 1 strictly convex X ⊥ 10 –

e110 3 3 1 strictly convex X ⊥ 170 –
sssd-8-4-3 e30 1 1 1 strictly convex X 10 10 –
du-opt5 e1 18 2 0 strictly convex X ⊥ 180 –
isotherms isotherm 2 2 2 not convex X ⊥ 670 2320

-isotherm 2 2 2 not convex X ⊥ 660 2290

12



Table 2: Times of regular vs. positive quantifier elimination. All times are given in millisec-
onds, ⊥ indicates computations that did not finish within 10 minutes of CPU time.

example function n deg p deg q curvature Φ1 Φiv′ Φiii
QE PQE QE PQE QE PQE

Introduction
intro −x/(1 + x) 1 1 1 strictly convex 10 20 10 10 – –

2x7 − 7x4 + 84x2 + 42 1 7 0 convex ⊥ ⊥ 10 < 10 10 10

(x1 − x2)3 2 3 0 convex 100 100 < 10 10 < 10 < 10

COPS test set [9]
bearing e10_0 3 5 0 not convex 3640 3610 < 10 < 10 ⊥ ⊥

e10_1 1 2 0 strictly convex < 10 10 < 10 < 10 – –
e13 2 2 0 not convex 10 10 10 < 10 < 10 < 10
e2 2 2 0 not convex 10 20 10 10 10 10
e3_1 2 2 0 not convex < 10 10 < 10 < 10 < 10 < 10
e4 2 2 0 not convex 10 < 10 < 10 < 10 < 10 10
e5_0 3 3 0 not convex 230 210 < 10 10 600 590
e6 4 2 0 not convex 390 290 10 < 10 10 < 10
-e13 2 2 0 not convex 10 20 10 < 10 < 10 < 10
-e2 2 2 0 not convex 20 20 < 10 < 10 10 10
-e3_1 2 2 0 not convex < 10 10 < 10 < 10 < 10 10
-e4 2 2 0 not convex < 10 < 10 10 < 10 < 10 < 10
-e5_0 3 3 0 not convex 1970 2060 < 10 < 10 200 180
-e6 4 2 0 not convex 150 120 10 10 10 10

glider50 e207 2 4 0 not convex 3760 3650 < 10 < 10 30 30
e307 2 3 0 not convex 30 30 < 10 < 10 10 < 10
e3 1 2 0 not convex < 10 10 < 10 10 < 10 < 10
-e207 2 4 0 not convex 150280 149570 < 10 < 10 20 30
-e307 2 3 0 not convex 50 40 < 10 < 10 10 < 10
-e3 1 2 0 strictly convex < 10 < 10 < 10 < 10 – –

robot50 e400 1 2 0 not convex < 10 10 < 10 < 10 < 10 < 10
-e400 1 2 0 strictly convex < 10 < 10 10 < 10 – –

rocket50 e105 3 2 0 not convex 10 10 < 10 < 10 < 10 < 10
e154 6 3 1 not convex 750 760 10 10 500 480
e253 3 2 0 not convex 10 20 < 10 < 10 10 < 10
e53 1 0 2 not convex 30 30 < 10 < 10 < 10 < 10
-e105 3 2 0 not convex 10 10 < 10 < 10 10 < 10
-e154 6 3 1 not convex 720 760 10 < 10 460 480
-e253 3 2 0 not convex 20 10 < 10 < 10 < 10 < 10
-e53 1 0 2 strictly convex 40 30 < 10 < 10 – –

minlp.org [6]
minlp_org_34a balrecs_i1_k2_t1_ 3 2 1 not convex 20 20 10 < 10 50 50

balrecs_i1_k2_t4_ 4 2 1 not convex 50 50 < 10 < 10 1160 900
-balrecs_i1_k2_t1_ 3 2 1 not convex 50 60 < 10 < 10 80 80
-balrecs_i1_k2_t4_ 1 1 0 unknown ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
-balrecs_i1_k2_t5_ 4 2 1 not convex 40 30 < 10 10 790 640

minlp_org_34b defrate_i1_k2_ 3 2 0 not convex < 10 10 10 < 10 < 10 < 10
-defrate_i1_k2_ 3 2 0 not convex 10 10 10 < 10 10 10

minlp_org_57 defrx_3_1_ 3 2 1 not convex 40 50 10 < 10 700 720
-defrx_3_1_ 3 2 1 not convex 40 30 < 10 < 10 360 360
-polyy2 6 3 0 not convex 860 810 10 < 10 ⊥ ⊥
-polyy3 7 4 0 unknown ⊥ ⊥ 30 20 ⊥ ⊥

minlp_org_71 -obj 611 3 1 unknown ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
-odec_20_3_5_ 2 3 0 not convex 20 20 < 10 < 10 10 10
odec_20_3_5_ 2 3 0 not convex 150 140 < 10 < 10 10 10

miscellaneous [2, 4, 5]
clay0203h e107 3 3 1 strictly convex ⊥ ⊥ < 10 10 – –

e110 3 3 1 strictly convex ⊥ ⊥ 70 170 – –
sssd-8-4-3 e30 1 1 1 strictly convex 10 10 < 10 10 – –
du-opt5 e1 18 2 0 strictly convex ⊥ ⊥ 1480 180 – –
isotherms isotherm 2 2 2 not convex ⊥ ⊥ 620 670 2180 2320

-isotherm 2 2 2 not convex ⊥ ⊥ 610 660 2210 2290

13


