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Abstract

In this work we propose a general framework for the structured perturbation analysis of
several classes of structured matrix polynomials in homogeneous form, including complex
symmetric, skew-symmetric, even and odd matrix polynomials. We introduce structured
backward errors for approximate eigenvalues and eigenvectors and we construct minimal
structured perturbations such that an approximate eigenpair is an exact eigenpair of an
appropriately perturbed matrix polynomial. This work extends previous work for the
non-homogeneous case (we include infinite eigenvalues) and we show that the structured
backward errors improve the known unstructured backward errors.
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1 Introduction

In this paper we study the perturbation analysis for eigenvalues and eigenvectors of matrix
polynomials of degree m

L(c,s) := ZcmfjsjAj, (1)
=0

with coefficient matrices, A; € C*"*". In contrast to previous work on this topic [1, 3], we
consider the homogeneous form where the eigenvalues are represented as pairs (c, s) € C2\ {0},

which for ¢ # 0 correspond to finite eigenvalues A = f, while (0,1) corresponds to the
c

eigenvalue oo.

The eigenvalue problem for matrix polynomials arises naturally in a large number of appli-
cations, e.g., see [17, 18, 24, 27, 29, 36, 37] and the references therein. In many applications,
the coefficient matrices have further structure which reflects the properties of the underlying
physical model, see [9, 11, 12, 32, 19, 28, 30, 37]. Since the polynomial eigenvalue problems
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typically arise from physical modelling, including numerical discretization methods such as
finite element modelling [10, 31], and since the eigenvalue problem is usually solved with
numerical methods that are subject to round-off as well as approximation errors it is very
important to study the perturbation analysis of these problems. This analysis is necessary
to study the sensitivity of the eigenvalue/eigenvectors under the modelling, discretization,
approximation and roundoff errors, but also to judge whether the numerical methods that
are used yield reliable results.

While the perturbation analysis for classical and generalized eigenvalue problems is well
studied, see [21, 33, 38| for polynomial eigenvalue problems the situation is much less satis-
factory and most research is very recent, see [22, 24, 23, 35, 36]. Here we are particularly
interested in the behavior of the eigenvalues and eigenvectors under perturbations which pre-
serve the structure of the matrix polynomial. This has recently been an important research
topic and we will present a systematic extension of the work in [1, 3, 4, 6, 11, 12].

In this paper we will focus on complex matrix polynomials, where the coefficient matrices
are complex symmetric or skew-symmetric, i.e., L(c,s) = +£L%(c,s) or where the matrix
polynomials are T-even or T-odd, i.e., L(c,s) = £L% (¢, —s). Complex (skew)-symmetric
problems arise in the finite element modelling of the acoustic field in car interiors and in the
design of axisymmetric VCSEL devices, see e.g. [8, 34] while complex T-even/T-odd problems
arise in the vibration analysis for high-speed trains, see e.g. [25, 26]. Many applications only
need finite eigenvalues and associated eigenvectors, but the eigenvectors associated with the
eigenvalue infinity play an important role as well, since often the infinite spectrum has to be
deflated before classical methods can be employed, see [13, 14].

While the perturbation analysis and the construction of backward errors for finite eigenval-
ues has been studied in detail, there are only few results associated with the eigenvalue infinity.
We will present a systematic general perturbation framework that covers finite and infinite
eigenvalues and extends the structured theory of [1, 3, 2, 4, 11, 12] as well as the unstructured
theory for the homogeneous case studied in [5, 7, 6, 16, 24, 33]. In particular, to present the
backward error analysis, for a given approximation to an eigenvalue/eigenvector pair of a ma-
trix polynomial L, we will construct an appropriately structured minimal (in Frobenius and
spectral norm) perturbation polynomial AL such that the given eigenvalue/eigenvector pair
is exact for L+ AL. It will turn out that the so constructed minimal perturbation is unique in
the case of Frobenius norm and that there are infinitely many such minimal perturbations in
the case of the spectral norm. We will compare the so constructed perturbations with those
constructed for matrix pencils and matrix polynomials in [1, 2, 3] and show that our results
generalize these results and provide the following further information on the eigenvalues 0
and oo of L + AL.

e For the case of complex symmetric or skew-symmetric matrix polynomials we show that
the nearest perturbed matrix polynomial can have all kinds of eigenvalues including 0
and oo.

e When the degree is m = 1, we present the perturbation analysis for the case of T-even
and T-odd matrix pencils and we show that the nearest perturbed pair can have 0 and
oo as eigenvalues depending on the choice of (A, 1) for which we want to compute the
backward error. Furthermore, when A = 0 or 4 = 0, then we show that the perturbed
pair is the same for the spectral and the Frobenius norm.

e When the degree is m > 1 and even, then for the case of T-even matrix polynomials



we show that the nearest perturbed polynomial can have both 0 and co eigenvalues
depending on the choice of (A, ) for which we want to compute the backward error.
Again, when A =10, u# 0 or A # 0, pu =0, then the perturbed polynomial is the same
for the spectral and the Frobenius norm.

e When m > 1 is odd, then for the case of T-even matrix polynomials we show that the
nearest perturbed matrix polynomial can have all possible finite eigenvalues including
0 but not the eigenvalue oco.

e When m > 1 is even, then for the case of T-odd matrix polynomials we show that the
nearest perturbed polynomial can have non-zero finite eigenvalues but not the eigenvalue
00.

e When m > 1 is odd, then for the case of T-odd matrix polynomials we show that the
perturbed polynomial can have only co and non-zero finite eigenvalues.

The paper is organized as follows: In Section 2, we review some known techniques that
were developed in [5, 6, 7] for matrix pencils and identify the types of structured homoge-
neous matrix polynomials that we will analyze, as well as the eigenvalue symmetry that arises
for these structured matrix polynomials. In Section 3 and in Section 4 we present the struc-
tured backward error analysis of an approximate eigenpair for complex symmetric, complex
skew-symmetric, T-even, and T-odd matrix polynomials and compare these results to the
corresponding unstructured backward errors. We also present a systematic general procedure
for the construction of an appropriate structured minimal complex symmetric, complex skew-
symmetric, T-even, and T-odd polynomial AL such that the given approximate eigenvalue
and eigenvector are exact for L + AL. These results cover finite and infinite eigenvalues and
generalize results of [1, 2, 3, 4, 11, 12] in a systematic way.

2 Notation and preliminaries

We denote by R™ "™, C™"*" the sets of real and complex n x n matrices, respectively. For

an elementwise nonnegative vector w = [wy, ..., wn]T € R™, a real or complex vector x =
[z1,...,2,]" and an integer p, 1 < p < 0o, we define a weighted p-(semi)norm via
[2llwp = [[wiz1, wams, . . ., wpwn] |-

If w is elementwise strictly positive, then this is a norm, and if w has zero components then it
is a seminorm. We define the componentwise inverse of w via w™! := [w; ', ..., w;,']7, where
we use the convention that w;l =0if w; =0.

We will consider structured and unstructured backward errors both in spectral norm and
Frobenius norm on C™*™, which are given by

[4ll2 = max || Az, [ A]lr = (traceA”4)!/%

llz]l2=

respectively.

By 0max(A) and omin (A) we denote the largest and smallest singular values of a matrix A,
respectively. The identity matrix is denoted by I and A, AT, and A stand for the conjugate,
transpose, and conjugate transpose of a matrix A, respectively.



The set of all matrix polynomials of degree m > 0 with coefficients in C™*" is denoted
by L, (C™*™). This is a vector space which (for a given nonnegative weight vector w :=
[wo, w1, . .., wy]T € R™HL\ {0}) we can equip with a weighted norm/seminorm ||.[|,, 2 defined
as

ILllwr = [(Ao,.. - An)llwr = (Wil AollF + ... + wl [ Al F) 2,
for the Frobenius norm and
ILllwz = (Ao, .-, Am)llwz = (Wil Aoll3 + ... + w | AnI3)"/?,

for the spectral norm. A matrix polynomial is called regular if det(L(A, p)) # 0 for some
(A, 1) € C?\ {(0,0)}, otherwise it is called singular. The spectrum of a homogeneous matrix
polynomial L € L,,(C"*™) is defined as

A(L) :=={(c,s) € C*\ {(0,0)} : rank(L(c,s)) < n}.

In the following we normalize the set of points (c,s) € C?\ {(0,0)}, such that |c|? + |s]?> =1
and that c is real. With this normalization, it follows that the spectrum A(L) of a matrix
polynomial L € L,,,(C"*™) can be identified with a subset of the Riemann sphere, see e.g. [6].

In the following we will compute backward errors for structured matrix polynomials. These
were introduced, e.g., in [20, 35], but here we follow [5, 6, 7] and define the backward error of
an approximate eigenpair as follows. Let (\, ) € C2\ {(0,0)} be an approximate eigenvalue
of L € L,,(C™"™) with corresponding normalized approximate right eigenvector x # 0 with
e =1, ie., L(A, u)x = 0. Then we consider the Frobenius and spectral norm backward

errors associated with a given nonnegative weight vector [wq, wr, ..., wy]|",
Nw,p (A 2, L) = inf{|]AL[lw,p, AL € Ly, (C*""),
(L(A, ) + AL(A, p))z = 0},
Nw2(A py 2, L) o= inf{[JALJlw2, AL € L, (C*"),
(L) + AL\, )z = 0},
respectively. When w := [1,1,...,1]7, then we just leave off the index w for convenience. For a
given (\, 1) € C2\{(0,0)} and = € C" with z7x = 1, we set k := —L(\, u)x and, with a given
nonnegative weight vector [wo, w1, . . ., wm|T, we introduce Hy, o := ||[(A™u0, N s o, A1) || 2,
the map
C - R
z] = w,Q(Z07zla"'7zm>7

and its gradient V;Hy, 2 at (A™p0 X, A0u™).
Then we have

ILOA, pz|
Thw,2 )\,,LL,CC,L = 75 N 2
( ) Hw_1,2()\a.u) ( )
Defining for each of the coefficients
V]-Hw_172
FA; = Hw—l’Q (3)



and introducing the perturbations AA; := lejka for the coefficients, we form the matrix
polynomial
m
AL(c,s) =Y " IsIAA,
§=0
with

%]
AL|yp2 = .
AL ]|, ot s

The backward errors for structured matrix polynomials from a set S C Ly, (C"*") are defined
analogously as

Mo r(\ps2, L) = f{JAL|ly,p. AL €S, (L(X, u) + AL(X, p))a = 0},
M2\ s 2, L) inf{[|AL]lw2, AL €S, (L(A, 1) + AL(A, p))x = 0},

respectively.
In order to compute the backward errors, we will need the partial gradient V;||z||.,,2 of the
map
(Cm—l—l - R

z =l

w,2

which is just the gradient of the map

C — R,

zi = Nzo, 21 2] w2,
obtained by fixing the variables zg, 21, ..., 2i—1, Zi+1, - - - , Zm as constants.

The gradient of the map
(C’ﬂl—}—l _ R7
z = [zllwe,
is then defined as
V(l12llw2) = [Vollzlhw2, Vill2llw2: - - -» Vinl|2[lw2] " € T

For z € C we set sign(z) := z/|z|, when z # 0 and sign(z) := 0 when z = 0. With these
definitions we have the following preliminary results which generalize the corresponding results
of [5, 6] to matrix polynomials.

Proposition 2.1 Consider the map Hy2 : C™t — R given by Hy 2(2) := ||[20, 21, - - - » 2m)” |lw.2-
Then Hy, o is differentiable on C™ ! and

2,
VZ'HU)Q(Z) = sz2?z), 1= 1, 2, cee, M.
w,

Proof. The assertion follows from the fact that V(|z;]?) = 22;. O
The proof of the following two propositions is analogous.



Proposition 2.2 Let m be an integer and let m = % + 1, m = m if m is even and m =

mT—i-l’ m=m—1 if m is odd. Consider the mapping
Kyo: c™ — R
z = |20, 22, 24, - - -, 20T wi2-
Then K, 2 is differentiable and
wiz .
ViKyp2(z) = m, i=0,2,4,...,m.
Proposition 2.3 Let m be an integer and let m = m
mT—i-l, m=m—1 if m is odd. Consider the mapping

Ny,o2 : c™ - R

z = ||[217Z37Z57'"7ZﬁI]T||w,2-

Then Ny 2 is differentiable and

2

Vin,2(Z) = ma

i=1,3,5,..., 1.

Proposition 2.4 Consider the functions

ng(cmso, s 0™ = ||[¢™s0, ™ s, L ,cosm]THw,g,
Kuo(cms0 cm 262 . %™) = ||[¢™s?, ¢ 252 0gm
Kua(cms? cm 262 %™ ) = ||[¢™s?, ¢ 282, es™
Nuo(cd™ s, ™33 . es™ ) = ||[¢™ s, ¢3S es™ T
Nyo(cd™ s, ¢™ 353 . ™) = ||[d™ s, ™38

For even m, the following formulas hold:

m ~ 1 2 m
_i iVjHyo Ko _
Mgl I W and w42|V-Kw2\2:1
H 2 Wi J 5 ?
o a w,2 Hw2 —
7=0,7 even ) j=0
m—1 = T 2 m—1
_i iVjHyo  Ngo _
gl Lt — % and w; 2|V Nyo|? =
H 2 J J )
. . w72 Hw2 =1
j=1,5 odd ’ J=
m ~ 1 m—1 ~ AT
E : Cm JSJ Jrw, :1’ § : cm jS] J-Tw, :1,
A Kw,Q ) - w,2
j=0,7 even j=1,7 odd
m ~ 7 m—1 —_—
m—j g Vitlw? m—j g Vitlwe _
c S + c S .
P Hw,2 . Hw,2
7j=0,57 even ]:Odd

5 m = m if m is even and m =

oo 8™ |2 if m s even,
w2 if m is odd,
L2 if m is even,

veeey 8™y 0 if m s odd.

and



For odd m then the following formulas hold:

j oJ —  oJ _
™ s ™ s =
H, - H? .’ 2 H? )’
j=0,j even ) w2 1 jo0dd W, w,2
m—1 m
— V,K. 2 _ VN, 2
E " Ig) IJ( e E Mg L2 — 1 and
£ 2 2
j=0,j even “ j=1,j odd “
m—1 ~ 1rr m ~ 1rr
Z Mgl Vifuz + Z Mgl ViHuz _ 1.
= Hy o Hy,o
j=0,j even w j=1,j odd “

For all m the following formulas hold:

m ~ 117 m
_: i ViHyo ,
> s S =1 Y WiV Hy el = 1.
Hyp g
j=0 W j=0

Proof. By Proposition 2.1, we have

1 w2cmIsl
V,iHya2(c™, M s s™) = J
74w, ) PR _
Hyo(cm, cmls, ..., s™)
Then )
m = m —
m—j i Vitw? 2 mj ¢ K
J o — J o _
IS — = wie" s =
j=0, j even w,2 j=0, 7 even w,2 w2

The other parts follow analogously, using Propositions 2.1-2.3. 0O

After establishing these formulas for general matrix polynomials, we now turn to the struc-
tured classes. These classes were discussed in detail in [28] but not in homogeneous form. So
let us first introduce the homogeneous versions.

Definition 2.5 Let (c,s) € C?\ {(0,0)}. A matriz polynomial L € L,,(C™") is called
1. Symmetric/skew-symmetric if L(c, s) = L% (c, s),
2. T-even/T-odd if L(c, s) = £L%(c, —s).

The spectra of these classes of structured matrices have a symmetry structure that is sum-
marized in the following proposition which follows directly from the results for the non-
homogeneous case in [28].

Proposition 2.6

1. Let L € L, (C™™) be a complex symmetric or complex skew-symmetric matriz polyno-
mial of the form (1). Ifx € C" is a right eigenvector of Li corresponding to an eigenvalue
(A, 1) € C?\ {(0,0)}, then T is a left eigenvector corresponding to the eigenvalue (X, p1).

2. Let L € L, (C™*™) be a complex T-even or T-odd matriz polynomial of the form (1). If
x € C" and y € C™ are right and left eigenvector associated to an eigenvalue (A, pu) €
C2\{(0,0)} of L, theny and T are right and left eigenvectors associated to the eigenvalue

()‘7 _:u)'



S Eigenvalues Eigenpairs xTij
symmetric (A, ) (A p),z, )
skew-symm. (A, ) ((\ ), z,T) 0
T-even (()‘a :u)> ()‘7 _:u)) (()‘7 M)a x,@), (()‘a _M)v yvf) 0 for all odd ]
T-odd (()\Hu)’(_)\?lu)> ((Avu)ax7g)?((_)‘mu)ay

Table 1: Eigenvalues and eigenvectors of structured matrix polynomials.

, @) | 0 for all even j

Since T-odd and T-even matrix polynomials have coefficients that are alternating between
symmetric and skew-symmetric matrices it is clear that if we form products 7 (L(, 1))z, then
all those terms associated with skew-symmetric coefficients vanish; these are the coefficients
with odd index for T-even matrix polynomials, and the ones with even index for T-odd matrix
polynomials. We summarize the properties of these structured matrix polynomials in Table 1.

To derive the backward error formulas, in the following we will frequently need the following
completion results in which for a symmetric matrix X, X2 denotes the positive square root.

A C

Theorem 2.7 [15] Consider a block matriz T := [B X

o 4

the block X can be chosen such that
A C
B X

where X is of the form X = —KAUL + x(I - KK")Y2Z(1 — LY L)'/2, where K := ((x*I —
AHA)_I/QBH)H, L= (I - AHA)_I/QC’ and Z is an arbitrary matriz such that || Z]|2 < 1.

} . Then for any positive number

J

A c]

)

2

<X

As a Corollary of Theorems 2.7 one has the following result for complex matrices.

A

Corollary 2.8 Let A = +£AT, C = +BT € C™" and x := omax <[B

). Then there exists

A +BT
a symmetric/skew-symmetric matric X € C"*" such that omaq ([ ]) =, and X

B X
has the form
X = -KAK" + x(I - KK z(1 — KK™T)'/?,
K := B(X*I — AA)"Y2 and where Z = +2Z7 € C™" is an arbitrary matriz such that
1Z]l2 < 1.

In the results presented below, we always use Z = 0.
In the following section we derive backward errors for the different classes of structured
matrix polynomials.



3 Backward errors for complex symmetric and skew-symmetric
matrix polynomials

In this section we derive backward error formulas for homogeneous complex symmetric and
skew-symmetric matrix polynomials. Throughout this section, we will make use of the partial

VJHUJ_I,Q

gradients of Hy-1 9 and of z4; as defined in (3).

w—12

Theorem 3.1 Let L € L,,(C"*™) be a reqular, symmetric matriz polynomial of the form (1),
let (A, 1) € C2\ {(0,0)}, let x € C™ be such that 'z =1 and let k := —L(\, p)z. Introduce
the perturbation matrices

AA; = —T:I;TAj:BmH +7za; [TkT + k! — Q(J:Tk:)me] ,7=0,...,m
and form
AL(c, s) = Zcm_jsjAAj € L, (C™™).
=0
Then AL is a symmetric matriz polynomial and (L(A, p) + AL(, p))x = 0.

Proof. Since for all j we have AA; = AA?, it follows that AL is symmetric and we have
that

(LA, 1) + AL, )z = > A"/ (A; + AAj)x
=0

= X" [Ajr — 22T Aja + Z4; [Th w4+ k- 2(a" k)T
=0

= k(I —z2") + [Tk 2z + k — 202" k)T) Y A" iz
j=0

m
By Proposition 2.4 we have that » A™7J4iZz; = 1. Then
j=0
(LA, p) + AL(A, p))z
=—(I—-zDk+zklc+k—2Tk)z =0,
since kTe = 2Tk, O

As a corollary of Theorem 3.1 we obtain Theorem 4.2.1 of [1] for the case of non-homogeneous
matrix polynomials that have only finite eigenvalues, i.e., for which det(A4,,) # 0.

Corollary 3.2 Let L(s) := Z;ﬁ:o s1Aj € C"™ " have only finite eigenvalues, let p € L, let
xz € C" be such that xHz =1, and let k := —L(u)x. Introduce the perturbation matrices

W
AA; = —f:cTAja;a:H + ||XH2 [TkT + kzfl — 2(:1:Tk)fo] , 7=0,1,...,m,
2

with ||All2 = ||[1, p, 12, ... W™ T ||2. Then with AL(s) := >0 s’AA;, AL is symmetric and
(L(s) + AL()r = 0.



Proof. The proof follows from Theorem 3.1 with ¢ = 1 and w =: [1,1,...,1]T. O
As further corollary we obtain Theorem 2.2 of [3] for matrix pencils.

Corollary 3.3 Let L = cAp + sA; € Li(C™™™) be a symmetric matriz pencil, let (A, pn) €
C2\ {(0,0)}, let x € C" be such that xx = 1, and set k := —L(\,pu)x. Introduce the

perturbation matrices
AAy = -zl Agza™ + 745 [TKT + k2! - 2(2T k)T ]
AA, = -zl Ayea™ 4+ 747 [EkT + k't — Z(ka)ExH] .
Then AL(c, s) := cAAg + sAAy is symmetric and (L(A\, ) + AL(X\, 1))z = 0.

Using Theorem 3.1 we then obtain the following backward errors for complex symmetric

matrix polynomials.

Theorem 3.4 Let L € L,,,(C™™™) be a complex symmetric matriz polynomial of the form
(1), let (\, ) € C2\ {(0,0)}, let x € C" be such that xx =1, and set k := —L(\, p)z.

i) The structured backward error with respect to the Frobenius norm is given by

2k[l5 = =" k[

S
A,z L) =
nw,F( 12 ) Hw*1,2
m
and there exists a unique compler symmetric polynomial AL(c,s) := Zcm_jsjAAj
7=0

with coefficients
AA; =7z, [zk" + k' — (2T k)z2"], j=0,1,....m

such that the structured backward error satisfies 775‘172()\, w,z,L) = ||AL| w2 and T, x are
left and right eigenvectors corresponding to the eigenvalue (X, u) of L+ AL, respectively.

ii) The structured backward error with respect to the spectral norm is given by

s [1%]2
>\a ) aL =
7]w,2( /’L x ) Hw7172
m
and there exist a complex symmetric polynomial AL(c, s) := Zcm_jsjAAj with coeffi-
§=0

cients
2Tk(I — 2D kKT (I — zzt!)
&1 — [T k|2

AAj =7z, Tk + k! — (kT z)z2™ -

such that ||AL[lw2 = 0% o(X, gy 2, L), and (L(A, ) + AL(X, p))z = 0.

Proof. By Theorem 3.1 we have that (L(A, 1) + AL(A, 1))z = 0 and hence k = AL(A, ).
Now we construct a unitary matrix U which has x as its first column, i.e., U = [z, U;] € C"*"

— 4T
and let AA; := UTAA;U = {dé’? dz } , where D;; = DT, € Clv=1)x(n=1) " Then
J D3

—_——

UAL(\, )U™ = UUT(AL(A, p)) UM U = AL(A, ),

10



and hence

P

which implies that

T
N \H. T, | Tk
AL\, ) Uz =U"k = [UlT/J
Therefore, we get that
m A" g
S X pid, 2j=0 wjdjvaj |:xT k}
djmo A" i d; S WA i a5 Urk

To minimize the norm of the perturbation, we solve this system for the parameters d; ;, d; in
a least squares sense, and obtain

d —_
Lo o wodo Zho
widy 1 7, y ZA,
— T widy T
wadao | = | Z4; | 27k, and = | %Ay | Uik,
= Win i, '
_Uhndm,m_ _ZAm_ ZAm_
Applying Proposition 2.1, we then get the following relations
dj; =za,2"k, dj =Z5,Ulk, j=0,1,...,m.

From this we obtain
AA; = UAAUM =zd; 2" + Thdja + zdT U + Ty D; Ul
=z [(@ ka") + TiUT k' + 26" U, U] + T D, ;U
= za, @ k) + (I =z k2™ + 2k (1 = 22™))] + ULD; U
= 7z, [ka" +Tk" — (K"2)z2"| + U D; ;U (4)

In Frobenius norm, the minimal perturbation is obtained by taking D;; = 0 and hence we
get

IAAE = ldjl* + 20113 = |2a, (|2 k> + 2 UT &][3)
2|3 — |« K[>
= |V, H, 22002 2
| J4w 1,2‘ HEU L 5

m

since ||UTk|3 = |zTk|? + |U{ k||3. By Proposition 2.4, we have that ijz]Vij_1’2|2 =1
=0

and thus in the case of the Frobenius norm we have that

2||k3 — [="K[> _ 2||k|3 — =Tk
IALIE, - = ZMZW Hyo1 o 2 = }2]2 :
w 12

w—1,2

11



and hence,

AL|pr =4/ ————.
||| ||| N \/ Hi—lg

As kTx is a scalar constant, it follows that all AA; and thus also AL are symmetric and

(L) + ALO )z = SN T (A 4 A4
=0

=—k+ (NI AA))x
j=0
=—k+ Z Am_juj@[ka + 7kt — Tk xaa
=0
= k+k+zkle —zkTz=0.

Here we have used that by Proposition 2.4, we have that Z P\ Mj% = 1, which implies
§=0
that (L(A, ) + AL(A, i)z = 0. Similarly, it follows that Z (L(\, ) + AL(), ) = 0.
For the spectral norm we can apply Corollary 2.8 to (4) and get

Dij =~ [7TRUTR)UT W]
1/2 T 1/2
RO PR 5 Sl i P e

where Z = ZT and ||Z]]2 < 1, P? = ||k||3 — |27k, x := 1/||d;j;||> + ||d;]|3. With the special

choice Z = 0 we get D;; = —% [m(UlTk)(UlTk)T} and

I ZA; 75 Za; _
0Dl = =S WU ek 0T = =25 (1 = 72 kKT (1 - aa™),

Hence,
zZa;
J
-5
AL(c, s) is symmetric, and (L(A, i) + AL(A, )z = 0. With

d. .
X i= Omax <[CZJD — Joa, [yl TR + IUT k|2 =

then by Corollary 2.8 we have x = [|A4;]|2, and since by Proposition 2.4, > 37" wj2-|Vij7172\2 =
1, it follows that

AAj =7Za; [k:a:H +zk! — E(ka):cH] (I — 72D kkT (I — za™),

‘v ‘Hw*1,2|
= k|2,

w

[1E]2
Hw—l’z '
Note that in the construction of a minimal spectral norm backward error we have infinitely

many choices of an appropriate completion Z for which [|Z]|| < 1, but here and in the
following we always take Z = 0 to simplify the formulas.

771%,2()" Ky X, L) = |||AL”|UJ72 = 0

12



ijw—l,Z()‘) /J’)

Hw—l,Q()‘a :U')
Theorem 3.4 we have that AA; =0, j = 0,...,m. This shows that w; = 0 implies that A;

remains unperturbed.

Remark 3.5 If w; = 0 for j = 0,...,m, then z4, =

= 0 and hence by

We then have the following relations between structured and unstructured backward errors.

Corollary 3.6 Let L € L,,(C"™™) be a reqular, symmetric matriz polynomial of the form
(1), let (A, 1) € C?\ {(0,0)}, let x € C™ be such that ¥z = 1. Then,

nlsu,F(Av.u?x,L) S \/inw,Z()\a,UfaxaL)
nﬁ,z(/\vu,w,L) = N2\ p L),
Proof. By Theorem 3.4 with k := —L(\, u)z, we have that

[1%]]2 2||k|[3 — |27k [?
77?0,2()““71"1‘) = H , and nzsu,F()"vavL) = H2
w—1,2 w—1,2

[1E]2

w—1,2
As a corollary we obtain the result for the case of non-homogeneous matrix polynomials
that have no infinite eigenvalues of [1, 2].

. Thus the assertion follows. 0O

and from (2) we have that 7, 2(\, p, z,L) =

Corollary 3.7 Let L(s) = Z;'n:o s’A; € C™™ be complex symmetric and have only finite
eigenvalues, let u € C, let ¥ € C™ be such that x%x =1 and let k := —L(u)z.

i) The structured backward error with respect to the Frobenius norm is given by

V2I[E[I3 = [Tk

S
UF(#,%L) = ||A||2 ’
and there exists a unique complex symmetric polynomial AL(s) := Z;‘n:o sjAAj, with
coefficients
Aj = w [EkT + k't — (ka:)fo] 1 =0,1 m
J_HAHg y J=U L

such that the structured backward error satisfies n%(p, v, L) = [|AL|| ¢ and T, x are left
and right eigenvectors corresponding to the eigenvalue p of L + AL, respectively.

ii) The structured backward error with respect to the spectral norm is given by

[1&1l2

772s(lu7$aL) = A ZUZ(M7$7L)
[[Al2
and there ezist a complex symmetric polynomial AL(s) = Z;‘n:() sIAA; € CV™ with
coefficients
W g o1 g 2Tk(I —T2D)EET (I — za™)
AA; = zk' + ko — (k' x)zx™ —
T IAL %[5 — |7 F[>

such that | AL|lz = 03 (n, z, L), and (L(k) + AL())z = 0.

13



Proof. The proof follows from Theorem 3.4, by using ¢ = 1, w = [1,1,...,1]7, za; =
V;H,- J

i w2 5 and H?

Hw_172 Hw_1,2 v

We also obtain as a corollary the result for homogeneous matrix pencils L(c, s) = cA+sB €
L;(C™*™) and in the special case, i.e., for ¢ = 1, we obtain results given in Theorems 3.1, and

3.2 of [3].

-19 = HA”% |

Corollary 3.8 Let L(c,s) = cAo + sA;1 € Li(C™*™) be a complex symmetric matriz pencil,
let (\, 1) € C2\{(0,0)}, let x € C" be such that 2z =1, let k :== —L(\, u)x, and w := [1,1]7.

i) The structured backward error with respect to the Frobenius norm is given by

V2I[R[I5 = 2Tk

S
np(A p,z, L) =
g 1A 1Tl
and there exists a unique complex symmetric pencil AL(c,s) := cAAg + sAA;, with
coefficients
AAy = zZa, (k" + k' — (2T k)z2"]
AA = zZa; [TkT + kat — (2T k)]

such that n®(\, i, z,L) = || AL||p and T,z are left and right eigenvectors corresponding
to an eigenvalue (X, 1) of L + AL, respectively.

ii) The structured backward error with respect to the spectral norm is given by

[1Ell2
[IRSYZEN P

and there exists a complex symmetric pencil AL(c,s) = cAA + sAB, with coefficients

7725()‘7 Hy s L) =

AAy = za, |ThT 4 kafl — (KT 2)z2 —

2Tk(I — Tz kKT (I — za™)
%[5 — 2T k|2 ’

AAy = 74, |ThT 4 ket — (KT x)z —

2Tk(I — T2 kET (I — za™)
%[5 — [« Tk|? ’

such that (L(\, 1) + AL(X, )z = 0 and ||AL|ls = nS(\, i, z, L).

In an analogous way we can derive the results for complex skew-symmetric matrix polynomi-
als.

Theorem 3.9 Let L € L,,(C" ™) be a complex skew-symmetric matriz polynomial of the
form (1), let (\,p) € C?\ {(0,0)}, let x € C" such that 2z = 1 and let k := —L(\, p)x.

Introduce the perturbation matrices

AA; = —@[ﬁkT—ka], i=0,1,2,... ,m.

Then the matriz polynomial AL(c,s) = Zcm*jsjAAj, is complex skew-symmetric and
j=0
(L(A, 1) + AL(A, )z = 0.

14



Proof. By construction AL is complex skew-symmetric and by Proposition 2.4, we have

m
Z )\m—jﬂj@ = 1. Thus, we have
7=0

(LA p) + AL(A, )z

= —k+ AL\ p)r = —k+ > X" pizg [2h" - k2] o
=0
=—k+zkle+k=0,

as Tk x = 0, since the polynomial has skew-symmetric coefficients. 0

Theorem 3.10 Let L € L,,(C"*™) be a complex skew-symmetric matriz polynomial of the
form (1), let (\, 1) € C?\ {(0,0)}, let z € C" be such that %z =1 and let k := —L(\, p).
The structured backward errors with respect to the Frobenius norm and spectral norm are
given by

2|||13
S 2
A L) =
77w,F< s by Ty ) Hw*12
s [1%l2
A L) =
77w,2< y My Ty ) wal 27

respectively. Introducing the perturbation matrices
AA; = —zx; [@k" — k2], j=0,1,...,m,

then AL(c, s) :== > 1L, cMIsIAA; is skew-symmetric, (AL(X, p)+L(A, u))z = 0, nE’F(/\,,u,x,L) =

IAL[lw,r and 03 5(X, s 2, L) = [ALlw,2-

Proof. By Theorem 3.9 we have (L(\, u) + AL(A, 1))z = 0 and hence we have that k =
AL(, p)z. Choose a unitary matrix U = [z, U], Uy € C" ! and let AA; := UTAA;U =

0 dr
J
[—dj ADM]’ where
ADj7j — _ADjj';j c C(nfl)x(nfl).
Then o
UAL(A, p)UY = TUT (AL, p))UPU = AL(A, ),
and hence

P

UAL\, p)UR 2 = AL\, p)z = k,
which implies that
AL, Ut = U7k = [ 2
BT =R T T

Since UH 2 = ¢4, it follows that 27k = 0 and

m o m Cds
Ulk ==Y A"7id; = ijAm*Juﬂw%.
=0 7=0 /

15



To minimize the perturbation we solve the system for the parameters d; ;, d; in a least square
sense, and obtain z7k = 0 and

wodg ZA,
widy ZA,
T
= — . U]_ k,
Wim dm ZAm

where Hyo = || N0, X1, A% |2 This yields d; ; = 0,d; = —z1 U k and then
, K 2 H , 357 J iY1
0 — (z5;uTk)"

AA; =
T E Uk ADj,

The Frobenius norm can be minimized by taking AD;; = 0 and then we have

2 2||I3
H? ’

w12

IAA;1F = 2l|d; |5 = 2lza, PIUTKI? = [ViHy1 0

since ||k||3 = [|[UTk||3 = |2Tk|?> + |[ULK|% = ||U{'k||3. Also by Proposition 2.4, we have that

V2|k|3
St wi|ViH 1 5/* = 1. Thus we have [[AL|,,r = T | HQ, and
w12

AA; = UAAUY = [z T [0 4 Hﬂ
. — — 1
’ —d; ADj;| [U{!

= —Udjz" +zd]U{' + UD; ;U
Urza,Uf ke —2(z, UL k)" U + T AD, U
za, [OWU] k™ — 2k U0 UT)] + U AD,; ;U
zZa, (I — ExT)k:ﬂsH - EkT(I — xxH))] (5)

J

Therefore
AA; =7z [ka" — Tk"]

is complex skew-symmetric and we have that (L(A, u) + AL(A, i)z = 0.
To minimize the spectral norm we make use of Corollary 2.8 and obtain

Eyypp—
AD; = —TRUTRUTRT
T T1\H T TiNT
i I—(Ulk)églk) }Z I—Ulk(PU;k) ’

where Z = —Z7 with || Z||2 < 1, and P? = ||k||3 — |zTk|%. Choosing Z = 0, we get
ADj; = B [TRUT (U] R
and using (5), we get
T

__ A ——
U,AD; ;U = —%kaUlUlT kT U = —P—ngk(I — kKT (I — za™),

16



and hence

ZA, ——
AA; =z [—ka™ + 7KT — 22 (K w2 — %ka(I — 72Tk T (I — zz).
The skew-symmetry of A; implies that 7k = 0 and thus A4; = ZA; [ka — EkT] is complex
skew-symmetric. Then AL(c,s) is complex skew-symmetric and (L(\, u) + AL(A, p))z = 0
with xaa, = |24, [[|U k| 2.
Then by Corollary 2.8 we obtain

1AA 12 = |2, 1UT Kll2 = |24, |/ I1EIIE — |27k[2 = [2,][1%]12

and hence 17572(/\,u,x,L) = |AL|lyp2. O
As a direct Corollary of Theorem 3.10 we have the following relation between structured
and unstructured backward errors of an approximate eigenpair.

Corollary 3.11 Let L € L,,,(C™*"™) be a skew-symmetric matriz polynomial of the form (1),
let (A, 1) € C2\ {(0,0)}, let x € C™ be such that "z =1, and set k := —L(\, u)x. Then the

structured and unstructured backward errors are related via
nS,F()U)uvxaL) = \/57710,2()\7%%11)7
T]E}Q()\,,U,ZE,L) = nw,Q()‘nU'a$aL)'

As further corollary we obtain Theorem 4.3.4 of [1], see also [2] for non-homogeneous matrix
polynomials with no infinite eigenvalues.

Corollary 3.12 Let L(s) = Z;n:[) s1A; € C™™ be skew-symmetric, let yu € C, let z € C" be

such that 22 =1 and let k := —L(p)x. Then the structured backward errors with respect to
the Frobenius and spectral norm are given by

77%‘(:““7'%'71‘) = \/5772(M7$7L)7
7723(:“71"’1‘) = 772(%1‘711)7

respectively.
Introducing the perturbation matrices

s H1
AA; = — k' —k =0,1,...
J HAH% [l‘ x ]7] 5 Ly , T,

then AL(X) := > 1, NAA; is complex skew-symmetric, (AL(u)+L(u))z = 0, 03 (1, 7, L) =
IAL[F, and 03 (n, z,L) = |AL[..

Proof. With w :=[1,...,1]T, ¢ = 1, and HEU
Theorem 3.10. O

For matrix pencils L(c, s) = cAg+sA; € Ly (C™™), Theorem 3.10 in the special case ¢ = 1,
also implies the results given in Theorem 3.3 and Theorem 4.2 of [3].

C1p = |A||3 the results follows directly from
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Example S S (A2, L) [ (N 2, L) | ne(A, g2, L)
1 symmetric 0.7071 0.8660 0.7071
2 skew-symmetric 2 2.8284 2

Table 2: Structured and unstructured backward errors for Examples 3.14 and 3.15.

Corollary 3.13 Let L(c,s) = cAp+ sA; € Li(C™™") be a skew-symmetric matriz pencil, let
(A, i) € C?\ {(0,0)}, let x € C™ be such that xx = 1 and let k :== —L(\,u)x. Then the
structured and unstructured backward errors are related via

e\ p,2, L) = V2na(\ p, 2, L),
7];()‘7/1/75671‘) = 772()\7%3371‘)7

respectively.
Introducing the perturbation matrices

AAy = —Zza, [EkT — ka} and AAy = —Za, [T/CT - kCUH] )

then AL(c, s) := cAAg+sAA; is skew-symmetric, (AL(A, p)+L(\, p))z = 0, nS(\, p, 7, L) =
IAL|F, and n3 (X, p, 2, L) = [AL].

To illustrate our results, in the following we present some examples.

Example 3.14 Consider the complex symmetric pencil L € L;(C?*2) with coefficients Ag :=
—1/v/2

0 1 0 0
[1 O] and A; 1= [0 1], and take x = { V3 | (A, p) =(0,1).
For the Frobenius norm we obtain the coefficients of the perturbation pencil AL as AAg =

0 0 0.25 0.25 . .
[0 O] and AA; = [0.25 _0.75]. Then (0,1) is an eigenvalue of L + AL and ||AL|r =

: 0 0 0.5 0.5
For the spectral norm we obtain AAg = [O 0}, and AA; = [0'5 e
an eigenvalue of L + AL and [[AL[l2 = n5 (A, 4, z, L) = 0.7071, see also Table 4.

} Again (0,1) is

Example 3.15 Consider the complex skew-symmetric pencil L € Li(C?*?) with coefficients

Ay = [g _01} Ay = [g _02] and take 2 = [_1;%5] (A p) = (0,1).

For the Frobenius norm and spectral norm the coefficients or the perturbation pencil

are AAy = [8 8}, AA, = {_02 (2)} , (0,1) is an eigenvalue of L + AL, and |AL|r =

n3(\, p, 7, L) = 2.8284, while for the spectral norm we obtain [|AL[l2 = n§(\, u,z,L) = 2,
see also Table 4.

4 Backward errors for complex T-odd and T-even matrix poly-
nomials

In this section we derive backward error formulas for homogeneous T-odd and 7T-even matrix
polynomials. Throughout this section we assume that the coefficient matrix Ay is in the even
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position, i.e., it is symmetric for a T-even and skew-symmetric for a T-odd matrix polynomial,
the other case can be treated analogously via a multiplication with the imaginary unit 2.

For a given nonnegative vector w, an eigenvalue (A, ) and the partial gradients as intro-
duced in Propositions 2.1-2.4, we use the following abbreviations.

O ijw*1,2(>‘7M) na = vij*1,2(A7M) — ijw*1,2(/\7M)
YT T Hy o) T Ny () T K1 0(M )

We then have the following backward errors.

Theorem 4.1 Let L € L,,(C"*"™) be a complex T-even or T-odd matriz polynomial of the
form (1), let (A, 1) € C?\ {(0,0)}, let x € C" be such that ¥z =1 and set k := —L(\, p).
For j=0,1,2,...,m, and different cases, we introduce the following perturbation matrices.

o In the case that m is even and A # 0, or when m > 1 is odd then let for T-even matrizc
polynomials
ka, (zTk)(@2) + za; [(I — T2T)ka!? + Tk (I — za™)]  for even j,
Adji= —za (I — 22" kat! + 7T (I — 2at! ddj, ’
A, [ =z )ka™ + TR (I — ') for odd j,
so that the perturbation preserves the structure,

e in the case that m > 1 is even and both A # 0, u # 0, or in the case that m is odd and
w#£ 0, let for T-odd matriz polynomials
AAL = na, (aTk)(@a™) + 74, [(I — zal)ka! + TKT (I — 2a™)]  for odd j,
I —za, [-(I — za")ka + KT (I — za??)) for even j, ’

so that the perturbation again preserves the structure,
e in the case that X\ # 0, # 0 consider perturbation matrices

—zaT Ajratt + 2, [(I — zal)kat! + kT (I — wa™)] for symm. coeff.,
AAj = T (7 =T\ H =1 T(T o H :
za, [—(I — zat)kat! + Tk (I — za™)] for skew-symm. coeff.,

m

then there exists a matriz polynomial AL(c, s) = Zcm_jsjAAj € C™*™ that is appro-
j=0

priately structure preserving T-odd or T-even and (L(X\, p) + AL\, p))x = 0.

Proof. Let AL € Ly, (C™") be of the form AL(c,s) = 377 ™ IsIAA;. Then by the
construction it is easy to see that AL is either T-even or T-odd and it remains to show that
(LA, 1) + AL(A, 1))z = 0. We begin with a T-odd polynomial L. In both cases that m is
even or odd, we have

(LA, ) + AL\, )z = > N7 pd (Aj + AAj)x
=0
= > A o— [~k+zTE]) Y Al
j=0,7 even j=0,j even
m—1 m—1
+ > N A+ [TRE 4+ Y Nl Ea (I - 72Tk
j=1,j odd j=1,j odd
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m m—1
=—k+[ Y xpzm+ Y Xpzg ] -z )k + 2 kT
J=0,j even j=1,5 odd
=—k+k—72Tk+2Tkz =0,

since by Proposition 2.4 we have that

m m—1
> NWEG YL ATTWE =1
7=0,75 even j=1, j odd

The proof for T-even polynomials is analogous. [
In the special case of linear matrix polynomials, i.e., for m = 1, we have the following
expressions. For even pencils we have

AAy = —[sign(p)*z2” Agzz™ + 74, [(I — T2 )k +Th" (I — 22™)]
AAy = -z, [-(I — 72"k +Th" (I — 22™)],

and for odd pencils we have
AA; = —|sign(\) P72l Az + 747 [(1 — 72"k + 7K (1 — 22™)],
AAy = -7z, [-(I — 72"k + 7" (I — 22™)],

where [sign(z)| = 1, if z # 0 and |sign(z)| = 0, for z = 0.

As a corollary we obtain the results for the case of non-homogeneous matrix polynomials
with no infinite eigenvalues of Theorem 4.2.1 in [1], see also [2]. This case follows by setting
c=1,L(s) :=L(1,8),A:=[1,p,...,u™7 and w := [1,1,...,1]7.

The minimal backward errors for complex T-even polynomials and m > 1 are as follows.
Theorem 4.2 Let L € L,,(C"*"™) be a T-even matrixz polynomial of the form (1), let (A, ) €
C2\ {(0,0)}, let x € C™ be such that 'z =1 and set k := —L(\, p).

i) The structured backward error with respect to the Frobenius norm is given by

Tk2 k 2 Tk 2
’$2 | —|—2H Iz ~ 5 |2 k] if m is even or if
Kw 1,2 Hw 12
1 # 0 andm is odd,
S = 2|12 — |27 k|?
%,F(/\, s, z, L) M if A= 0andmis even,
Hw—1,2
e T2
M if 1 = 0 andm is odd.
L Hw 12

i1) The structured backward error with respect to the spectral norm is given by

Ix \ ’ Hz | k| if m is even or
w —12
. 1 # 0 andmis odd,
nw,2()‘7,ua$aL) = ||k”2 ) J
if A =0, andm is even,
H,— 2
%] T :
if p = 0 andm is odd.
\ Hw_172
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When m is even, or when m is odd and A # 0, introduce the perturbation matrices

AA lej(ka)(fo) +7za, [(I - Tzl )kl + 2k (I — za®)]  for even j,
I —za, [—(I =z )ka™ + kT (I — z2™)) for odd j,

Then AL(c,s) =377, cm~IsI AA; is the unique T-even matriz polynomial satisfying (L(\, p)+

AL\, p))z =0, and ||AL|w r = ngyF()\,u,a},L). Similarly, for the spectral norm, when m
is even or when m is odd and A\ # 0, introduce the perturbation matrices

ka,2Tk(I — z2t)kk™ (I — 727
[E|I” — |2 k2
J

AA; — for even j,

for odd j,

AAj =

Then the matriz polynomial AL(c,s) = Zcm_jsjAAj is T-even and satisfies (L(\, ) +
=0
AL(X, p))z =0 as well as | AL|y2 = 775‘172()\, w,x,L).

Proof. Theorem 4.1 implies that (L(\, u) +AL(A, @)z = 0 and hence k = AL(\, u)x. Now

s S
choose a unitary matrix U = [z, U], Uy € C"Land let AA; := UTAA;U = djj;  d; ,
—To bl
_ T n—1 n—1 .. L H T _
where AD; j = ADj ; € C=Dx(n=1) ‘wwhen j is even and AA; = U |:—bj AB?]-,J UY,AB; ;=
—ABj;, when j is odd. Then, since UAL(\, u)UT = UUT(AL(\, u))UTU = AL(M, p), it
—_ —_ T
follows that UAL(X, u)UTz = AL(X, p)z = k, and hence AL\, p)U Tz = UTk = [[S}IZ]
1
Using
ijdj,jT
=0 J Z‘Tk’
Z wiN" I =L Z Wi\ g = 1
j=0, j even Wi j=1,j odd i

to minimize the perturbation, we solve this system for the parameters d; ;, d; in a least square
sense, and we obtain

Woao,0 ZAm,

waa2 2 ZAs
= ) 2Tk,

Wi Am,m ZAm

Then d; ; = kT;ijk, d; = @U{fk/‘ for even j and b; = @U{fk/‘ for odd j and we obtain
T
_ | 7., T 77T
T | kaztk (ZAJ'UI k> UH  for even j,
Uk ADj;

777
0 _<ZAJ'U1 k) UH  for odd j,
Za; Ul k ABj;

c

21



This implies that
AA; = —zx; [-(I — 22" )k + k" (I — 22™)] + ThAD; ;UT, (7)
when j is odd. For even j, we get
g H
7T 77T
sy = o [P () )

H
%UlTk ADJ‘J Ul
= ka,(2"k) @) + za; (U1 (U] k2™ + 2k" U, U] + ThAD; ;U

Thus

AAj = ka, (2"k)@2") + 21, (I — T2" )k + KT (I — 22™)] + ThAD; ;U (8)
The Frobenius norm can be minimized by taking AA;; = 0, so we obtain

AA ka, (aTk)(@a) + za; [(I — 2T )ka!! + KT (I — 2z™)]  for even j,
7 —za, [—(I — T2 ka™ + zkT (I — z2™)) for odd j.

Since the Frobenius norm is unitarily invariant, it follows that for even j we have

1a4illr = y/laggl + 20513 = y/lka, Pl kI + 20z, PIUT R

VK1 0|27 k] 2\Vijfl,zlz||U1T/1€||§
KQ + H2 :
w12 w—12

Similarly for odd j, we have ||AAj||r = ﬂ]zAj|HU1TkH2. Furthermore, by Proposition 2.4, we
m m

have Z w?-]Vijq’Q]z =1 and Z’IUJZ-‘Vijflzyz = 1 when m is even. Then it follows

j=even Jj=0
that
m
2T k[> | 2)|UF K]I3
IALLor = | S wllAd = 5+ 2
=0 w—1,2 w—12
TH?, 201HE — 127K
For the spectral norm, we have from (7) and (8) that
AA = ka, (aTk)(@at) + 22, [(I — T2 k! + TKT (I — 22™)] + S5 for even j,
I —za, [-(I =z )k + 2kT (I — z2™)] for odd j, ’
J— ZA; ——
where S; := U1 AD; ;U = %ka:(I — 2T kkT (I — z2™), and P? = ||k||3 — |27 k|>. Now

let

\/’kAj’2|ka|2 + 24, 12(||k[? = |#Tk[?)  for even j,
V124, 2OIRIZ = 27 K[2) for 0dd

XAA; =
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Hence by Corollary 2.8 it follows that ||All2 = xa4,. Then

S L el BT

m
|z
1ALz = || S u2jad) = [ =
=0 w—1,2 w—1,2
and
SRR k2= o TH
7]5},2()"”71'714) = K2 7 . O
w12 w12

We obtain the following relations between the structured and unstructured backward errors.

Corollary 4.3 LetL € L,,,(C"*"™) be a T-even matriz polynomial of the form (1), let (A, p) €
C2\ {(0,0)}, let x € C™ be such that 7z =1, and set k := —L(\, ).

1 Ifw:=[11,....; 107, |\ = |u| =1 and if m is odd, then H?_, , =2K2_, , and for the
Frobenius norm we get

M r (N 1,2, L) = V200 2(\, 1, 7, L).

Stmilarly, for the spectral norm we have

VIEIE + [«Tk
M2\ s 7, L) = ”}} Ll
w12

2. If m is even or if m is odd and \ # 0, then for the Frobenius and the spectral norm we
have

ng,F()‘huvva) < \@Uwz()\vu,%L)v
773,2()\;#:%14) = T]w,g()\,u,w,L),
respectively.

Proof. Consider the case that [A\| = |u| = 1, w = [1,1,...,1]7 and that m is odd. Then
H? =2K? Substituting these in Theorem 4.2 and then applying (2), we get for the

w12 w—12°
Frobenius norm that

TI'LSU,F()\? M, T, L) = \/inw,Z(Aa M, T, L)

and for the spectral norm that

[IFIE + [ 4P
773,2()\7 p,z, L) = 12[.72—
w—1,2

If m is even and A = 0, then we have K,-15 = wy,'{u|™ and H,-1 5 = w,'|u|™ and hence
7737F()\,/.L,$,L) < \/57710,2()‘7/%"1;71‘)7
M2z, L) = nua(X p,z,L),
Similarly, for u = 0 we have K,,-1 9 = wy H[A[™ and Hy19= wy |A[™, and hence
7’]37F<)\,/.L,$,L) S \/§UW,2(/\7M7$7L)7
M2z, L) = nua(X p,z, L),
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The assertion for the case that A # 0 and m is odd follows analogously. 0O

As a corollary we obtain the results for non-homogeneous matrix polynomials with no
infinite eigenvalues of [1, 2] using the notation A, := [1, 42, ..., ™7 if m is even and A, :=
(1, 42, ..., u™ 7T if m is odd.

Corollary 4.4 Let L € L,,(C"*"™) be a T-even matriz polynomial of the form L(s) =
Z;‘n:o sjAj € C™™ that has only finite eigenvalues. Let p € C, let © € C" be such that
oH2x =1 and set k := —L(u)x.

i) The structured backward error with respect to the Frobenius norm is given by

£THE kI3 — [2TEP
(o, L) =4\ A IE
V2ARIE — TR if 5 =0.

if pe C\ {0},

it) The structured backward error with respect to the spectral norm is given by

(L PRl el

s if p € C\ {0},
Br =3 Vg T g e
n2(, z, L) if p=0.
In particular, if |p| = 1 and m is odd, then we have ||A||3 = 2||Ac||3. Moreover, for

the Frobenius norm ng(u,x,L) = V2m2(p, 2, L) and for the 2-norm we have n3(p,z,L) =

VIIE] + [« Tk
A2 . ‘
If we introduce the perturbation matrices

G e W
A3 " TATR

J
—HXW [—(I = z2")kat! + 2k (I — 22t for odd j,
2

(I —zaT)kat + zkT (I — z2™)]  for even j,

AAJ' =

Then AL(s) = 377", sTAA; is the unique T-even matriz polynomial that satisfies (L(u) +
AL(p))x =0, and ||AL|| ¢ = n%(u, x, L) for the Frobenius norm.

For the spectral norm, we introduce
waTk(I — zx)kk™ (I —z2T)

A4; = ’ [Ael3(IEl? — =T &[?)
AA; for odd j,

for even j,

Then AL(s) =37 s’ AA; a T-even matriz polynomial such that (L(p) + AL(u))xz = 0 and
IALJl2 = 75 (1, 2, L).

Proof. The proof follows from Theorem 4.2 using w = [1,1,...,1]7, ¢ = 1 and using that
Hy-19 = [[All2, Ky-19 := [[Acll2. DO
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Remark 4.5 Corollary 4.3 implies that for || = 1, and for the spectral norm we have that

VIIES + 2T k[

1A]l2 ’

7728(/"337 L) =

while in Theorem 4.3.6 in [1] and Theorem 3.7 in [2] it is shown that o5 (i1, 7, L) = na(u, z, L)
when w = [1,1,...,1]7 and m is odd.
For complex T-even pencils we obtain the following result.

Corollary 4.6 Let L(c,s) = cAg + sA; € Li(C"™™) be a T-even matriz pencil. Let (A, ) €
C2\ {(0,0)}, let x € C" be such that 2 x =1, and set k := ~L(\, p)z, w:= [1,1]T.

i) The structured backward error with respect to the Frobenius norm is given by

xﬂxTA_ oft 1 o B = APl Ao
2

W3
S0 o) (B — 1) |27k + 21813 s
n 5 by Ty = = t ’
r 1A, 1] 113
\/§nw,2()\a sy Ty L) if p=0,
ﬂnw,?()‘v sy T, L) Zf A= 07
\/inwﬂ()\vﬂyma]:‘) if ’)" =1, |M| =1

ii) The structured backward error with respect to the spectral norm is given by

|$TA 1"2 HkHZ ’)" |:CTA0$|2
A, 113

[Pl AP + 1413 S0
n2(A, p, x, L) if p=0,
772()\,/%%1*) Zf)‘:()a
2" Aoz ? + || k13 :

| Aol DAl if I = [l =
Defining the perturbation matrices
AAy = —lsign(\)[*z2” Agzz™ + 74, [(I — T2" )k + Th" (I — 22™)]

AA; = —Za, [—(I—:z::z: Vet k(1 —xxH)],

we have for the Frobenius norm that AL(c,s) = cAAg + sAA; is the unique T-even matrix
polynomial that satisfies (L(A, p) + AL(A, 1)) = njF()\, w,x,L).
For the spectral norm we introduce the perturbation matrices

sign(\2)aT Aoz (I — T2 T )kET (I — xz™)
(IEI* = 2T Agz[?) 7
AAy = —za, [-(I — 72" )ka + T (I — 22™)],

AAy = AAy—

then AL(e, 3) = cAAy + sAA; is T-even and satisfies (L(\,p) + AL(A\, p))x = 0 and
IALJw,2 = 3 ( L)
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(A, 1) S |5z, L) [ n2(\ pa, L) [ (A p, 2, L)
(1,0) T-even 1.2247 1.6583 1.2247
(0,1) T-even 1 1.414 1
2,1) T-even |  1.0247 1.3601 1
(4,3) T-even 0.9644 1.2689 0.9165
(24,1) T-even 1.0247 1.3601 1

(24 3i,1+1i) | T-even 1.1255 1.5111 1.1106
1.2) T-oven | 0.0487 1.2450 0.8365
1,1 T-oven | 0.9354 1.2247 0.8660

Table 3: Computed structured and unstructured backward errors for Example 4.7

Proof. The proof follows as in Theorem 4.1, using m = 1 and w := [1,1]7. O
It follows that for A = 0 in the T-even case we have AAg = 0 and

AAy = —za; [-(I = 72" )k + 7T (I — 22™)].

These perturbations are the same for the spectral and the Frobenius norm. Furthermore,
Corollary 4.6 shows that

\/57’2()‘)/1’71‘7];) if ‘,U,‘ < ’)‘|a

nep(\ p,x, L) <
1A, @ 2 ma (A, gy 2, L) i u] > | A,

For a non-homogeneous pencil L(s) = Ag + sA4; € L (C™*™) we then have

: V22 (p, 2, L) if |p| <1,
UF(H»%L) S ;
H[LM]TH????()‘?,uvva) if |N’| > 1,

which has been shown in Theorem 3.4 of [3] for the case that u # 0.

Example 4.7 Consider a T-even matrix pencil with coefficients Ag := [2 ﬂ LA = [O _Oq ,

1 {
—1/V/2 . . . .
let x = N and (A, #) = (1,0). Then we obtain the following perturbation matrices. For
—140.252 04 0.25¢
040.252 1—-0.75

O ] e 1AL = g0 1), o the specra

—1.240.100 —0.20+ 0.10¢ oo -
—0.204+0.102  0.80 — 0.902 ] , Ady = [0 O] , and Ag + AAy =

0.80+ 0100 0.80 + 0.10z o — s B B
0.80 4 0.10:  0.80 + 0.101} » Art Adr = L 0} cand ng (A, @, L) = ALl = 1.2247,

see also Table 4.

the Frobenius norm we have AAg = [ ] , AA = [8 8} and Ag+AAy =

[14+0.25¢ 1+ 0.25%

[1+0.25 1 +0.25J Atad = [

norm we obtain AAy = [

In a similar way we can derive the results for T-odd matrix polynomials.
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Theorem 4.8 Let L € L,,,(C™*™) be a T-odd matriz polynomial of the form (1), let (A, pu) €
C2\ {(0,0)}, let 2 € C™ be such that 7z =1 and set k := —L(\, p)z.

i) The structured backward error with respect to the Frobenius norm is given by

oTHE L IMB—1TRE
+ 2 1 0 and m odd
Nia i "
UE,F()M p,x, L) = orif A#0,u # 0 and m even,
92 T1.12
\/W if A=0andm odd.
w12

ii) The structured backward error with respect to the spectral norm is given by

Tk2 ]{3 Tk'2
\/]a; ‘ \Hz =7 k| if ##0 and m odd,

-12
7]w2()‘ p, @, L) or A\ # 0, # 0, andm even,

k
hqu if A=0andm odd.

w12
For pn # 0 and odd m or for A # 0, u # 0 and m even, introduce the perturbation matrices

AA TAJ(:I:Tk:)(ExH) +za, (I — z2ah)ka™ + 2T (I — 2a?)]  for odd j,
7 —za, [-(I =z )k + kT (I — zz™)] for even j.

Then for the Frobenius norm we obtain the unique T-odd matriz polynomial AL(c,s) =
>0 ™ IsIAA; such that (L(A, u) + AL(A, 1))z = 0 and |AL|lwr = nlSU’F(A,u, z,L).

For pn # 0 and odd m or for A # 0, u # 0 and even m and the spectral norm consider the
perturbation matrices

A, aTk(I — za®)kkT (I — z2T)
AEj = ¢ ST T = TR
A4,
Then the T-odd matriz polynomial AL(c,s) =37, =181 AE; satisfies (L(\, p) +AL(\, p))z =
0 and [ ALJlw2 = 113 2(A, 1, 7, L).

for odd j,

for even j,

Proof. The proof is analogous to that for T-even matrix polynomials. 0O
We then obtain the following relations between structured and unstructured backward errors
of an approximate eigenpair.

Corollary 4.9 Let L € L,,,(C™*"™) be a T-even matriz polynomial of the form (1), let (\, p) €
C2\ {(0,0)}, let x € C™ be such that 7z =1, and set k := —L(\, ).

1. If =0 and m is odd, then for the Frobenius norm we have

Ma,r (A 11, L) < V20 2(A, 1, 2, L),
2. If \=0 and m 1is odd, then for the spectral norm we have

7751,2()‘7 M, T, L) = Uw,?()\7 u, T, L)
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8. Letw:=[1,1,...,1)T and |\ = |u| = 1 for odd m. Then for the Frobenius-norm
T (A 11,2, L) = V200 2(\, 1, 2, L)
and for the spectral-norm we have

I%[I3 + |27k
Hw—l;Q '

771811,20‘7“73771‘) =

Proof. The proof follows from the fact that if w :=[1,1,...,1]T and |A\| = |u| = 1 and m is
odd, then we have va_l 5 = 2N3)_1 , and then applying (2) the results follow. 0O
As a corollary we also obtain the results for the case of non-homogeneous matrix polynomials

with no infinite eigenvalues of [1, 2]. By introducing the notation A, := [u, u?, ..., u™ 17
when m is even and A, := [u, 43, ..., ™7 when m is odd and by choosing the weight vector
w:=[1,1,...,1]7. we have the following result similar to Theorem 4.3.8, [1].

Corollary 4.10 Let L € L,,(C™™) be a T-odd matriz polynomial of the form L(s) =
>0 sIA; € C™™ with det(Ay,) # 0, let u € C\ {0} and let x € C™ be such that 2z =1
and set k .= —L(p)x.

i) The structured backward error with respect to the Frobenius norm is given by

T1.12 2 T71.12
s 2" k| |k[]5 — =" K|
np(p, z, L) = { +2 .
Ao l13 A3

ii) The structured backward error with respect to the spectral norm is given by

T1.12 2 T1.12
s |27 k* [kl — |27 K
n5 (u, o, L) =
{ Ao |13 A3

In particular, if m is odd and || = 1, then for the Frobenius norm we have ||A||3 = 2||A,||3 and

VIKIB + [2THE

n3 (1, z, L) = v/2n2(p, 2, L) and for the spectral norm we have n3(u, z,L) = ]
2

Defining the perturbation matrices

G e W
A5 TAT

I
JATZ

(I —za®)ka + 2kT (I — z2™)]  for odd j,
AA]' =
[—(I = z2T)kat! + 2k (I — 22t for even j,

then AL(s) =371, s1 AA; is the unique T-odd matriz polynomial such that (L(p)+AL(u))z =
0 and |AL||r = 7% (u,z,L) in Frobenius norm.
For the spectral-norm, we introduce the perturbation matrices

walk(I — za )k (I — z2T)

[AolI3([I%]1* — [2Tk(?)
AA; for even j.

AA; — for odd j,

AEj =

Then AL(s) = 377, s’ AE; is a T-odd matriz polynomial such that (L(p) + AL(u))z = 0
and |AL|z = 15 (1, z, L).
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Proof. The proof follows from Theorem 4.8 using the fact that H,,-1 5 := [|Al|2, K-1 5 1=
|Aollz when w = [1,1,...,1]T ande=1. O

Remark 4.11 The case that © = 0 is not covered by the formulas in Corollary 4.10 for
the case m > 1. But it has been shown in Theorem 4.3.8 of [1]) that for u = 0,73 (u, z, L)
= V2ma(p, 2, L) and 15 (u, z, L) = na(u, z, L), respectively, for Frobenius norm and spectral
norm. For |u| =1 and spectral norm we have

VIIES + 2T k[

S
n5 (1, z, L) = ,
2 [[Al2

while again it has been shown in Theorem 4.3.8 of [1] that 75 (i, z, L) = n2(u, z, L).

For the pencil case we have the following Corollary.

Corollary 4.12 Let L(c, s) = cAp + sA1 € Li(C"™") be a T-odd matriz pencil, let (\, ) €
C2\ {(0,0)}, let x € C™ be such that 'z =1 and set k := —L(\, p).

i) The structured backward error with respect to the Frobenius norm is given by

Ty o o lkI3 = e A
N WA
; (B = 1) 17k + 211k13 |
ne(As w2, L) = WA if p # 0,
ﬂnz(/\,u,x,L) if A =0,
V2na(A, @, L) if 1 =0,
V2ne (X, p, 2, L) ifIA =1, |pl=1.

ii) The structured backward error with respect to the spectral norm is given by

\/LTT Ayaf? 4 VKB =Pl Avaf?

I 113
A2 |2 Ay x| + || k|2 .
S _ [Pl i to
n5 (A, p, o, L) = 1A 1] ][5
772()\7/%537[*) Zf)‘:()vu?éov
7]2(>‘7M7$7L) ZfA#Oal’L:Ov

|t Ayzf? + ||k 13
2

ifIN =1, ] = 1.

iit) Introduce the perturbation matrices

AAy = —za, |- — za D kat! + zRT (I — {L‘{L‘H)] )
AAy —|sign(p)|*T2” Ayzat + 247 (I - ol ) kat + kT (I — :E:EH)] :

Then for the Frobenius norm we obtain the unique T-odd pencil AL(c,s) = cAAg + sAA;
such that (L(\, 1) + AL\, )z = 0 and |ALp = 530\ 2, ).
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For the spectral norm, defining

sign(p?)xT Ayxe(I — zaT)kkT (I — z2™)
(IE[* = |27 Arz[?)

AEl = AAl — cmdAEo = AA(),
then we obtain a T-odd pencil AL(c,s) = cAEy + sAE; such that (L(X, p) + AL\, p))z =0
and |ALJlz = 7§ (A, p, 2, L).

Proof. The proof is analogous to that of Theorem 4.2 using m =1 and w := [1,1]. O

By the above results it is clear that if ; = 0, then for the T-odd case we have AA; = 0
and AAg = —za, [-(I — Za")kat! + zkT (I — z2™)]. These perturbations are the same for
the spectral and Frobenius norm.

Furthermore, Corollary 4.12 shows that

5 \/EUQ()‘aﬂvva) When‘:u" > ’)‘|7
UF()\,M,.’L',L) S
1A ™ ll2ma (N, s 2, L) when [l < [A].

Now consider a pencil L(z) = Ag+ zA; € L1 (C™*™). Then for given p € C and for let z € C"
such that 2 = 1, we have

. V2ne(p, 2, L) when |p| > 1,
ne(pu,z,L) <
H[lvu_l]THQUQ(AaN?x?L) when |M| < 17

which has been shown in [3].
We also have the following Corollary for T-odd matrix pencils of the form L(z) := Ag+ z4;
which is immediate from Corollary 4.12 and is presented in [1].

Corollary 4.13 Let L(z) = Ag + zA; € Li(C™") be a T-odd matriz pencil, let p € C,
x € C" be such that vz =1 and let k := —L(u)x.

i) The structured backward error with respect to the Frobenius norm is given by

T1.12
T Agaf? + 2 IRl KD s
s I, 172
Mo L) =9 ok (e - DRTRE
1L, 473 ’

ii) The structured backward error with respect to the spectral norm is given by

‘:L'TA 1“2 ’kHQ |ka|2
1L, 17|l

S
e (o, L) =
&3 + 2|2k
0
¢ 1, A713 Tu7o,
2(A, iy, L) if w=0.
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(A, 1) S |[mApma,L) [ np(\pa,L) | (A p, 2, L)
0,1) T-odd 1 1.2247 1
(1,0) T-odd | 2.2361 3.1623 2.2361
2.1) T-odd | 2.2361 3.0822 2.1448
4,3) T-odd | 2.0881 2.8671 2.0100
(2i,1) T-odd | 2.2361 3.0822 2.1448
(2+3i,1+4) | T-odd | 2.3310 3.2197 2.2361
@,2) T-odd | 1.5166 2.0248 1.4832
(1,1) T-odd | 1.9365 2.6458 1.8708

Table 4: Computed structured and unstructured backward errors for Example 4.14

In particular, if || = 1, then we have ||[1, u]T||3 = 2, and for the spectral norm we have

VIIENS + 2T k]2
05 (2, L) = S22 ,
w—12

and for the Frobenius norm we have nls;(u,x, L) = vV2ne(p, z,L).
Introduce the perturbation matrices

AA; = —|sign(p)|* T2z’ Ayez™ + zZa; (I — 72" )ka™ + 7KT (I — 22™)],
AAy = —za, [-(I —za D)kt + TR (1 - a:a:H)] .

Then for the Frobenius norm we obtain the unique T-odd pencil AL(z) = AAg+ zA Ay such
that (L() + AL())z = 0 and | AL| g = 7 (4, , L.
For the spectral-norm, we define

sign(p®)xT Ayx(I — T2T)kET (I — z2™)

AF .= AA —
' ' (&2 = [=TkP2)

y (mdAEo = AA()

Then we obtain a T-odd pencil AL(z) = AEy + zAE; such that (L(pn) + AL(p))x = 0 and
IAL]2 = 7§ (1, 2, L).

Let us illustrate these perturbation results with a few examples.

Example 4.14 Consider a T-odd matrix pencil with coefficients Ay := [2 0_ . _20+ Z} , A=

[t o] e [a] ma =0

i) For the Frobenius norm we obtain the minimal perturbation coefficients

oo 075 — 075 0.25+0.25 T 24
Ado = [0 0] A= [ 0.25 + 0.251 0.25—1—0.252] and Ao+Ado = [2 10 } ’
T0.25+0.250 0.25 + 0.250 e
ALt Ad = [0.25 +0.25 0.25+ 0.251] » and AL = (A, g, 2, L).
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0 0 _[-05-050 0.5+05

0 o] y Adi= [ 0.5 + 0.5 O.5+0.5z] nd
0.5+0.50 0.5+ 0.5

0.5+ 051 0.5+ 0.52] and JAL[F =

ii) For the spectral norm we obtain AAy = {

—2
Ao+ A4y = [221 o

77?‘()" M, T, L) = 17

see also Table 4.14

:|, A1+AA1—[

5 Conclusion

The structured backward errors for an approximate eigenpair and the construction of minimal
structured matrix polynomials have been introduced in [1, 2, 3] such that an approximate
eigenpair of L becomes exact for L + AL in Frobenius and spectral norm has been derived.
However, this theory has been based on the condition that the polynomial eigenvalue prob-
lem has no eigenvalue at co. Also for T-odd matrix pencil case there are no informations
of the backward error for the 0 eigenvalue. In this paper we have extended these results
in the homogeneous setup of matrix polynomials which is a more convenient way to do the
general perturbation analysis for matrix polynomials in that it equally treats all eigenvalues
of a regular matrix polynomial. We have presented a systematic general procedure for the
construction of appropriately structured minimal norm polynomials AL € L,,(C"*"™) such
that approximate eigenvector and eigenvalue become exact of L + AL. The resulting mini-
mal perturbation is unique in the case of the Frobenius norm and there are infinitely many
solutions for the case of the spectral norm. Furthermore, we derived as corollaries the known
results for matrix pencils and polynomials of [1, 2, 3] and we have illustrated the results with
several examples.
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