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Abstract

In this article we will give a brief overview of the start-of-the-art on software for the
solution of mixed integer nonlinear programs (MINLP). We establish several groupings
with respect to various features and give concise individual descriptions for each solver.
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1 Introduction

The general form of a MINLP is

minimize f(z,y)
subject to  g(z,y) <0 (P)
zeX
y €Y integer

The function f : R"™ — R is a possibly nonlinear objective function and g : R*™* — R™ a
possibly nonlinear constraint function. The variables x and y are the decision variables, where
y is required to be integer valued. X C R™ and Y C R® are bounding-box-type restrictions
on the variables. In addition to integer requirements on variables, other kinds of discrete
constraints are commonly used. These are (for example) special-ordered-set constraints (only
one (SOS type 1) or two adjacent (SOS type 2) variables in a set are allowed to be nonzero),
semicontinuous variables (the variable is allowed to take either the value zero or a value above
some bound), semiinteger variables (like semicontinuous variables, but with an additional
integer restriction), and indicator variables (a binary variable indicates whether a certain
set of (linear) constraints has to be enforced). In all cases it is possible to reformulate such
constraints into a standard form by introducing additional variables and linear constraints.

Computational tractability depends significantly on whether the functions f(z,y) and
g(z,y) are convex or not. In this chapter, we say a MINLP is convez if both f(z,y) and
g(x,y) are convex over X x Y. Otherwise the MINLP is said to be nonconvex. Note that
some solvers for convex MINLPs can also be applied under less strict notions of convexity,
e.g., to the case where the set defined by the constraints g(z,y) < 0 is convex, or where the
objective function and constraints are only pseudo-convex! [56].
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Let X C R™ be a convex set. A differentiable function h : X — R is pseudo-conver on X if for every



2 History

To the best of our knowledge, the earliest commercial software package that could solve
MINLP problems was SCICONIC in the mid 1970’s [5, 26, 46]. Rather than handling non-
linearities directly, linked Special-Ordered-Set variables provided a mechanism to represent
low dimensional nonlinear terms by a piecewise linear approximation and thus allowed prob-
lem solution via mixed-integer linear programming (MIP). In the mid 1980’s Grossmann and
Kocis developed DICOPT, a general purpose algorithm for convex MINLP based on the outer
approximation method [18]. Since then, a number of academic and commercial codes for con-
vex MINLP have emerged, either based on outer approximation using MIP relaxations [18], an
integration of outer approximation into a linear programming (LP) relaxation based branch
and cut [44], or nonlinear programming (NLP) relaxation based branch and bound algo-
rithms [34]. For nonconvex MINLP, the first general purpose solvers were ALPHABB and
BARON, both based on convexification techniques for nonconvex constraints [3, 48].

3 Groupings

3.1 Embedded vs. independent

Due to the high complexity of MINLP and the wide range of applications that can be modeled
as MINLPs, it is sometimes desirable to customize the MINLP solver for a specific application
in order to achieve good computational performance [11, 12, 20]. Further, MINLP solvers
are often built by combining LP, MIP, and NLP solvers. These are two main reasons for
tightly integrating some MINLP solvers into modeling systems. For example, the AIMMS
Outer Approximation solver AOA allows modifications of its algorithm by the user. Further,
the solvers DICOPT and SBB are exclusively available for GAMS users since they revert
to MIP and NLP solvers in the GAMS system for the solution of subproblems. Also for an
efficient use of OQNLP it is preferable to use one of the GAMS NLP solvers.

On the other side, there are many solvers that can be used independently of a modeling
system, even though they may still require the presence of a MIP, LP, or NLP solver plugin.
However, it is most often the case that even these “independent” solvers are used within
a modeling system, since the modeling system typically provides evaluators for nonlinear
functions, gradients, and Hessians and gives easy access to algebraic information about the
problem.

3.2 Extending MIP vs. extending NLP vs. starting from scratch

MINLP solvers are seldom developed completely from scratch. In many cases, a MIP or an
NLP solver builds the basis for an extension towards MINLP. Solvers which can be catego-
rized as extending a MIP solver towards handling of nonlinear objectives and constraints are
BONMIN, CoueNNE, CPLEX, FILMINT, LinpoBB, MOSEK, SCIP, and XPRESS. On
the other hand, solvers where an NLP solver was extended to handle integrality restrictions
are BNB, FMINCONSET, KNITRO, MILANO, MINLP_BB, MISQP, OQNLP, and SBB.
Finally, there is a group of solvers which were more-or-less developed from scratch, but

z,y € X with h(z) < h(y) it follows that (Vh(y),z —y) < 0. An important property of a pseudo-convex
function is the convexity of its level-sets.



which may solve LP, MIP, or NLP subproblems. In this category we have ALPHABB, AL-
PHAECP, AOA, BARON, DICOPT, LAGO, and LINDOGLOBAL.

3.3 Algorithms

Most of the solvers implement one (or several) of three algorithmic ideas to tackle MINLPs.
First, there are branch and bound solvers that use NLP relaxations: ALPHABB, BNB, BON-
MIN (in B-BB mode), CPLEX, FMINCONSET, KNITRO, LINDOBB, MILANO, MINLP _BB,
MOSEK, SBB, and XPRESS. For all these solvers except ALPHABB, the NLP relaxation is
obtained by relaxing the integrality restriction in (P). Since the NLP solver used to solve the
NLP relaxation usually ensures only local optimal solutions, these solvers work as heuristics
in case of a nonconvex MINLP. For the solver ALPHABB, however, a convex NLP relaxation is
generated by using convex underestimators for the functions f(z,y) and g(x,y) in (P). These
solvers can therefore be applied also to nonconvex MINLPs.

As an alternative to relaxing integrality restrictions and keeping nonlinear constraints,
some solvers keep the integrality constraints and instead replace the nonlinear functions
f(z,y) and g(x,y) by a linear relaxation. In an outer-approximation algorithm [18, 23],
a relaxation is obtained by using gradient-based linearizations of f(z,y) or g(z,y) at solu-
tion points of NLP subproblems. The resulting MIP relaxation is then solved by a MIP
solver. Solvers in this class are AOA, BONMIN (in B-OA mode) and DICOPT. Since
gradient-based linearizations yield an outer-approximation only for convex MINLPs, these
solvers are only applicable for convex MINLPs. In contrast to outer-approximation based
algorithms, an extended cutting plane algorithm solves a sequence of MIP relaxations which
encapsulate optimal solutions of (P) by cutting planes and supports of f(z,y) rather than
outer-approximating the whole feasible region of (P) [55]. This algorithm is implemented by
the solver ALPHAECP, which can be applied to convex as well as pseudo-convex MINLPs.

A third class of solvers are those which integrate the linearization of f(z,y) and g(z,y)
into the branch and cut process [44]. Thus, here an LP relaxation is successively solved, new
linearizations of f(z,y) and g(x,y) are generated to improve the relaxation, and integrality
constraints are enforced by branching on the y variables. Solvers which use gradient-based
linearizations are BONMIN (in B-QG mode) and FILMINT.

Since the use of gradient-based linearizations in a branch and cut algorithm ensures global
solutions only for convex MINLPs, solvers for nonconvex MINLPs use convexification tech-
niques to compute linear underestimators of a nonconvex function. However, the additional
convexification step may require to branch also on continuous variables in nonconvex terms.
Such a spatial branch and cut algorithm is implemented by BARON, CoUENNE, LAGO,
LINDOGLOBAL, and SCIP.

The remaining solvers implement a different methodology. BONMIN (in B-Hyb mode)
alternates between LP and NLP relaxations during one branch and bound process. MISQP
integrates the handling of integrality restrictions into the solution of a nonlinear program via
sequential quadratic programming, i.e., it ensures that f(x,y) and g(z,y) are only evaluated
at points where y is integral. Finally, OQNLP applies a randomized approach by sampling
starting points and fixations of integer variables for the solution of NLP subproblems.



3.4 Capabilities

Not every solver accepts general MINLPs as input. Solvers that currently handle only MINLPs
where the objective function and constraints are quadratic (so-called MIQCPs) or second
order cone programs (SOCP) are CPLEX, MOSEK, SCIP, and XPRESS. CPLEX and
MOSEK further require that quadratic constraints can be reformulated as second order cone
constraints. XPRESS further requires that quadratic functions are convex.

Solvers that guarantee global optimal solutions only for convex general MINLPs are AL-
PHAECP, AOA, BNB, BONMIN, DICOPT, FILMINT, FMINCONSET, KNITRO, LAGO,
LinpoBB, MILANO, MINLP_BB, and SBB. In case of a nonconvex MINLP, these solvers
can still be used as a heuristic. Especially branch and bound based algorithms that use NLPs
for bounding often find good solutions also for nonconvex problems, while pure outer approx-
imation based algorithms may easily run into infeasible LP or MIP relaxations due to wrong
cutting planes.

Solvers that also guarantee global optimality for nonconvex general MINLPs require an
algebraic representation of the functions f(x,y) and g(x,y) for the computation of convex
underestimators. The solvers ALPHABB, BARON, COUENNE, and LINDOGLOBAL belong
into this category.

MISQP and OQNLP can handle general MINLPs, but do not guarantee global optimality
even on convex problems.

4 MINLP solvers

In the following we briefly discuss individual solvers for MINLPs. We have excluded solvers
from this list that are clearly no longer available (e.g. SCICONIC). The solvers listed below
have different levels of reliability and activity with respect to development and maintenance.
Wide availability through modeling systems and other popular software indicates that a solver
has reached a decent level of maturity. Hence, in this list, we mention availability (e.g., open
source, standalone binary, interfaces to modeling systems like AIMMS [45], AMPL [27], and
GAMS [28]) in addition to a solver’s developer, capability, and algorithmic details. Table 1
summarizes the list of solvers and indicates for each solver the availability via AIMMS, AMPL,
GAMS, and the NEOS server [16].

alphaBB (a-Branch-and-Bound) [3]. This solver has been developed by the research
group of C. A. Floudas at the Computer-Aided Systems Laboratory of Princeton University.

ALPHABB can be applied for convex and nonconvex MINLPs. It implements a branch-
and-bound algorithm that utilizes convex NLPs for bounding. Convexifications are obtained
by using known tight underestimators for specially structured nonconvex terms (e.g., binomial
or fractional) and a-underestimators in the generic (twice differentiable) case. The latter are
determined by adding a non-positive convex function to the original nonconvex function such
that the Hessian of the sum is guaranteed to be positive semidefinite (PSD).

AlphaECP (a-Extended Cutting Plane) [54, 56]. This solver has been developed
by the research group of T. Westerlund at the Process Design and Systems Engineering

Laboratory of the Abo Akademi University, Finland. It is available as a commercial solver
within GAMS.



ALPHAECP ensures global optimal solutions for convex and pseudo-convex MINLPs. It
generates and successively improves a MIP outer approximation of a neighborhood of the set
of optimal solutions of (P) and can solve NLP subproblems to find feasible solutions early.
The MIP is here refined by linearizing nonlinear constraints at solutions of the MIP outer
approximation. By shifting hyperplanes, pseudo-convex functions can also be handled.

AOA (AIMMS Outer Approximation) [45]. This solver has been developed by Para-
gon Decision Technology. AOA is available as an “open solver” inside AIMMS. The open
solver approach allows the user to customize the algorithm for a specific application.

AOA ensures global optimal solutions only for convex MINLPs. It generates and succes-
sively improves a MIP outer approximation of (P) and can solve NLP subproblems to find
feasible solutions early. In contrast to ALPHAECP, AOA constructs a MIP outer approx-
imation of the feasible region of (P) by linearizing nonlinear functions in solutions of NLP
subproblems [18]. Since for a nonconvex constraint such a linearization may not be valid, the
MIP relaxation is modified such that the corresponding hyperplane is allowed to move away
from its support point.

BARON (Branch And Reduce Optimization Navigator) [48, 49]. This solver has
been developed by N. Sahinidis and M. Tawarmalani at the Department of Chemical Engi-
neering of the University of Illinois at Urbana-Champaign. It is available as a commercial
solver within AIMMS and GAMS.

BARON can be applied to convex and nonconvex MINLPs. It implements a spatial
branch-and-bound algorithm that utilizes LPs for bounding. The linear outer-approximation
is based on a factorable reformulation of (P) which allows the application of known convex
underestimators for all nonconvex terms that appear in the problem. The algorithm is en-
hanced by using advanced box reduction techniques and new convexification techniques for
multilinear terms [4].

bnb (Branch 'n Bound) [32]. This solver has been developed by K. Kuipers of the
Department of Applied Physics at the University of Groningen. It is available as MATLAB [39]
source.

BNB ensures global optimal solutions for convex MINLPs. It implements a branch-and-
bound algorithm utilizing nonlinear relaxations for the bounding step [34]. The NLPs are
solved by the MATLAB Optimization Toolbox routine FMINCON.

BONMIN (Basic Open-source Nonlinear Mixed Integer Programming) [10]. This
open-source solver has been developed primarily by P. Bonami in a cooperation of Carnegie
Mellon University and IBM Research. It is available in source code and as standalone binaries
from COIN-OR (Computational Infrastructure for Operations Research) [38], has an AMPL
interface, and is distributed as a free solver within GAMS.

BONMIN ensures global optimal solutions only for convex MINLPs. It implements (at
least) four algorithms: B-OA is an outer-approximation algorithm that generates and suc-
cessively improves a MIP outer approximation of (P) [18], B-QG is a branch-and-bound
algorithm that utilizes LPs for bounding [44], B-BB is a branch-and-bound algorithm that
utilizes NLPs for bounding [34], and B-Hyb is a hybrid of B-QG and B-BB which alternates



between LP and NLP relaxations for bounding. BONMIN is implemented on top of the MIP
solver CBC [25] and can use FILTERSQP [24] and IPOPT [53] as NLP solvers.

Couenne (Convex Over and Under Envelopes for Nonlinear Estimation) [7]. This
open-source solver has been developed primarily by P. Belotti in a cooperation of Carnegie
Mellon University, Lehigh University, and IBM Research. It is available in source code and
as standalone binaries from COIN-OR, has an AMPL interface, and is distributed as a free
solver within GAMS.

COUENNE ensures global optimal solutions for convex and nonconvex MINLPs. It im-
plements a spatial branch-and-bound algorithm that utilizes LPs for bounding. Similar to
BARON, the linear outer-approximation is generated from a factorable reformulation of (P).
The algorithm is enhanced by box reduction techniques and disjunctive cuts [6]. COUENNE
is implemented on top of BONMIN.

CPLEX [30]. This solver has been developed by CPLEX Optimization, Inc. (later acquired
by ILOG and recently acquired by IBM). It is generally accepted as one of the leading LP
and MIP solvers. It is available as standalone binaries and as a component in almost every
modeling system.

CPLEX can solve convex MIQCPs. For models that only have binary variables in the
potentially indefinite quadratic matrices, CPLEX automatically reformulates the problem to
an equivalent MIQCP with PSD matrices. It implements a branch-and-bound algorithm that
utilizes LPs or QCPs for bounding.

DICOPT (Discrete and Continuous Optimizer) [28, 31]. This solver has been devel-
oped by the research group of I. E. Grossmann at the Engineering Research Design Center of
Carnegie Mellon University. It is available as a commercial solver within GAMS.

DICOPT ensures global optimal solutions for convex MINLPs. It alternates between
solving MIP outer approximations and NLP subproblems of (P) [18]. To accommodate also
nonconvex MINLPs, nonlinear equality constraints can be relaxed and linearizations of non-
linear functions are allowed to move away from its support point in the MIP relaxation.

FilMINT (Filter-Mixed Integer Optimizer) [1]. This solver has been developed by
the research groups of S. Leyffer at the Laboratory for Advanced Numerical Simulations
of Argonne National Laboratory and J. T. Linderoth at the Department of Industrial and
Systems Engineering of Lehigh University. It provides an AMPL interface.

FILMINT ensures global optimal solutions only for convex MINLPs. It implements a
branch-and-bound algorithm that utilizes LPs for bounding [44]. FILMINT is implemented
on top of the MIP solver MINTO [42] and the NLP solver FILTERSQP [24].

fminconset [47]. This solver had been developed by I. Solberg at the Department of Engi-
neering Cybernetics of the University of Trondheim (now NTNU). It is available as MATLAB
source.

FMINCONSET ensures global optimal solutions for convex MINLPs. It implements a
branch-and-bound algorithm utilizing nonlinear relaxations for the bounding step [34]. The
NLPs are solved by the MATLAB Optimization Toolbox routine FMINCON.



Knitro [14]. This solver has been developed by Ziena Optimization, Inc. It is available as
standalone binary and as a component in many modeling systems.

KNITRO ensures global optimal solutions for convex MINLPs. MINLPs are solved by
branch-and-bound, where both linear or nonlinear problems can be used for the bounding
step [34, 44].

LaGO (Lagrangian Global Optimizer) [43]. This open-source solver had been devel-
oped by the research group of I. Nowak at the Department of Mathematics of Humboldt
University Berlin. It is available in source code from COIN-OR and provides AMPL and
GAMS interfaces.

LAGO ensures global optimal solutions for convex MINLPs and nonconvex MIQCPs.
It implements a spatial branch-and-bound algorithm utilizing a linear relaxation for the
bounding step. The relaxation is obtained by linearizing convex functions, underestimat-
ing quadratic nonconvex functions, and approximating nonconvex nonquadratic functions by
quadratic ones.

LindoBB (LINDO Systems Mixed Integer Nonlinear Solver) [37]. This solver has
been developed by LINDO Systems, Inc. It is available within the LINDO environment and
as a commercial solver within GAMS.

LINDOBB ensures global optimal solutions for convex MINLPs. It was the first commer-

cially available solver implementing a branch-and-bound algorithm utilizing nonlinear relax-
ations for the bounding step [34]. The NLP relaxations are solved by CONOPT [17, 28].

LindoGlobal (LINDO Systems Global Solver) [37]. This solver has been developed
by LINDO Systems, Inc. It is available within the LINDO environment and as a commercial
solver within GAMS.

LINDOGLOBAL ensures global optimal solutions for convex and nonconvex MINLPs. It
implements a branch-and-cut algorithm that utilizes LPs for branching. Branching is per-
formed such that subproblems that are not provably infeasible and where nonconvex con-
straints are present or the LP relaxation has a fractional solution are divided into further
subproblems. LINDOGLOBAL can also handle some nonsmooth or discontinuous functions
like abs(x), floor(x), and max(x,y).

MILANO (Mixed-Integer Linear and Nonlinear Optimizer) [8]. This solver is de-
veloped by H. Y. Benson at the Department of Decision Sciences of Drexel University. It is
still in development and available as MATLAB source.

MILANO ensures global optimal solutions for convex MINLPs. It implements a branch-
and-bound algorithm utilizing nonlinear relaxations for the bounding step [34]. The NLPs are
solved by LOQO [51], where special emphasis is put on how to warmstart this interior-point
solver.

MINLP_BB (Mixed Integer Nonlinear Programming Branch-and-Bound) [34].
This solver had been developed by R. Fletcher and S. Leyffer at the University of Dundee.
It provides an AMPL interface and is available for MATLAB via the TOMLAB Optimization
Environment [29].



MINLP _BB ensures global optimal solutions for convex MINLPs. It implements a branch-
and-bound algorithm utilizing nonlinear relaxations for the bounding step [34]. The NLPs
are solved by FILTERSQP.

MISQP (Mixed Integer Sequential Quadratic Programming) [19]. This solver has
been developed by the research group of K. Schittkowski at the Department of Computer Sci-
ence of the University of Bayreuth. It works as a standalone library with a Fortran interface.

MISQP can be applied to convex and nonconvex MINLPs, but assumes that the values of
f(z,y) and g(z,y) do not change drastically as a function of y. MISQP implements a modified
sequential quadratic programming (SQP) method, where functions are only evaluated at
points (x,y) with y integer. It targets applications where the evaluation of f(z,y) or g(x,y)
may be expensive.

MOSEK [41]. This solver has been developed by MOSEK ApS. It is available as a stan-
dalone binary, has AMPL and MATLAB interfaces, and is distributed as a commercial solver
within AIMMS and GAMS.

MOSEK can be applied to convex MIQCPs and to mixed-integer conic programs. It
implements a branch-and-bound method that utilizes QCP/SOCPs for bounding [44].

OQNLP (OptQuest Nonlinear Programming) [28, 50]. This solver has been jointly
developed by OptTek Systems, Inc. and Optimal Methods, Inc. It is available as a standalone
library, for MATLAB via the TOMLAB Optimization Environment, and is distributed as a
commercial solver within GAMS.

OQNLP is a heuristic that can be applied to any MINLP. It implements a multistart
scatter search algorithm which solves NLP subproblems with fixed discrete variables.

SBB (Simple Branch-and-Bound) [28]. This solver had been developed by ARKI Con-
sulting and Development A/S. It is available as a commercial solver within GAMS.

SBB ensures global optimal solutions for convex MINLPs. It implements a branch-and-
bound algorithm utilizing nonlinear relaxations for the bounding step [34]. The NLP relax-
ations are solved by one (or several) of the NLP solvers available with GAMS. Using the
GAMS Branch-Cut-and-Heuristic facility [12], SBB allows the user to implement a model-
specify heuristic in the GAMS language.

SCIP (Solving Constraint Integer Programs) [2, 9]. This solver has been developed
by the Optimization Department at the Zuse Institute Berlin. For academic institutions, it
is available in source code and as standalone binary. Also a GAMS interface is available.

SCIP ensures global optimal solutions for convex and nonconvex MIQCPs. It implements
a spatial branch-and-bound algorithm utilizing a linear relaxation for the bounding step. The
relaxation is obtained by linearizing convex or convexified quadratic functions.

XPRESS [22]. This solver has been developed by Dash Optimization (later been acquired
by FICO). It is available as standalone binaries and as a component in many modeling systems.

XPRESS can solve convex MIQCPs. It implements a branch-and-bound algorithm that
utilizes QCPs for bounding.



5 Outlook and Summary

Combining the world of discrete and nonlinear optimization results in a rich modeling para-
digm applicable to many real world optimization problems. On the other hand, mixed integer
nonlinear programming represents a theoretically and computationally challenging problem
class and hence provides many interesting research opportunities. Software for solving MINLP
models facilitates co-operation between research and application and explains the popularity
and increased level of activity around MINLP.

While state of the art MIP solvers implement advanced automatic reformulation and
preprocessing algorithms, such techniques are in todays MINLP solvers only available in a
limited form. Therefor, a good problem formulation delivered by the modeler is still very
important to solve a MINLP. However, software for guided automatic model reformulations
and relaxations have been recently developed. LOGMIP [52], one of the first systems avail-
able, translates a MINLP with disjunctions into a standard MINLP by applying bigM and
convex hull reformulations. More recently, frameworks like GAMS/EMP (Extended Math-
ematical Programming) [21] and ROSE (Reformulation/Optimization Software Engine) [36]
provide a growing toolbox for reformulating MINLPs. Other recent activities, like LIBMC [40]
and parts of MINOTAUR (Mixed-Integer Nonconvex Optimization Toolbox — Algorithms,
Underestimators, Relaxations) [35] focus on (convex) relaxations for (nonconvex) MINLP.

Another important area is the collection and dissemination of MINLP models. Instance
collections like MACMINLP [33] and MINLPLIB [13] provide valuable test cases for solver
developers. The new Cyber-Infrastructure for MINLP [15] features a growing library of
problems with high level model descriptions, reformulations, and problem instances.

In this paper we have given a concise description of state-of-the-art MINLP solvers. We
have established several groupings with respect to various features of the software. We hope
that the groupings and the individual descriptions give sufficient information to guide the
selection for the best solver for a particular MINLP problem.
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