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Abstract

The behavior approach and the problem of dissipativity have both been in-
troduced and studied extensively by Willems et al., see [14, 18, 19, 21]. However,
a computationally feasible method to check dissipativity is missing. Current
methods will mostly rely on symbolic representations of rational functions. We
will discuss a new characterization for linear systems in behavior form that
allows to check dissipativity via the solution of a para-Hermitian, polynomial
eigenvalue problem. Thus, we can employ standard methods of n

3 complexity.
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1 Introduction

In this paper we will generalize the result [4, Theorem 1] to higher order systems
given in behavior form. Also we will include more general types of cost functionals,
i.e., we will consider general quadratic cost functionals.

The problem of checking passivity is a special case of the dissipativity-checking-
problem, since passivity is usually defined to be dissipativity with respect to a special
cost functional, see, e.g., [3, Section 5.9.1].

In the literature the problem of checking passivity is well known [11, 16]. There,
however, most often the equivalent problem of positive definiteness of the Popov
function along the imaginary axis , i.e., the problem of positive realness, is consid-
ered (compare Theorem 36). This approach is not feasible for systems with a larger
number of states, since symbolic representations of rational matrices are hard to han-
dle numerically, even for rational matrices of moderate size and degree, i.e., even for
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systems with a moderate number of internal states. Our new approach generalizes a
technique introduced in [7], although it uses a slightly different structure.

The computation of the Popov function from a system which is given in kernel
representation is not a trivial task and the approach presented in this paper also avoids
this problem. In our approach the kernel representation of the system is sufficient to
construct a matrix polynomial for that an eigenvalue problem has to be solved. In
the first-order case the QZ-Algorithm can be used to solve the eigenvalue problem,
although the structure preserving methods presented in [5, 6, 15] are more appropriate
for this problem. For higher-order systems one has to employ linearization. For the
structure preserving methods a structure preserving linearization is necessary.

Notation used in this text are summed up in Tables 1 and 2.

Table 1: Notation - 1/2
S+ for an arbitrary set S ⊂ C; denotes {z ∈ S : Re {z} > 0}
S− for an arbitrary set S ⊂ C; denotes {z ∈ S : Re {z} < 0}

C∞(R, Cn) {z : R → C
n
∣
∣z is infinitely often differentiable}

C∞
c (R, Cn) {z ∈ C∞(R, Cn)

∣
∣z has compact support}

C∞ C∞(R, C)
C∞

c C∞
c (R, C)

C[λ] the ring of polynomials with coefficients in C

C(λ) the field of rational functions with coefficients in C

C[λ]p,q a p-by-q matrix with polynomial entries
C(λ)p,q a p-by-q matrix with entries from the field of the rational

functions
polynomial

matrix
an element of C[λ]p,q, i.e., a matrix with polynomial entries

matrix
polynomial

the same as a polynomial matrix, since one can also look at
a polynomial matrix as a polynomial that has matrices as
coefficients

rational matrix an element of C(λ)p,q, i.e., a matrix with entries from the
field of rational functions

P(R) where R ∈ C(λ)p,q is a rational matrix; denotes the set of
poles of R, i.e., the set of all λ ∈ C where at least one entry
of R has a pole

D(R) where R ∈ C(λ)p,q is a rational matrix; denotes the set
C \ P(R), i.e., the set of all λ such that R(λ) is a well
defined matrix in C

p,q and thus the domain of definition of
R

rankC(λ) (R) where R ∈ C(λ)p,q; denotes the rank of R over the field C(λ)
kernelC(λ) (R) where R ∈ C(λ)p,q; denotes the kernel of R over the field

C(λ) which is a subset of C(λ)q

rangeC(λ) (R) where R ∈ C(λ)p,q; denotes the range of R over the field
C(λ) with is a subset of C(λ)p
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Table 2: Notation - 1/2
rank (R(λ)) where R ∈ C(λ)p,q and λ ∈ D(R); denotes the rank of

R(λ) ∈ C
p,q in the usual way

kernel (R(λ)) where R ∈ C(λ)p,q and λ ∈ D(R); denotes the kernel of
R(λ) ∈ C

p,q in the usual way
range (R(λ)) where R ∈ C(λ)p,q and λ ∈ D(R); denotes the range of

R(λ) ∈ C
p,q in the usual way

diag (α1, . . . , αr) where α1, . . . , αr are scalars; denotes the r-by-r diagonal
matrix which has the scalars α1, . . . , αr on the diagonal and
is zero everywhere else

z(i) the i-th derivative of the function z

P
(

d
dt

)
z where P ∈ C[λ]p,q has the form P (λ) =

∑d
i=0 λiPi and

z ∈ C∞(R, Cq); denotes the function
∑d

i=0 Piz
(i)

C[λ, µ] the set of all two-variable-polynomials, i.e., all

φ(λ, µ) =
n∑

i,j=0

φi,jλ
iµj ,

where n ∈ N and φi,j ∈ C for i, j = 0, 1, . . . , n

C[λ, µ]p,q a p-by-q matrix with two-variable-polynomial entries or
equivalently a two-variable-polynomial with matrix coeffi-
cients, i.e.,

Φ(λ, µ) =

n∑

i,j=0

Φi,jλ
iµj ,

where n ∈ N and Φi,j ∈ C
p,q for i, j = 0, 1, . . . , n

∆q
ℓ where ℓ, q ∈ N; denotes the polynomial given by

∆q
ℓ(λ) :=








(λ)0Iq

(λ)1Iq

...
(λ)ℓIq







∈ C[λ]q(l+1),q

∆ℓz where ℓ ∈ N and z ∈ C∞(R, Cq); denotes the function

∆ℓz :=








z

z(1)

...
z(ℓ)







∈ C∞(R, Cq(ℓ+1)),

and thus we have ∆ℓz = ∆q
ℓ

(
d
dt

)
z
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We will start by reviewing some basic facts to make the paper self contained. This
includes basic results about

• rational and polynomial matrices in Section 2,

• the behavior approach in Section 3,

• the frequency-domain in Section 4,

• para-Hermitian matrices in Section 5,

• dissipativity in Section 6.

With these preliminaries we are ready to state the main result in Section 7. In Section
8 we will specialize the main result to first order systems to see how to derive some
well known results. In Section 10 we will briefly interpret the main result for second
order systems. Finally, in Section 11 some conclusions are drawn and an outlook is
presented.

2 Polynomial and rational matrices

In this section we will develop some basic properties of polynomial and rational ma-
trices.

First of all, we can immediately see that C[λ]p,q ⊂ C(λ)p,q and that for any matrix
polynomial P ∈ C[λ]p,q we have D(P ) = C and P(P ) = ∅. Also we see that for every
R ∈ C(λ)p,q the set P(R) can only be a finite set since R has a finite number of
entries and each entry (which is a rational function) can only have a finite number of
poles (because the poles are the zeros of a non-zero polynomial).

Lemma 1. Let R ∈ C(λ)p,p and let there exist a λ0 ∈ D(R) such that R(λ0) ∈ C
p,p

is an invertible matrix. Then R is an invertible rational matrix.

Proof. Set d := detR ∈ C(λ) and deduce that d(λ0) = detR(λ0) 6= 0. This shows
that d 6≡ 0 is not the zero function and thus R is invertible.

Lemma 2. Let R ∈ C(λ)p,p be an invertible rational matrix. Then there exists a
finite set σ(R) such that the following properties hold:

1. p = rankC(λ) (R) = rank (R(λ)) for all λ ∈ D(R) \ σ(R).

2. p = rankC(λ) (R) > rank (R(λ)) for all λ ∈ σ(R).

Proof. Set d := detR ∈ C(λ) and deduce that P(d) = P(R) by using the Leibniz
formula for determinants. Set

σ(R) := {λ ∈ D(d) = D(R)
∣
∣d(λ) = 0}

and observe that in this case σ(R) is finite, due to the fundamental theorem of algebra
and since d 6≡ 0. Further we see that for every λ ∈ D(R) \ σ(R) we have 0 6= d(λ) =
det R(λ) and thus that R(λ) is invertible from which 1. follows. For 2. we see that for
every λ ∈ σ(R) we have 0 = d(λ) = detR(λ) and thus that R(λ) is not invertible.
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The following Lemma 3 provides an alternative definition of the rank of a rational
matrix which is frequently used in the literature.

Lemma 3. Let R ∈ C(λ)p,q. Then we have

r := rankC(λ) (R) = max
λ∈D(R)

rank (R(λ)) . (1)

Proof. Using Gaussian elimination reduce the matrix R into echelon form over C(λ)
as

R = P

[
Ir 0
0 0

]

Q,

where P ∈ C(λ)p,p and Q ∈ C(λ)q,q are invertible rational matrices. Let σ(P ) and
σ(Q) be defined as in Lemma 2 and choose any

λ0 ∈ (D(P ) \ σ(P )) ∩ (D(Q) \ σ(Q)) ,

i.e., such that P (λ0) and Q(λ0) are well defined invertible matrices over C. Since

R(λ0) = P (λ0)

[
Ir 0
0 0

]

Q(λ0),

we conclude that λ0 ∈ D(R) and further that

max
λ∈D(R)

rank (R(λ)) ≥ rank (R(λ0)) = rank

(

P (λ0)

[
Ir 0
0 0

]

Q(λ0)

)

= r.

To finish the proof assume to the contrary that maxλ∈D(R) rank (R(λ)) > r, i.e., let
there be a λ1 ∈ D(R) with rank (R(λ1)) > r. Then there exist invertible matrices
P1 ∈ C

p,p and Q1 ∈ C
q,q such that

R(λ1) = P1

[
Ir+s 0

0 0

]

Q1,

where s ∈ N, s ≥ 1. Define the rational matrix R̃11 ∈ C(λ)r+s,r+s through the
relation

P−1
1 R(λ)Q−1

1 =:

[
R̃11(λ) R̃12(λ)

R̃21(λ) R̃22(λ)

]

.

Then clearly R̃11(λ1) = Ir+s, R̃12(λ1) = 0, R̃21(λ1) = 0, and R̃22(λ1) = 0. By Lemma
1 this shows that R̃11 is an invertible rational matrix of dimension r+s which implies
that

r = rankC(λ) (R) ≥ r + s > r,

which is a contradiction.

Definition 4. A square rational matrix R ∈ C(λ)p,p is called unimodular if its
determinant is a non-zero constant, i.e., there exists a non-zero constant c ∈ C \ {0}
such that

det R(λ) = c,

for all λ ∈ D(R).
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Lemma 5. A polynomial, unimodular matrix P ∈ C[λ]p,p is invertible over C(λ) and
its inverse is again a polynomial, unimodular matrix.

Proof. Invertibility follows since the determinant is non-zero. We can see that the
inverse (which we know exists in C(λ)p,p) is also a polynomial matrix by using the
adjoint formula of the inverse. To see that the inverse is unimodular, note that

1 = det I = det(PP−1) = det(P )det(P−1),

which implies that the determinant of P−1 is also a constant.

Theorem 6. Let P ∈ C[λ]p,q and set r := rankC(λ) (P ). Then there exist unimodular
matrices S ∈ C[λ]p,p and T ∈ C[λ]q,q such that

P = S

[
diag (d1, . . . , dr) 0

0 0

]

T, (2)

where d1, . . . , dr ∈ C[λ] with di 6= 0 for i = 1, . . . , r and di+1 divides di for i =
1, . . . , r − 1.

Proof. The proof is quite simple and a completely self contained presentations can be
found in [10, Chapter S1.1] and another in [9, p.141, Theorem 3].

The canonical form in (2) is called Smith form.
The following Lemma transfers Lemma 2 from invertible rational matrices to rect-

angular polynomial matrices.

Lemma 7. Let P ∈ C[λ]p,q a matrix polynomial. Then there exists a finite set σ(P )
such that the following properties hold:

1. rankC(λ) (P ) = rank (P (λ)) for all λ 6∈ σ(P ),

2. rankC(λ) (P ) > rank (P (λ)) for all λ ∈ σ(P ).

Proof. Let the Smith form (2) of P be given by

P = S

[
diag (d1, . . . , dr) 0

0 0

]

T.

For a scalar non-zero polynomial d ∈ C[λ] we define σ(d) to be the finite set of roots
of d. With this define the set σ(P ) through

σ(P ) :=
⋃

i=1,...,r

σ(di).

Then for λ0 6∈ σ(P ) we see that

diag (d1(λ0), . . . , dr(λ0)) ∈ C
r,r
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is an invertible matrix (over C). From Lemma 5 we obtain that also S(λ0) and T (λ0)
are invertible. Thus we have that

rank (P (λ0)) = rank

([
diag (d1(λ0), . . . , dr(λ0)) 0

0 0

])

= r = rankC(λ) (P ) .

Analogously, we see that for λ0 ∈ σ(P ) we have

rank (P (λ0)) = rank

([
diag (d1(λ0), . . . , dr(λ0)) 0

0 0

])

< r = rankC(λ) (P ) ,

since in this case for at least one i = 1, . . . , r we have that di(λ0) = 0.

Definition 8. Let P ∈ C[λ]p,q and define the set σ(P ) as in Lemma 7. Then the
elements of σ(P ) are called eigenvalues of P . For λ ∈ σ(P ) the quantity

g(λ) := rankC(λ) (P ) − rank (P (λ))

is called geometric multiplicity of λ.

Remark 9. In the theory of matrix polynomials it is common practice to distinguish
between finite and infinite eigenvalues, see [1, Section 3]. Usually, a matrix polynomial
P ∈ C[λ]p,p which is regular over C(λ) is said to have the infinite eigenvalue if in the
(unique) representation

P (λ) =

π∑

i=0

λiPi,

with Pi ∈ C
p,p and Pπ 6= 0 we have that Pπ is a singular matrix (over C). This

approach cannot be easily generalized to rectangular matrix polynomials.
Another approach is to use the so called homogeneous representation of matrix

polynomials. This approach is described in [1] and can be generalized to rectangular
matrix polynomials in the following way. Consider the homogeneous representation
of a matrix polynomial P ∈ C[λ]p,q given by

P (c, s) =

π∑

i=0

cπ−isiPi,

with (c, s) ∈ C
2 \ {0}. Then P is said to have the eigenvalue (c0, s0) ∈ C

2 \ {0} if

rank (P (c0, s0)) < rankC(λ) (P (1, λ)) = rankC(λ) (P (λ, 1)) .

Further, if c0 6= 0 the tuple (c0, s0) is identified with the finite eigenvalue λ0 := s0

c0

and if c0 = 0 the tuple (c0, s0) is identified with the infinite eigenvalue λ0 := ∞.
However, in this paper we are not concerned with the infinite eigenvalue, as it does

not seem to play a role for the results presented. Thus, if we speak of eigenvalues in
the following we always refer to finite eigenvalues.
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Note, that a unimodular matrix can have no eigenvalues, since at such an eigen-
value the determinant would vanish which contradicts the assumption that the deter-
minant is a non-zero constant.

Theorem 10. Let P ∈ C[λ]p,q and set r := rankC(λ) (P ). Then there exist polynomial
matrices U ∈ C[λ]q,q−r and V ∈ C[λ]q,r with the properties

1. PU = 0,

2. rankC(λ) (PV ) = r,

3. rankC(λ) (U) = rank (U(λ)) = q − r for all λ ∈ C,

4. rankC(λ) (V ) = rank (V (λ)) = r for all λ ∈ C,

5.
[
U V

]
is unimodular.

This especially means that all the matrices U , V , and
[
U V

]
have no eigenvalues.

Proof. Let the Smith form (2) of P be given by

P = S

[
diag (d1, . . . , dr) 0

0 0

]

T.

Partition the inverse of T (which is again a polynomial unimodular matrix due to
Lemma 5) according to the block structure of the diagonal matrix in the Smith form
as

T−1 =:
[
V U

]
,

i.e., such that V has r columns and U has q−r columns. Then clearly also
[
U V

]
is

unimodular since it can be obtained from T−1 through a column permutation, which
is itself a unimodular transformation, and 5. is proved. Also we see that 1. holds,
since

PU = S

[
diag (d1, . . . , dr) 0

0 0

]

TU = S

[
diag (d1, . . . , dr) 0

0 0

]

TT−1

[
0

Iq−r

]

= 0.

Property 2. holds since analogously

PV = S

[
diag (d1, . . . , dr) 0

0 0

] [
Ir

0

]

= S

[
diag (d1, . . . , dr)

0

]

,

and all di 6= 0 for i = 1, . . . , r. Parts 3. and 4. follow since
[
U V

]
has full rank

(over C(λ)) and due to the unimodularity also the matrix
[
U(λ) V (λ)

]
has full rank

(over C) for every λ ∈ C.

Theorem 10 motivates the following Definition.

Definition 11. Let P ∈ C[λ]p,q and set r := rankC(λ) (P ). Then the rational matrix
U ∈ C(λ)q,q−r and the polynomial matrix V ∈ C[λ]q,r are called kernel matrix and
co-kernel matrix of P , resp., if they fulfill the following properties
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1. PU = 0,

2. rankC(λ) (PV ) = r,

3. rankC(λ) (U) = rank (U(λ)) = q − r for all λ ∈ D(U),

4. rankC(λ) (V ) = rank (V (λ)) = r for all λ ∈ C,

5.
[
U V

]
is unimodular.

Theorem 10 shows that for every matrix polynomial there exists a kernel and co-
kernel matrix, where the kernel matrix is even a polynomial. The co-kernel matrix has
to be a polynomial matrix for the proof of Theorem 44 to work. The kernel matrix is
allowed to be a rational function, because for regular first order state-space systems
we will later present a kernel matrix in explicit form, see (24), which happens to be
a rational matrix.

Lemma 12. Let P ∈ C[λ]p,q and set r := rankC(λ) (P ). Let U ∈ C(λ)q,q−r and
V ∈ C[λ]q,r be kernel and co-kernel matrices of P . Let a Smith form (2) of P be
given by

P = S

[
diag (d1, . . . , dr) 0

0 0

]

T,

and partition the inverse of T as T−1 =
[
T1 T2

]
with T1 having r columns and T2

having q − r columns, partitioned analogously to the Smith form.
Then, there exists a unimodular rational matrix U2 ∈ C(λ)q−r,q−r with D(U) =
D(U2), an unimodular polynomial matrix V1 ∈ C[λ]r,r, and a polynomial matrix
V2 ∈ C[λ]q−r,r such that

U = T2U2, and V = T1V1 + T2V2 = T

[
V1

V2

]

.

If U is in addition a polynomial matrix, then the matrix U2 is also polynomial.

Proof. Set Ũ = TU and Ṽ = TV . Since T is a unimodular polynomial matrix we
clearly have that Ṽ is a polynomial matrix and that D(Ũ) = D(U). Partition

Ũ =:

[
U1

U2

]
r

q − r
and Ṽ =:

[
V1

V2

]
r

q − r
,

i.e., such that V1 and U2 are rectangular. Taking the Smith form into consideration
we first find that

0 = S−1PU =

[
diag (d1, . . . , dr) 0

0 0

]

TU

=

[
diag (d1, . . . , dr) 0

0 0

]

Ũ =

[
diag (d1, . . . , dr) U1

0

]

,

and thus that U1 = 0, since diag (d1, . . . , dr) is invertible. This implies that U2 is
invertible because Ũ has full rank q − r. Since by assumption U has no eigenvalues
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also Ũ = TU has no eigenvalues. This implies that U2 has no eigenvalues, which
means that U2 is unimodular. For Ṽ , on the other hand, we find that

r = rankC(λ) (PV ) = rankC(λ)

(
S−1PV

)

= rankC(λ)

([
diag (d1, . . . , dr) 0

0 0

]

TV

)

= rankC(λ)

([
diag (d1, . . . , dr) V1

0

])

,

and thus that V1 is invertible since, again, diag (d1, . . . , dr) is invertible. In matrix
notation we find that since both T and

[
U V

]
are unimodular also the block anti-

diagonal matrix
[

0 V1

U2 V2

]

=
[

Ũ Ṽ
]

= T
[
U V

]
,

is unimodular. Since

det

[
0 V1

U2 V2

]

= detV1 · det U2,

this implies unimodularity of V1 since the unimodularity of U2 has already been
shown.

The following Lemma 13 justifies that one may speak of a kernel matrix and a
co-kernel matrix independently, i.e., for P ∈ C[λ]p,q one can for example speak of a
kernel matrix U without referring to an accompanying co-kernel matrix, as suggested
by Definition 11.

Lemma 13. Let P ∈ C[λ]p,q and set r := rankC(λ) (P ). Let U ∈ C(λ)q,q−r and
V ∈ C[λ]q,r together be a kernel and co-kernel matrix of P (as in Definition 11) and
independently of that, let also Ũ ∈ C(λ)q,q−r and Ṽ ∈ C[λ]q,r together be a kernel
and co-kernel matrix of P . Then we have that also U and Ṽ together are a kernel
and co-kernel matrix of P as well as we have that Ũ and V together are a kernel and
co-kernel matrix of P .

Proof. Since the other properties of Definition 11 are clear it is sufficient to show that
the composed matrices

[

U Ṽ
]

and
[

Ũ V
]

are unimodular. Let a Smith form (2)
of P be given by

P = S

[
diag (d1, . . . , dr) 0

0 0

]

T,

and partition the inverse of T as T−1 =
[
T1 T2

]
with T1 having r columns and

T2 having q − r columns. Using the previous Lemma 12 we obtain the existence of
unimodular U2, V1, Ũ2, and Ṽ1 and polynomial matrices V2 and Ṽ2 such that

U = T2U2, V = T1V1 + T2V2,

Ũ = T2Ũ2, Ṽ = T1Ṽ1 + T2Ṽ2.
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Thus we obtain that

det
[

U Ṽ
]

= det
[
T1 T2

]
[

0 Ṽ1

U2 Ṽ2

]

,

which proves unimodularity of
[

U Ṽ
]

since U2 and Ṽ1 are unimodular. Unimodu-

larity of
[

Ũ V
]

follows analogously from

det
[

Ũ V
]

= det
[
T1 T2

]
[

0 V1

Ũ2 V2

]

,

and the proof is finished.

In the proofs of Lemma 41 and Theorem 44 the following two Lemmas 14 and
15 are needed. However, we prove them in this section since they fit thematically in
here.

Lemma 14. Let Q ∈ C[λ]p,r be a matrix polynomial with full column rank, i.e., with
rankC(λ) (Q) = r. Then we have the following.

1. In general, there exists a (potentially rational) left inverse X ∈ C(λ)r,p of Q,
i.e., a rational matrix X such that XQ = Ir, with the property

D(X) = C \ σ(Q).

2. If Q has no eigenvalues then there exists a polynomial left inverse X ∈ C[λ]r,q

of Q, i.e., a polynomial matrix X such that XQ = Ir.

Proof. Consider the Smith canonical form of Q which takes the form

Q = S

[
diag (d1, . . . , dr)

0

]

T,

since we have assumed that rankC(λ) (Q) = r. For part 1. remember that σ(Q) =
⋃r

i=1 σ(di). Setting

X := T−1
[

diag
(

1
d1

, . . . , 1
dr

)

0
]

S−1

we obtained a left inverse of Q. That we have

D(X) = C \
r⋃

i=1

σ(di) = C \ σ(Q),

finally follows from the unimodularity of S and T and thus the unimodularity of T−1

and S−1. For part 2. partition S and its inverse S−1 through the relations

S =:
[
S1 S2

]
, and S−1 =:

[
X̃

Ỹ

]
r

p − r
,
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such that S1 ∈ C[λ]p,r and S2 ∈ C[λ]p,p−r. Since Ip = S−1S we readily obtain

that X̃S1 = Ir. Since we assume that Q has no eigenvalues, we find that w.l.o.g.
diag (d1, . . . , dr) = Ir. Define X := T−1X̃ and observe that with this

XQ = T−1X̃
[
S1 S2

]
[
Ir

0

]

T = T−1XS1T = Ir.

We have that X = T−1X̃ is a polynomial since T−1 is a polynomial (remember that
T is unimodular) and also X̃ is a polynomial.

Lemma 15. Let P ∈ C[λ]p,q and set r := rankC(λ) (P ). Let V ∈ C[λ]q,r be a co-kernel
matrix of P . Then we have

σ(PV ) = σ(P )

Proof. Let the Smith form (2) of P be given by

P = S

[
diag (d1, . . . , dr) 0

0 0

]

T,

and partition the inverse of T as T−1 =
[
T1 T2

]
with T1 having r columns and T2

having q − r columns. Using Lemma 12 we obtain the existence of a unimodular
polynomial matrix V1 and polynomial matrix V2 such that V = T1V1 + T2V2. Thus
we see that

PV = S

[
diag (d1, . . . , dr) 0

0 0

]

TT−1

[
V1

V2

]

= S

[
diag (d1, . . . , dr)

0

]

V1,

with V1 being a unimodular polynomial matrix. This means that we have a Smith
form of PV and we can obtain the eigenvalues through

σ(PV ) =
r⋃

i=1

σ(di) = σ(P ),

which proves the claim.

3 The behavior approach to systems theory

With the preliminaries from Section 2 we are ready to introduce some results concern-
ing the behavior approach. All the results can also be found in [14], where a slightly
different notation is used.

Definition 16. Let P ∈ C[λ]p,q be a polynomial matrix. Then we call

B(P ) :=

{

z ∈ C∞(R, Cq)
∣
∣P

(
d

dt

)

z = 0

}

= kernelC∞

(

P

(
d

dt

))

the behavior of P and

Bc(P ) := B(P ) ∩ C∞
c (R, Cq) = kernelC∞

c

(

P

(
d

dt

))
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the compact behavior of P . The elements of B(P ) and Bc(P ) are called trajectories
of P .

The following two Lemmas 17 and 18 can be seen as an adaption of [20, Proposition
4.1] to differential equations and the proofs are in principle taken from there.

Lemma 17. Let P ∈ C[λ]p,q with r := rankC(λ) (P ) and let U ∈ C[λ]q,q−r be a polyno-
mial kernel matrix according to Definition 11 and Theorem 10. Let a ∈ C∞(R, Cq−r)
be arbitrary. Then

z := U

(
d

dt

)

a ∈ B(P ),

i.e., z is a trajectory of P .

Proof. Let P (λ) =
∑π

i=0 λiPi and U(λ) =
∑ν

j=0 λjUj . Then by using the fact that
U is a kernel matrix of P and equating coefficients in

0 = P (λ)U(λ) =

π∑

i=0

ν∑

j=0

λi+jPiUj =

π+ν∑

k=0

λk
∑

i+j=k

PiUj

we find that
∑

i+j=k PiUj = 0. Thus for the function z we obtain

P

(
d

dt

)

z(t) = P

(
d

dt

)

U

(
d

dt

)

a(t) = P

(
d

dt

) ν∑

j=0

Uja
(j)(t)

=

π∑

i=0

Pi

(
d

dt

)i ν∑

j=0

Uja
(j)(t) =

π∑

i=0

ν∑

j=0

PiUja
(i+j)(t)

=
π+ν∑

k=0




∑

i+j=k

PiUj



 a(k)(t) = 0,

which means that z ∈ B(P ).

Lemma 18. Let P ∈ C[λ]p,q with r := rankC(λ) (P ) and let U ∈ C[λ]q,q−r be a
polynomial kernel matrix of P . Then

Bc(P ) = rangeC∞

c

(

U

(
d

dt

))

.

Proof. The inclusion ”⊃” follows directly from Lemma 17, since if in the statement
of Lemma 17 the function a is a function with compact support, so is z.

For the inclusion ”⊂” let z ∈ Bc(P ) be arbitrary and let the Smith form (2) of P

be given by

P = S

[
diag (d1, . . . , dr) 0

0 0

]

T.

Partition the inverse of T as T−1 =
[
T1 T2

]
with T1 having r columns and T2 having

q − r columns. Using Lemma 12 we obtain the existence of a unimodular polynomial



Checking dissipativity using para-Hermitian matrix polynomials 14

U2 such that U = T2U2. Since z ∈ Bc(P ) = Bc(S
−1P ) and by defining the functions

z1 ∈ C∞
c (R, Cr), z2 ∈ C∞

c (R, Cq−r), and z̃ ∈ C∞
c (R, Cq), through

[
z1(t)
z2(t)

]

:= z̃(t) := T

(
d

dt

)

z(t),

we also see that

0 = S−1

(
d

dt

)

P

(
d

dt

)

z(t) =

[
diag

(
d1

(
d
dt

)
, . . . , dr

(
d
dt

))
0

0 0

] [
z1(t)
z2(t)

]

=

[
diag

(
d1

(
d
dt

)
, . . . , dr

(
d
dt

))
z1(t)

0

]

.

Further defining the functions zi ∈ C∞
c (R, C) for i = 1, . . . , r by partitioning






z1(t)
...

zr(t)




 := z1(t)

we obtain that 0 = di

(
d
dt

)
zi(t) for all t ∈ R and all i = 1, . . . , r. If di is a non-zero

constant we immediately see that this implies that zi ≡ 0 (remember that all di are
assumed to be non-zero). If, however, di is another non-zero polynomial this means
that the scalar-valued function zi satisfies a linear ordinary differential equation (of
order potentially higher than one). The fact that zi has compact support gives us the
initial condition z(R) = 0 (where R ∈ R is small enough or large enough). From the
theory of linear ordinary differential equations (reducing the system to first order and
writing down the explicit solution formula) we again see that zi ≡ 0. Thus, it follows
that z1 ≡ 0 and we deduce that

z(t) = T−1

(
d

dt

)

z̃(t) =
[
T1

(
d
dt

)
T2

(
d
dt

)]
[

0
z2(t)

]

= T2

(
d

dt

)

z2(t).

Since U = T2U2, with U2 being a unimodular polynomial also, U−1
2 is a unimodular

polynomial and we have UU−1
2 = T2. Setting α(t) := U−1

2

(
d
dt

)
z2(t) we see that

α ∈ C∞
c (R, Cq−r), since z2 ∈ C∞

c (R, Cq−r) and we finally get

z(t) = T2

(
d

dt

)

z2(t) = U

(
d

dt

)

U−1
2

(
d

dt

)

z2(t) = U

(
d

dt

)

α(t),

which finishes the proof.

Loosely speaking, Lemmas 17 and 18 show that the compact behavior of a linear
system given by a polynomial matrix P ∈ C[λ]p,q is completely specified through the
range of one of its polynomial kernel matrices. This is the reason why in [14] the
polynomial matrix P is called kernel representation and a kernel matrix U of P is
called image representation of a system.

Lemma 19 will be used to connect the kernel matrix to the Laplace transformation.
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Lemma 19. Let P ∈ C[λ]p,q with r := rankC(λ) (P ) and let U ∈ C(λ)q,q−r be a kernel
matrix of P . Let Z : C → C

q be a continuous function such that

0 = P (λ)Z(λ),

for λ ∈ C. Then, there exists a function α : D(U) → C
q−r such that

Z(λ) = U(λ)α(λ),

for all λ ∈ D(U). If in addition U is a polynomial kernel matrix we furthermore have
that α is continuous.

Proof. Let a Smith form (2) of P be given by

P = S

[
diag (d1, . . . , dr) 0

0 0

]

T,

and partition the inverse of T as T−1 =
[
T1 T2

]
with T1 having r columns and T2

having q − r columns. Using Lemma 12 we obtain the existence of a unimodular
U2 ∈ C[λ]q−r,q−r such that U = T2U2 and D(U) = D(U2). Define the continuous
functions Z1 : C → C

r, Z2 : C → C
q−r, and Z̃ : C → C

q through
[
Z1

Z2

]

:= Z̃ := TZ,

and observe that this implies

0 = S−1PZ =

[
diag (d1, . . . , dr) 0

0 0

]

TZ =

[
diag (d1, . . . , dr) Z1

0

]

,

which in turn implies that Z1 ≡ 0, since diag (d1, . . . , dr) is invertible. From this we
deduce that

Z = T−1Z̃ =
[
T1 T2

]
[
Z1

Z2

]

= T2Z2.

With this notation at hand define α := U−1
2 Z2. Due to the Definition, Z2 is a

continuous function. Since, U2 is unimodular we know that D(U2) = D(U−1
2 ) and

thus α can be considered to be function defined on D(U−1
2 ) = D(U). If U is also

polynomial, so is U2 (by the statement of Lemma 12) and with it U−1
2 , resulting in α

being continuous. Finally, from the equation U = T2U2 we find that also UU−1
2 = T2

and conclude that
Z = T2Z2 = UU−1

2 Z2 = Uα,

which is the assertion.

4 Frequency-domain

Definition 20. For a function z ∈ C∞(R, Cq) we define its two sided Laplace-
transform Z : C → C

q via

Z(λ) :=

∫ ∞

−∞

e−λtz(t)dt, (3)
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for all ω ∈ R where the integral exists. The two sided Laplace-transform is also
denoted by Z = L {z}.

Lemma 21. Let z1, z2 ∈ C∞
c (R, Cq) be two functions with compact support. Then

their two sided Laplace-transforms Z1, Z2 are continuous functions that are well de-
fined for all λ ∈ C, i.e., Z1(λ) and Z2(λ) are well defined in the complete complex
plane. Furthermore, the Parseval/Plancherel identity

∫ ∞

−∞

z∗1(t)z2(t)dt =
1

2π

∫ ∞

−∞

Z∗
1 (iω)Z2(iω)dω (4)

holds. For the derivative of a function z1 we have the formula

L {ż1} (λ) = λZ1(λ).

Proof. Since z is assumed to have compact support there has to be a R ∈ R
+ such

that z(t) = 0 for every |t| ≥ R. Thus, for every λ ∈ C the integral

Z(λ) =

∫ ∞

−∞

e−λtz(t)dt =

∫ R

−R

e−λtz(t)dt

is an integral of a continuous function over a compact interval which exists in the
Riemann- as well as the Lebesgue-sense.
Partial integration shows that we also have

L {ż1} =

∫ ∞

−∞

e−λtż1(t)dt

=

∫ R

−R

e−λtż1(t)dt

= e−λt z1(t)
︸︷︷︸

=0

∣
∣
∣

t=R

t=−R
−

∫ R

−R

(−λ)e−λtz1(t)dt

= λ

∫ R

−R

e−λtz(t)dt = λ

∫ ∞

−∞

e−λtz(t)dt = λZ1(λ).

The Parseval/Plancherel identity is harder to prove, see [8, §12].
To see that Z is a continuous function let {λk}k∈N ⊂ C be a sequence that converges
to a λ ∈ C. Then the functions

zk(t) := e−λktz(t) ∈ C∞
c (R, Cq)

constitute a sequence of functions which converges uniformly to the function e−λtz(t).
Thus, from basic calculus we know that

lim
k→∞

Z(λk) = lim
k→∞

∫ ∞

−∞

eλktz(t)dt = lim
k→∞

∫ R

−R

eλktz(t)dt

=

∫ R

−R

lim
k→∞

eλktz(t)dt =

∫ R

−R

eλtz(t)dt = Z(λ),

which proves the continuity.
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The following Lemma 22 is needed later to draw connections between the time-
domain and the frequency-domain. It basically says that for a given P ∈ C[λ]p,q

one can construct trajectories with compact support which almost only consist of one
predominant frequency.

Lemma 22. Let P ∈ C[λ]p,q with r = rankC(λ) (P ) and let U ∈ C[λ]q,q−r be a
polynomial kernel matrix of P . Let λ0 ∈ C and v ∈ C

q−r be arbitrary but fixed. Split
λ0 = r0 + iω0 into the real part r0 = Re {λ0} and the imaginary part ω0 = Im {λ0}.
Define

ω̃0 :=

{

|ω0| if ω0 6= 0

1 if ω0 = 0
.

Then there exists a sequence of trajectories {zk}k∈N =
{
U

(
d
dt

)
vk

}

k∈N
⊂ Bc(P ) with

vk ∈ C∞
c (R, Cq−r) such that the following properties are satisfied for all k ∈ N.

1. zk(t) = U
(

d
dt

)
veiω0t = U(iω0)veiω0t for all t ∈

[

− 2πk
ω̃0

, 2πk
ω̃0

]

.

2. zk

(

t + 2πk
ω̃0

)

= e
r0

2πk
ω̃0 z0 (t) for all t ∈

[

0, 2π
ω̃0

]

.

3. zk

(

t − 2πk
ω̃0

)

= e
−r0

2πk
ω̃0 z0 (t) for all t ∈

[

− 2π
ω̃0

, 0
]

.

4. zk(t) = 0 for all t ∈
]

−∞,− 2π(k+1)
ω̃0

]

∪
[

2π(k+1)
ω̃0

,∞
[

.

Proof. Let b̃ : R → R be a smooth transition from 0 to 1, i.e., a function such that

b̃(t) =

{

0 t < −1

1 t > 0
,

with b̃ ∈ C∞(R, R) infinitely often differentiable. Define the sequence of functions
bk : R → R through

bk(t) = b̃
(
t ω̃0

2π
+ k

)
b̃
(
−t ω̃0

2π
+ k

)
,

for k ∈ N and observe that bk ∈ C∞
c (R, R) is infinitely often differentiable and has the

properties

bk(t) =







0 for t ∈
]

−∞,− 2π(k+1)
ω̃0

]

∪
[

2π(k+1)
ω̃0

,∞
[

1 for t ∈
[

− 2πk
ω̃0

, 2πk
ω̃0

] . (5)

Next, define the sequence of trajectories zk ∈ Bc(P ) through

zk(t) := U

(
d

dt

)
[
veλ0tbk(t)

]
.
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That all zk are indeed trajectories of P thereby follows from Lemma 17. The con-

struction implies that for t ∈
[

− 2πk
ω̃0

, 2πk
ω̃0

]

we have

zk(t) = U

(
d

dt

)
[
veλ0t

]
= U(λ0)veλ0t,

and thus we have shown part 1. Part 4. follows from (5). To see part 2. we find that

for all k ∈ N and t ∈
[

0, 2π
ω̃0

]

we have

zk

(

t + 2πk
ω̃0

)

= U

(
d

dt

)[

ve
λ0

„

t+
2πk
ω̃0

«

bk

(

t + 2πk
ω̃0

)
]

= U

(
d

dt

)[

ve
λ0t+

r0

ω̃0

2πk+i
ω0

ω̃0

2πk
b̃
(
t ω̃0

2π
+ k + k

)
b̃
(
−t ω̃0

2π
− k + k

)
]

= U

(
d

dt

)


veiω0te
r0

ω̃0

2πk
e
i
ω0

ω̃0

2πk

︸ ︷︷ ︸

=1

b̃
(
t ω̃0

2π

)
b̃
(
−t ω̃0

2π

)





= e
r0

ω̃0

2πk
U

(
d

dt

)
[
veiω0tb0(t)

]
= e

r0

ω̃0

2πk
z0(t).

Part 3. can be shown analogously and thus the proof is finished.

5 Para-Hermitian matrices

Consider a rational matrix R ∈ C(λ)p,q in the form

R =






r1,1 · · · r1,q

...
...

rp,1 · · · rp,q




 ,
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where ri,j ∈ C(λ). Then we have that

R∗(−λ) =






r1,1(−λ) · · · r1,q(−λ)
...

...

rp,1(−λ) · · · rp,q(−λ)






∗

=







r1,1(−λ) · · · rp,1(−λ)
...

...

r1,q(−λ) · · · rp,q(−λ)







,

and one can easily see that ri,j(−λ) ∈ C(λ) is again a rational function in λ. This
implies that R∗(−λ) can be interpreted as a rational function in λ and justifies the
following definition.

Definition 23. [22, Def. 2] Let R ∈ C(λ)p,q. Then we call the rational matrix
R∼ ∈ C(λ)q,p which is defined through

R∼(λ) := R∗(−λ),

the para-Hermitian of R. Further, R is called para-Hermitian if R = R∼.

Note that if P ∈ C[λ]p,q is a polynomial matrix P∼ ∈ C[λ]q,p is also a polynomial.
Some properties of the para-Hermitian are summed up in the following Lemma.

Lemma 24. We have

1.
(
A−1

)∼
= (A∼)

−1
for a square rational matrix A which is invertible over C(λ).

2. (BC)
∼

= C∼B∼ for arbitrary rational matrices B and C of proper dimension.

3. (B∼)
∼

= B for every rational matrix B.

4. B∼B is a para-Hermitian matrix for every rational matrix B.

5. If D is a para-Hermitian rational matrix so is U∼DU for every rational matrix
U of appropriate dimension.

Proof. The proof follows in the same way as that for the transpose of matrices with
complex entries.

Lemma 24 especially justifies the notation A−∼ := (A∼)
−1

to denote the para-
Hermitian of the inverse of a square invertible rational matrix.

We will also need the notion of the para-Hermitian of a two-variable-polynomial
matrix and the notion of para-Hermitian two-variable-polynomial matrices.

Definition 25. Let M ∈ C[λ, µ]p,q be a two-variable-polynomial matrix. Then we
call M∼ ∈ C[λ, µ]q,p defined through

M∼(λ, µ) := M∗(µ, λ)

the para-Hermitian of M . Furthermore, we say that M is para-Hermitian if M∼ = M .
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Again, one can easily see that M∼ is indeed a two-variable-polynomial in λ and µ.
Note that the para-Hermitian is only defined for polynomials. To see how the para-
Hermitian of two-variable-polynomial matrices and polynomial matrices are related,
consider the following Lemma.

Lemma 26. Let M ∈ C[λ, µ]p,q and define a polynomial matrix R ∈ C[λ]p,q through

R(λ) := M(−λ, λ).

Then, we have that R∼(λ) = M∼(−λ, λ). Also, if M = M∼ is para-Hermitian so is
R = R∼.

Proof. First, we have that

R∼(λ) = R∗(−λ) = M∗(λ,−λ) = M∼(−λ, λ).

If M is also para-Hermitian, then we obtain that

R∼(λ) = M∼(−λ, λ) = M(−λ, λ) = R(λ),

and thus the assertion follows.

Definition 27. Let P ∈ C[λ]p,q be a non-zero matrix polynomial, n ∈ N, and
Pi ∈ C

p,q for i = 0, 1, . . . , n such that

P (λ) = Pnλn + . . . P1λ + P0,

where Pn 6= 0. Then we call
deg(P ) := n

the degree of P . For the zero matrix polynomial we set deg(0) := 0.

Para-Hermitian matrices can easily be generated from bigger constant Hermitian
matrices. The following Lemma 28 shows the relation between constant Hermitian
matrices and para-Hermitian matrix polynomials. Lemma 29 shows the relation be-
tween constant Hermitian matrices and para-Hermitian two-variable-polynomial ma-
trices.

Lemma 28. Let ℓ ∈ N and H̃ = H̃∗ ∈ C
q(ℓ+1),q(ℓ+1) be a Hermitian matrix. Define

the matrix polynomial H ∈ C[λ]q,q through

H(λ) :=
(
∆q

ℓ(−λ)
)∗

H̃∆q
ℓ(λ) = (∆q

ℓ(λ))
∼

H̃∆q
ℓ(λ). (6)

Then H is para-Hermitian. On the other hand, consider an arbitrary para-Hermitian
matrix polynomial H = H∼ ∈ C[λ]q,q. Then, there exists an ℓ ∈ N and (3 · ℓ + 1)
matrices H0,0,Hi,i,Hi,i+1,Hi+1,i ∈ C

q,q with i = 1, . . . , ℓ which fulfill Hi,j = H∗
j,i for

|i − j| ≤ 1 and i, j = 0, 1, . . . , ℓ such that H can be represented in the form

H(λ) =










(−λ)0Iq

(−λ)1Iq

(−λ)2Iq

...

(−λ)ℓIq










∗











H0,0 H0,1 0 · · · 0

H1,0 H1,1 H1,2
. . .

...

0 H2,1 H2,2
. . . 0

...
. . .

. . .
. . . Hℓ−1,ℓ

0 · · · 0 Hℓ,ℓ−1 Hℓ,ℓ





















λ0Iq

λ1Iq

λ2Iq

...
λℓIq










.
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Especially, for every para-Hermitian matrix H = H∼ ∈ C[λ]q,q there exists an ℓ ∈ N

and a Hermitian matrix H̃ = H̃∗ ∈ C
q(ℓ+1),q(ℓ+1) such that (6) is fulfilled.

Proof. The first assertion follows directly from Lemma 24 since H̃ can be viewed as
an para-Hermitian matrix polynomial of degree 0.

For the second assertion let H ∈ C[λ]q,q be an arbitrary para-Hermitian matrix

polynomial which has the form H(λ) =
∑2ℓ

i=0 Hiλ
i, where ℓ ∈ N and Hi ∈ C

q,q for
i = 0, 1, . . . , 2ℓ. Clearly every H can be written in this form, although if deg H < 2ℓ

we may have that H2ℓ = 0. Note that we may choose H to have degree less or equal
to 2ℓ so that ℓ is already the ℓ mentioned in the statement of the Lemma. Equating
coefficients in the identity

2ℓ∑

i=0

Hiλ
i = H(λ) = H∼(λ) =

(
2ℓ∑

i=0

Hi(−λ)i

)∗

=

2ℓ∑

i=0

(−1)iH∗
i λi

reveals that Hi = (−1)iH∗
i for i = 0, . . . , 2ℓ and thus that H2i = H∗

2i for i = 0, . . . , ℓ
and H2i+1 = −H∗

2i+1 for i = 0, . . . , ℓ− 1. With this notation we make the definitions

Hi,i := (−1)iH2i, for i = 0, . . . , ℓ,

Hi,i+1 := (−1)i 1
2H2i+1 for i = 0, . . . , ℓ − 1,

Hi+1,i := H∗
i,i+1 for i = 0, . . . , ℓ − 1,

to conclude that










(−λ)0Iq

(−λ)1Iq

(−λ)2Iq

...

(−λ)ℓIq










∗











H0,0 H0,1 0 · · · 0

H1,0 H1,1 H1,2
. . .

...

0 H2,1 H2,2
. . . 0

...
. . .

. . .
. . . Hℓ−1,ℓ

0 · · · 0 Hℓ,ℓ−1 Hℓ,ℓ





















λ0Iq

λ1Iq

λ2Iq

...
λℓIq










=

ℓ∑

i=0

(−λ)i(λ)iHi,i +

ℓ−1∑

i=0

(−λ)i(λ)i+1Hi,i+1 +

ℓ−1∑

i=0

(−λ)i+1(λ)iHi+1,i

=

ℓ∑

i=0

(−1)iλ2i(−1)iH2i +

ℓ−1∑

i=0

(−1)iλ2i+1Hi,i+1 +

ℓ−1∑

i=0

(−1)i+1λ2i+1H∗
i,i+1

=

ℓ∑

i=0

λ2iH2i +

ℓ−1∑

i=0

λ2i+1(−1)i
[
Hi,i+1 − H∗

i,i+1

]

=

ℓ∑

i=0

λ2iH2i +

ℓ−1∑

i=0

λ2i+1(−1)i
[
(−1)i 1

2H2i+1 − (−1)i 1
2H∗

2i+1

]

=

ℓ∑

i=0

λ2iH2i +

ℓ−1∑

i=0

λ2i+1
[
1
2H2i+1 −

1
2H∗

2i+1

]
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=
ℓ∑

i=0

λ2iH2i +
ℓ−1∑

i=0

λ2i+1
[
1
2H2i+1 + 1

2H2i+1

]

=

ℓ∑

i=0

λ2iH2i +

ℓ−1∑

i=0

λ2i+1H2i+1 =

ℓ∑

i=0

λiHi = H(λ),

which proves the claim.

Lemma 29. Let ℓ ∈ N and H̃ = H̃∗ ∈ C
q(ℓ+1),q(ℓ+1) be a Hermitian matrix. Define

the two-variable-polynomial matrix H ∈ C[λ, µ]q,q through

H(λ, µ) :=
(
∆q

ℓ(λ)
)∗

H̃∆q
ℓ(µ). (7)

Then H is para-Hermitian. On the other hand, let an arbitrary para-Hermitian two-
variable-polynomial matrix H = H∼ ∈ C[λ, µ]q,q be given. Then, there exists an ℓ ∈ N

and an H̃ = H̃∗ ∈ C
q(ℓ+1),q(ℓ+1) such that (7) is fulfilled as an equation (and not as

a definition).

Proof. First, we have that

H∼(λ, µ) = H∗(µ, λ) =
(

(∆q
ℓ(µ))

∗
H̃∆q

ℓ(λ)
)∗

=
(
∆q

ℓ(λ)
)∗

H̃∆q
ℓ(µ) = H(λ, µ),

which shows that H as defined in (7) is para-Hermitian.

For the second assertion let H take the form H(λ, µ) =
∑ℓ

i,j=0 Hi,jλ
iµj and

conclude that H being para-Hermitian implies

ℓ∑

i,j=0

Hi,jλ
iµj = H(λ, µ) = H∼(λ, µ) = H∗(µ, λ)

=





ℓ∑

i,j=0

Hi,jµ
iλ

j





∗

=

ℓ∑

i,j=0

H∗
i,jµ

iλj .

By equating coefficients, this implies that

Hi,j = H∗
j,i (8)

for i, j = 0, . . . , ℓ. Define the matrix H̃ ∈ C
q(ℓ+1),q(ℓ+1) through

H̃ :=






H0,0 · · · H0,ℓ

...
...

Hℓ,0 · · · Hℓ,ℓ




 .

By using (8) we conclude that we have H̃ = H̃∗. Also one obtains (7) (as an equation
rather than a definition) through

(
∆q

ℓ(λ)
)∗

H̃∆q
ℓ(µ) =

[
λ0Iq · · · λℓIq

]∗






H0,0 · · · H0,ℓ

...
...

Hℓ,0 · · · Hℓ,ℓ











µ0Iq

...
µℓIq
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=
ℓ∑

i,j

Hi,jλ
iµj = H(λ, µ),

which proves the claim.

Para-Hermitian polynomial matrices have an interesting eigenvalue symmetry.

Lemma 30. Let P ∈ C[λ]p,q be a matrix polynomial. Then we have

σ(P∼) = −σ(P ).

Especially, if p = q and P = P∼ is para-Hermitian then we have that

σ(P ) = −σ(P ),

i.e., the spectrum of an para-Hermitian matrix is symmetric to the imaginary axis.

Proof. First note that for every unimodular matrix T ∈ C[λ]q,q also its para-Hermitian
T∼ is unimodular. Let a Smith form (2) of P be given by

P = S

[
diag (d1, . . . , dr) 0

0 0

]

T.

Then, we have that

P∼ = T∼

[
diag (d1, . . . , dr)

∼
0

0 0

]

S∼

= T∼

[
diag (d∼1 , . . . , d∼r ) 0

0 0

]

S∼,

and since every di can be factored into a product of linear polynomials, it is sufficient
to show that for p(λ) := λ − a with a ∈ C we have σ(p∼) = −σ(p). Since, however,

(λ − a)∼ = (−λ − a)∗ = −λ − a,

this is clearly the case.

The following Lemma will be needed in the next section and it shows that the dif-
ferential operator P∼

(
d
dt

)
is the adjoint operator of P , when considered with respect

to a special scalar product.

Lemma 31. Let P ∈ C[λ]p,q be a matrix polynomial of the form P (λ) =
∑n

i=0 λiPi,
let y ∈ C∞

c (R, Cp), and z ∈ C∞
c (R, Cq). Then we have that

∫ ∞

−∞

z∗(t)P∼

(
d

dt

)

y(t)dt =

∫ ∞

−∞

(

P

(
d

dt

)

z(t)

)∗

y(t)dt
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Proof. Using repeated partial integration we see that for i = 0, . . . , n we have

∫ ∞

−∞

z∗(t)P ∗
i y(i)(t)dt

= z∗(t)P ∗
i y(i−1)(t)

∣
∣
∣

∞

−∞

−

∫ ∞

−∞

ż∗(t)P ∗
i y(i−1)(t)dt

= (−1)1ż∗(t)P ∗
i y(i−2)(t)

∣
∣
∣

∞

−∞

+ (−1)2
∫ ∞

−∞

z̈∗(t)P ∗
i y(i−2)(t)dt

= . . . = (−1)i

∫ ∞

−∞

(

z(i)(t)
)∗

P ∗
i y(t)dt,

where we used that y and z have compact support. Using the formula P∼(λ) =
∑n

i=0 λi(−1)iP ∗
i this implies

∫ ∞

−∞

z∗(t)P∼

(
d

dt

)

y(t) =

n∑

i=0

(−1)i

∫ ∞

−∞

z∗(t)P ∗
i y(i)(t)dt

=

n∑

i=0

(−1)i(−1)i

∫ ∞

−∞

(

z(i)(t)
)∗

P ∗
i y(t)dt

=

∫ ∞

−∞

(
n∑

i=0

Piz
(i)(t)

)∗

y(t)dt

i.e., the assertion.

Remark 32. Note that para-Hermitian matrix polynomials are sometimes also
called even in the literature, see [12]. Indeed, the concept of even matrix polynomials
generalizes the concept of para-Hermitian matrix polynomials and is particular useful
when considering the associated eigenvalue problems [15].

6 Dissipativity

In this section we prove some special cases of results which have already been shown
in [21]. However, the lesser generality of the results herein seems to be justified by
the greater simplicity of the presentation.

Definition 33. Let P ∈ C[λ]p,q and H̃ = H̃∗ ∈ C
q(ℓ+1),q(ℓ+1). Then we call P

dissipative with respect to H̃ if there exists an n ∈ N and a so called storage function
Θ : C

q(n+1) → R, i.e., a continuous function Θ such that the dissipation inequality

Θ(∆nz(t1)) − Θ(∆nz(t0)) ≤

∫ t1

t0

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt (9)

is fulfilled for all t0 ≤ t1 and all z ∈ Bc(P ). If the dissipation inequality (9) holds for
all trajectories z ∈ B(P ) we say that P is complete dissipative with respect to H̃.
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The term on the right hand side of the dissipation inequality (9) can be viewed as
a measure of the amount of energy which is supplied to the system given by P along
the trajectory z in the time frame t0 to t1. The function (∆ℓz(t))

∗
H̃ (∆ℓz(t)) thus

measures the amount of energy supplied to the system given by P along the trajectory
z at the time point t. The left hand side of the dissipation inequality (9) can be viewed
as a measure of the gain in energy which is stored in the system internally, along the
trajectory z. The function Θ(∆nz(t)) measures the internal energy at the time point
t. In other words, the dissipation inequality (9) states that the system P cannot
generate energy (with energy supply measured by means of H̃), i.e., it only dissipates
energy. The matrix H̃ encapsulates the notion of energy which we want to impose
onto the system.

Note that if we have a differentiable storage function, then we can rewrite the
dissipation inequality (9) into the form

d

dt
(Θ(∆nz(t))) ≤ (∆ℓz(t))

∗
H̃ (∆ℓz(t)) , (10)

by dividing (9) by t1 − t0, letting t1 go to t0, and using the mean value theorem.
Another common notion is introduced in the following Definition.

Definition 34. Let P ∈ C[λ]p,q be a matrix polynomial and let H̃ = H̃∗ ∈
C

q(ℓ+1),q(ℓ+1). Then we call P cyclo-dissipative with respect to H̃ if the cyclo-
dissipation inequality

0 ≤

∫ ∞

−∞

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt, (11)

is fulfilled for all z ∈ Bc(P ).

Cyclo-dissipativity thus only demands that every trajectory of the system which
starts at zero and comes back to zero at some time later does not generate energy.
It is quite easy to see that dissipativity implies cyclo-dissipativity, see the proof of
Corollary 43. In the following we will show that dissipativity and cyclo-dissipativity
are indeed equivalent.

Clearly, complete dissipativity is not equivalent to (cyclo-)dissipativity although
complete dissipativity implies dissipativity. In this paper we will not discuss the prob-
lem under which additional assumptions dissipativity implies complete dissipativity
despite the interest of this problem. Dissipativity (and thus cyclo-dissipativity) has
some very nice equivalent characterizations as we will see. We start by deriving a
frequency-domain characterization.

Definition 35. Let P ∈ C[λ]p,q be a matrix polynomial and let r := rankC(λ) (P )

be its rank. Let U ∈ C(λ)q,q−r be a kernel matrix of P . Let ℓ ∈ N and H̃ = H̃∗ ∈
C

q(ℓ+1),q(ℓ+1). Define H ∈ C[λ]q,q through

H(λ) :=
(
∆q

ℓ(−λ)
)∗

H̃ (∆q
ℓ(λ)

Then we call Π ∈ C(λ)q−r,q−r defined through

Π := U∼HU,
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a Popov function of P with respect to H̃.

Theorem 10 implies that for every matrix polynomial P and Hermitian matrix H̃

there exists a Popov function which is polynomial.
In the following Theorem 36 cyclo-dissipativity is characterized by a frequency-

domain condition. Although the proof has already been given in [21, Proposition 5.2]
we repeat it here to make the paper self-contained.

Theorem 36. Let P ∈ C[λ]p,q be a matrix polynomial and let r := rankC(λ) (P ) be

its rank. Let U ∈ C(λ)q,q−r be a kernel matrix of P . Let H̃ = H̃∗ ∈ C
q(ℓ+1),q(ℓ+1)

and construct from it the para-Hermitian matrix polynomial H ∈ C[λ]q,q through

H(λ) :=
(
∆q

ℓ(−λ)
)∗

H̃ (∆q
ℓ(λ)) .

Then P is cyclo-dissipative with respect to H̃ if and only if the Popov function Π :=
U∼HU is positive semi-definite along the imaginary axis, i.e., we have

Π(iω) ≥ 0,

for all ω ∈ R such that iω ∈ D(U).

Proof. First, assume that Π(iω) ≥ 0 for all iω ∈ D(U) and let z ∈ Bc(P ) be arbitrary.
Using the Parseval identity from Lemma 21 we find that

∫ ∞

−∞

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt

=

∫ ∞

−∞

(

∆q
ℓ

(
d

dt

)

z(t)

)∗

H̃

(

∆q
ℓ

(
d

dt

)

z(t)

)

dt

=
1

2π

∫ ∞

−∞

(

L

{

∆q
ℓ

(
d

dt

)

z

}

(iω)

)∗

H̃

(

L

{

∆q
ℓ

(
d

dt

)

z

}

(iω)

)

dt

=
1

2π

∫ ∞

−∞

(∆q
ℓ(iω)Z(iω))

∗
H̃ (∆q

ℓ(iω)Z(iω)) dt

=
1

2π

∫ ∞

−∞

Z∗(iω)
(
∆q

ℓ(−iω)
)∗

H̃ (∆q
ℓ(iω)) Z(iω)dt

=
1

2π

∫ ∞

−∞

Z∗(iω)H(iω)Z(iω)dt.

By taking the two sided Laplace-transform of the identity P
(

d
dt

)
z = 0, using the

linearity of the two sided Laplace-transform, and using Lemma 21 we obtain

0 = L

{

P

(
d

dt

)

z

}

(λ) =

d∑

j=0

PjL
{

z(j)
}

(λ) = P (λ)Z(λ).

Thus, Lemma 19 shows that there exists an α : D(U) → C
q−r such that Z(λ) =

U(λ)α(λ) for all λ ∈ D(U). Since we can divide any integral over R into a finite
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number of distinct intervals such that the interior of each interval does not contain
any singularity of U , i.e., an element of P(U) we can write (in a slightly symbolic
fashion) that

∫ ∞

−∞

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt =

1

2π

∫ ∞

−∞

Z∗(iω)H(iω)Z(iω)dt

=
1

2π

∫ ∞

−∞

α∗(iω)U∗(iω)H(iω)U(iω)α(iω)dt

=
1

2π

∫ ∞

−∞

α∗(iω)U∗(−iω)H(iω)U(iω)α(iω)dt

=
1

2π

∫ ∞

−∞

α∗(iω)Π(iω)α(iω)dt ≥ 0,

since Π is assumed to be positive semi-definite along the imaginary axis. This means
that P is cyclo-dissipative with respect to H̃.

For the reverse direction assume to the contrary that there exists an ω0 and a
v ∈ C

q such that 0 > v∗Π(iω0)v. Use Lemma 22 to construct a sequence of trajectories
{zk}k∈N ⊂ Bc(P ) such that

zk(t) = U(iω0)veiω0t, for t ∈

[

−
2πk

ω̃0
,
2πk

ω̃0

]

,

z0 (t) = zk

(

t + 2πk
ω̃0

)

, for t ∈

[

0,
2π

ω̃0

]

,

z0 (t) = zk

(

t − 2πk
ω̃0

)

, for t ∈

[

−
2π

ω̃0
, 0

]

,

zk(t) = 0, for t ∈

]

−∞,−
2π(k + 1)

ω̃0

]

∪

[
2π(k + 1)

ω̃0
,∞

[

,

where ω̃0 is defined as in the statement of Lemma 22. This implies that for k ∈ N

and t ∈
[

− 2πk
ω̃0

, 2πk
ω̃0

]

we have

∆ℓzk(t) = ∆q
ℓ

(
d

dt

)

U(iω0)veiω0t = ∆q
ℓ(iω0)U(iω0)veiω0t,

and thus for k ∈ N we see that using the transformation rules φk(t) = t + 2πk
ω̃0

and

ψk(t) = t − 2πk
ω̃0

we obtain

∫ ∞

−∞

(∆ℓzk(t))
∗
H̃ (∆ℓzk(t)) dt

=

∫ 2πk
ω̃0

−
2πk
ω̃0

(∆ℓzk(t))
∗
H̃ (∆ℓzk(t)) dt

+

∫ −
2πk
ω̃0

−
2π(k+1)

ω̃0

(∆ℓzk(t))
∗
H̃ (∆ℓzk(t)) dt +

∫ 2π(k+1)
ω̃0

2πk
ω̃0

(∆ℓzk(t))
∗
H̃ (∆ℓzk(t)) dt
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=

∫ 2πk
ω̃0

−
2πk
ω̃0

(
∆q

ℓ(iω0)U(iω0)veiω0t
)∗

H̃
(
∆q

ℓ(iω0)U(iω0)veiω0t
)
dt

+

∫ ψk(0)

ψk

“

−
2π
ω̃0

”

(∆ℓzk(t))
∗
H̃ (∆ℓzk(t)) dt +

∫ φk

“

2π
ω̃0

”

φk(0)

(∆ℓzk(t))
∗
H̃ (∆ℓzk(t)) dt

=

∫ 2πk
ω̃0

−
2πk
ω̃0

e−iω0tv∗U∗(iω0) (∆q
ℓ(iω0))

∗
H̃ (∆q

ℓ(iω0)) (U(iω0)) veiω0tdt

+

∫ 0

−
2π
ω̃0

ψ̇k(t) (∆ℓzk(ψk(t)))
∗
H̃ (∆ℓzk(ψk(t))) dt

+

∫ 2π
ω̃0

0

φ̇k(t) (∆ℓzk(φk(t)))
∗
H̃ (∆ℓzk(φk(t))) dt

= v∗Π(iω0)v

∫ 2πk
ω̃0

−
2πk
ω̃0

dt

+

∫ 0

−
2π
ω̃0

(∆ℓz0(t))
∗
H̃ (∆ℓz0(t)) dt +

∫ 2π
ω̃0

0

(∆ℓz0(t))
∗
H̃ (∆ℓz0(t)) dt

=
4πk

ω̃0
v∗Π(iω0)v + c,

by setting

c :=

∫ 0

−
2π
ω̃0

(∆ℓz0(t))
∗
H̃ (∆ℓz0(t)) dt +

∫ 2π
ω̃0

0

(∆ℓz0(t))
∗
H̃ (∆ℓz0(t)) dt.

Clearly, c is a constant which does not depend on k.
All in all we have shown that (under the assumption that there exists an ω0 ∈ R

such that v∗Π(iω0)v < 0) there exists a sequence of trajectories of the system with
compact support zk ∈ Bc(P ) and a c ∈ R such that

∫ ∞

−∞

(∆ℓzk(t))
∗
H̃ (∆ℓzk(t)) dt =

4πk

ω̃0
v∗Π(iω0)v + c.

Thus, there exists a k0 ∈ N such that

∫ ∞

−∞

(∆ℓzk0
(t))

∗
H̃ (∆ℓzk0

(t)) dt < 0,

which contradicts the assumption of dissipativity.

Theorem 36 can be summarized in the following words. A system is cyclo-
dissipative if and only if a Popov function of it is positive semi-definite along the
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imaginary axis. In this case every Popov function is positive semi-definite along the
imaginary axis.

We first need some Lemmas before we can state the main theorems of this section.

Lemma 37. Let P ∈ C[λ]p,q and H = H∼ ∈ C[λ]q,q for some ℓ ∈ N. Let r :=
rankC(λ) (P ) and let U ∈ C[λ]q,q−r and V ∈ C[λ]q,r be polynomial kernel and co-
kernel matrices of P . Then the following are equivalent

1. The Popov-function Π := U∼HU is positive semi-definite along the imaginary
axis.

2. There exists a D = D∼ ∈ C[λ]q,q which is positive semi-definite along the
imaginary axis, such that U∼HU = U∼DU .

Proof. First assume that 2. holds and let iω ∈ iR be arbitrary. Then also

U∼(iω)H(iω)U(iω) = U∗(−iω)D(iω)U(iω) = U∗(iω)D(iω)U(iω) ≥ 0,

since D(iω) ≥ 0 by assumption. For the converse direction, set W :=
[
U V

]−1
∈

C[λ]q,q, and define the matrix D ∈ C[λ]q,q through

D := W∼

[
U∼HU 0

0 0

]

W.

Then we have that

WU =
[
U V

]−1
U =

[
Iq−r

0

]

,

and thus

U∼DU = (WU)
∼

[
U∼HU 0

0 0

]

WU =

[
Iq−r

0

]∗ [
U∼HU 0

0 0

] [
Iq−r

0

]

= U∼HU.

Let iω ∈ iR be arbitrary and observe that

D(iω) = W ∗(iω)

[
U∗(iω)H(iω)U(iω) 0

0 0

]

W (iω) ≥ 0,

which means that D is positive semi-definite along the imaginary axis.

Using the construction in Lemma 37 we can not guarantee that the degree of D

is bounded by the degree of H as shown in the following example.

Example 38. Consider the polynomial

P (λ) :=

[
−λ 1 0
0 −λ 1

]

= λ

[
−1 0 0
0 −1 0

]

︸ ︷︷ ︸

=:P1

+

[
0 1 0
0 0 1

]

︸ ︷︷ ︸

=:P0

∈ C[λ]2,3



Checking dissipativity using para-Hermitian matrix polynomials 30

together with

H̃ :=





1
−2

1



 .

In this case a polynomial kernel and co-kernel matrix are given by

U(λ) :=





1
λ

λ2



 , and V (λ) :=





0 0
1 0
0 1





and thus a Popov function is

Π(λ) := U∼(λ)H̃U(λ) =
[
1 −λ λ2

]





1
−2

1









1
λ

λ2



 = 1 + 2λ2 + λ4.

For ω ∈ R we obtain

Π(iω) = 1 − 2ω2 + ω4 = (ω − 1)2(ω + 1)2 ≥ 0,

i.e., the Popov function is positive semi-definite along the imaginary axis. We set

W (λ) :=
[
U V

]−1
=





1 0 0
−λ 1 0
−λ2 0 1



 ,

and with this

D(λ) := W∼(λ)





Π(λ)
0

0



W (λ) =





Π(λ)
0

0



 ,

as in the proof of Lemma 37. This shows that with the construction of Lemma 37
we have in general that deg D ≫ deg H := deg H̃ = 0, since H̃ is a constant matrix
(polynomial). Of course, there may be another D available with a lower degree. This
is indeed the case. Define

D̃ :=





1 0 1
0 0 0
1 0 1



 .

Then we have

U∼(λ)D̃U(λ) =
[
1 −λ λ2

]





1 0 1
0 0 0
1 0 1









1
λ

λ2





=
[
1 −λ λ2

]





1 + λ2

0
1 + λ2





= 1 + λ2 + λ2 + λ4 = Π(λ) = U∼(λ)H̃U(λ),

i.e., there exists a polynomial D(λ) = D̃ of the same degree as H(λ) = H̃ such that
U∼D̃U = U∼HU .
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The following Lemma makes a connection between positive semi-definite matri-
ces and para-Hermitian matrix polynomials that are positive semi-definite along the
imaginary axis.

Lemma 39. Let D = D∼ ∈ C[λ]q,q. Then we have the following.

1. If D has the representation D(λ) =
(
∆q

m(−λ)
)∗

D̃ (∆q
m(λ)), for some m ∈ N

and D̃ = D̃∗ ∈ C
q(m+1),q(m+1) with D̃ ≥ 0 then D is positive semi-definite along

the imaginary axis.

2. If D is positive semi-definite along the imaginary axis then there exists an m ∈ N

and a D̃ = D̃∗ ∈ C
q(m+1),q(m+1) such that D̃ ≥ 0 and D has the representation

D(λ) =
(
∆q

m(−λ)
)∗

D̃ (∆q
m(λ)).

Proof. For 1. assume that D̃ ≥ 0 and obtain that

D(iω) =
(
∆q

m(−iω)
)∗

D̃ (∆q
m(iω))

= (∆q
m(iω))

∗
D̃ (∆q

m(iω))

=








(iω)0Iq

(iω)1Iq

...
(iω)mIq








∗

D̃








(iω)0Iq

(iω)1Iq

...
(iω)mIq







≥ 0,

i.e., that D is positive semi-definite along the imaginary axis. For part 2. let F ∈
C[λ]q,q be such that D = F∼F , i.e., let F be a polynomial Youla-factor of D, which
exists, since D is assumed to be positive semi-definite along the imaginary axis, see
[22, Theorem 2 and Corollary 2] for the proof. Thus, since F is a polynomial, say of
degree m ∈ N, it can be written in the form

F (λ) = F̃ ∆q
m(λ),

where F̃ ∈ C
q,q(m+1) consists of the concatenated coefficient matrices of F . With this

we obtain that

F∼(λ) = F ∗(−λ) =
(

F̃
(
∆q

m(−λ)
))∗

=
(
∆q

m(−λ)
)∗

F̃ ∗,

and setting D̃ := F̃ ∗F̃ shows that we have

D(λ) = F∼(λ)F (λ) =
(
∆q

m(−λ)
)∗

F̃ ∗F̃ (∆q
m(λ)) =

(
∆q

m(−λ)
)∗

D̃ (∆q
m(λ)) ,

with D̃ = F̃ ∗F̃ ≥ 0 which finishes the proof.

The following example shows that part 2. of Lemma 39 is not true for every
representation, i.e., it shows that there exist D̃ = D̃∗ which are not positive semi-
definite although they induce a para-Hermitian matrix polynomial through the iden-
tity D(λ) =

(
∆q

m(−λ)
)∗

D̃ (∆q
m(λ)) which is positive semi-definite along the imagi-

nary axis.
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Example 40. Let q = 1, m = 1, and the matrix D̃ be given by

D̃ :=

[
0 1
1 0

]

.

Clearly D̃ is not positive semi-definite. The associated para-Hermitian matrix poly-
nomial, however, is given by

D(λ) =
(
∆1

1(−λ)
)∗

D̃
(
∆1

1(λ)
)

=
[
1 −λ

]
[
0 1
1 0

] [
1
λ

]

= λ − λ = 0,

which is positive semi-definite along the imaginary axis.

The following result combines proofs of the results [21, Theorem 3.1] and [17,
Theorem 4.3].

Lemma 41. Let P ∈ C[λ]p,q with r = rankC(λ) (P ) and let U ∈ C[λ]q,q−r be a polyno-

mial kernel matrix of P . Let M̃ = M̃∗ ∈ C
q(m+1),q(m+1), define the para-Hermitian

two-variable-polynomial M ∈ C[λ, µ]q,q through M(λ, µ) :=
(
∆q

m(λ)
)∗

M̃ (∆q
m(µ)),

and with this introduce Φ ∈ C[λ, µ]q−r,q−r as Φ(λ, µ) := U∗(λ)M(λ, µ)U(µ), which
is also a para-Hermitian two-variable-polynomial. Then the following conditions are
equivalent:

1. We have that ∫ ∞

−∞

(∆mz(t))
∗
M̃ (∆mz(t)) dt = 0,

for all z ∈ Bc(P ).

2. We have that Φ(−λ, λ) = 0 for all λ ∈ C.

3. There exists a para-Hermitian two-variable-polynomial N = N∼ ∈ C[λ, µ]q,q

such that
Φ(λ, µ) = (λ + µ)U∗(λ)N(λ, µ)U(µ),

for all λ, µ ∈ C.

4. There exists an integer n ∈ N and a Hermitian matrix Ñ = Ñ∗ ∈ C
q(n+1),q(n+1)

such that

d

dt

[

(∆nz(t))
∗
Ñ (∆nz(t))

]

= (∆mz(t))
∗
M̃ (∆mz(t)) ,

for all z ∈ Bc(P ).

Proof. We proof the result in the order 1. ⇒ 2. ⇒ 3. ⇒ 4. ⇒ 1. First assume that 1.
holds and we want to show 2. Therefore, assume to the contrary there exists a λ0 ∈ C

such that Φ(−λ0, λ0) 6= 0. Then there exist v, w ∈ C
q−r such that w∗Φ(−λ0, λ0)v 6= 0.

Split λ0 = r0 + iω0 into its real part r0 = Re {λ0} and imaginary part ω0 = Im {λ0}.
Let {zk}k∈N =

{
U

(
d
dt

)
vk

}

k∈N
⊂ Bc(P ) with vk ∈ C∞

c (R, Cq−r) be such that the
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properties 1. - 4. of Lemma 22 are fulfilled. Also let {yk}k∈N =
{
U

(
d
dt

)
wk

}

k∈N
⊂

Bc(P ) with wk ∈ C∞
c (R, Cq−r) be such that the properties 1. - 4. of Lemma 22 are

fulfilled with v replaced by w and λ0 replaced by −λ0 in a straightforward fashion.
Since −λ0 = −(r0 − iω0) = −r0 + iω0, the imaginary part of λ0 and −λ0 do not differ
and thus also the definitions of ω̃0 in Lemma 22 do not differ for both sequences of
trajectories. Using 1., the definition of ω̃0 from Lemma 22, and the transformation
rules φk(t) = t + 2πk

ω̃0

and ψk(t) = t − 2πk
ω̃0

we find that

0 =

∫ ∞

−∞

(∆myk(t))
∗
M̃ (∆mzk(t)) dt

=

∫ 2πk
ω̃0

−
2πk
ω̃0

(∆myk(t))
∗
M̃ (∆mzk(t)) dt +

∫ −
2πk
ω̃0

−
2π(k+1)

ω̃0

(∆myk(t))
∗
M̃ (∆mzk(t)) dt

+

∫ 2π(k+1)
ω̃0

2πk
ω̃0

(∆myk(t))
∗
M̃ (∆mzk(t)) dt

=

∫ 2πk
ω̃0

−
2πk
ω̃0

(

∆q
m(−λ0)U(−λ0)we−λ0t

)∗

M̃
(
∆q

m(λ0)U(λ0)veλ0t
)
dt

+

∫ ψk(0)

ψk

“

−
2π
ω̃0

”

(∆myk(t))
∗
M̃ (∆mzk(t)) dt

+

∫ φk

“

2π
ω̃0

”

φk(0)

(∆myk(t))
∗
M̃ (∆mzk(t)) dt

=

∫ 2πk
ω̃0

−
2πk
ω̃0

w∗Φ(−λ0, λ0)ve(λ0−λ0)tdt

+

∫ 0

−
2π
ω̃0

ψ̇k(t)
(

∆myk

(

t − 2πk
ω̃0

))∗

M̃
(

∆mzk

(

t − 2πk
ω̃0

))

dt

+

∫ 2π
ω̃0

0

φ̇k(t)
(

∆myk

(

t + 2πk
ω̃0

))∗

M̃
(

∆mzk

(

t + 2πk
ω̃0

))

dt

= w∗Φ(−λ0, λ0)v

∫ 2πk
ω̃0

−
2πk
ω̃0

dt

+

∫ 0

−
2π
ω̃0

(

e
r0

2πk
ω̃0 ∆my0(t)

)∗

M̃

(

e
−r0

2πk
ω̃0 ∆mz0(t)

)

dt

+

∫ 2π
ω̃0

0

(

e
−r0

2πk
ω̃0 ∆my0(t)

)∗

M̃

(

e
r0

2πk
ω̃0 ∆mz0(t)

)

dt,

where for the last identity we do not have to forget, that the real part of −λ0 is the
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negative of the real part of λ0. Using that

e
r0

2πk
ω̃0 e

−r0

2πk
ω̃0 = e

(r0−r0)
2πk
ω̃0 = e0 = 1,

and defining

c :=

∫ 0

−
2π
ω̃0

(∆my0(t))
∗
M̃ (∆mz0(t)) dt +

∫ 2π
ω̃0

0

(∆my0(t))
∗
M̃ (∆mz0(t)) dt,

which is independent of k ∈ N finally shows that

0 =

∫ ∞

−∞

(∆myk(t))
∗
M̃ (∆mzk(t)) dt =

4πk

ω̃0
w∗Φ(−λ0, λ0)v + c, (12)

for all k ∈ N. This is a contradiction, since we assumed that w∗Φ(−λ0, λ0)v 6= 0 and
we only have to try two different k’s in the last identity (12) to find that it does not
hold for all k ∈ N.

Next, assume that 2. holds and for a fixed µ ∈ C define φµ ∈ C[λ]q−r,q−r through

φµ(λ) := Φ(λ, µ),

i.e., view Φ as a one variable polynomial in λ. Clearly, 2. implies that φµ(−µ) = 0,
i.e., −µ is a root of φµ. Thus we have shown that for every (fixed) µ ∈ C we have

φµ(λ) = (λ + µ)ψµ(λ), (13)

where ψµ ∈ C[λ]q−r,q−r. Define the function Ψ : C × C → C through Ψ(λ, µ) :=
ψµ(λ), where it is at first not clear whether Ψ is a two-variable-polynomial. However,
equation (13) shows that we have

Φ(λ, µ) = φµ(λ) = (λ + µ)ψµ(λ) = (λ + µ)Ψ(λ, µ),

for all λ, µ ∈ C and we know that for every µ ∈ C the function Ψ(λ, µ) = ψµ(λ)
is a polynomial in λ. This shows that also Ψ ∈ C[λ, µ]q−r,q−r is a two-variable-
polynomial, since if this would not be the case also Φ(λ, µ) would not be a two-
variable-polynomial. To see that Ψ is para-Hermitian, assume to the contrary that
there exist λ0, µ0 such that Ψ(λ0, µ0) 6= Ψ∗(µ0, λ0). Since Ψ is continuous there also
has to be a neighborhood around, let us say µ0, such that Ψ(λ0, µ) 6= Ψ∗(µ, λ0) for
all µ in this neighborhood. This shows that we can w.l.o.g. assume that λ0 6= −µ0 or
λ0 + µ0 6= 0. This implies that

Φ(λ0, µ0) = (λ0 + µ0)Ψ(λ0, µ0) 6= (λ0 + µ0)Ψ
∗(µ0, λ0)

=
(
(µ0 + λ0)Ψ(µ0, λ0)

)∗
= Φ∗(µ0, λ0),

i.e., that Φ is not para-Hermitian, which is a contradiction and thus we have shown
that Ψ is para-Hermitian. Let Û ∈ C[λ]q−r,q be a polynomial left inverse of U , i.e.,
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a polynomial matrix such that ÛU = Iq−r which exists due to part 2. of Lemma 14.
Define the two-variable-polynomial matrix N ∈ C[λ, µ]q,q through

N(λ, µ) := Û∗(λ)Ψ(λ, µ)Û(µ).

Then N is para-Hermitian. Also, we see that

(λ + µ)U∗(λ)N(λ, µ)U(µ) = (λ + µ)U∗(λ)Û∗(λ)Ψ(λ, µ)Û(µ)U(µ)

= (λ + µ)
(

Û(λ)U(λ)
)∗

Ψ(λ, µ)Û(µ)U(µ)

= (λ + µ)Ψ(λ, µ) = Φ(λ, µ),

for λ, µ ∈ C, which means that we have shown 3.
To see that 3. implies 4. let n ∈ N and Ñ = Ñ∗ ∈ C

q(n+1),q(n+1) be such that

N(λ, µ) =
(
∆q

n(λ)
)∗

Ñ (∆q
n(µ)) ,

where the existence of such n and Ñ is obtained from Lemma 29. Let z ∈ Bc(P ) be
arbitrary and α ∈ C∞

c (R, Cq−r) such that z = U
(

d
dt

)
α according to Lemma 18. Then

we see that with L ∈ C[λ, µ]q−r,q−r defined by L(λ, µ) := U∗(λ)N(λ, µ)U(µ) we have

d

dt

[

(∆nz(t))
∗
Ñ (∆nz(t))

]

=
d

dt

[(

∆q
n

(
d

dt

)

z(t)

)∗

Ñ

(

∆q
n

(
d

dt

)

z(t)

)]

=
d

dt

[(

U

(
d

dt

)

α(t)

)∗

N

(
d

dt
,

d

dt

)(

U

(
d

dt

)

α(t)

)]

=
d

dt

[

α∗(t)L

(
d

dt
,

d

dt

)

α(t)

]

= α̇∗(t)L

(
d

dt
,

d

dt

)

α(t) + α∗(t)L

(
d

dt
,

d

dt

)

α̇(t)

= α∗(t)Φ

(
d

dt
,

d

dt

)

α(t)

=

(

U

(
d

dt

)

α∗(t)

)∗

M

(
d

dt
,

d

dt

)(

U

(
d

dt

)

α(t)

)

= (∆mz(t))
∗
M̃ (∆mz(t)) ,

which proves 4.
Finally, to see that 4. implies 1. note that

∫ ∞

−∞

(∆mz(t))
∗
M̃ (∆mz(t)) dt =

∫ ∞

−∞

d

dt

[

(∆nz(t))
∗
Ñ (∆nz(t))

]

dt

=
[

(∆nz(t))
∗
Ñ (∆nz(t))

] ∣
∣
∣

∞

−∞

= 0,

since z ∈ Bc(P ) has compact support.
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The introduction of the two-variable polynomial is only needed for the previous
Lemma 41. Thus, it would be desirable to prove the equivalence of parts 1. and
4. in Lemma 41 without using two-variable-polynomials, to make the notation more
simple. However, we do not know such a proof.

Other equivalent conditions for cyclo-dissipativity are given in the following The-
orem.

Theorem 42. Let P ∈ C[λ]p,q and H̃ = H̃∗ ∈ C
q(ℓ+1),q(ℓ+1) for some ℓ ∈ N. Then

the following are equivalent:

1. We have ∫ ∞

−∞

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt ≥ 0

for all z ∈ Bc(P ), i.e., P is cyclo-dissipative with respect to H̃.

2. There exists m ∈ N and D̃ = D̃∗ ∈ C
q(m+1),q(m+1) with D̃ ≥ 0 such that

∫ ∞

−∞

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt =

∫ ∞

−∞

(∆mz(t))
∗
D̃ (∆mz(t)) dt,

for all z ∈ Bc(P ).

3. There exists n ∈ N and Ñ = Ñ∗ ∈ C
q(n+1),q(n+1) such that

d

dt

(

(∆nz(t))
∗
Ñ (∆nz(t))

)

≤ (∆ℓz(t))
∗
H̃ (∆ℓz(t)) ,

for all z ∈ Bc(P ) and all t ∈ R, i.e., P admits a quadratic storage function.

Proof. To see that 1. implies 2. assume cyclo-dissipativity. Let U be a polynomial
kernel matrix of P and define H = H∼ ∈ C[λ]q,q through through (6), i.e., let

H(λ) :=
(
∆q

ℓ(−λ)
)∗

H̃∆q
ℓ(λ). Theorem 36 then shows that in this case the Popov-

function Π := U∼HU is positive semi-definite along the imaginary axis, i.e., Π(iω) ≥ 0
for all ω ∈ R. Thus, Lemma 37 shows that there exists a D = D∼ ∈ C[λ]q,q which
is positive semi-definite along the imaginary axis such that U∼HU = U∼DU . In
this case Lemma 39 proves the existence of D̃ = D̃∗ ∈ C

q(m+1),q(m+1) such that
D(λ) =

(
∆q

m(−λ)
)∗

D̃ (∆q
m(λ)) with D̃ ≥ 0. Using Lemma 18 we obtain the existence

of α ∈ R such that z = U
(

d
dt

)
α. Further, using Lemma 31 we finally find that

∫ ∞

−∞

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt =

∫ ∞

−∞

z∗(t)

(

∆q
ℓ

(

−
d

dt

))∗

H̃∆q
ℓ

(
d

dt

)

z(t)dt

=

∫ ∞

−∞

α∗(t)U∗

(
d

dt

)

H

(
d

dt

)

U

(
d

dt

)

α(t)dt

=

∫ ∞

−∞

α∗(t)U∗

(
d

dt

)

D

(
d

dt

)

U

(
d

dt

)

α(t)dt

=

∫ ∞

−∞

z∗(t)D

(
d

dt

)

z(t)dt
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=

∫ ∞

−∞

z∗(t)

(

∆q
ℓ

(

−
d

dt

))∗

D̃∆q
ℓ

(
d

dt

)

z(t)dt

=

∫ ∞

−∞

(∆ℓz(t))
∗
D̃ (∆ℓz(t)) dt.

To see that 2. implies 3. define m̃ := max{m, ℓ} and let Ĥ ∈ C
q(m̃+1),q(m̃+1)

be such that Ĥ and H̃ coincide in the first ℓ rows and ℓ columns and is filled up
with zeros everywhere else. Define D̂ ∈ C

q(m̃+1),q(m̃+1) analogously. With this set
M̃ := Ĥ − D̂ and note that 2. implies that

0 =

∫ ∞

−∞

(∆m̃z(t))
∗
M̃ (∆m̃z(t)) dt.

By Lemma 41 this implies the existence of n ∈ N and Ñ = Ñ∗ ∈ C
q(n+1),q(n+1) such

that

d

dt

[

(∆nz(t))
∗
Ñ (∆nz(t))

]

= (∆m̃z(t))
∗
M̃ (∆m̃z(t))

= (∆ℓz(t))
∗
H̃ (∆ℓz(t)) − (∆mz(t))

∗
D̃ (∆mz(t))

≤ (∆ℓz(t))
∗
H̃ (∆ℓz(t)) ,

which proves that 3. holds for every z ∈ Bc(P ).
To see that 3. implies 1. let z ∈ Bc(P ) be arbitrary. Then by integration we see

that for all t0 ≤ t1 we have

∫ t1

t0

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt

≥

∫ t1

t0

d

dt

(

(∆ℓz(t))
∗
Ñ (∆ℓz(t))

)

dt

≥
(

(∆ℓz(t1))
∗
Ñ (∆ℓz(t1))

)

−
(

(∆ℓz(t0))
∗
Ñ (∆ℓz(t0))

)

,

from which we obtain 1. by letting t0 go to −∞, t1 go to ∞, and using the property
that z has compact support.

The problem with Theorem 42 is that we cannot bound the size of D̃ and Ñ by
the size of H̃, compare Example 38. It should be possible to achieve such a bound
by using (a more complicated) approach, which only works in the time-domain. A
proof for the first-order case (i.e., P ∈ C[λ]p,q being a first-order polynomial, ℓ = 0,
and H̃ = H̃∗ being a constant matrix polynomial) will be discussed in a forthcoming
paper.

An immediate consequence of Theorem 42 is the following Corollary.

Corollary 43. Dissipativity (as in Definition 33) is equivalent to cyclo-dissipativity
(as in Definition 34) is equivalent to the positive semi-definiteness of a Popov function
along the imaginary axis (as stated in Theorem 36).
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Proof. Assuming that P ∈ C[λ]p,q is cyclo-dissipative with respect to H̃ = H̃∗ ∈
C

q(ℓ+1),q(ℓ+1) we see by part 3. of Theorem 42 that there exists n ∈ N and a Hermitian
matrix Ñ = Ñ∗ ∈ C

q(n+1),q(n+1) such that by defining Θ : C
q(n+1) → R through

Θ(y) := y∗Ñy,

we find
d

dt
(Θ(∆nz(t))) ≤ (∆ℓz(t))

∗
H̃ (∆ℓz(t)) .

Integrating this equation from t0 to t1 (where we assume that t0 ≤ t1) we see that

Θ (∆nz(t1)) − Θ(∆nz(t1)) =

∫ t1

t0

d

dt
(Θ(∆nz(t))) dt ≤

∫ t1

t0

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt,

i.e., that P is dissipative with respect to H̃. If on the other hand P is assumed to be
dissipative with respect to H̃ and z ∈ Bc(P ) is an arbitrary trajectory with compact
support, then we obtain from the dissipation inequality (9) and the continuity of the
storage function Θ that

∫ ∞

−∞

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt = lim

t0→−∞
lim

t1→∞

∫ t1

t0

(∆ℓz(t))
∗
H̃ (∆ℓz(t)) dt

≥ lim
t1→∞

Θ(∆nz(t1)) − lim
t0→−∞

Θ(∆nz(t0))

≥ Θ

(

lim
t1→∞

∆nz(t1)

)

− Θ

(

lim
t0→−∞

∆nz(t0)

)

= Θ(0) − Θ(0) = 0,

i.e., that P is cyclo-dissipative with respect to H̃. That positive semi-definiteness
of a Popov-function along the imaginary axis is also an equivalent condition follows
readily from Theorem 36.

Corollary 43 tells us that dissipativity may be checked by considering a Popov
function along the imaginary axis.

7 The main result

Having introduced all the notation and results above we are ready to formulate the
following generalization of Theorem 1 in [4] (compare section 8.2).

Theorem 44. Let P ∈ C[λ]p,q be a matrix polynomial and let r := rankC(λ) (P ) be
its rank. Let U ∈ C(λ)q,q−r be a kernel matrix of P . Let H = H∼ ∈ C[λ]q,q be a
para-Hermitian matrix polynomial. Let

λ0 ∈
(

D(U) \ −σ(P )
)

∩ (D(U∼) \ σ(P )) .
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Then the Popov function Π := U∼HU has λ0 as an eigenvalue if and only if the
para-Hermitian matrix polynomial

N :=

[
0 P

P∼ H

]

∈ C[λ]p+q,p+q, (14)

has λ0 as an eigenvalue.

Proof. Let V ∈ C[λ]q,r be a co-kernel matrix of P . Define the block transformation
matrix

S :=

[
Ip 0
0

[
U V

]

]

∈ C(λ)p+q,p+q

and observe that with this we obtain

S∼NS = S∼

[
0 P

P∼ H

] [
Ip 0
0

[
U V

]

]

=





Ip 0

0

[
U∼

V ∼

]





[
0 PU PV

P∼ HU HV

]

=





0 PU PV

U∼P∼ U∼HU U∼HV

V ∼P∼ V ∼HU V ∼HV



 =





0 PU PV

(PU)∼ Π U∼HV

(PV )∼ V ∼HU V ∼HV





=





0 0 PV

0 Π U∼HV

V ∼P∼ V ∼HU V ∼HV



 ,

since U is a kernel matrix of P . To eliminate the blocks below PV and to the right
of (PV )∼ let X ∈ C(λ)r,p be such a matrix that XPV = Ir. Such a matrix exists
due to part 2. in Definition 11 and Lemma 14. Then, set

Y := −X∼V ∼HU ∈ C(λ)p,q−r and Z := − 1
2X∼V ∼HV ∈ C(λ)p,p

and with this define the block transformation matrix

T :=





Ip Y Z

0 Iq−r 0
0 0 Ir



 ∈ C(λ)p+q,p+q.

Since we have that

V ∼P∼Y + V ∼HU = −(XPV )∼V ∼HU + V ∼HU = 0,

Z∼PV + V ∼P∼Z + V ∼HV = − 1
2V ∼HV − 1

2V ∼HV + V ∼HV = 0

we can find that

T∼S∼NST

= T∼





0 0 PV

0 Π U∼HV

V ∼P∼ V ∼HU V ∼HV









Ip Y Z

0 Iq−r 0
0 0 Ir
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=





Ip 0 0
Y ∼ Iq−r 0
Z∼ 0 Ir









0 0 PV

0 Π U∼HV

V ∼P∼ 0 V ∼P∼Z + V ∼HV



 (15)

=





0 0 PV

0 Π Y ∼PV + U∼HV

V ∼P∼ 0 Z∼PV + V ∼P∼Z + V ∼HV





=





0 0 PV

0 Π (V ∼P∼Y + V ∼HU)∼

V ∼P∼ 0 0



 =





0 0 PV

0 Π 0
V ∼P∼ 0 0



 .

To obtain the assertion we finally make the following observation. First, S is a
unimodular matrix due to part 5. of Definition 11 and its domain of definition is
given by D(S) = D(U) ∩ D(V ) = D(U), since V is a polynomial matrix and thus
D(V ) = C. Second, due to Lemma 14, we see that X can be chosen such that
D(X) = C \ σ(PV ). Using Lemma 15 we conclude that D(X) = C \ σ(P ). This in
turn implies D(X∼) = C \ −σ(P ) by Lemma 30. Third, T is a unimodular matrix
since it is upper triangular with units on the diagonal and its domain of definition is
given by

D(T ) = D(Y ) ∩ D(Z)

= (D(X∼) ∩ D(V ∼) ∩ D(U)) ∩ (D(X∼) ∩ D(V ∼) ∩ D(V ))

= D(U) ∩ D(X∼) = D(U) \ −σ(P ).

Fourth, the domains of definition of the para-Hermitians of S and T are given by
D(S∼) = D(U∼) and D(T∼) = D(U∼) \ σ(P ). Fifth, the identity (15) implies that

rankC(λ) (N) = rankC(λ)









0 0 PV

0 Π 0
V ∼P∼ 0 0









= rankC(λ) (PV ) + rankC(λ) (Π) + rankC(λ) (V ∼P∼)

= 2r + rankC(λ) (Π) ,

where we have used part 2. of Definition 11. Sixth, for λ0 as in the assertion we have
that λ0 ∈ D(S)∩D(T ) and thus S(λ0) and T (λ0) are well defined invertible matrices
(due to the unimodularity of S and T ) which together with the identity (15) implies
that

rank (N(λ0)) = rank









0 0 P (λ0)V (λ0)
0 Π(λ0) 0

V ∼(λ0)P
∼(λ0) 0 0









= rank (P (λ0)V (λ0)) + rank (Π(λ0)) + rank (V ∼(λ0)P
∼(λ0))

= 2r + rank (Π(λ0)) ,

again with the help of Lemma 15.
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The following Corollary 45 shows that the singularities of U can be neglected when
considering a Popov function along the imaginary axis.

Corollary 45. Let P ∈ C[λ]p,q be a matrix polynomial which has no purely imaginary
eigenvalues and let r := rankC(λ) (P ) be its rank. Let U ∈ C[λ]q,q−r be a polynomial
kernel matrix of P , according to Theorem 10. Let H = H∼ ∈ C[λ]q,q be a para-
Hermitian matrix polynomial. Then the Popov function Π := U∼HU (which in this
case is a polynomial) has the eigenvalue iω0 ∈ iR if and only of the para-Hermitian
polynomial

[
0 P

P∼ H

]

has the eigenvalue iω0.

Proof. Here we have that D(U) = C and due to the assumption that P has no
imaginary eigenvalues also that σ(P ) ∩ iR = ∅ which implies that

iω0 ∈
(

D(U) \ −σ(P )
)

∩ (D(U∼) \ σ(P )) ,

for all ω0 ∈ R.

How can Corollary help to check dissipativity of systems given in behavior form?
For this consider Figure 1 which depicts three possible Popov functions Π1, Π2, and
Π3 along the imaginary axis.

Each Popov function is represented by a single line which means that we are
considering systems which are represented by polynomials Pj ∈ C[λ]p,q such that
with rj := rankC(λ) (Pj) we have q − rj = 1, for j = 1, 2, 3 since in this case we have
that the associated kernel matrices Uj ∈ C[λ]q,q−rj = C[λ]qj ,1 are column vectors and
thus the Popov functions

Πj = U∼
j HUj ∈ C[λ],

for j = 1, 2, 3 are scalar polynomials, where H = H∼ ∈ C[λ]q,q is some fixed para-
Hermitian polynomial. This corresponds to the single-input setting in state-space
systems. Using the criterion from Theorem 36 we see that Pj is dissipative (with
respect to a Hermitian matrix induced by H through Lemma 28) if and only if its
Popov function Πj is positive semi-definite along the imaginary axis. Examining
Figure 1 clearly shows that P2 is dissipative, while P1 and P3 are not. However, P1

seems to be somehow close to dissipative, while P3 is not dissipative at all. Clearly,
none of the polynomials Π1, Π2, and Π3 is the zero polynomial. When, however, we
look at the rank of the Popov functions at specific points on the imaginary axis we find
that the rank of Π2 and Π3 does not drop anywhere (from 1 to 0) on the imaginary
axis, while the rank of Π1 drops at iω1 and iω2, i.e., Π1 has the imaginary eigenvalues
iω1 and iω2, while Π2 and Π3 have no purely imaginary eigenvalues. Using Corollary
45 we see that to compute the values iω1 and iω2 we have to determine the purely
imaginary eigenvalues of

[
0 P1

P1 H

]

,
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Figure 1: Three possible Popov functions along the imaginary axis

while the connected para-Hermitian matrix polynomials for P2 and P3 have no imag-
inary eigenvalues. Thus Theorem 44 can help to distinguish Π1 from Π2 (but not
Π2 from Π3) without explicitly computing the kernel matrices Uj and the associated
Popov functions Πj . This is especially handy since the imaginary eigenvalues of para-
Hermitian matrix polynomials are computable in a numerically stable way [6, 15].
This idea can also be generalized to systems where the kernel matrix has more than
one column but then one cannot depict the Popov functions in such a convenient way.

8 Specialization to descriptor systems

Consider the state-space descriptor system

Eẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t)

(16)

where E,A ∈ R
ρ,n are rectangular matrices, B ∈ R

ρ,m, x ∈ C∞
c (R, Rn) is called the

state, u ∈ C∞
c (R, Rm) is called the input, and y ∈ C∞

c (R, Rp) is called the output. In
the literature, see e.g. [3, Section 5.9], for such systems a supply function is frequently
introduced as a quadratic function s : R

p × R
m → R of the form

s(u, y) :=

[
y

u

]T [
Q S

ST R

] [
y

u

]

, (17)
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where Q = QT ∈ R
p,p, S ∈ R

p,m, and R = RT ∈ R
m,m. Again, as explained after

Definition 33, the supply imposes a notion of energy onto the system given by the
equations (16) by measuring the energy supplied to the system through its input and
output ports.

Under these circumstances, system (16) is called dissipative with respect to s, if
there exists a continuous function Θ : R

n → R such that the dissipation inequality

Θ(x(t1)) − Θ(x(t0)) ≤

∫ t1

t0

s(u(t), y(t))dt, (18)

holds for all t0 ≤ t1 and for all trajectories (u, x, y) of (16) which have compact
support, i.e., for all triples (u, x, y) ∈ C∞

c (R, Rm) × C∞
c (R, Rn) × C∞

c (R, Rp) which
fulfill (16) for all t ∈ R. Note the following difference to Definition 33. In Definition
33 the storage function may depend on z (and its derivatives up to some degree) just
as the term on the right hand side of (9) may depend on all components of z. In
(18), however, the right hand side only depends on u and y, while Θ on the left hand
side only depends on the state x. Nevertheless, it can be shown that the inequalities
(9) and (18) are equivalent since we know from [17, Theorem 6.1] that every storage
function Θ is a function of the state x.

Using the equation for y in (16) we can rewrite the supply to depend on the state
variables (instead of the output variables) by

s(u(t), y(t)) =

[
Cx(t) + Du(t)

u(t)

]T [
Q S

ST R

] [
Cx(t) + Du(t)

u(t)

]

=

[
x(t)
u(t)

]T [
CT 0
DT I

] [
Q S

ST R

] [
C D

0 I

] [
x(t)
u(t)

]

=

[
x(t)
u(t)

]T [
CT QC CT QD + CT S

DT QC + ST C DT QD + DT S + ST D + R

] [
x(t)
u(t)

]

=:

[
x(t)
u(t)

]T [
Q̃ S̃

S̃T R̃

] [
x(t)
u(t)

]

=: s̃(x(t), u(t)), (19)

where Q̃ = Q̃T ∈ R
n,n, S̃ ∈ R

n,m, R ∈ R
m,m, and s̃ : R

n × R
m → R. Clearly, with

this notation one can restate inequality (18) as

Θ(x(t1)) − Θ(x(t0)) ≤

∫ t1

t0

s̃(u(t), x(t))dt, (20)

for all t0 ≤ t1 and all trajectories of Eẋ = Ax+Bu which have compact support. Still
the problem remains that the expressions on the left hand side of (20) only depend
on x while the expression on the right hand side of (20) depend on x and u. We again
refer the interested reader to [17, Theorem 6.1].

Introducing the notation q := n + m,

P1 :=
[
E 0

]
, P0 :=

[
−A −B

]
, H̃ :=

[
Q̃ S̃

S̃T R̃

]

, and z :=

[
x

u

]

, (21)
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we see that F,G ∈ R
ρ,q, H̃ = H̃∗ ∈ R

q,q, and z ∈ C∞(R, Rq) and we can rewrite
system (16) as the behavior system P1ż(t)+P0z(t) = 0 or by defining the polynomial

P (λ) := λP1 + P0 =
[
λE − A −B

]
, (22)

as P
(

d
dt

)
z(t) = 0. Also the supply can be viewed as a function of the form s : R

q → R

with
s(z) = zT H̃z.

Let r := rankC(λ) (P ) and let U ∈ C[λ]q,q−r be a polynomial kernel matrix of P .
Then we see from Theorem 36 and Theorem 42 that (18) is fulfilled if and only if the
Popov function Π ∈ C[λ]q−r,q−r given by

Π(λ) := U∼(λ)H̃U(λ)

is positive semi-definite along the imaginary axis. By Corollary 45 we see that to check
if the Popov function Π is positive semi-definite along the imaginary axis and where
it may be not be positive semi-definite, we have to consider the purely imaginary
eigenvalues of the para-Hermitian polynomial (which in this case is a pencil) given by

[
0 P (λ)

P∼(λ) H̃

]

=





0 λE − A −B

−λET − AT Q̃ S̃

−BT S̃T R̃





= λ





0 E 0
−ET 0 0

0 0 0



 −





0 A B

AT −Q̃ −S̃

BT −S̃T −R̃



 .

Since the eigenvalues of this pencil do not change under pre- and post-multiplication
with invertible constant matrices we see that we can as well consider the purely
imaginary eigenvalues of the para-Hermitian pencil

[
−I 0
0 I

] [
0 P (λ)

P∼(λ) H̃

] [
I 0
0 −I

]

= λ





0 E 0
−ET 0 0

0 0 0



 −





0 A B

AT Q̃ S̃

BT S̃T R̃



 , (23)

when we assume that the pencil

P (λ) =
[
λE − A −B

]

has no purely imaginary eigenvalues. Note that the eigenvalues of
[
λE − A −B

]
are

sometimes also called uncontrollable eigenvalues or uncontrollable modes of the triple
(E,A,B). Thus we have to assume that (E,A,B) has no uncontrollable, purely
imaginary eigenvalues so that the assumptions of Corollary 45 are fulfilled. The
importance of the pencil (23) for non-regular descriptor systems has already been
noticed in [13, Theorem 3.17]. Note that in contrast to [13, Theorem 3.17] the results
here do not involve an index of any kind for descriptor systems. Also the matrix pencil
(23) may well be singular in contrast to [13, §4], since we defined the term eigenvalue
through Definition 8, which works as well for singular pencils as for regular ones.
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8.1 Specialization to regular descriptor systems

Assuming that the pencil λE−A is regular, i.e., it is invertible over C(λ), we can give
an explicit representation of a kernel and a co-kernel matrix of P as defined in (22).

Lemma 46. Let P ∈ C[λ]n,n+m be defined through (21) and (22) and assume that
the pencil λE − A is regular, i.e., let ρ = n and let λE − A be invertible over C(λ).
Then we have that

rankC(λ) (P ) = n

and the matrices U ∈ C(λ)n+m,m and V ∈ C[λ]n+m,n given by

U(λ) :=

[
(λE − A)−1B

Im

]

and V (λ) :=

[
In

0

]

, (24)

constitute a kernel and a co-kernel matrix of P with D(U) = R \ σ(λE − A).

Proof. Since P (λ) = λP1 + P0 =
[
λE − A −B

]
and λE − A is assumed to be

invertible we have rankC(λ) (P ) = n. U and V are matrices of proper dimension
according to Definition 11. We still have to show the remaining five properties. To
see 1. observe that

PU =
[
λE − A −B

]
[
(λE − A)−1B

Im

]

= B − B = 0.

For 2. notice that

rankC(λ) (PV ) = rankC(λ)

(
[
λE − A −B

]
[
In

0

])

= rankC(λ) (λE − A)

= n = rankC(λ) (P ) .

Points 3. and 4. are obvious immediately, since both U and V have an identity matrix
in one of its block rows. Note that here we have D(U) = C \ σ(λE − A) as one can
see by applying the adjoint formula of the inverse. Finally, to see 5. note that

det
[
U V

]
= det

[
(λE − A)−1B In

Im 0

]

= ±1,

and thus
[
U V

]
is a unimodular rational matrix according to Definition 4.

With the explicit representation of the kernel matrix (24) we can also give the
more well known explicit representation of the Popov function as

Π(λ) := U∼(λ)HU(λ) =

[
(λE − A)−1B

Im

]∼ [
Q̃ S̃

S̃T R̃

] [
(λE − A)−1B

Im

]

=

[
(−λE − A)−1B

Im

]∗ [
CT 0
DT I

] [
Q S

ST R

] [
C D

0 I

] [
(λE − A)−1B

Im

]

=

[
C(−λE − A)−1B + D

Im

]T [
Q S

ST R

] [
C(λE − A)−1B + D

Im

]

, (25)
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or as

Π(λ) :=
[
BT (−λET − AT )−1CT + DT Im

]
[

Q S

ST R

] [
C(λE − A)−1B + D

Im

]

= BT (−λET − AT )−1Q̃(λET − AT )B + BT (−λET − AT )−1S̃ (26)

+S̃T (λET − AT )B + R̃

depending on which representation one prefers.
We then obtain the following Corollary of 44.

Corollary 47. Consider the system (16) with λE−A regular together with the supply
(17). Define the Popov function Π ∈ C(λ)m,m through (25). Suppose that iω ∈ iR is
not an eigenvalue of λE − A. Then the Popov function has the eigenvalue iω if and
only if the para-Hermitian pencil

λ





0 E 0
−ET 0 0

0 0 0



 −





0 A B

AT Q̃ S̃

BT S̃T R̃



 , (27)

has iω as an eigenvalue.

Proof. Since we have D(U) = C \ σ(λE −A) we see that in the assertion of Theorem
44 we have

iω0 =: λ0 ∈
(

D(U) \ −σ(P )
)

∩ (D(U∼) \ σ(P )) .

Thus, we obtain the pencil (27) and the result by the same argument which we already
performed at (23).

8.2 Specialization to standard systems with regular supply

With the notation introduced in Section 8 let us in the following assume that the
matrix R̃ as in (19) is non-singular. We obtain the following result.

Corollary 48. Consider the system (16) with E = I. Let R̃ as in (19) be regu-
lar. Define the Popov function Π ∈ C(λ)m,m through (25). Let iω ∈ iR be not an
eigenvalue of λI − A. Then the matrix Π(iω) ∈ C

m,m has the eigenvalue 0 in the
ordinary sense, i.e., there exists a v ∈ C

m \ {0} such that Π(iω)v = 0, if and only if
the Hamiltonian matrix

H :=

[
A − BR̃−1S̃T −BR̃−1BT

S̃R̃−1S̃T − Q̃ S̃R̃−1BT − AT

]

(28)

has iω as an eigenvalue in the ordinary sense, i.e., there exists a u ∈ C
2n \ {0} such

that Hu = iωu.

Proof. In this case we can see that the Popov function (25) fulfills

rankC(λ) (Π) = m,
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by letting λ go to infinity. Thus, the Popov function has the eigenvalue iω0 ∈ iR if
and only if the matrix Π(iω) does not have full rank which is the case if and only if
there exists a v ∈ C

m \ {0} such that Π(iω)v = 0.
What remains to be shown is that H has an eigenvalue λ in the ordinary sense,

if and only if the pencil (27) with E = I has the eigenvalue λ. Since under the
assumptions of the Corollary, the pencil (27) is regular it has the eigenvalue λ in
the sense of Definition 8 if and only if there exist µ, x ∈ C

n and u ∈ C
m such that

[
µT xT uT

]
6= 0 and

λ





0 I 0
−I 0 0
0 0 0









µ

x

u



 =





0 A B

AT Q̃ S̃

BT S̃T R̃









µ

x

u



 . (29)

Using the invertibility of R̃ we obtain from (29) that

λx = Ax + Bu, (30a)

−λµ = AT µ + Q̃x + S̃u, (30b)

u = R̃−1
(

−BT µ − S̃T x
)

. (30c)

Substituting (30c) into (30b) and (30a) we find the set of equations

λx = Ax − BR̃−1BT µ − BR̃−1S̃T x

= (A − BR̃−1S̃T )x − BR̃−1BT µ

−λµ = AT µ + Q̃x − S̃R̃−1BT µ − S̃R̃−1S̃T x

= (Q̃ − S̃R̃−1S̃T )x + (AT − S̃R̃−1BT )µ,

which written in matrix form is given by

λ

[
x

µ

]

=

[
A − BR̃−1S̃T −BR̃−1BT

S̃R̃−1S̃T − Q̃ S̃R̃−1BT − AT

] [
x

µ

]

. (31)

Thus we have an eigenvalue in the ordinary sense of H since
[
xT µT

]
6= 0 as one can

obtain from the identity (30c). For the reverse direction let
[
xT µT

]
6= 0 be given

such that (31) holds and define u through (30c). Than we can perform all steps from
above in the opposite direction to obtain (29) which means that we have an eigenvalue
of the pencil (27) due to the regularity of (27). This completes the proof.

With proper substitutions one can obtain [4, Theorem 1] from Corollary 48.

9 Specialization to passivity

In electrical engineering often problem of passivity is considered, e.g., [2, 7].
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Definition 49. Consider a regular first-order state space system with equal input
and output dimension, i.e., a system of the form (16) with ρ = n, λE − A regular,
and p = m. Such a system is called passive if it is dissipative (as defined at (18)) with
respect to the supply function

s(u, y) :=

[
y

u

]T [
0 Im

Im 0

] [
y

u

]

. (32)

With this supply function fixed and using the notation

G(λ) := C(−λE − A)−1B + D

to denote the so called transfer function, we obtain from (25) that the Popov function
is

Π(λ) =

[
C(−λE − A)−1B + D

Im

]T [
0 Im

Im 0

] [
C(λE − A)−1B + D

Im

]

= G(λ) + G(−λ)T .

Looking at [2, Section 2.7] we find that positive semi-definiteness of Π(λ) = G(λ)+
G(−λ)T along the imaginary axis as in Corollary 43 is an important property of
positive realness. To check this property of positive realness we can use Corollary 48.
Note that in (19) this case Q = R = 0 and S = Im and thus we get from

R̃ = DT QD + DT S + ST D + R = DT + D,

S̃ = CT QD + CT S = CT ,

Q̃ = CT QC = 0.

This implies that Corollary 48 can only be applied in the case that D+DT is invertible,
in which case one has to consider the purely imaginary eigenvalues of the Hamiltonian
matrix

H =

[
A − BR̃−1S̃T −BR̃−1BT

S̃R̃−1S̃T − Q̃ S̃R̃−1BT − AT

]

=

[

A − B
(
D + DT

)−1
C −B

(
D + DT

)−1
BT

CT
(
D + DT

)−1
C CT

(
D + DT

)−1
BT − AT

]

.

Equivalently, checking the imaginary eigenvalues of the para-Hermitian pencil

λ





0 E 0
−ET 0 0

0 0 0



 −





0 A B

AT 0 CT

BT C D + DT



 , (33)

can be performed without the assumption that D+DT is invertible and even without
the assumption that λE−A is regular or quadratic. The meaningfulness of the purely
imaginary eigenvalues of (33) is then given through Theorem 44 and not through
Corollary 48.
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10 Specialization to second-order systems

Consider the system
Mz̈(t) + Dż(t) + Kz(t) = 0, (34)

where M,D,K ∈ R
p,q. Often M , D, and K take the form

M =
[

M̃ 0
]
, D =

[

D̃ 0
]
, K =

[

K̃ −B
]
,

with p = n, q = n + m, M̃, D̃, K̃ ∈ C
n,n, and B ∈ C

n,m. Then M̃ , D̃, and K̃ are
called the mass, damping, and stiffness matrix. This corresponds to a state-space
system, where z is made up of the state x and the input u.

Suppose that the supply of such a system is measured by a function s : R
q×R

q → R

of the form

s(z, ż) :=

[
z

ż

]∗ [
Hzz Hzv

H∗
zv Hvv

] [
z

ż

]

, (35)

where Hzz = H∗
zz ∈ R

q,q, Hvv = H∗
vv ∈ R

q,q, and Hzv ∈ R
q,q, analogously to (17). In

the notation of Theorem 44 here we have

P (λ) = λ2M + λD + K

and the para-Hermitian polynomial H is given through (6) by

H(λ) =

[
Iq

−λIq

]∗ [
Hzz Hzv

H∗
zv Hvv

] [
Iq

λIq

]

= Hzz + λ (Hzv − H∗
zv) − λ2Hvv.

Thus, to check dissipativity of such a system one has to consider the imaginary eigen-
values of the second-order para-Hermitian polynomial matrix

[
0 P (λ)

P ∗(−λ) H(λ)

]

=

[
0 λ2M + λD + K

((−λ)2M + (−λ)D + K)∗ Hzz + λ (Hzv − H∗
zv) − λ2Hvv

]

=

[
0 λ2M + λD + K

λ2M∗ − λD∗ + K∗ Hzz + λ (Hzv − H∗
zv) − λ2Hvv

]

which can also be considered as the matrix polynomial

λ2

[
0 M

M∗ −Hvv

]

+ λ

[
0 D

−D∗ (Hzv − H∗
zv)

]

+

[
0 K

K∗ Hzz

]

. (36)

11 Conclusion and Outlook

Through Theorem 44 we obtained a method to check dissipativity with respect to
general quadratic supply functions of a system given in behavior form as illustrated
by Figure 1. The proof used the fact, that the polynomial (14) can be transformed
to a Popov function by unimodular transformations.
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We then specialized the results to state-space systems of first order which often
show up in practice. A well known result has been obtained in this way, see Corollary
48. We also took a short look at how Theorem 44 can be interpreted for second order
systems.

It should also be possible to devise a complete check for dissipativity, i.e., a check
that does not make the assumption that the system is already at least close to dis-
sipative (speaking in terms of Figure 1: to distinguish Π2 from Π3), by considering
the eigenvectors corresponding to eigenvalues which are not on the imaginary axis
(or can be moved away from the imaginary axis by an arbitrary small perturbation).

The results obtained in this paper emphasize the importance of the analysis of
structured (polynomial) eigenvalues problems.

Another interesting problem is the dissipativation (especially passivation) of given
linear system descriptions with respect to a fixed quadratic supply function. For
a given linear system description this problem poses the question, what the nearest
dissipative (or passive) system is (with respect to some specified norm). In this context
it seems to make sense to analyze structured perturbation theory and pseudospectra
for para-Hermitian matrix polynomials.
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