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January 22, 2010

Abstract

In this paper a general form of the infinite-horizon linear quadratic control
problem is considered. We will discuss quadratic cost functionals which involve
not only the state and input-variables but also derivatives of the state and input-
variables of arbitrary order under constraints given by linear systems of higher
order. We will examine two results that relate the linear quadratic control prob-
lem to an optimality system, which is given through a para-Hermitian matrix
polynomial. The results can be applied to general rectangular descriptor sys-
tems (see Subsection 6.1) to obtain results which so far were only known for
quadratic descriptor systems. Also we will see that the notion of dissipativity
(when introduced in the proper way) is equivalent to the solvability of the linear
quadratic control problem.

Key words. structured eigenvalue problem, generalized eigenvalue problem, polynomial matrix,

rational matrix, optimal control, linear quadratic optimal control, Hamiltonian system, dissipativity,

even polynomial, descriptor system, behavior approach, quadratic cost functional, para-Hermitian

1 Introduction

Let C∞(R, Cn) denote the set of all infinitely often differentiable functions. Let π ∈ N0

and let P0, . . . , Pπ ∈ C
p,q be matrices. Assume that a fixed function ẑ ∈ C∞(R, Cn)

is given, which fulfills

Pπz(π)(t) + . . . + P1z
(1)(t) + P0z(t) = 0, (1)

where z(i) denotes the i-th derivative of z. The identity (1) describes a linear system
and all functions z ∈ C∞(R, Cn) which fulfill (1) are called trajectories. Assume that
the function ẑ encapsulates the history of events that occurred in the past, up to time
point t = 0. We now ask the question how we can continue from t = 0 in such a way
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that a certain cost functional is minimized. More precisely, for ℓ ∈ N0 and matrices
Hi,j ∈ C

q,q with Hi,j = H∗
j,i for i, j = 0, . . . , ℓ we want to compute

inf
z(t)=ẑ(t),t≤0

∫ ∞

0








z(t)
z(1)(t)

...
z(ℓ)(t)








∗ 






H0,0 H0,1 . . . H0,ℓ

H1,0 H1,1 . . . H1,ℓ

...
...

...
Hℓ,0 Hℓ,1 . . . Hℓ,ℓ















z(t)
z(1)(t)

...
z(ℓ)(t)








dt, (2)

where the infimum is to be understood over all z ∈ C∞(R, Cn) for which the expression
under the integral is integrable and which fulfill (1). Also, we are looking for a
trajectory of (1) which attains the infimum, if such a trajectory exists. We will derive
an optimality condition for the solution of problem (2) which is well-known for the
special case of quadratic descriptor systems. We can generalize these well-known
results to rectangular descriptor systems with the results obtained in this paper. Of
course, the problem may not be solvable in the sense that (2) becomes −∞, i.e., that
one can construct trajectories with arbitrary small (negative) cost. We will see that
a proper notion of dissipativity is equivalent to the solvability of problem (2).

This paper is structured in the following way. We will first recall some known
results about polynomial and rational matrices in Section 2 and about behavior sys-
tems and dissipativity in Section 3. In Section 4 we will see that linear differential
equations with an exponentially decaying inhomogeneity always have (at least one)
solution which itself is exponentially decaying. Section 5 contains the two main re-
sults and here the connection between the optimal control system and the optimality
system is drawn. We finish the section with some remarks about how to interpret
the results. Finally, in Section 6 the results are specialized to first order systems and
then to state-space descriptor systems to obtain as Corollaries (a generalization of)
some well-known results and a conclusion and outlook is presented in Section 7.

The notation used in this paper is summed up in Tables 1-3.

Table 1: Notation - 1/3
S+ for an arbitrary set S ⊂ C; denotes {z ∈ S : Re {z} > 0}
S− for an arbitrary set S ⊂ C; denotes {z ∈ S : Re {z} < 0}

C∞(R, Cn) {z : R → C
n
∣
∣z is infinitely often differentiable}

C∞
c (R, Cn) {z ∈ C∞(R, Cn)

∣
∣z has compact support}

C∞ C∞(R, C)
C∞

c C∞
c (R, C)

C[λ] the ring of polynomials with coefficients in C

C(λ) the field of rational functions with coefficients in C

C[λ]p,q a p-by-q matrix with polynomial entries
C(λ)p,q a p-by-q matrix with entries from the field of the rational

functions
polynomial

matrix
an element of C[λ]p,q, i.e., a matrix with polynomial entries
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Table 2: Notation - 2/3
matrix

polynomial
the same as a polynomial matrix, since one can also look at
a polynomial matrix as a polynomial that has matrices as
coefficients

rational matrix an element of C(λ)p,q, i.e., a matrix with entries from the
field of rational functions

P(R) where R ∈ C(λ)p,q is a rational matrix; denotes the set of
poles of R, i.e., the set of all λ ∈ C where at least one entry
of R has a pole

D(R) where R ∈ C(λ)p,q is a rational matrix; denotes the set
C \ P(R), i.e., the set of all λ such that R(λ) is a well
defined matrix in C

p,q and thus the domain of definition of
R

rankC(λ) (R) where R ∈ C(λ)p,q; denotes the rank of R over the field C(λ)
kernelC(λ) (R) where R ∈ C(λ)p,q; denotes the kernel of R over the field

C(λ) which is a subset of C(λ)q

rangeC(λ) (R) where R ∈ C(λ)p,q; denotes the range of R over the field
C(λ) with is a subset of C(λ)p

rank (R(λ)) where R ∈ C(λ)p,q and λ ∈ D(R); denotes the rank of
R(λ) ∈ C

p,q in the usual way
kernel (R(λ)) where R ∈ C(λ)p,q and λ ∈ D(R); denotes the kernel of

R(λ) ∈ C
p,q in the usual way

range (R(λ)) where R ∈ C(λ)p,q and λ ∈ D(R); denotes the range of
R(λ) ∈ C

p,q in the usual way

z(i) the i-th derivative of the function z

P
(

d
dt

)
z where P ∈ C[λ]p,q has the form P (λ) =

∑d
i=0 λiPi and

z ∈ C∞(R, Cq); denotes the function
∑d

i=0 Piz
(i)

∆q
ℓ where ℓ, q ∈ N; denotes the polynomial given by

∆q
ℓ(λ) :=








(λ)0Iq

(λ)1Iq

...
(λ)ℓIq







∈ C[λ]q(l+1),q

∆ℓz where ℓ ∈ N and z ∈ C∞(R, Cq); denotes the function

∆ℓz :=








z

z(1)

...
z(ℓ)







∈ C∞(R, Cq(ℓ+1)),

and thus we have ∆ℓz = ∆q
ℓ

(
d
dt

)
z
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Table 3: Notation - 3/3
diag (α1, . . . , αr) where α1, . . . , αr are scalars; denotes the r-by-r diagonal

matrix which has the scalars α1, . . . , αr on the diagonal and
is zero everywhere else

0 ∈ C∞(R, Cq) The trivial function which is zero everywhere on R

E+(R, Cq) denotes the set of all functions z ∈ C∞(R, Cq) for which z

and all its derivatives are exponentially decaying, i.e., all
z ∈ C∞(R, Cq) such that for every i ∈ N0 there exist ai, bi >

0 with ∥
∥
∥z(i)(t)

∥
∥
∥

2
≤ aie

−bit

for all t ≥ 0
Eq
+ short for E+(R, Cq)

E+ short for E1
+

〈f, g〉+ where f, g ∈ En
+; denotes the L2 scalar product on the posi-

tive half axis given by

〈f, g〉+ :=

∫ ∞

0

g∗(t)f(t)dt

‖f‖+ where f ∈ En
+; denotes the L2 norm on the positive half axis

given by

‖f‖+ :=
√

〈f, f〉+ =

√
∫ ∞

0

‖f(t)‖2
2dt

2 Preliminaries

In this section we will review some definitions and results which are needed in the
following.

Lemma 1. Let P ∈ C[λ]p,q a matrix polynomial. Then there exists a finite set σ(P )
such that

1. rankC(λ) (P ) = rank (P (λ)) for all λ 6∈ σ(P ),

2. rankC(λ) (P ) > rank (P (λ)) for all λ ∈ σ(P ).

Proof. See [2, Lemma 2].

Definition 2. Let P ∈ C[λ]p,q and define the set σ(P ) as in Lemma 1. Then the
elements of σ(P ) are called eigenvalues of P . For λ ∈ σ(P ) the quantity

g(λ) := rankC(λ) (P ) − rank (P (λ))

is called geometric multiplicity of λ.
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Remark 3. In the theory of matrix polynomials it is common practice to distinguish
between finite and infinite eigenvalues, see [1, Section 3]. However, in this paper we
are not concerned with infinite eigenvalues, as they do not seem to play a role for the
results presented. Thus, if we speak of eigenvalues in the following we always refer to
finite eigenvalues.

Definition 4. A quadratic rational matrix R ∈ C(λ)p,p is called unimodular if its
determinant is a non-zero constant, i.e., there exists a non-zero constant c ∈ C \ {0}
such that

det R(λ) = c,

for all λ ∈ D(R).

Unimodular matrices have some convenient properties.

Lemma 5. A polynomial, unimodular matrix P ∈ C[λ]p,p is invertible over C(λ) and
its inverse is again a polynomial, unimodular matrix. Also, a unimodular matrix has
no eigenvalues.

Proof. Invertibility follows since the determinant is non-zero. We see that the inverse
(which we know exists in C(λ)p,p) is also a polynomial matrix use the adjoint formula
for the inverse. To see that the inverse is unimodular, note that

1 = det I = det(PP−1) = det(P )det(P−1).

A unimodular matrix can have no eigenvalues, since at such an eigenvalue the de-
terminant would vanish which contradicts the assumption that the determinant is a
non-zero constant.

Theorem 6. Let P ∈ C[λ]p,q and set r := rankC(λ) (P ). Then there exist unimodular
matrices S ∈ C[λ]p,p and T ∈ C[λ]q,q such that

P = S

[
diag (d1, . . . , dr) 0

0 0

]

T, (3)

where d1, . . . , dr ∈ C[λ] with di 6= 0 for i = 1, . . . , r and di+1 divides di for i =
1, . . . , r − 1.

Proof. The proof is quite simple and a completely self contained presentation can be
found in [7, Chapter S1.1] and another in [5, p.141, Theorem 3].

The canonical form in (3) is called Smith form.

Theorem 7. Let P ∈ C[λ]p,q and set r := rankC(λ) (P ). Then there exist polynomial
matrices U ∈ C[λ]q,q−r and V ∈ C[λ]q,r with the properties

1. PU = 0,

2. rankC(λ) (PV ) = r,



Optimal control of behavior systems 6

3. rankC(λ) (U) = rank (U(λ)) = q − r for all λ ∈ C,

4. rankC(λ) (V ) = rank (V (λ)) = r for all λ ∈ C,

5.
[
U V

]
is unimodular.

Proof. Let the Smith form (3) of P be given by

P = S

[
diag (d1, . . . , dr) 0

0 0

]

T.

Partition the inverse of T (which is again a polynomial unimodular matrix due to
Lemma 5) according to the block structure of the diagonal matrix in the Smith form
as

T−1 =:
[
V U

]
,

i.e., such that V has r columns and U has q − r columns. Then clearly also
[
U V

]

is unimodular since it can be obtained from T−1 via a column permutation, which is
itself a unimodular transformation, and then 5. is proved. Also we see that 1. holds,
since

PU = S

[
diag (d1, . . . , dr) 0

0 0

]

TU = S

[
diag (d1, . . . , dr) 0

0 0

]

TT−1

[
0

Iq−r

]

= 0.

Property 2. holds since analogously

PV = S

[
diag (d1, . . . , dr) 0

0 0

] [
Ir

0

]

= S

[
diag (d1, . . . , dr)

0

]

,

and all di 6= 0 for i = 1, . . . , r. Parts 3. and 4. follow since
[
U V

]
has full rank

(over C(λ)) and due to the unimodularity also the matrix
[
U(λ) V (λ)

]
has full rank

(over C) for every λ ∈ C.

Definition 8. Let P ∈ C[λ]p,q and set r := rankC(λ) (P ). Then the rational matrix
U ∈ C(λ)q,q−r and the polynomial matrix V ∈ C[λ]q,r are called kernel matrix and
co-kernel matrix of P , resp., if they fulfill the following properties

1. PU = 0,

2. rankC(λ) (PV ) = r,

3. rankC(λ) (U) = rank (U(λ)) = q − r for all λ ∈ D(U),

4. rankC(λ) (V ) = rank (V (λ)) = r for all λ ∈ C,

5.
[
U V

]
is unimodular.

Theorem 7 shows that for every matrix polynomial there also exists a kernel and
co-kernel matrix, where the kernel matrix is even a polynomial. The kernel matrix is
allowed to be a rational function, because for regular first order state-space systems
one can give a kernel matrix in explicit form which happens to be a rational matrix.

The following Lemma 9 justifies that one may speak of a kernel matrix and a
co-kernel matrix independently.
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Lemma 9. Let P ∈ C[λ]p,q and set r := rankC(λ) (P ). Let U ∈ C(λ)q,q−r and
V ∈ C[λ]q,r together be a kernel and co-kernel matrix of P and independently of that,
let also Ũ ∈ C(λ)q,q−r and Ṽ ∈ C[λ]q,r together be a kernel and co-kernel matrix of
P . Then also U and Ṽ together are a kernel and co-kernel matrix of P as well as Ũ

and V together are a kernel and co-kernel matrix of P .

Proof. See [2, Lemma 13]

Lemma 10. Let P ∈ C[λ]p,q and set r := rankC(λ) (P ). Let U ∈ C(λ)q,q−r be a
kernel matrix of P . Let a Smith form (3) of P be given by

P = S

[
diag (d1, . . . , dr) 0

0 0

]

T,

and partition the inverse of T as T−1 =
[
T1 T2

]
with T1 having r columns and T2

having q − r columns, partitioned analogously to the Smith form.
Then, there exists a unimodular rational matrix U2 ∈ C(λ)q−r,q−r with D(U) = D(U2)
such that U = T2U2. If U is in addition a polynomial matrix, then the matrix U2 is
also polynomial.

Proof. See [2, Lemma 12].

Lemma 11. Let Q ∈ C[λ]p,r be a matrix polynomial with full column rank and no
eigenvalues, i.e., let rankC(λ) (Q) = r = rank (Q(λ)) for all λ ∈ C. Then there exists
a polynomial left inverse X ∈ C[λ]r,q of Q, i.e., a polynomial matrix X such that
XQ = Ir.

Proof. The Smith form can be used to prove the claim. See [2, Lemma 14] for a
detailed presentation.

3 The behavior approach and dissipativity

In the following we state a few results related to the behavior approach which will be
needed subsequently. For a more detailed discussion on the behavior approach the
reader is referred to [10], where a slightly different notation is used.

Definition 12. Let P ∈ C[λ]p,q a polynomial matrix. Then we call

B(P ) :=

{

z ∈ C∞(R, Cq)
∣
∣P

(
d

dt

)

z = 0

}

= kernelC∞

(

P

(
d

dt

))

the behavior of P and

Bc(P ) := B(P ) ∩ C∞
c (R, Cq) = kernelC∞

c

(

P

(
d

dt

))

the compact behavior of P . The elements of B(P ) and Bc(P ) are also called trajec-
tories of P . Furthermore, we are going to use the symbol

B+(P ) :=

{

z ∈ E+
q

∣
∣P

(
d

dt

)

z = 0

}

,
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to denote the set of exponentially decaying trajectories.

Lemma 13. Let P ∈ C[λ]p,q with r := rankC(λ) (P ) and let U ∈ C[λ]q,q−r be a poly-
nomial kernel matrix according to Definition 8 and Theorem 7. Let a ∈ C∞(R, Cq−r)
be arbitrary. Then

z := U

(
d

dt

)

a ∈ B(P ),

i.e., z is a trajectory of P .

Proof. See [2, Lemma 17].

The following Lemma 14 completely characterizes the compact behavior of a sys-
tem with the help of a polynomial kernel matrix.

Lemma 14. Let P ∈ C[λ]p,q with r := rankC(λ) (P ) and let U ∈ C[λ]q,q−r be a
polynomial kernel matrix of P . Then

Bc(P ) = rangeC∞
c

(

U

(
d

dt

))

.

Proof. The inclusion ”⊃” follows readily from Lemma 13. The inclusion ”⊂” is more
complicated, see [2, Lemma 18].

Lemma 15. Let P ∈ C[λ]p,q with r = rankC(λ) (P ) and let U ∈ C[λ]q,q−r be a
polynomial kernel matrix of P . Let z ∈ B(P ) be such that for some fixed t0 ∈ R we
have

z(k)(t0) = 0,

for all k ∈ N. Then there exists an α ∈ C∞(R, Cq−r) such that

z = U

(
d

dt

)

α.

Proof. Let the Smith form (3) of P be given by

P = S

[
diag (d1, . . . , dr) 0

0 0

]

T.

Define y := T
(

d
dt

)
z. Since T has the representation

T (λ) =

τ∑

i=0

λiTi,

for some τ ∈ N and Ti ∈ C
q,q we see that for all k ∈ N0 we have

y(k)(t0) =

τ∑

i=0

Tiz
(i+k)(t0) = 0,
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due to the assumption. Denoting the elements of y by yi and using that P
(

d
dt

)
z = 0,

we find that di

(
d
dt

)
yi(t) = 0 for i = 1, . . . , r. For each i = 1, . . . , r we distinguish

two cases. The first case is when di(λ) ≡ d̃i is a constant non-zero polynomial. Then
d̃iyi(t) = 0 implies that yi(t) = 0 for all t ∈ R. The second case is when di(λ) is a poly-
nomial of degree higher than or equal to 1. In this case di

(
d
dt

)
yi(t) = 0 constitutes a

differential equation. Since we have already derived the initial conditions y
(k)
i (t0) = 0

for all k ∈ N we see from the basic theory of homogeneous linear differential equations
that in this case also yi(t) = 0 for all t ∈ R.

Thus, we have shown that y takes the form

y =

[
0
ỹ

]

,

with ỹ ∈ C∞(R, Cq−r). Partition the inverse of T as T−1 =
[
T1 T2

]
with T1 having

r columns and T2 having q − r columns.
Applying Lemma 10 we obtain the existence of a unimodular U2 ∈ C[λ]q−r,q−r such
that

U = T2U2.

Setting α := U−1
2

(
d
dt

)
ỹ we find that

z = T−1

(
d

dt

)

y =
[
T1

(
d
dt

)
T2

(
d
dt

)]
[
0
ỹ

]

= T2

(
d

dt

)

ỹ = T2

(
d

dt

)

U2

(
d

dt

)

U−1
2

(
d

dt

)

ỹ = U

(
d

dt

)

α,

which proves the claim.

In Definition 12 we have introduced a system (and its behavior) by means of a
matrix polynomial P ∈ C[λ]p,q. Next, we introduce a notion of energy or cost for
such systems. Therefore, let ℓ ∈ N0 and let H̃ = H̃∗ ∈ C

q(ℓ+1),q(ℓ+1) be a Hermitian
matrix. We then measure the cost that a given trajectory z ∈ B(P ) causes at the
time point t ∈ R through the term (∆ℓz(t))

∗
H̃ (∆ℓz(t)). This term depends not only

on z at time point t but also on derivatives of z up to order ℓ at time point t and might
well become negative. One can also think of (∆ℓz(t))

∗
H̃ (∆ℓz(t)) as measuring the

amount of energy that is supplied to the system P along the trajectory z, implying
that every amount of energy we supply to the system costs energy. However, we are
not interested in the cost that a trajectory causes at one specific time point but in
the cost that a trajectory causes over a whole time span in a cumulative way. Since
we consider the infinite horizon linear quadratic optimal control problem we measure
the cumulative cost that a trajectory z causes by

∫ ∞

0

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt,

where we will assume that z ∈ B+(P ) is exponentially decaying to ensure the existence
of the integral.
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Definition 16. Let P ∈ C[λ]p,q and H̃ = H̃∗ ∈ C
q(ℓ+1),q(ℓ+1). The P is called

dissipative with respect to H̃ if the dissipation inequality

0 ≤
∫ ∞

−∞

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt, (4)

holds for all z ∈ Bc(P ).

Definition 16 plays an important role in control theory and there are a lot of
other equivalent characterizations available see, e.g., [2, 16] which, however, will not
be pursued in this paper.

To discuss the importance of Definition 16 for the optimal control problem, assume
that there would exist a trajectory z̃ ∈ Bc(P ) with compact support such that

0 >

∫ ∞

−∞

(∆ℓz̃(t))
∗
H̃ (∆ℓz̃(t)) dt.

Then we could concatenate the non-trivial part of z̃ over and over again (as depicted
in Figure 1) to obtain a trajectory z0 of arbitrary low cost.

−5 0 5 10 15 20 25 30 35
−2

0

2

4

6

z̃ z0

Figure 1: Concatenation of functions with compact support

Thus, in this case there could never exist trajectory of minimum cost. We need the
following implication in the next section.

Lemma 17. Let P ∈ C[λ]p,q be dissipative with respect to H̃ = H̃∗ ∈ C
q(ℓ+1),q(ℓ+1).

Then also

0 ≤
∫ ∞

−∞

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt,

for all z ∈ B+(P ) with z(t) = 0 for t ≤ 0.

Proof. Assume to the contrary that there was a trajectory z ∈ B+(P ) with z(t) = 0
for t ≤ 0 and

0 >

∫ ∞

−∞

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt =

∫ ∞

0

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt. (5)

Let U ∈ C[λ]q,q−r be a polynomial kernel matrix of P , where r = rankC(λ) (P ).
According to Lemma 15 (with, e.g., t0 = 0) this implies the existence of an α ∈
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C∞(R, Cq−r) such that z = U
(

d
dt

)
α. Using Lemma 11 we obtain the existence of a

matrix X ∈ C[λ]q−r,q such that XU = Iq−r. Since z ∈ E+
q with z(t) = 0 for t ≤ 0 so

is

X

(
d

dt

)

z = X

(
d

dt

)

U

(
d

dt

)

α = α,

i.e., α ∈ E+
q−r and α(t) = 0 for t ≤ 0. Let U take the form

U(λ) =

µ
∑

i=0

Uiλ
i,

with µ ∈ N and Ui ∈ C
q,q−r and let b̃ be a smooth transition from 1 to 0, i.e., let

b̃ ∈ C∞(R, R) with b̃(t) = 1 for t ≤ 0 and b̃(t) = 0 for t ≥ q. Define a family of
functions zT ∈ Bc(P ) through

zT (t) := U

(
d

dt

)[

α(t)b̃(t − T )
]

.

With this we obtain

0 ≤
∫ ∞

−∞

(∆ℓzT (t))
∗
H̃ (∆ℓzT (t)) dt

=

∫ T

0

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt +

∫ ∞

T

(∆ℓzT (t))
∗
H̃ (∆ℓzT (t)) dt

Using (5) we see that there exists a ǫ > 0 and a T0 such that for all T ≥ T0 we have

∫ T

0

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt < −ǫ,

e.g., one can choose

ǫ = −1

2

∫ ∞

−∞

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt.

We also observe that
∣
∣
∣
∣

∫ ∞

T

(∆ℓzT (t))
∗
H̃ (∆ℓzT (t)) dt

∣
∣
∣
∣

=

∣
∣
∣
∣

∫ ∞

0

(∆ℓzT (t + T ))
∗
H̃ (∆ℓzT (t + T )) dt

∣
∣
∣
∣

=

∣
∣
∣
∣

〈

H̃∆ℓzT (· + T ),∆ℓzT (· + T )
〉

+

∣
∣
∣
∣

≤
∥
∥
∥H̃

∥
∥
∥

+
‖∆ℓzT (· + T )‖2

+
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=
∥
∥
∥H̃

∥
∥
∥

+

∥
∥
∥
∥
∆ℓU

(
d

dt

)[

α(· + T )b̃(·)
]
∥
∥
∥
∥

2

+

=
∥
∥
∥H̃

∥
∥
∥

+

ℓ∑

i=0

∥
∥
∥
∥
∥

(
d

dt

)i

U

(
d

dt

)[

α(· + T )b̃(·)
]
∥
∥
∥
∥
∥

2

+

=
∥
∥
∥H̃

∥
∥
∥

+

ℓ∑

i=0

∥
∥
∥
∥
∥
∥

(
d

dt

)i µ
∑

j=0

(
d

dt

)j

Uj

[

α(· + T )b̃(·)
]

∥
∥
∥
∥
∥
∥

2

+

≤
∥
∥
∥H̃

∥
∥
∥

+

ℓ∑

i=0

µ
∑

j=0

∥
∥
∥
∥
∥
Uj

(
d

dt

)i+j [

α(· + T )b̃(·)
]
∥
∥
∥
∥
∥

2

+

≤
∥
∥
∥H̃

∥
∥
∥

+

ℓ∑

i=0

µ
∑

j=0

‖Uj‖2
+

∥
∥
∥
∥
∥

(
d

dt

)i+j [

α(· + T )b̃(·)
]
∥
∥
∥
∥
∥

2

+

=
∥
∥
∥H̃

∥
∥
∥

+

ℓ∑

i=0

µ
∑

j=0

‖Uj‖2
+

∥
∥
∥
∥
∥

i+j
∑

k=0

(
i + j

k

)

α(k)(· + T )b̃(i+j−k)(·)
∥
∥
∥
∥
∥

2

+

≤
∥
∥
∥H̃

∥
∥
∥

+

ℓ∑

i=0

µ
∑

j=0

‖Uj‖2
+

i+j
∑

k=0

(
i + j

k

) ∥
∥
∥α(k)(· + T )b̃(i+j−k)(·)

∥
∥
∥

2

+
. (6)

Defining

B := max
t∈[0,1]

k=0,...,µ+ℓ

∣
∣
∣b̃(k)(t)

∣
∣
∣
2

and choosing C,D ∈ R
+ such that

∥
∥
∥α(k)(t)

∥
∥
∥ ≤ Ce−Dt,

for all t ∈ R and all k = 0, . . . , µ + ℓ we obtain

∥
∥
∥α(k)(· + T )b̃(i+j−k)(·)

∥
∥
∥

2

+

=

∫ ∞

0

∥
∥
∥α(k)(t + T )b̃(i+j−k)(t)

∥
∥
∥

2

2
dt

≤ B2

∫ ∞

0

∥
∥
∥α(k)(t + T )

∥
∥
∥

2

2
dt

≤ B2

∫ ∞

0

C2e−2D(t+T )dt

≤ B2C2e−2DT

∫ ∞

0

e−2Dtdt

≤ B2C2e−2DT 1

−2D
e−2Dt

∣
∣
∣

∞

0
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=
B2C2

2D
e−2DT , (7)

for all k = 0, . . . , µ + ℓ. Combining (6) and (7) yields

∣
∣
∣
∣

∫ ∞

T

(∆ℓzT (t))
∗
H̃ (∆ℓzT (t)) dt

∣
∣
∣
∣

≤
∥
∥
∥H̃

∥
∥
∥

+

ℓ∑

i=0

µ
∑

j=0

‖Uj‖2
+

i+j
∑

k=0

(
i + j

k

)
B2C2

2D
e−2DT

= e−2DT A,

by defining

A :=
∥
∥
∥H̃

∥
∥
∥

+

ℓ∑

i=0

µ
∑

j=0

‖Uj‖2
+

i+j
∑

k=0

(
i + j

k

)
B2C2

2D
≥ 0.

Now, choosing T1 ≥ T0 such that

e−2DT1A ≤ ǫ

2
,

we finally see that

0 ≤
∫ ∞

−∞

(∆ℓzT1
(t))

∗
H̃ (∆ℓzT1

(t)) dt

=

∫ T1

0

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt +

∫ ∞

T1

(∆ℓzT1
(t))

∗
H̃ (∆ℓzT1

(t)) dt

< −ǫ +

∣
∣
∣
∣

∫ ∞

T1

(∆ℓzT1
(t))

∗
H̃ (∆ℓzT1

(t)) dt

∣
∣
∣
∣

< −ǫ + e−2DT1A ≤ −ǫ +
ǫ

2
= − ǫ

2
< 0,

which is a contradiction and thus the claim is proved.

Assume that the dissipation inequality (4) holds for all z ∈ B+(P ) with z(t) = 0
for t ≤ 0. Then the dissipation inequality (4) is also fulfilled for all trajectories
z ∈ Bc(P ) with compact support, i.e., P is dissipative. Lemma 17 shows that also
the converse direction is true. In other words, by Lemma 17 we derived a condition
which is equivalent to dissipativity which will be used in the following.

4 Differential equations with exponentially decay-

ing inhomogeneity

In this section we will first see that ordinary differential equations of the form

ẋ = Ax + f,
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with A ∈ C
n,n and x, f ∈ C∞(R, Cn) with exponentially decaying f ∈ En

+ have at
least one solution x ∈ En

+ which is also exponentially decaying. Therefore, the Jordan
form will be employed. We then generalize the results further to higher order systems
with may also contain algebraic constraints by using the Smith form. Only the final
results, Lemma 22, will be needed in the next section.

Lemma 18. Let f, g ∈ E+ and α ∈ C. Then also f + g ∈ E+, αf ∈ E+, and ḟ ∈ E+.
This especially means that E+ is a linear subspace of C∞.

Proof. The proof is straightforward.

Lemma 19. Let f ∈ E+ and a ∈ C be arbitrary. Then there exists a y ∈ E+ such
that

ẏ(t) = ay(t) + f(t), (8)

for all t ∈ R, i.e., in the scalar first order case the linear differential equation with
exponentially decaying inhomogeneity f has (at least one) exponentially decaying so-
lution.

Proof. Since f ∈ E+ we know that for i ∈ N there exist constants di, δi > 0 such that

∣
∣
∣f (i)(t)

∣
∣
∣ ≤ die

−δit,

for all t ≥ 0. We distinguish two cases. First assume that Re {a} ≥ 0. Define

y0 := −
∫ ∞

0

e−asf(s)ds.

Note that y0 is well-defined, since in this case e−as is bounded for all s ≥ 0 by 1 and
f is exponentially decaying and infinitely often differentiable. With the variation-of-
constants formula and y0 as an initial condition we obtain that

y(t) = eaty0 + eat

∫ t

0

e−asf(s)ds

= eat

(

−
∫ ∞

0

e−asf(s)ds +

∫ t

0

e−asf(s)ds

)

= −eat

∫ ∞

t

e−asf(s)ds

is a solution of (8). We have

|y(t)| =
∣
∣eat

∣
∣

∣
∣
∣
∣

∫ ∞

t

e−asf(s)ds

∣
∣
∣
∣

≤ eRe{a}t

∫ ∞

t

∣
∣e−asf(s)

∣
∣ ds

≤ eRe{a}t

∫ ∞

t

e−Re{a}sd0e
−δ0tds
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= d0e
Re{a}t

∫ ∞

t

e−(Re{a}+δ0)sds

= d0e
Re{a}t

(

− 1

Re {a} + δ0
e−(Re{a}+δ0)s

∣
∣
∣

∞

t

)

=
d0

Re {a} + δ0
eRe{a}te−(Re{a}+δ0)t

=
d0

Re {a} + δ0
e−δ0t =: c0e

−γ0t,

by setting c0 := d0

Re{a}+δ0
and γ0 := δ0. Since y solves the differential equation (8),

we see that

y(i)(t) = aiy(t) +
i−1∑

j=0

ajf (i−1−j)(t).

Using Lemma 18 shows that all derivatives of y are also exponentially decaying, which
implies y ∈ E+.

For the second case assume that Re {a} < 0. In this case there exist multiple
solutions. We choose y0 := 0 and observe that in this case

y(t) =

∫ t

0

ea(t−s)f(s)ds,

is a solution of (8). W.l.o.g. we assume that δ0 < −Re {a} (otherwise chose δ0 smaller,
which is still appropriate). Then δ0 + Re {a} < 0 and we have

|y(t)| ≤
∫ t

0

∣
∣
∣ea(t−s)f(s)

∣
∣
∣ ds

≤
∫ t

0

eRe{a}(t−s)d0e
−δ0sds

= d0e
Re{a}t

∫ t

0

e−s(Re{a}+δ0)ds

= − d0

Re {a} + δ0
eRe{a}t

(

e−s(Re{a}+δ0)
∣
∣
∣

t

0

)

= − d0

Re {a} + δ0
eRe{a}t

(

e−t(Re{a}+δ0) − 1
)

= − d0

Re {a} + δ0

(

e−δ0t − eRe{a}t
)

=: c0

(

e−γ0t − eRe{a}t
)

≤ c0e
−γ0t,

which shows that y is exponentially decaying. As above we deduce that then all
derivatives of y are also exponentially decaying, since y solves the differential equation
(8), and thus y ∈ E+.
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The proof of Lemma 19 shows that in the case Re {a} ≥ 0 there is one exponentially
decaying solution. In the case Re {a} < 0 we could have as well taken any other initial
condition y0 6= 0 to obtain the result, i.e., in the cas Re {a} < 0 there is more than
one exonentially decaying solution.

Theorem 20. Let f ∈ En
+ and A ∈ C

n,n be arbitrary. Then there exists y ∈ En
+ such

that
ẏ(t) = Ay(t) + f(t),

for all t ∈ R, i.e., the linear differential equation with exponentially decaying inhomo-
geneity f has (at least one) exponentially decaying solution.

Proof. Using the Jordan canonical form of A the problem decomposes into a finite
number of subproblems of which each has the form








ẏ1

ẏ2

...
ẏni








=









a 1
. . .

. . .

. . . 1
a
















y1

y2

...
yni








+








f1

f2

...
fni








,

with ni ∈ N. Starting from the last variable and last equation one can use Lemma
19 to show that there exists a solution yni

∈ E+. Using Lemma 18 we see that
yni

+ fni−1 ∈ E+. Thus, using Lemma 19 again, we find that there exists a solution
yni−1 ∈ E+. Proceeding this way we obtain the claim for the subproblem and thus
also for an arbitrary matrix A.

Lemma 21. Let d ∈ C[λ] \ {0} be a non-zero polynomial. Let b ∈ E+ be a function.
Then there exists x ∈ E+ such that

d

(
d

dt

)

x = b.

Proof. We distinguish two cases. For the first case assume that d ≡ c ∈ C is a non-
zero constant. In this case we set x := 1

c
b and obtain the assertion immediately. For

the second case let

d =

δ∑

i=0

diλ
i

with δ ∈ N \ {0} and dδ 6= 0. This means that we are looking for a solution x ∈ E+

of the differential equation
δ∑

i=0

dix
(i)(t) = b(t).

Reducing this higher order, scalar differential equation to a first order, matrix differ-
ential equation with the help of the companion form of d, and applying Theorem 20
we immediately obtain the result.
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Lemma 22. Let A ∈ C[λ]p,q be a polynomial matrix with full row rank rankC(λ) (A) =
p. Let b ∈ E+

p be arbitrary. Then there exists x ∈ E+
q such that

A

(
d

dt

)

x(t) = b(t).

Proof. Let a Smith-form (3) of A be given by A = UDV where U ∈ C[λ]p,p and
V ∈ C[λ]q,q are unimodular and D ∈ C[λ]p,q is diagonal of the form

D =






d1 0 · · · 0
. . .

...
...

dp 0 · · · 0




 ,

with d1, . . . , dp ∈ C[λ] and di 6= 0 for i = 1, . . . , p. Set b̃ := U−1
(

d
dt

)
b. Then we see

that b̃ ∈ E+
p is itself exponentially decaying. For i = 1, . . . , p define xi ∈ E+ with the

help of Lemma 21. Define x̃ ∈ E+
q through

x̃ :=
[
x1 · · · xp 0 · · · 0

]T

and notice that in this case

D

(
d

dt

)

x̃ = b̃

Setting x := V −1
(

d
dt

)
x̃ ∈ E+

q proves the claim.

5 The main results

In this section we present our main results. Before this, we have to introduce some
further notation.

Definition 23. Let P ∈ C[λ]p,q. Then we call P∼ ∈ C[λ]q,p defined through

P∼(λ) := P ∗(−λ),

for λ ∈ C. The para-Hermitian of P . If p = q and we have P = P∼ the matrix
polynomial P is called para-Hermitian.

Remark 24. Para-Hermitian matrix polynomials are sometimes also called even,
compare [8, 11, 12].

To see that P∼ in Definition 23 is indeed again a polynomial in λ let P take the
form P (λ) =

∑π
i=0 λiPi. Then we have

P∼(λ) = P ∗(−λ) =

(
π∑

i=0

(
−λ

)i
Pi

)∗

=
π∑

i=0

λi(−1)iP ∗
i , (9)
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i.e., a polynomial in λ. Equating coefficients and using the identity (9) we also see
that for a matrix polynomial to be para-Hermitian its coefficients have to fulfill

Pi = (−1)iP ∗
i ,

for all i = 0, . . . , π, i.e., the coefficients of a para-Hermitian matrix polynomial have
to be alternating Hermitian and skew-Hermitian. One can easily check that for poly-
nomial matrices A and B of proper dimension we have that (AB)∼ = B∼A∼ as well
as (A∼)

∼
= A. Also, for a para-Hermitian matrix polynomial D = D∼ and a general

matrix polynomial V of proper dimension one obtains that also V ∼DV is again a
para-Hermitian matrix.

Lemma 25. Let P ∈ C[λ]p,q be a matrix polynomial of the form P (λ) =
∑n

i=0 λiPi,
let y ∈ C∞(R, Cp), and z ∈ C∞(R, Cq). Then for all t0, t1 ∈ R with t0 ≤ t1 we have
that

∫ t1

t0

z∗(t)P∼

(
d

dt

)

y(t)dt =

∫ t1

t0

(

P

(
d

dt

)

z(t)

)∗

y(t)dt (10)

+

n∑

i=0

i−1∑

j=0

(−1)i+j
(

Piz
(j)(t)

)∗

y(i−1−j)(t)
∣
∣
∣

t1

t0

Proof. See [2, Lemma 31].

Lemma 25 implies that P
(

d
dt

)
and P∼

(
d
dt

)
are adjoint operators when considered

with respect to the scalar product 〈f, g〉L2
:=

∫

R
f∗(t)g(t)dt over the smooth functions

with compact support, since in this case only the integrals in (10) are left and the sums
(which stem from partial integration) vanish for functions with compact support.

Theorem 26. Let P ∈ C[λ]p,q, ℓ ∈ N, and H̃ = H̃∗ ∈ C
q(ℓ+1) and define the

para-Hermitian polynomial H ∈ C[λ]q,q through

H(λ) := (∆q
ℓ(λ))

∼
H̃ (∆q

ℓ(λ)) .

Let P be dissipative with respect to H̃. Let ẑ ∈ E+
q and µ̂ ∈ E+

p be such that

[
0 P

(
d
dt

)

P∼
(

d
dt

)
H

(
d
dt

)

] [
µ̂

ẑ

]

= 0.

Then, we have

∫ ∞

0

(∆ℓẑ(t))
∗
H̃ (∆ℓẑ(t)) dt = inf

z∈B+(P )

z(t)=ẑ(t),t≤0

∫ ∞

0

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt.

Proof. Let v ∈ B+(P ) be arbitrary such that v(t) = ẑ(t) for t ≤ 0. Then we see
that for every s ∈ R the function z = sẑ + (1 − s)v ∈ B+(P ) is also a trajectory of
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the system due to linearity. Also we have that z(t) = ẑ(t) for all t ≤ 0. Define the
function Φv : R → R through

Φv(s) :=

∫ ∞

0

(s∆ℓẑ(t) + (1 − s)∆ℓv(t))
∗
H̃ (s∆ℓẑ(t) + (1 − s)∆ℓv(t)) dt

=

∫ ∞

0

s2 (∆ℓẑ(t))
∗
H̃ (∆ℓẑ(t)) + 2s(1 − s)Re

{

(∆ℓv(t))
∗
H̃ (∆ℓẑ(t))

}

+(1 − s)2 (∆ℓv(t))
∗
H̃ (∆ℓv(t)) dt.

In the following we are going to show that Φv has a minimum in s = 1. Since v is
assumed to be arbitrary this then implies the optimality of ẑ. To show that Φv has
a minimum in s = 1 we consider its first and second derivative. Differentiation of Φv

yields

d

dt
Φv(s) =

∫ ∞

0

2s (∆ℓẑ(t))
∗
H̃ (∆ℓẑ(t)) + 2(1 − 2s)Re

{

(∆ℓv(t))
∗
H̃ (∆ℓẑ(t))

}

−2(1 − s) (∆ℓv(t))
∗
H̃ (∆ℓv(t)) dt,

and evaluation at the point s = 1 implies

d

ds
Φv(1) =

∫ ∞

0

2 (∆ℓẑ(t))
∗
H̃ (∆ℓẑ(t)) − 2Re

{

(∆ℓv(t))
∗
H̃ (∆ℓẑ(t))

}

dt

= 2

∫ ∞

0

Re
{

(∆ℓẑ(t))
∗
H̃ (∆ℓẑ(t)) − (∆ℓv(t))

∗
H̃ (∆ℓẑ(t))

}

dt

= 2Re

{∫ ∞

0

(∆ℓẑ(t) − ∆ℓv(t))
∗
H̃ (∆ℓẑ(t)) dt

}

.

Defining y := ẑ − v we see that y ∈ B+(P ) with

y(t) = 0 (11)

for all t ≤ 0 and we have that

d

ds
Φv(1) = 2Re

{∫ ∞

0

(∆ℓy(t))
∗
H̃ (∆ℓẑ(t)) dt

}

.

Using Lemma 25 we find that for all t0 ≤ t1 we have

∫ t1

t0

y∗(t)H

(
d

dt

)

ẑ(t)dt

=

∫ t1

t0

y∗(t)
[

Iq

(
− d

dt

)
Iq · · ·

(
− d

dt

)ℓ
Iq

]

H̃ (∆ℓẑ(t)) dt

=

∫ t1

t0

(∆ℓy(t))
∗
H̃ (∆ℓẑ(t)) dt

+

ℓ∑

i=0

i−1∑

j=0

(−1)i+j
(

y(j)(t)
)∗ [

Hi,0 · · · Hi,l

]
(∆ℓẑ(t))

∣
∣
∣

t1

t0
,
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and thus, since limt→∞ ẑ(j)(t) = 0 for j = 0, 1, . . ., also

d

ds
Φv(1)

= 2Re

{∫ ∞

0

y∗(t)H

(
d

dt

)

ẑ(t)dt

}

−2Re







ℓ∑

i=0

i−1∑

j=0

(−1)i+j
(

y(j)(0)
)∗

︸ ︷︷ ︸

=0

[
Hi,0 · · · Hi,l

]
(∆ℓẑ(0))







= 2Re

{

−
∫ ∞

0

y∗(t)P∼

(
d

dt

)

µ̂(t)dt

}

= 2Re







−
∫ ∞

0







P

(
d

dt

)

y(t)

︸ ︷︷ ︸

=0







∗

µ̂(t)dt







+2Re







n∑

i=0

i−1∑

j=0

(−1)i+j
(

Piy
(j)(t)

)∗

µ̂(i−1−j)(t)
∣
∣
∣

∞

0







= 2Re






−

n∑

i=0

i−1∑

j=0

(−1)i+j
(

Piy
(j)(0)

)∗

µ̂(i−1−j)(0)






= 0,

where for the last identity we again used Lemma 25 and condition (11). The second
derivative of Φv is given by

(
d

dt

)2

Φv(s)

= 2

∫ ∞

0

(∆ℓẑ(t))
∗
H̃ (∆ℓẑ(t)) − 2Re

{

(∆ℓv(t))
∗
H̃ (∆ℓẑ(t))

}

+(∆ℓv(t))
∗
H̃ (∆ℓv(t)) dt

= 2

∫ ∞

0

(∆ℓẑ(t) − ∆ℓv(t))
∗
H̃ (∆ℓẑ(t) − ∆ℓv(t)) dt

= 2

∫ ∞

0

(∆ℓy(t))
∗
H̃ (∆ℓy(t)) dt

= 2

∫ ∞

−∞

(∆ℓy(t))
∗
H̃ (∆ℓy(t)) dt ≥ 0,

where the last inequality follows from the dissipativity of the system and Lemma 17
and the last identity follows from (11).
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Corollary 27. Under the assumptions of Theorem 26 and with the representation of
P given by

P (λ) =
π∑

i=0

λiPi

we also have that
∫ ∞

0

(∆ℓẑ(t))
∗
H̃ (∆ℓẑ(t)) dt = inf

∆ℓ−1z(0)=∆ℓ−1ẑ(0)

Piz(j)(0)=Piẑ(j)(0), 0≤j<i≤π

∫ ∞

0

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt,

where the infimum has to be taken over all z ∈ B+(P ).

Proof. The proof is completely analogous to the proof of Theorem 26.

Theorem 28. Let P ∈ C[λ]p,q and H̃ = H̃∗ ∈ C
q(ℓ+1),q(ℓ+1) for some ℓ ∈ N and

define the para-Hermitian polynomial H ∈ C[λ]q,q through

H(λ) := (∆q
ℓ(λ))

∼
H̃ (∆q

ℓ(λ)) .

Let ẑ ∈ B+(P ) be such that

∫ ∞

0

(∆ℓẑ(t))
∗
H̃ (∆ℓẑ(t)) dt = inf

z∈B+(P )

z(t)=ẑ(t),t≤0

∫ ∞

0

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt. (12)

Then, P is dissipative with respect to H̃ and there exists a co-state function µ̂ ∈ E+
p

such that we have [
0 P

(
d
dt

)

P∼
(

d
dt

)
H

(
d
dt

)

] [
µ̂

ẑ

]

= 0. (13)

Proof. Let r := rankC(λ) (P ) and let U ∈ C[λ]q,q−r and V ∈ C[λ]q,r be a polynomial
kernel and a co-kernel matrix, resp., which exist due to Theorem 7. Let z0 ∈ B+(P )
be an arbitrary function with z0(t) = 0 for all t ≤ 0. Set

zǫ(t) := (ẑ + ǫz0)(t),

for ǫ ∈ R. Then we have
∫ ∞

0

(∆ℓzǫ(t))
∗
H̃ (∆ℓzǫ(t)) dt

=

∫ ∞

0

(∆ℓẑ(t) + ǫ∆ℓz0(t))
∗
H̃ (∆ℓẑ(t) + ǫ∆ℓz0(t)) dt

=

∫ ∞

0

(∆ℓẑ(t))
∗
H̃ (∆ℓẑ(t)) dt + 2ǫ

∫ ∞

0

Re
{

(∆ℓz0(t))
∗
H̃ (∆ℓẑ(t))

}

dt

+ǫ2
∫ ∞

0

(∆ℓz0(t))
∗
H̃ (∆ℓz0(t)) dt,
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and thus, since ẑ is an optimal trajectory in the sense of the assumption, we find that

0 ≤
∫ ∞

0

(∆ℓzǫ(t))
∗
H̃ (∆ℓzǫ(t)) dt −

∫ ∞

0

(∆ℓẑ(t))
∗
H̃ (∆ℓẑ(t)) dt

= 2ǫ

∫ ∞

0

Re
{

(∆ℓz0(t))
∗
H̃ (∆ℓẑ(t))

}

dt (14)

+ǫ2
∫ ∞

0

(∆ℓz0(t))
∗
H̃ (∆ℓz0(t)) dt

for all ǫ ∈ R. This implies that

0 ≤
∫ ∞

0

(∆ℓz0(t))
∗
H̃ (∆ℓz0(t)) dt =

∫ ∞

−∞

(∆ℓz0(t))
∗
H̃ (∆ℓz0(t)) dt,

since z0(t) = 0 for all t ≤ 0. Because Bc(P ) is shift invariant and a subset of the
functions which are in B+(P ) with the additional property that they vanish on the
negative time axis, this implies dissipativity of P with respect to H̃, since z0 is allowed
to be arbitrary. Also we see that (14) implies

0 =

∫ ∞

0

Re
{

(∆ℓz0(t))
∗
H̃ (∆ℓẑ(t))

}

dt.

If z0 ∈ B+(P ) is a trajectory of P with z0(t) = 0 for t ≤ 0, so is iz0 with i begin the
imaginary unit. Thus we obtain

0 =

∫ ∞

0

Re
{

(∆ℓiz0(t))
∗
H̃ (∆ℓẑ(t))

}

dt =

∫ ∞

0

Re
{

i (∆ℓz0(t))
∗
H̃ (∆ℓẑ(t))

}

dt

= −
∫ ∞

0

Im
{

(∆ℓz0(t))
∗
H̃ (∆ℓẑ(t))

}

dt.

Using Lemma 25 this implies

0 =

∫ ∞

0

(∆ℓz0(t))
∗
H̃ (∆ℓẑ(t)) dt

=

∫ ∞

0

(

∆q
ℓ

(
d

dt

)

z0(t)

)∗

H̃

(

∆q
ℓ

(
d

dt

)

ẑ(t)

)

dt

=

∫ ∞

0

z∗0(t)∆q
ℓ

∼

(
d

dt

)

H̃∆q
ℓ

(
d

dt

)

ẑ(t)dt

=

∫ ∞

0

z∗0(t)H

(
d

dt

)

ẑ(t)dt

for all z0 ∈ B+(P ) with z0(t) = 0 for t ≤ 0. Using Lemma 13 we see that for every
α ∈ E+

q−r with α(t) = 0 for all t ≤ 0, we have that the specific z0 := U
(

d
dt

)
α ∈ B+(P )

is a trajectory of the system. In this case also z0(t) = U
(

d
dt

)
α(t) = 0 for all t ≤ 0.

Thus, with Lemma 25 we have

0 =

∫ ∞

0

(

U

(
d

dt

)

α(t)

)∗

H

(
d

dt

)

ẑ(t)dt
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=

∫ ∞

0

α∗(t)U∼

(
d

dt

)

H

(
d

dt

)

ẑ(t)dt,

for all α ∈ E+
q−r with α(t) = 0 for t ≤ 0. From this we deduce that

U∼

(
d

dt

)

H

(
d

dt

)

ẑ(t) = 0,

for all t ≥ 0. Note, that we are looking for a µ̂ such that P∼
(

d
dt

)
µ̂ = −H

(
d
dt

)
ẑ.

Since the polynomial matrix
[
U V

]
is unimodular this problem is equivalent to the

problem of finding a µ̂ such that

[
U

(
d
dt

)
V

(
d
dt

)]∼
P∼

(
d

dt

)

µ̂ = −
[
U

(
d
dt

)
V

(
d
dt

)]∼
H

(
d

dt

)

ẑ.

Thus, let µ̂ ∈ E+
p be a solution of the problem

(PV )
∼

(
d

dt

)

µ̂(t) = −V ∼

(
d

dt

)

H

(
d

dt

)

ẑ(t),

which exists due to Lemma 22 and property 4. of Definition 8, i.e., since V is a
co-kernel matrix. Using that U is a kernel matrix we find

P∼

(
d

dt

)

µ̂ =
[
U

(
d
dt

)
V

(
d
dt

)]−∼ [
U

(
d
dt

)
V

(
d
dt

)]∼
P∼

(
d

dt

)

µ̂

=
[
U

(
d
dt

)
V

(
d
dt

)]−∼
[
(PU)∼

(
d
dt

)
µ̂

(PV )∼
(

d
dt

)
µ̂

]

=
[
U

(
d
dt

)
V

(
d
dt

)]−∼
[

0
(PV )∼

(
d
dt

)
µ̂

]

=
[
U

(
d
dt

)
V

(
d
dt

)]−∼
[
−U∼

(
d
dt

)
H

(
d
dt

)
ẑ

−V ∼
(

d
dt

)
H

(
d
dt

)
ẑ

]

=
[
U

(
d
dt

)
V

(
d
dt

)]−∼
[
−U∼

(
d
dt

)

−V ∼
(

d
dt

)

]

H

(
d

dt

)

ẑ

= −H

(
d

dt

)

ẑ,

which finishes the proof.

Looking back at the optimality system (13) we see that such an optimality system
is a boundary value problem for a homogeneous linear differential-algebraic equation.
It is well-known that to determine the solution set of such a system we have to
consider the finite eigenvalues and the right singular structure of the associated matrix
polynomial

[
0 P (λ)

P∼(λ) H(λ)

]

, (15)

which is itself a para-Hermitian matrix polynomial, since H is para-Hermitian. The
eigenvalues of a para-Hermitian matrix have an interesting property.
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Lemma 29. Let P ∈ C[λ]p,q be a matrix polynomial. Then we have

σ(P∼) = −σ(P ).

Especially, if p = q and P = P∼ is para-Hermitian, we have that

σ(P ) = −σ(P ),

i.e., the spectrum of an para-Hermitian matrix is symmetric to the imaginary axis.

Proof. First note that for every unimodular matrix T ∈ C[λ]q,q also its para-Hermitian
T∼ is unimodular. Let a Smith form (3) of P be given by

P = S

[
diag (d1, . . . , dr) 0

0 0

]

T.

Then, we have that

P∼ = T∼

[
diag (d1, . . . , dr)

∼
0

0 0

]

S∼

= T∼

[
diag (d∼1 , . . . , d∼r ) 0

0 0

]

S∼,

and since every di can be factored into a product of linear polynomials, it is sufficient
to show that for p(λ) := λ − a with a ∈ C we have σ(p∼) = −σ(p). Since, however,

(λ − a)∼ = (−λ − a)∗ = −λ − a,

this is clearly the case.

Lemma 29 shows that for a para-Hermitian matrix polynomial there are exactly
as many eigenvalues in the strict left half plane C

− as there are in the strict right half
plane C

+. Since we are looking for solutions z ∈ Eq
+ and µ ∈ Ep

+ we are especially
interested in the eigenvalues in the strict left half plane. To be more specific, assume
that λ ∈ C

− is an eigenvalue in the left half plane associated with the eigenvector
[
ẑT µ̂T

]T ∈ C
p+q of the matrix polynomial (15). Then we can use Theorem 26 to

obtain that
ẑ(t) = z(t) := eλtẑ,

is an optimal trajectory of the system. Theorem 28, on the other hand, states that
every optimal trajectory ẑ can be extended by a co-state function µ̂ to a solution of
the system (13).

Using the Smith form of (15) this shows that for a dissipative system we obtain
all optimal solutions of the optimal control problem by considering all eigenvalues of
(15) which are in the strict left half plane, the complete right singular structure of
(15), and the eigenvalues of (15) which are on the imaginary axis.

Finally, note that Theorem 26 and Theorem 28 justify to say that dissipativity is
equivalent to the solvability of the optimal control problem.
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6 Specialization to first order systems

In the last section we have derived optimality conditions for problems where the
infimum is taken over all trajectories z which match a given prescribed trajectory ẑ

(which has been assumed to be the optimal trajectory) along the negative time axis,
i.e., over all trajectories z with z(t) = ẑ(t) for t ≤ 0. Nevertheless, it seems quite
intuitive that the optimal trajectory will not depend on the complete history of ẑ,
i.e., on ẑ(t) with t ≤ 0 but only on the value of ẑ (and maybe its derivatives) at the
time point t = 0. Corollary 27 gives further evidence that this is the case.

In this section we will first show that for systems given by first order matrix
polynomials, the optimal trajectory indeed only depends on the value of ẑ at 0 by
using the Kronecker canonical form and conjecture that it may also hold true for
higher order systems. In the subsequent subsection we will use this to derive well-
known results for descriptor systems and standard systems.

Theorem 30. Let P1, P0 ∈ C
p,q. Then there exist nonsingular matrices X ∈ C

p,p

and Y ∈ C
q,q such that

X(λP1 + P0)Y = diag
(
Lζ1

, . . . ,Lζµ
,Jρ1

, . . . ,Jρr
,Nσ1

, . . . ,Nσs
,Mη1

, . . . ,Mηv

)
,

(16)
where the block entries have the following properties:

1. Every entry Lζj
has the size ζj × (ζj + 1), ζj ∈ N0 and the form

Lζj
(λ) := λ






−1 0
. . .

. . .

−1 0




 +






0 1
. . .

. . .

0 1




 . (17)

2. Every entry Jρj
has the size ρj × ρj, ρj ∈ N and the form

Jρj
(λ) := λ









1
. . .

. . .

1









+









λj 1
. . .

. . .

. . . 1
λj









, (18)

where λj ∈ C.

3. Every entry Nσj
has the size σj × σj, σj ∈ N and the form

Nσj
(λ) := λ









0 1
. . .

. . .

. . . 1
0









+









1
. . .

. . .

1









. (19)
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4. Every entry Mηj
has the size (ηj + 1) × ηj, ηj ∈ N0 and the form

Mηj
(λ) := λ









1

0
. . .

. . . 1
0









+









0

1
. . .

. . . 0
1









. (20)

Proof. See, e.g., [6, Theorem 3, §2, p.28].

The canonical form (16) is called Kronecker canonical form.

Lemma 31. Let θ ∈ N0 and α ∈ C∞
c be such that

∆θ−1α(0) = 0.

Let b̃ : R → R be a smooth transition from 1 to 0, i.e., a function such that

b̃(t) =

{

1 t < 0

0 t > 1
,

while b̃ ∈ C∞(R, R) is infinitely often differentiable. Then, there exists a constant
C ∈ R

+ such that we have
∥
∥
∥
∥
∥

(
d

dt

)i [

b̃(k·)α(·)
]
∥
∥
∥
∥
∥

+

≤ C

kθ−i

1√
k

,

for i = 0, . . . , θ.
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−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

−0.5 0 0.5 1 1.5
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α

α

θ = 0 θ = 1

Figure 2: Two different cases of θ
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Proof. Define the constant B ∈ R
+ through

B := max
j=0,...,θ

max
t∈[0,1]

∣
∣
∣b̃(j)(t)

∣
∣
∣ ,

and the constant A ∈ R
+ through

A := max
t∈[0,1]

∣
∣
∣α(θ)(t)

∣
∣
∣ .

Using Taylor expansion we find that for θ ≥ i ≥ j ≥ 0 and for t ∈ [0, 1] there exists a
ξ ∈ [0, 1] such that we have

∣
∣
∣α(i−j)(t)

∣
∣
∣ =

∣
∣
∣
∣
∣
∣





θ−1∑

k=i−j

tk−i+j

(k − i + j)!
α(k)(0)



 +
tθ−i+j

(θ − i + j)!
α(θ)(ξ)

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣

tθ−i+j

(θ − i + j)!
α(θ)(ξ)

∣
∣
∣
∣
≤ tθ−i+j

(θ − i + j)!
A.

With this and using the Leibniz rule for differentiation we see that for i = 0, . . . , θ we
have

∥
∥
∥
∥
∥

(
d

dt

)i [

b̃(k·)α(·)
]
∥
∥
∥
∥
∥

+

=

∥
∥
∥
∥
∥
∥

i∑

j=0

(
i

j

)

kj b̃(j)(k·)α(i−j)(·)

∥
∥
∥
∥
∥
∥

+

≤
i∑

j=0

(
i

j

)2

kj
∥
∥
∥b̃(j)(k·)α(i−j)(·)

∥
∥
∥

+

=
i∑

j=0

(
i

j

)2

kj

√
∫ ∞

0

∣
∣
∣b̃(j)(kt)α(i−j)(t)

∣
∣
∣

2

dt

=

i∑

j=0

(
i

j

)2

kj

√
√
√
√

∫ 1
k

0

∣
∣
∣b̃(j)(kt)α(i−j)(t)

∣
∣
∣

2

dt

≤
i∑

j=0

(
i

j

)2

kjB

√
√
√
√

∫ 1
k

0

∣
∣α(i−j)(t)

∣
∣
2
dt

≤
i∑

j=0

(
i

j

)2

kjB

√
√
√
√

∫ 1
k

0

t2θ−2i+2j

(θ − i + j)!2
A2dt

=

i∑

j=0

(
i

j

)2

kj BA

(θ − i + j)!

√
√
√
√

∫ 1
k

0

t2θ−2i+2jdt
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=

i∑

j=0

(
i

j

)2

kj BA

(θ − i + j)!

√

1

2θ − 2i + 2j + 1
t2θ−2i+2j+1

∣
∣
∣

1
k

0

=

i∑

j=0

(
i

j

)2
kj

kθ−i+j
√

k

BA

(θ − i + j)!

1√
2θ − 2i + 2j + 1

=
i∑

j=0

(
i

j

)2
1

kθ−i
√

k

BA

(θ − i + j)!

1√
2θ − 2i + 2j + 1

=
1

kθ−i
√

k

i∑

j=0

(
i

j

)2
BA

(θ − i + j)!

1√
2θ − 2i + 2j + 1

=:
C

kθ−i
√

k

by setting

C :=

i∑

j=0

(
i

j

)2
BA

(θ − i + j)!

1√
2θ − 2i + 2j + 1

,

which yields the assertion.

Lemma 32. Let P ∈ C[λ]p,q be a first order polynomial, i.e., let P take the form

P (λ) = λP1 + P0,

with P0, P1 ∈ C
p,q. Let ℓ ∈ N and ẑ ∈ Bc(P ) be a fixed trajectory which fulfills

∆ℓ−1ẑ(0) = 0 and P1ẑ(0) = 0. Then for any ǫ > 0 there exists a trajectory zǫ ∈ Bc(P )
such that zǫ(t) = ẑ(t) for all t ≤ 0 and

‖∆ℓzǫ‖+ < ǫ.

Proof. Let the Kronecker canonical form of P be given by (16), i.e., let X ∈ C
p,p and

Y ∈ C
q,q be nonsingular such that

X(λP1 + P0)Y = diag
(
Lζ1

, . . . ,Lζµ
,Jρ1

, . . . ,Jρr
,Nσ1

, . . . ,Nσs
,Mη1

, . . . ,Mηv

)
.

Define ζ := ζ1 + . . . + ζµ, ρ := ρ1 + . . . + ρr, σ := σs + . . . + σs, and η := η1 + . . . + ηv

and define U ∈ C[λ]q,µ through

U(λ) := Y













∆1
ζ1

(λ) 0
. . .

0 ∆1
ζµ

(λ)

0 · · · 0
...

...
0 · · · 0













.
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One can easily see that such a U is a (polynomial) kernel matrix according to Defini-
tion 8. Using Lemma 14 we see that that this implies that there exists α̂ ∈ C∞

c (R, Cu)
such that ẑ = U

(
d
dt

)
α̂. Denoting the elements of α̂ by α̂i we find that

ẑ = Y








∆ζ1
α̂1

...
∆ζµ

α̂µ

0ρ+σ+η








,

where 0ρ+σ+η denotes the zero vector of size (ρ+σ + η)-by-1. Introduce the notation

Lζi
=: λL1

ζi
+ L0

ζi
,

with L1
ζi

,L0
ζi

∈ C
ζi,ζi+1 to denote the left and right matrix in (17). Since we know

that P1ẑ(0) = 0 we then deduce that

0 = XP1ẑ(0) = XP1Y








∆ζ1
α̂1(0)
...

∆ζµ
α̂µ(0)

0ρ+σ+η








=








L1
ζ1

∆ζ1
α̂1(0)

...
L1

ζµ
∆ζµ

α̂µ(0)

0ρ+σ+η








,

and thus
L1

ζi
∆ζi

α̂i(0) = 0,

for i = 1, . . . , µ. By using the definition of L1
ζi

from (17) we see that this implies

∆ζi−1α̂i(0) = 0, (21)

for i = 1, . . . , µ. If ℓ > 0, then we obtain from ∆ℓ−1ẑ(0) = 0 that

∆ζi+ℓ−1α̂i(0) = 0.

If, however, ℓ = 0 then we obtain no additional condition. In any case, if ℓ ≥ 0 we
obtain together with (21) that we have

∆ζi+ℓ−1α̂i(0) = 0, (22)

for i = 1, . . . , µ. Let b̃ : R → R be a smooth transition from 1 to 0, i.e., a function
such that

b̃(t) =

{

1 t < 0

0 t > 1
,

while b̃ ∈ C∞(R, R) is infinitely often differentiable. Define the sequence of functions
bk : R → R through

bk(t) = b̃(kt),
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for k ∈ N and observe that all bk ∈ C∞(R, R) are infinitely often differentiable and
we have bk(t) = 1 for t < 0 as well as bk(t) = 0 for t > 1

k
. Define the sequence of

functions zk ∈ C∞
c (R, Cq) through

zk(t) := U

(
d

dt

)

[bk(t)α̂(t)] = Y













∆1
ζ1

(
d
dt

)
[bk(t)α̂1(t)]
...

∆1
ζµ

(
d
dt

)
[bk(t)α̂µ(t)]

0
...
0













,

and observe that Lemma 13 implies that zk ∈ Bc(P ) are trajectories of the system.
With this and Lemma 31 we deduce that

‖∆ℓzk‖2
+ =

ℓ∑

i=0

∥
∥
∥z

(i)
k

∥
∥
∥

2

+

=

ℓ∑

i=0

∥
∥
∥
∥
∥
∥
∥
∥

Y







(
d
dt

)i
∆1

ζ1

(
d
dt

)
[bk(t)α̂1(t)]

...
(

d
dt

)i
∆1

ζu

(
d
dt

)
[bk(t)α̂u(t)]







∥
∥
∥
∥
∥
∥
∥
∥

2

+

≤ ‖Y ‖2
+

ℓ∑

i=0

u∑

j=1

∥
∥
∥
∥
∥

(
d

dt

)i

∆1
ζj

(
d

dt

)

[bk(t)α̂j(t)]

∥
∥
∥
∥
∥

2

+

= ‖Y ‖2
+

ℓ∑

i=0

u∑

j=1

ζj∑

ξ=0

∥
∥
∥
∥
∥

(
d

dt

)i+ξ

[bk(t)α̂j(t)]

∥
∥
∥
∥
∥

2

+

≤ ‖Y ‖2
+

ℓ∑

i=0

u∑

j=1

ζj∑

ξ=0

Cj,i,ξ

k2(ζj+ℓ−i−ξ)

1

k

≤ 1

k
‖Y ‖2

+

ℓ∑

i=0

u∑

j=1

ζj∑

ξ=0

Cj,i,ξ =
D

k
,

by setting

D := ‖Y ‖2
+

ℓ∑

i=0

u∑

j=1

ζj∑

ξ=0

Cj,i,ξ.

Choosing k big enough proves the claim.

Theorem 33. Let P ∈ C[λ]p,q be a first order polynomial matrix, i.e., let P take the
form

P (λ) = λP1 + P0,
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with P0, P1 ∈ C
p,q and let ẑ ∈ B+(P ) be a fixed trajectory. Let P̃ ∈ C[λ]ρ,q be a

matrix with
kernel

(

P̃
)

⊂ kernel (P1) ,

where ρ ∈ N is arbitrary. Let H̃ ∈ C
q(ℓ+1),q(ℓ+1) be Hermitian. Then we have

inf
z(t)=ẑ(t),t≤0

∫ ∞

0

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt

= inf
z(j)(0)=ẑ(j)(0), j∈N

∫ ∞

0

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt

= inf
∆ℓ−1z(0)=∆ℓ−1ẑ(0)

z(0)=ẑ(0)

∫ ∞

0

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt

= inf
∆ℓ−1z(0)=∆ℓ−1ẑ(0)

P̃ z(0)=P̃ ẑ(0)

∫ ∞

0

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt

= inf
∆ℓ−1z(0)=∆ℓ−1ẑ(0)

P1z(0)=P1ẑ(0)

∫ ∞

0

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt,

where all infima are taken over all z ∈ B+(P ).

Proof. From the basics of the theory of sets we immediately see that

inf
z(t)=ẑ(t),t≤0

∫ ∞

0

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt

≥ inf
z(j)(0)=ẑ(j)(0), j∈N

∫ ∞

0

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt

≥ inf
∆ℓ−1z(0)=∆ℓ−1ẑ(0)

z(0)=ẑ(0)

∫ ∞

0

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt

≥ inf
∆ℓ−1z(0)=∆ℓ−1ẑ(0)

P̃ z(0)=P̃ ẑ(0)

∫ ∞

0

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt

≥ inf
∆ℓ−1z(0)=∆ℓ−1ẑ(0)

P1z(0)=P1ẑ(0)

∫ ∞

0

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt.

Let z ∈ B+(P ) be arbitrary with ∆ℓ−1z(0) = ∆ℓ−1ẑ(0) and P1z(0) = P1ẑ(0). We
will show in the following that for every such trajectory z and every ǫ > 0, there
exists a trajectory zǫ ∈ B+(P ) such that

∫ ∞

0

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt + ǫ ≥

∫ ∞

0

(∆ℓzǫ(t))
∗
H̃ (∆ℓzǫ(t)) dt,

while at the same time zǫ(t) = ẑ(t) for all t ≤ 0. From this one obtains that

inf
z(t)=ẑ(t),t≤0

∫ ∞

0

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt
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≤ inf
∆ℓ−1z(0)=∆ℓ−1ẑ(0)

P1z(0)=P1ẑ(0)

∫ ∞

0

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt,

and thus the claim follows. Thus, let z ∈ B+(P ) be arbitrary with ∆ℓ−1z(0) =
∆ℓ−1ẑ(0) and P1z(0) = P1ẑ(0) and let ǫ > 0. Define y := z − ẑ and notice that this
implies that ∆ℓ−1y(0) = 0 as well as P1y(0) = 0. Using Lemma 32 we find that there
exists a trajectory yǫ ∈ B+(P ) such that yǫ(t) = y(t) for t ≤ 0 and

‖∆ℓyǫ‖+ <

√
√
√
√‖∆ℓz‖2

+ +
ǫ

∥
∥
∥H̃

∥
∥
∥

+

− ‖∆ℓz‖+ . (23)

We introduce
zǫ := z − yǫ ∈ B+(P ),

and see that with this we have

zǫ(t) = z(t) − yǫ(t) = z(t) − y(t) = z(t) − (z(t) − ẑ(t)) = ẑ(t),

for t ≤ 0. We thus obtain the inequality
∫ ∞

0

(∆ℓzǫ(t))
∗
H̃ (∆ℓzǫ(t)) dt

=
〈

H̃∆ℓzǫ,∆ℓzǫ

〉

+

=
〈

H̃∆ℓz − H̃∆ℓyǫ,∆ℓz − ∆ℓyǫ

〉

+

=
〈

H̃∆ℓz,∆ℓz
〉

+
− 2Re

{〈

H̃∆ℓz,∆ℓyǫ

〉

+

}

+
〈

H̃∆ℓyǫ,∆ℓyǫ

〉

+

≤
〈

H̃∆ℓz,∆ℓz
〉

+
+ 2

∣
∣
∣
∣

〈

H̃∆ℓz,∆ℓyǫ

〉

+

∣
∣
∣
∣
+

∣
∣
∣
∣

〈

H̃∆ℓyǫ,∆ℓyǫ

〉

+

∣
∣
∣
∣

≤
〈

H̃∆ℓz,∆ℓz
〉

+
+ 2

∥
∥
∥H̃

∥
∥
∥

+
‖∆ℓz‖+ ‖∆ℓyǫ‖+ +

∥
∥
∥H̃

∥
∥
∥

+
‖∆ℓyǫ‖2

+ . (24)

From (23) we obtain that

‖∆ℓz‖2
++

ǫ
∥
∥
∥H̃

∥
∥
∥

+

>
(
‖∆ℓyǫ‖+ + ‖∆ℓz‖+

)2
= ‖∆ℓyǫ‖2

++2 ‖∆ℓyǫ‖+ ‖∆ℓz‖++‖∆ℓz‖2
+ ,

and thus
ǫ >

∥
∥
∥H̃

∥
∥
∥

+
‖∆ℓyǫ‖2

+ + 2
∥
∥
∥H̃

∥
∥
∥

+
‖∆ℓyǫ‖+ ‖∆ℓz‖+ .

Together with (24) this yields
∫ ∞

0

(∆ℓzǫ(t))
∗
H̃ (∆ℓzǫ(t)) dt <

〈

H̃∆ℓz,∆ℓz
〉

+
+ ǫ

=

∫ ∞

0

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt + ǫ,

and thus the assertion follows.
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Theorem 33 primarily shows that when considering a first order optimal control
problem of the form (12) on can disregard the history of ẑ, i.e., all values of ẑ(t) for
t < 0; only the value of ẑ and its derivatives at the point t = 0 are of interest to
determine the optimal solution.

For higher order polynomials we conjecture that an analogous result holds, com-
pare Corollary 27.

Conjecture 34. Let P ∈ C[λ]p,q be a polynomial matrix of the form

P (λ) =

π∑

i=0

λiPi,

with Pi ∈ C
p,q for i = 0, . . . , π and let ẑ ∈ B+(P ) be a fixed trajectory. Let H̃ ∈

C
q(ℓ+1),q(ℓ+1) be Hermitian. Then we have

inf
z(t)=ẑ(t),t≤0

∫ ∞

0

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt

= inf
z(j)(0)=ẑ(j)(0), j∈N

∫ ∞

0

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt

= inf
∆ℓ−1z(0)=∆ℓ−1ẑ(0)

z(j)(0)=ẑ(j)(0), 0≤j<π

∫ ∞

0

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt

= inf
∆ℓ−1z(0)=∆ℓ−1ẑ(0)

Piz(j)(0)=Piẑ(j)(0), 0≤j<i≤π

∫ ∞

0

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt,

where all infima are taken over all z ∈ B+(P ).

To show Conjecture 34 one could first show that for every ǫ > 0 and every fixed
trajectory ŷ ∈ B+(P ) which fulfills ∆ℓ−1ŷ(0) = 0 and

Piŷ
(j)(0) = 0, for all i, j ∈ N with 0 ≤ j < i ≤ π

there exists a trajectory yǫ ∈ B+(P ) such that yǫ(t) = ŷ(t) for all t ≤ 0 and

‖∆ℓyǫ‖+ < ǫ,

i.e., that one can generalize Lemma 32 to higher order matrix polynomials. Then one
could carry out the proof of Conjecture 34 analogously to the proof of Theorem 33.

6.1 Descriptor systems

Consider the state-space descriptor system

Eẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t)

(25)



Optimal control of behavior systems 34

where E,A ∈ R
ρ,n are rectangular matrices, B ∈ R

ρ,m, x ∈ C∞(R, Rn) is called the
state, u ∈ C∞(R, Rm) is called the input, and y ∈ C∞(R, Rp) is called the output. In
the literature, e.g., [9], for such systems the cost is frequently measured by a quadratic
function s : R

p × R
m → R of the form

s(u, y) :=

[
y

u

]T [
Q S

ST R

] [
y

u

]

, (26)

where Q = QT ∈ R
p,p, S ∈ R

p,m, and R = RT ∈ R
m,m. Under these circumstances

system (25) is called dissipative with respect to s, if

0 ≤
∫ ∞

−∞

s(u(t), y(t))dt, (27)

for all trajectories (u, x, y) of (25) which have compact support, i.e., for all triples
(u, x, y) ∈ C∞

c (R, Rm) × C∞
c (R, Rn) × C∞

c (R, Rp) which fulfill (25) for all t ∈ R, see
[15].

Using the output equation of (25) we can rewrite the cost to depend on the state
variables (instead of the output variables) by

s(u(t), y(t)) =

[
Cx(t) + Du(t)

u(t)

]T [
Q S

ST R

] [
Cx(t) + Du(t)

u(t)

]

=

[
x(t)
u(t)

]T [
CT 0
DT I

] [
Q S

ST R

] [
C D

0 I

] [
x(t)
u(t)

]

=

[
x(t)
u(t)

]T [
CT QC CT QD + CT S

DT QC + ST C DT QD + DT S + ST D + R

] [
x(t)
u(t)

]

=:

[
x(t)
u(t)

]T [
Q̃ S̃

S̃T R̃

] [
x(t)
u(t)

]

=: s̃(x(t), u(t)), (28)

where Q̃ = Q̃T ∈ R
n,n, S̃ ∈ R

n,m, R ∈ R
m,m, and s̃ : R

n × R
m → R.

With this we obtain the following corollaries, which are very similar to [9, 3.17
Theorem] and [9, 3.37 Theorem].

Corollary 35. Let the system (25) be dissipative with respect to s as given by (26).
Define Q̃, S̃, and R̃ through (28). Let û ∈ E+

m, x̂ ∈ E+
n , and µ̂ ∈ E+

ρ be such that





0 E 0
−E∗ 0 0

0 0 0









˙̂µ(t)
˙̂x(t)
˙̂u(t)



 =





0 A B

A∗ Q̃ S̃

B∗ S̃∗ R̃









µ̂(t)
x̂(t)
û(t)



 .

Then, we have

∫ ∞

0

[
û(t)
x̂(t)

] [
Q̃ S̃

S̃∗ R̃

] [
û(t)
x̂(t)

]

dt = inf
Eẋ=Ax+Bu

x(0)=x̂(0)

∫ ∞

0

[
u(t)
x(t)

] [
Q̃ S̃

S̃∗ R̃

] [
u(t)
x(t)

]

dt
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= inf
Eẋ=Ax+Bu

Ex(0)=Ex̂(0)

∫ ∞

0

[
u(t)
x(t)

] [
Q̃ S̃

S̃∗ R̃

] [
u(t)
x(t)

]

dt,

where the infimum in both cases has to be taken over all trajectories (u, x) ∈ E+
m×E+

n .

Proof. Define the polynomial P ∈ C[λ]ρ,n+m through

P (λ) := λ
[
E 0

]
+

[
−A −B

]
,

the Hermitian matrix H̃ = H̃∗ ∈ C
n+m,n+m and the (constant) para-Hermitian

matrix polynomial H = H∗ ∈ C[λ]n+m,n+m (i.e., matrix polynomial of degree 0)
through

H(λ) := H̃ :=

[
Q̃ S̃

S̃∗ R̃

]

,

and set

ẑ :=

[
x̂

û

]

With this notation we obtain

0 =

[
0 P

(
d
dt

)

P∼
(

d
dt

)
−H

(
d
dt

)

] [
µ̂

ẑ

]

=

[
0 −P

(
d
dt

)

P∼
(

d
dt

)
H

(
d
dt

)

] [
µ̂

−ẑ

]

,

from the assumption. From this we deduce that also

0 =

[
−I 0
0 I

] [
0 −P

(
d
dt

)

P∼
(

d
dt

)
H

(
d
dt

)

] [
µ̂

−ẑ

]

=

[
0 P

(
d
dt

)

P∼
(

d
dt

)
H

(
d
dt

)

] [
µ̂

−ẑ

]

.

Using Theorem 26 we find that this implies that
∫ ∞

0

(−ẑ(t))
∗
H̃ (−ẑ(t)) dt = inf

z∈B+(P )

z(t)=−ẑ(t),t≤0

∫ ∞

0

z∗(t)H̃z(t)dt

= inf
−z∈B+(P )

−z(t)=−ẑ(t),t≤0

∫ ∞

0

(−z(t))
∗
H̃ (−z(t)) dt.

and thus also
∫ ∞

0

ẑ∗(t)H̃ẑ(t)dt = inf
z∈B+(P )

z(t)=ẑ(t),t≤0

∫ ∞

0

z∗(t)H̃z(t)dt.

We finally obtain the assertion through Theorem 33 with P̃ =
[
In 0

]
.

Corollary 36. Consider the system (25) together with the cost function s as given
by (26). Define Q̃, S̃, and R̃ through (28). Let û ∈ E+

m and x̂ ∈ E+
n be such that

E ˙̂x(t) = Ax̂(t) + Bû(t) for all t ∈ R. Also, assume that either

∫ ∞

0

[
û(t)
x̂(t)

] [
Q̃ S̃

S̃∗ R̃

] [
û(t)
x̂(t)

]

dt = inf
Eẋ=Ax+Bu

x(0)=x̂(0)

∫ ∞

0

[
u(t)
x(t)

] [
Q̃ S̃

S̃∗ R̃

] [
u(t)
x(t)

]

dt
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or
∫ ∞

0

[
û(t)
x̂(t)

] [
Q̃ S̃

S̃∗ R̃

] [
û(t)
x̂(t)

]

dt = inf
Eẋ=Ax+Bu

Ex(0)=Ex̂(0)

∫ ∞

0

[
u(t)
x(t)

] [
Q̃ S̃

S̃∗ R̃

] [
u(t)
x(t)

]

dt

holds, where the infimum in both cases has to be taken over all trajectories (u, x) ∈
E+

m × E+
n .

Then, (25) is dissipative with respect to (26) and there exists a co-state function
µ̂ ∈ E+

ρ such that we have





0 E 0
−E∗ 0 0

0 0 0









˙̂µ(t)
˙̂x(t)
˙̂u(t)



 =





0 A B

A∗ Q̃ S̃

B∗ S̃∗ R̃









µ̂(t)
x̂(t)
û(t)



 .

Proof. Similar to the proof of Corollary 35 but one has to use Theorem 28 instead of
Theorem 26.

7 Conclusion and Outlook

In this paper we have generalized two results which are well-known for standard
systems and descriptor systems (e.g., [9]) to behavior systems of potentially higher-
order. These two results show that dissipativity is equivalent to the solvability of the
optimal control problem. Also, the results devise an eigenvalue method to compute
all solutions of the optimal control problem.

Originally, in (2) or (12), we have assumed that a special trajectory ẑ is prescribed.
However, we then have seen in Theorem 33 (at least for the first order case) that only
the value of ẑ(0) is relevant. In this case we can restate Corollary 35 and Corollary 36
without the prescribed trajectory x̂ and instead prescribe an initial condition x̂0 ∈ C

n.
This would create the problem that not all initial conditions x̂0 are consistent with
the algebraic equations in (25) and thus the optimal control problem may not be
solvable which means that the infimum in (12) becomes ∞.

Instead of considering the problem (12) for a given ẑ ∈ B(P ) one can also consider
the problem

∫ 0

−∞

(∆ℓẑ(t))
∗
H̃ (∆ℓẑ(t)) dt = inf

z∈B−(P )

z(t)=ẑ(t),t≥0

∫ 0

−∞

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt,

i.e., the problem on the negative time axis. This leads to exactly the same eigenvalue
problem (13) but one has to consider the eigenvalues in the strict right half plane
instead of the eigenvalues in the strict left half plane. Note that the problem on the
positive time axis is closely related to the so called available storage, whereas the
problem on the negative time axis is closely related to the so called required supply,
compare [14, Definition 3 & Definition 5] or [15, p. 359].

It is well-known that the available storage and the required supply constitute
storage functions, see [14, Theorem 1 and 2]. Thus looking at Corollary 35 and
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Corollary 36 in connection with Theorem 33 (or Conjecture 34) we see that the
available storage and the required supply depend on the state x, i.e., one can say that
the available storage and the required supply are functions of the state. It has already
been noted in [13, Theorem 6.1] that every storage function is a function of the state
x.

In the regular case the available storage and the required supply constitute the
two extremal solutions of an algebraic Riccati equation. In the non-regular case
discussed here one has to consider extremal solutions of linear matrix inequalities (also
called Lur’e equations), which are generalizations of algebraic Riccati equations. The
solution of such linear matrix inequalities can be performed through the determination
of invariant subspaces of the pencil (15) as shown in [11]. This shows that numerical
methods for the solution of para-Hermitian eigenvalue problems are needed. Such
methods for the first order case are discussed, e.g., in [3, 4, 8, 12].
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