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Abstract. We present and compare two different approaches to conditional
risk measures. One approach draws from vector space based convex analysis

and presents risk measures as functions on Lp spaces while the other approach
utilizes module based convex analysis where conditional risk measures are de-

fined on Lp type modules. Both approaches utilize general duality theory for

vector valued convex functions in contrast to the current literature in which
we find ad hoc dual representations. By presenting several applications such

as monotone and sub(cash) invariant hulls with corresponding examples we

illustrate that module based convex analysis is well suited to the concept of
conditional risk measures.
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1. Introduction

When [ADEH99] introduced the notion of monetary risk measures they inspired
a lively and fruitful discussion about duality theory of risk measures in financial
mathematics, c.f. [CL08, Del00, Del02, Del06, FS08b, FS02, FS04, FRG02, KR09,
RS06, Web06] and the various references therein. In the meanwhile, there have
been many contributions addressing the question how dual representation results
for real valued risk measures translate into conditional and eventually dynamic
discrete time frameworks, c.f. [ADE+07, BN04, CDK06, DS05, FP06, Rie04].

Within these articles, a technique referred to as scalarization is commonly applied
to establish dual representation results for conditional risk measures in an ad hoc
manner. The corresponding proofs are performed in the spirit of reducing the
originally given conditional problem to the static case in a first step. In a second
step one applies standard duality theory and in the third step one translates the
results obtained back into the multi period framework. As a consequence, many
intuitive structures are disguised.

The aim of the present article is to present two different approaches to duality
theory of conditional risk measures which do not follow the ad hoc path. In con-
trast to the literature, both approaches start and remain on the “conditional level”
by utilizing duality theory for vector valued functions. Thereby, the scalarization
method is avoided and the results seem natural and their proofs are intuitive.

The two approaches differ in one fundamental way. The first one is vector space
based and therefore closer to what has been established in the literature so far.
Within the second one, vector space theory is only of minor interest as this ap-
proach assumes modules as the naturally underlying structure in a framework with
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contingent initial data. Both approaches reveal the particularities of conditional
risk measures in contrast to general convex functions. Especially the module ap-
proach leads to a theory almost entirely analogue to that of static risk measures.

The present article is of conceptual nature with a focus on intuition. The ideas
of most of the proofs will seem familiar to anyone who is familiar with the theory
of static risk measures. Nevertheless, it requires non trivial machinery from vector
and module based duality theory. This article shall be seen as an application of the
theory established in [FKV09] and [KV09] to conditional risk measures. In fact, it
provides a financial motivation for the module based convex analysis presented in
[FKV09] and [KV09].

The remainder of this paper is as follows. In Section 2 we introduce conditional
risk measures on Lp spaces. This approach is vector space based and it exceeds the
current literature where conditional risk measures are studied on the significantly
smaller Banach space L∞. This approach draws from a general vector space dual-
ity result, established in [Zow75]. As outlined above, this result forms the base of
our observations from which we will subsequently derive more specific results for
conditional risk measures. This approach can be regarded as a top down approach
as it originates from a dual representation result for general vector valued convex
functions and then reveals how additional properties of the represented functions
translate to properties of the representing continuous linear functions. This trans-
lation is of particular interest in the context of conditional risk measures as it
clarifies under which conditions the represented convex function can be interpreted
as the maximum of expected losses under different scenarios possibly subject to
penalization.

In Section 3 we present a module based approach to duality theory of conditional
risk measures. In contrast to Section 2 the spirit of this approach can be referred
to as bottom up. The reason for this is that from the beginning on we establish
that continuous module homomorphisms, which now take the place of continuous
linear functions, are necessarily conditional expectations. As a consequence, dual
representations of conditional risk measures can immediately be interpreted as the
maximum of expected losses subject to penalization. It is due to this approach that
the discussion of Section 2 becomes obsolete to a large extent. Nevertheless, this
comes at the cost of module based convex analysis which is a technically involving
matter. The main advantage of this approach however is that the derived duality
theory for conditional risk measures is very similar to that of static risk measures.

In Section 4 we present further applications of module based duality theory to
conditional risk measures and thereby illustrate further advantages of the module
approach over the vector space one. The aim of this section is to approximate
convex functions by means of monotone and (sub)cash invariant functions. Duality
theory is utilized to find a monotone and (sub)cash invariant function “closest”,
expressed in dual terms, to a given function. These approximating functions are
called monotone and (sub)cash invariant hulls. The idea of this duality based
construction principle is already presented in [FK07] which, however, only covers
the static case.

In Section 5 we present examples of convex functions and their monotone (sub)cash
invariant hulls and explicitly construct their subgradients. The purpose of this sec-
tion is to illustrate the theory that lead the way.
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Throughout this article, we fix a probability space (Ω, E , P ) as stochastic basis.
By L0(G) we denote the space of real valued G–measurable random variables, where
G ⊂ E is a generic sub σ–algebra, and we note that L0(G) is also a ring. Random
variables and measurable sets which coincide almost surely are identified. Equalities
and inequalities between random variables are understood in the almost sure sense.
Further, L0

+(G) = {X ∈ L0(G) | X ≥ 0}, L0
++(G) = {X ∈ L0(G) | X > 0}. L̄0(G)

denotes the set of G–measurable random variables which take values in R ∪ {±∞}
and L̄0

+(G) = {X ∈ L̄0(G) | X ≥ 0}. Further, we consider non trivial initial
information given by a σ–algebra F ⊂ E . Throughout, we define 0 · (±∞) = 0.

2. The vector space approach

For all of this section we fix 1 ≤ r ≤ p <∞. We denote by s and q the respective
duals of r and p. That is, s = r/(r−1), q = p/(p−1) with the convention s, q =∞
if r, p = 1. By Lk(G) = Lk(Ω,G, P ) we denote the space of G–measurable functions
with finite kth moments, that is,

Lk(G) = {X ∈ L0(G) | E[|X|k] < +∞}
where G ⊂ E denotes a generic sub σ–algebra of E and k ∈ [1,+∞). L∞(G) =
L∞(Ω,G, P ) denotes the space of essentially bounded G–measurable random vari-
ables.

In this paper we do not cover the case of p = +∞. The reason for this is
that numerous articles from the vast literature on financial risk measures deal with
conditional risk measures on L∞(E); we refer to [ADE+07, BN04, CDK06, DS05,
FP06, Rie04] and the references therein.

2.1. Preliminaries.

Definition 2.1. A function f : Lp(E)→ Lr(F) is
(i) monotone if f(X) ≤ f(X ′) for all X,X ′ ∈ Lp(E) with X ≥ X ′,

(ii) subcash invariant if f(X + Y ) ≥ f(X) − Y for all X ∈ Lp(E) and Y ∈
Lr(F) with Y ≥ 0,

(iii) cash invariant if f(X+Y ) = f(X)−Y for all X ∈ Lp(E) and Y ∈ Lr(F).

Recall that a function f : Lp(E) → Lr(F) is convex if f(αX + (1 − α)X ′) ≤
αf(X) + (1− α)f(X ′) for all X,X ′ ∈ Lp(E) and α ∈ [0, 1]. f is local if

(1) 1Af(X) = 1Af(1AX) for all X ∈ Lp(E) and A ∈ F .
In line with the literature, we refer to a convex function f : Lp(E) → Lr(F)

which is monotone and cash invariant as a conditional (monetary) risk measure.
The reason for this is the economic interpretation of f(X) as a capital requirement a
financial institution has to meet on assuming the uncertain profit or loss X ∈ Lp(E)
adherent to a financial position.

By the Fisher-Riesz theorem any continuous linear function µ : Lp(E)→ R is of
the form

µX = E[ZX]
for some Z ∈ Lq(E). Further, any proper lower semi continuous (l.s.c.) convex
function f : Lp(E)→ (−∞,+∞] admits the Fenchel–Moreau dual representation

(2) f(X) = sup
Z∈Lq(E)

(E[ZX]− f∗(Z)),

where f∗(Z) = supX∈Lp(E)(E[ZX]− f(X)) denotes the conjugate function of f .
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Dual representations as in (2) and subdifferentiability are of distinct interest in
various contexts such as optimal investment problems with respect to robust utility
functionals [SW05, Sch07], portfolio optimization under risk constraints [GW07,
GW08], risk sharing [BEK05, BR06, Acc07, BR08, FS08a, FK08, JST08, LR08,
Che09], equilibrium pricing [KS07, FK08], efficient hedging [FL00, Rud07, Che09,
İJS09] as well as the numerous references therein.

Moreover, such representations provide us with a plausible interpretation of the
subjective risk assessment of an economic agent. More precisely, let us assume an
agent faces the uncertain payoff X ∈ Lp(E). Dual representations of the form (2)
suggest that the agent computes the expected payoff E[ZX] within the specific
model Z ∈ Lq(E) he selected from a variety of probabilistic models. In addition
to this, the agent takes into account a certain model ambiguity as the possible
outcome subject to model Z is penalized by −f∗(Z). The higher f∗(Z) the less
plausible the agent views model Z. In evaluating the capital requirement f(X) for
the uncertain payoff X the agent then takes a worst case approach.

For these reasons, the question arises to what extent representations of the form
(2) are preserved in the context of conditional risk measures when R is replaced by
Lr(F).

To address this question, we denote by L(Lp(E), Lr(F)) the space of all contin-
uous linear functions from Lp(E) into Lr(F) and consider a function f : Lp(E) →
Lr(F). We define f∗ : L(Lp(E), Lr(F))→ L̄0(F) by

f∗(µ) = ess.sup
X∈Lp(E)

(µX − f(X))

and domf∗ = {µ ∈ L(Lp(E), Lr(F)) | f∗(µ) ∈ Lr(F)}. By convention, the essential
supremum of an empty family of random variables is −∞. Further, we define
f∗∗ : Lp(E)→ Lr(F) by

f∗∗(X) = ess.sup
µ∈domf∗

(µX − f∗(µ)).

An element µ ∈ L(Lp(E), Lr(F)) is a subgradient of f at X0 ∈ Lp(E) if

µ(X −X0) ≤ f(X)− f(X0)

for all X ∈ Lp(E).
The set of all subgradients of f at X0 is called the subdifferential of f at X0 and

denoted by ∂f(X0). By definition of the subdifferential ∂f(X0) we have the well
known relation

(3) µ0 ∈ ∂f(X0) if and only if µ0 ∈ domf∗ and f(X0) = µ0X0 − f∗(µ0).

Reference should be made that in Section 3.1 below we encounter a slightly
different notion of conjugate functions, effective domains and subdifferentials. Nev-
ertheless, there will be no source of ambiguity as the respective sections are entirely
self contained.

Example 2.2. Let us assume that F = σ(An) is generated by a countable partition
(An) of Ω (i.e. Ai ∩ Aj = ∅ for i 6= j and

⋃
n∈N An = Ω). In this case, we

can identify Lr(F) with lr(F), the space of all real valued sequences (xn) with∑∞
n=1 pn|xn|r < ∞, where pn = P [An] for all n ≥ 1. Hence, any function f :

Lp(E)→ Lr(F) is of the form

f = (f1, f2, f3, . . .)
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with a sequence of functions fn : Lp(E)→ R, n ∈ N, such that
∑∞
n=1 pn|fn(X)|r <

∞ for all X ∈ Lp(E).
Localness of the function f is now reflected by the intuitive relation

( 0, . . . , 0︸ ︷︷ ︸
n−1–times

, fn(X), 0, . . .) = f( 0, . . . , 0︸ ︷︷ ︸
n−1–times

, fn(1An
X), 0, . . .) for all n ∈ N,

that is, the nth component fn of f only depends on the coordinate spanned by the
vector 1An

.

Example 2.3. The local structure of Example 2.2 becomes even more apparent if
E is generated by a finite partition B1, . . . , Bn of Ω. In this case, Aj =

⋃
i∈Ij

Bi,
where {1, . . . , n} =

⋃
1≤j≤m Ij so that Lp(E) = L0(E) = Rn as well as Lr(F) =

L0(F) = Rm.
The function f : Rn → Rm is now of the form f = (f1, . . . , fm) with arbitrary

functions f1, . . . , fm : Rn → R. Localness of f now means that for each 1 ≤ j ≤ m
the function fj only depends on the coordinates Ij. We abuse notation and identify
fj with its restriction to the coordinates Ij. In other words, f = (f1, . . . , fm) for
functions f1 : RI1 , . . . , fm : RIm → R (after rearranging the coordinates 1, . . . , n
suitably).

Moreover, if f is C1(Rn,Rm) then

Df(X) =


Df1(XI1) 0 · · · 0

0 Df2(XI2) · · · 0
...

...
...

0 0 · · · Dfm(XIm)


for all X ∈ Rn. (Note that the zeroes in the above matrices are understood as
generic vector zeroes possibly differing in their dimensions.)

Zowe proves in [Zow75] the following dual representation result which, in fact,
he establishes in a more general setup.

Theorem 2.4. Let f : Lp(E)→ Lr(F) be a convex function. If f is continuous at
X0 ∈ Lp(E) then ∂f(X0) 6= ∅ and

(4) f(X0) = f∗∗(X0).

For the sake of completeness, we provide a self contained proof in the Appen-
dix A, tailored to our setup.

The preluding questions can now be specified as follows. Which linear µ :
Lp(E)→ Lr(F) is of the form

(5) µX = E[ZX | F ]

for some Z ∈ Lq(E)? And further, for which convex f : Lp(E) → Lr(F) is each
µ ∈ domf∗ of the form (5) so that

(6) f(X) = ess.sup
Z∈domf∗

(E[ZX | F ]− f∗(Z)),

where f∗(Z) is understood as f∗(E[Z· | F ])?
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2.2. Linear functions on Lp(E). In this section we study representation results
and corresponding continuity properties of linear functions from Lp(E) to Lr(F).
The results are of preliminary nature for the following section on convex functions.

Proposition 2.5. A function µ : Lp(E)→ Lr(F) is
(i) continuous linear and
(ii) local

if and only if it is of the the form (5) for some unique representing Z ∈ Lq(E) which
satisfies the integrability condition E[|Z|q | F ] ∈ L

r(p−1)
p−r (F), where r(p− 1)/(p− r)

is understood as +∞ if p = r.

Proof. To prove the if statement, let µ = E[Z· | F ], Z ∈ Lq(E) with E[|Z|q | F ] ∈
L

r(p−1)
(p−r) (F). Inspection shows that µ is linear and local. To establish continuity we

assume 1 < r < p, the other cases work analogously. By Hoelder’s inequality

E [|E[ZX | F ]|r] ≤ E
[
E[|Z|q | F ]

r
qE[|X|p | F ]

r
p

]
≤ E

[
E[|Z|q | F ]

pr
q(p−r)

] p−r
p

E [|X|p]
r
p .

Since
E [|Z|q | F ]

pr
q(p−r) = E [|Z|q | F ]

r(p−1)
p−r ∈ L1(F),

we deduce ‖E[ZX | F ]‖r ≤ c‖Z‖p for some c ∈ R+. Hence, µ is continuous.
Conversely, if µ : Lp(E) → Lr(F) is a continuous linear function then so is

E ◦ µ : Lp(E) → R and by the Fisher–Riesz theorem there is Z ∈ Lq(E) such
that E[µX] = E[ZX] for all X ∈ Lp(E). Since µ is local we derive E[1AµX] =
E[µ(1AX)] = E[Z1AX] for all A ∈ F and X ∈ Lp(E). Thus, µX = E[ZX | F ] for

all X ∈ Lp(E). It remains to show that E[|Z|q | F ] ∈ L
r(p−1)
(p−r) (F). We distinguish

between two different cases. If r = 1 then E[|Z|q | F ] ∈ L1(F) as E[|E[|Z|q | F ]|] =
E[|Z|q] ∈ R. It remains to show the case 1 < r ≤ p. To this end, consider the
adjoint µ′ : Ls(F)→ Lq(E) of µ. By definition,

(7) (µ′Y )(X) = E[Y E[ZX | F ]] = E[Y ZX], X ∈ Lp(E).

Since µ : Lp(E) → Lr(F) is continuous so is µ′ : Ls(F) → Lq(E), that is, for all
Y ∈ Ls(F)

‖µ′Y ‖q ≤ c‖Y ‖s,
for some real constant c. Since the Lq–norm coincides with the corresponding
operator norm we derive for all Y ∈ Ls(F)

(8) sup
X∈Lp(E),‖X‖p≤1

|(µ′Y )(X)| = sup
X∈Lp(E),‖X‖p≤1

E[Y ZX] ≤ cE[|Y |s] 1
s .

With equation (7) we know that E[Y Z·] is a continuous linear function from Lp(E)
to R. Since the topological dual of Lp(E) can be identified with Lq(E) we derive
that necessarily Y Z ∈ Lq(E). Therefore, we can define

XY = sign(Y Z)× |Y Z|
1

(p−1) /E[|Y Z|q]
1
p

(with the convention 0/0 = 0). Then XY ∈ Lp(E) and ‖XY ‖p ≤ 1 for all Y ∈
Ls(F). Hence, we derive from (8) that for all Y ∈ Ls(F)

E[|Y Z|q]
1
q = E[Y ZXY ] ≤ cE[|Y |s] 1

s .
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In particular, Y 7→ E[E[|Z|q | F ]Y ] is a linear, continuous function from L
s
q (F) to

R. Again, since the topological dual of L
s
q (F) can be identified with L

r(p−1)
p−r (F) we

derive that necessarily E[|Z|q | F ] ∈ L
r(p−1)

p−r (F). �

The next proposition provides a different set of conditions that are sufficient for
µ to be of the form (5). These conditions spotlight the emphasis on conditional
risk measures.

Proposition 2.6. A function µ : Lp(E)→ Lr(F) is
(i) continuous linear,

(ii) µY ≥ −Y for all Y ∈ Lr(F) with Y ≥ 0, and
(iii) monotone, µX ≤ 0 for all X ∈ Lp(E), X ≥ 0,

if and only if it is of the the form (5) for some representing Z ∈ Lq(E) with
E[Z | F ] ≥ −1 and Z ≤ 0 and which satisfies the integrability condition E[|Z|q |
F ] ∈ L

r(p−1)
(p−r) (F).

Proof. The if statement follows by inspection, where continuity follows as in Propo-
sition 2.5.

As to the only if statement we show that (ii) and (iii) imply that µ is local.
To this end, let X ∈ Lp(E) be essentially bounded in a first step. Then X ≤
1AX + ‖X − 1AX‖∞, where for X ′ ∈ Lp(E),

‖X ′‖∞ = ess.inf{Y ∈ L0(F) | Y ≥ |X ′|}.

Since µ is positive and µY ≥ −Y for all Y ∈ Lr+(F) we derive

µX ≥ µ(1AX + ‖X − 1AX‖∞) ≥ µ(1AX)− ‖X − 1AX‖∞.

On exchanging X and 1AX we derive

|1AµX − 1Aµ(1AX)| = 1A|µX − µ(1AX)| ≤ 1A‖X − 1AX‖∞ = 0.

Thus, µ is local for all essentially bounded X. By a standard truncation and
approximation argument we derive that µ is local for all X ∈ Lp(E). Thus, we
established that µ is continuous linear local and hence of the form (5) for some

representing Z ∈ Lq(E). The integrability condition E[|Z|q | F ] ∈ L
r(p−1)
(p−r) (F)

follows as in the proof of Proposition 2.5. Further, (ii) and (iii) imply E[Z | F ] ≥ −1
and Z ≤ 0. �

Remark 2.7. In Proposition 2.6 above one can replace µY ≥ −Y for all Y ∈ Lr(F)
with Y ≥ 0 by the projection property µY = −Y for all Y ∈ Lr(F) with the result
that E[Z | F ] = −1 in place of E[Z | F ] ≥ −1.

Example 2.8. Positivity (iii) is needed in Proposition 2.6, as the following example
shows. Let Ω = {ω1, ω2, ω3}, E = σ({ω1}, {ω2}, {ω3}), P [ω1] = 1/2, P [ω2] =
P [ω3] = 1/4 and F = σ(A1, A2) with A1 = {ω1} and A2 = {ω2, ω3}. Define the
random variables

Z1 = (−2, 1,−1), Z2 = (0,−2,−2)

and the linear map µ : L0(E)→ L0(F) by

µ(X) =
2∑
i=1

E[ZiX]1Ai
.
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Then µ satisfies (i) and (ii) of Proposition 2.6, but not (iii) since µ(0, 4, 0) =
(1,−2,−2).

Now suppose µ were of the form (5) for some (not necessarily positive) Z ∈
L0(E). This implies, in particular, that

E[1A1µX] = E[1A1ZX]

for all X ∈ L0(E). But for X = (0, 4, 0) we obtain zero on the right hand side and
1/2 on the left hand side, which is absurd. Hence µ cannot be of the form (5).

2.3. Monotone (sub)cash invariant convex functions on Lp(E). Given the
results of the preceding section we now turn our attention to convex functions.

Lemma 2.9. Let f : Lp(E)→ Lr(F) be a function.
(i) If f is local then every µ ∈ domf∗ is local.

(ii) If f is monotone then µ is monotone for each µ ∈ domf∗.
(iii) If f is subcash invariant then µY ≥ −Y for all Y ∈ Lr(F) with Y ≥ 0 for

each µ ∈ domf∗.
(iv) If f is cash invariant then −µ is a projection for each µ ∈ domf∗.

Proof. (i) Take non local µ ∈ L(Lp(E), Lr(F)). Then there are X ∈ Lp(E), A,B ∈
F , A ⊂ B, with µ(1BX) < µX on A. Then µ(−1BcX) = µ(1BX −X) < 0 on A
or, equivalently, µ(1BcX) > 0 on A. This implies for all n ∈ N

µ(1BcnX)− f(1BcnX) = nµ(1BcX)− f(0)

on A. As n tends to ∞, we conclude µ /∈ domf∗.
(ii) Let µ ∈ L(Lp(E), Lr(F)) and suppose there is X ≥ 0 such that µX > 0 with

positive positive probability. By monotonicity of f , f(nX) ≤ f(X) for all n ∈ N.
Hence,

f∗(µ) ≥ µ(nX)− f(nX) ≥ nµX − f(X)
for all n ∈ N. This implies µ /∈ domf∗.

(iii) Let µ ∈ L(Lp(E), Lr(F)). By subcash invariance of f we have

f∗(µ) ≥ ess.sup
X∈Lp(E)

(µ(X)− f(X + nY )− nY )

X′=X+nY= ess.sup
X′∈Lp(E)

(µ(X ′ − nY )− f(X ′)− nY )

= ess.sup
X′∈Lp(E)

(µ(X ′)− f(X ′) + n(−µY − Y ))

= f∗(µ) + n(−µY − Y )

for all Y ∈ Lr(F) with Y ≥ 0 and n ∈ N. Hence, µ /∈ domf∗ if µY < −Y with
positive probability.

(iv) Let µ ∈ L(Lp(E), Lr(F)). Since f is cash invariant we derive for all Y ∈
Lr(F)

f∗(µ) ≥ µY − f(Y ) = µY + Y − f(0).
This implies that µ ∈ domf∗ only if µY = −Y for all Y ∈ Lr(F); whence −µ is a
projection. �

In view of Lemma 2.9 (i) we derive a convex variant of Proposition 2.5.

Proposition 2.10. A function f : Lp(E)→ Lr(F) is
(i) continuous convex and
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(ii) local

if and only if domf∗ ⊂ {Z ∈ Lq(E) | E[|Z|q | F ] ∈ L
r(p−1)

p−r }. Moreover, in this case

(9) f(X) = ess.sup
Z∈Lq(E),E[|Z|q|F ]∈L

r(p−1)
p−r (F)

(E[ZX | F ]− f∗(Z)).

In the same manner, we derive from Lemma 2.9 (ii) and (iii) a convex analogue
of Proposition 2.6.

Proposition 2.11. A function f : Lp(E)→ Lr(F) is
(i) continuous convex,

(ii) monotone and
(iii) subcash invariant

if and only if domf∗ ⊂ C = {Z ∈ Lq(E) | E[Z | F ] ≥ −1, Z ≤ 0, E[|Z|q | F ] ∈
Lr(p−1)/(p−r)(F)}. Moreover, in this case

(10) f(X) = ess.sup
Z∈C

(E[ZX | F ]− f∗(Z)).

Remark 2.12. We obtain the convex variant of remark 2.7; that is, we can replace
subcash invariance by cash invariance in Proposition 2.11 with the result that E[Z |
F ] = −1 in place of E[Z | F ] ≥ −1.

To draw a conclusion, standard vector space based convex analysis is applicable
to a selected class of conditional risk measures. This class contains risk measures
which map Lp(E) into Lr(F).

3. The module approach

In this section we follow a module approach to conditional risk measures. We
briefly repeat the most important features of Lp type modules, a comprehensive
treatment of which can be found in [KV09] and for further background we refer to
[FKV09].

3.1. Preliminaries. Unless stated otherwise, we let p ∈ [1,+∞] throughout this
section. Recall that the classical conditional expectation E[· | F ] : L1(E)→ L1(F)
extends to the conditional expectation E[· | F ] : L0

+(E)→ L̄0
+(F) by

(11) E[X | F ] = lim
n→∞

E[X ∧ n | F ].

We define the function ‖ · ‖p : L0(E)→ L̄0
+(F) by

(12) ‖X‖p =

{
E[|X|p | F ]1/p if p ∈ [1,∞)
ess.inf{Y ∈ L̄0

+(F) | Y ≥ |X|} if p =∞
,

and
LpF (E) = {X ∈ L0(E) | ‖X‖p ∈ L0(F)}.

The standard properties of the conditional expectation guarantee that ‖ · ‖p is an
L0(F)–norm on LpF (E), that is, ‖ · ‖p : LpF (E)→ L0

+(F) satisfies
(i) ‖X‖p = 0 if and only if X = 0,
(ii) ‖Y X‖p = |Y |‖X‖p for all Y ∈ L0(F) and X ∈ LpF (E),

(iii) ‖X +X ′‖p ≤ ‖X‖p + ‖X ′‖p for all X,X ′ ∈ LpF (E).
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We endow LpF (E) = (LpF (E), ‖·‖p) with the module topology induced by the L0(F)–
norm ‖ · ‖p and we endow L0(F) = (L0(F), | · |) with the ring topology induced
by the absolute value | · |. Then LpF (E) becomes a topological L0(F)–module over
the topological ring L0(F). Reference should be made that LpF (E) as a topologi-
cal L0(F)–module does no longer carry an R–linear topology as opposed to other
texts, where R–linear topologies on L0(F)–modules are studied, cf. [Guo09]. For
furhter details we refer to [FKV09, KV09]. We work with the convention that the
conditional expectation E[· | F ] : LpF (E)→ L0(F) is understood as

E[X | F ] = E[X+ | F ]− E[X− | F ],

the right hand side of which is understood as in (11).

Example 3.1. Let us assume that F = σ(A1, . . . , Am) is generated by a finite
partition A1, . . . , Am of Ω.

The local structure, formerly a property in reference to the functions we studied,
now also appears as a property of the model spaces LpF (E) in the sense that on each
F–atom Ai, 1 ≤ i ≤ m, we consider a classical Lp space, namely Lp(E ∩ Ai) =
Lp(Ω ∩ Ai, E ∩ Ai, Pi), where Pi denotes P [· | Ai]. Over all of E, these spaces are
“pasted” together to become

LpF (E) =
m∑
i=1

1Ai
Lp(E ∩Ai).

Consequently, if F is finitely generated, Lp(E) = LpF (E) and no additional structure
is provided.

However, if F is generated by a countable partition (An) of Ω then LpF (E) becomes

LpF (E) =
∑
n∈N

1An
Lp(E ∩An)

which in fact is an L0(F)–module significantly larger than Lp(E). Indeed, it is not
hard to see that Xn ∈ Lp(E ∩An) for all n ∈ N is not sufficient for

∑
n∈N 1AnXn ∈

Lp(E) in general.

A function µ : LpF (E) → L0(F) is L0(F)–linear if µ(Y X + X ′) = Y µX + µX ′

for all Y ∈ L0(F) and X,X ′ ∈ LpF (E). In (1) we have already defined localness for
functions from Lp(E) into Lr(F). We adapt this to functions f : LpF (E) → L̄0(F)
with the convention 0 · (±∞) = 0.

A function f : LpF (E) → L̄0(F) is proper if f(X) > −∞ for all X ∈ LpF (E) and
if there is at least one X ∈ LpF (E) such that f(X) < +∞. We define

PI(f) = ess.sup{A ∈ F | 1Af = 1A(+∞)}
MI(f) = ess.sup{A ∈ F | ∃X ∈ LpF (E) : 1Af(X) = 1A(−∞)}
P (f) = (PI(f) ∪MI(f))c

so that f is proper on P (f), f ≡ +∞ on PI(f) and f may take value −∞ on
MI(f). The effective domain domf of f is defined by

(13) domf = {X ∈ LpF (E) | 1PI(f)cf(X) < +∞}.
Trivially, PI(f)∩MI(f)∩P (f) = ∅ so that f is proper only if PI(f) = MI(f) = ∅.
If f is local then we even have “if and only if”.

In [FKV09, KV09] L0(F)–convexity is only defined for proper functions. For the
purposes of Section 4 below in which we use dual techniques to construct hulls of
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proper L0(F)–convex functions, we have to extend this definition in a consistent
way to not proper functions.

In vector space theory one agrees on the convention that −∞ +∞ = +∞ and
defines a function f : V → [−∞,+∞] on a real vector space V to be convex if
f(αv + (1 − α)w) ≤ αf(v) + (1 − α)f(w) for all v, w ∈ V , α ∈ [0, 1]. In line with
this, we set −∞+∞ = +∞ and define L0(F)–convexity as follows.

Definition 3.2. A function f : LpF (E)→ L̄0(F) is L0(F)–convex if

f(Y X + (1− Y )X ′) ≤ Y f(X) + (1− Y )f(X ′)

for all X,X ′ ∈ LpF (E) and Y ∈ L0(F) with 0 ≤ Y ≤ 1. (Recall the convention
0 · (±∞) = 0.)

Remark 3.3. Inspection shows that a function f : LpF (E) → L̄0(F) is L0(F)–
convex if and only if for all X,X ′ ∈ LpF (E) and Y ∈ L0(F) with 0 ≤ Y ≤ 1,

(14) f(Y X + (1− Y )X ′) ≤ Y f(X) + (1− Y )f(X ′)

on the set ({f(X) = −∞, f(X ′) = +∞} ∪ {f(X) = +∞, f(X ′) = −∞})c.

Lemma 3.4. Any L0(F)–convex function f : LpF (E)→ L̄0(F) is local.

Proof. Let X ∈ LpF (E) and A ∈ F . Then, we derive the inequalities

f(1AX) ≤ 1Af(X) + 1Acf(0)
= 1Af(1A(1AX) + 1AcX) + 1Acf(0)
≤ 1Af(1AX) + 1Acf(0)

which become equalities on multiplying with 1A. �

Consider a local function f : LpF (E) → L̄0(F). As in [FKV09], we call f lower
semi continuous (l.s.c.) if for any convergent net XN → X in LpF (E) we have

ess.liminf
N

f(XN ) ≥ f(X),

where we define ess.liminfYN = ess.supNess.infM≥NYM for a net (YN ) in LpF (E).

Definition 3.5. Let f : LpF (E) → L̄0(F) be a local function. The closure cl(f) :
LpF (E)→ L̄0(F) of f is given by

cl(f) = 1MI(f)cg + 1MI(f)(−∞),

where g is the greatest l.s.c. L0(F)–convex function majorized by 1MI(f)cf . The
function f is closed if f = cl(f).

By definition, cl(f) is l.s.c. L0(F)–convex and in particular local. By definition,
a closed is L0(F)–convex.

For p ∈ [1,+∞) we have the following analogy to (2). Any continuous L0(F)–
linear function µ : LpF (E)→ L0(F) is of the form

(15) µX = E[ZX | F ]

for some Z ∈ LqF (E), where q = p/(p − 1) if p ∈ (1,∞) and q = ∞ if p = 1,
c.f. [KV09]. The conjugate function f∗ : LqF (E) → L̄0(F) of a local function
f : LpF (E)→ L̄0(F) is defined by

f∗(Z) = ess.sup
X∈Lp

F (E)

(E[ZX | F ]− f(X)) = ess.sup
X∈domf

(E[ZX | F ]− f(X))
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and the conjugate f∗∗ : LpF (E)→ L̄0(F) of f∗ is defined by

(16) f∗∗(X) = ess.sup
Z∈Lq

F (E)

(E[ZX | F ]− f∗(Z)) = ess.sup
Z∈domf∗

(E[ZX | F ]− f∗(Z)),

where the second equalities follow from the definition of the effective domain in (13).
The next theorem presents an L0(F)–convex duality relation which slightly gener-
alizes the Fenchel–Moreau type dual representation of Theorem 3.8 in [FKV09].

Theorem 3.6. Let f : LpF (E)→ L̄0(F) be a local function. Then,

f∗∗ = cl(f).

In particular, if f is proper l.s.c. L0(F)–convex then f = f∗∗.

Proof. We first prove the auxiliary claim that an L0(F)–convex l.s.c. function
g : LpF (E)→ L̄0(F) with g > −∞ satisfies the L0(F)–convex duality relation

(17) g = g∗∗

which proves the second statement. Indeed, let X ∈ LpF (E) and define A = {g(X) <
+∞}. Then, on Ac the relation (17) is trivially valid for X. To see that (17) is
also valid for X on A it suffices to observe that 1Ag is a proper L0(F)–convex l.s.c.
function and to apply Theorem 3.8 in [FKV09] by which 1Ag = (1Ag)∗∗. Since g is
local by L0(F)–convexity we conclude

g(X) = 1Ag(X) + 1Acg(X) = (1Ag)∗∗(X) + (1Acg)∗∗(X) = g∗∗(X)

which proves the auxiliary claim.
Next, define f1 = 1MI(f)cf and f2 = 1MI(f)f . We show separately that

f∗∗1 = cl(f1) and f∗∗2 = cl(f2)

which by localness of f∗∗ and cl(f) yields the assertion.
To see that f∗∗1 = cl(f1) observe that by definition f∗∗1 is L0(F)–convex l.s.c.

and −∞ < f∗∗1 ≤ f1. Further, from

cl(f1) ≤ f1 implies cl(f1)∗ ≥ f∗1 implies cl(f1) = cl(f1)∗∗ ≤ f∗∗1

we derive f∗∗1 = cl(f1).
To establish f∗∗2 = cl(f2) we show that there is some X−∞ ∈ LpF (E) with

f2(X−∞) = 1MI(f)(−∞). Indeed, since f is local the collection

S = {A ∈ F | ∃X ∈ LpF (E) : f(X) = −∞ on A}
is directed upwards and by definition we have ess.supS = MI(f). Hence, there
exists an increasing sequence (An) ⊂ F and a corresponding sequence (Xn) in
LpF (E) with An ↗M−∞ and f(Xn) = −∞ on An for each n ∈ N. Since f is local

X−∞ =
∞∑
i=1

1Ai\
⋃i−1

j=1 Aj
Xi

is as required with A0 = ∅. We conclude that

f∗2 = ess.sup
X∈Lp

F (E)

(E[·X | F ]− f2(X))

≥ E[·X−∞ | F ]− f2(X−∞) ≥ 1MI(f)(+∞).

This together with (17) and localness of f implies f∗∗2 = 1MI(f)(−∞) = cl(f2).
(Note, that MI(f) = MI(f2).) �
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Remark 3.7. The epigraph epif = {(X,Y ) ∈ LpF (E) × L0(F) | f(X) ≤ Y } of
a closed function f : LpF (E) → L̄0(F) is closed w.r.t. the product topology. To
see this, it suffices to observe that 1MI(f)cepif1 is closed c.f. [FKV09] and that
1MI(f)epif2 = 1MI(f)(L

p
F (E) × L0(F)) is closed as well; f1 and f2 are understood

as in the above proof. Since MI(f) and MI(f)c are disjoint the sum of the two
1MI(f)cepif1 + 1MI(f)(L

p
F (E)× L0(F)) = epif is also closed.

Lemma 3.8. Let f : LpF (E)→ L̄0(F) be a local function. Then,

(18) PI(f) ⊂MI(f∗) and MI(f) ⊂ PI(f∗).

If f is closed L0(F)–convex we have equalities.

Proof. Since f is local (18) follows from the definitions of PI(·),MI(·) and f∗. On
replacing f with f∗ the reverse inclusions follow as for closed L0(F)–convex f we
have f = f∗∗, c.f. Theorem 3.6. �

The preceding lemma reveals in particular that for a closed L0(F)–convex func-
tion f : LpF (E)→ L̄0(F) we have the following decompositions

f∗ = 1PI(f)(−∞) + 1MI(f)(+∞) + 1R(f)f
∗(19)

f = f∗∗ = 1PI(f)(+∞) + 1MI(f)(−∞) + 1R(f)f
∗∗.(20)

Definition 3.9. Let p ∈ [1,+∞), q be as above and f : LpF (E)→ L̄0(F) be a proper
function. An element Z ∈ LqF (E) is a subgradient of a f at X0 ∈ domf if

E[Z(X −X0) | F ] ≤ f(X)− f(X0), for all X ∈ LpF (E).

The set of all subgradients of f at X0 is denoted by ∂f(X0).

Example 3.10. Let F = σ(A1, A2, A3) be finitely generated, where (Ai)1≤i≤3 ⊂ E
is pairwise disjoint with P [Ai] > 0, 1 ≤ i ≤ 3 and Ω =

⋃3
i=1Ai. We consider

a function f : LpF (E) → L̄0(F) and we identify L̄0(F) with (R ∪ {±∞})3 so that
f = (f1, f2, f3) for three functions f1, f2, f3 : LpF (E) → [−∞,+∞]. Let us further
assume that f1 ≡ +∞, f2 is proper and there exists X ∈ LpF (E) such that f3(X) =
−∞.

Then PI(f) = A1 and MI(f) = A3. Further, X ∈ domf if and only if
f2(X), f3(X) < +∞ irrespectively of the fact that f1(X) = +∞. The function
f would be proper if and only if f1, f2 and f3 were proper at the same time. Thus,
1A2f is proper while f is not. In the same way we see that f is L0(F)–convex if
and only if each fi is convex, 1 ≤ i ≤ 3.

If in addition f is local then we can identify f with three functions f1, f2, f3 :
Lp(E ∩Ai)→ [−∞,+∞] defined on classical Lp spaces. Then f is l.s.c. if and only
if each fi is l.s.c., 1 ≤ i ≤ 3, and its closure is given by

cl(f) = (cl(f1), cl(f2), cl(f3)) = (+∞, f∗∗2 ,−∞).

The main advantage of the module approach over the vector space approach
from Section 2 is the fact that we can consider conditional risk measures on LpF (E)
which is a much larger model space than Lp(E). Furthermore, within the mod-
ule approach, duality results are applicable to functions which may take values in
L̄0(F). As a consequence, examples such as conditional (monotone) mean variance
or conditional entropic risk are fully covered.

Further, within the vector space approach, continuous linear functions µ : Lp(E)→
Lr(F) are not necessarily conditional expectations. One has to employ the results
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of Section 2.2 to derive that only those continuous linear functions which are con-
ditional expectations are relevant for conditional risk measures.

In contrast to this, continuous L0(F)–linear functions of LpF (E) into L0(F) are
conditional expectations as stated in (15). Results analogue to Proposition 2.5,
Proposition 2.6 and Remark 2.7 presented in Section 2.2 are not required. In this
sense, the module approach a priori provides us with an interpretation of (16) in
terms of expected losses under different scenarios which, by virtue of f∗, are taken
more or less seriously.

3.2. Monotone (sub)cash invariant L0(F)–convex functions on LpF (E). Through-
out this section, we fix p ∈ [1,+∞) and define q dual to p, as usual. The next
definition is similar to that of 2.1. However, as we work in a module setup, a few
amendments are needed.

Definition 3.11. A function f : LpF (E)→ L̄0(F)
(i) is monotone if f(X) ≤ f(X ′) for all X,X ′ ∈ LpF (E) with X ≥ X ′,
(ii) is subcash invariant if f(X + Y ) ≥ f(X) − Y for all X ∈ LpF (E) and

Y ∈ L0
+(F),

(iii) is cash invariant if f(X + Y ) = f(X) − Y for all X ∈ LpF (E) and Y ∈
L0(F).

A set P ⊂ L0(E) is L0(F)–convex if Y X + (1− Y )X ′ ∈ P whenever X,X ′ ∈ P
and Y ∈ L0(F) with 0 ≤ Y ≤ 1. The epigraph of an L0(F)–convex function is
L0(F)–convex. P is an L0(F)–cone if Y X ∈ P for all X ∈ P and Y ∈ L0

+(F). For
the same reasons as in the vector space case we refer to L0(F)–convex functions
f : LpF (E) → L̄0(F) which are monotone and cash invariant as conditional risk
measures.

From now on, let P = {X ∈ LpF (E) | X ≥ 0} be the closed L0(F)–convex
L0(F)–cone. P induces the partial order of almost sure dominance on LpF (E) via

X ≥ X ′ ⇔ X −X ′ ∈ P.
Inspection shows that (LpF (E),≥) is an ordered module, c.f. [KV09]. The polar
L0(F)–cone P◦ of P is

P◦ = {Z ∈ LqF (E) | ∀X ∈ P : E[ZX | F ] ≤ 0}.
Inspection shows that P◦ = {Z ∈ LqF (E) | Z ≤ 0} by definition of P. Further,
define

sD ={Z ∈ LqF (E) | E[Z | F ] ≥ −1}
D ={Z ∈ LqF (E) | E[Z | F ] = −1}.

Note that if Z ∈ sD then E[−ZY | F ] ≤ Y and if Z ∈ D then E[−ZY | F ] = Y for
all Y ∈ L0(F). The next proposition is a module variant of the bipolar theorem.

Proposition 3.12. Let X,X ′ ∈ LpF (E). Then X ≥ X ′ if and only if E[Z(X−X ′) |
F ] ≤ 0 for all Z ∈ P◦.

Proof. This follows from the corresponding definitions. �

Lemma 3.13. Let f : LpF (E)→ L̄0(F) be a closed L0(F)–convex function.
(i) f is monotone if and only if 1P (f)domf∗ ⊂ 1P (f)P◦.
(ii) f is subcash–invariant if and only if 1P (f)domf∗ ⊂ 1P (f)sD.

(iii) f is cash–invariant if and only if 1P (f)domf∗ ⊂ 1P (f)D.
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Proof. Let X0 ∈ LpF (E) be such that f(X0) ∈ L0(F) on P (f).
(i) To prove the only if statement, assume by way of contradiction that there

is Z ∈ domf∗ with P [{Z > 0} ∩ P (f)] > 0. By monotonicity of f we have
f(X0 + n) ≤ f(X0) for all n ∈ N. Thus,

f∗(Z) ≥ E[Z(X0 + n) | F ]− f(X0 + n) ≥ nE[Z | F ] + E[ZX0 | F ]− f(X0)

which contradicts f∗(Z) < +∞ on P (f). To establish the if statement, recall the
decompositions (19) and (20). Thus, 1P (f)domf∗ ⊂ 1P (f)P◦ implies

f(X) = ess.sup
Z∈Lq

F (E)

(E[ZX | F ]− f∗(Z))

= ess.sup
Z∈domf∗

(E[ZX | F ]− f∗(Z))

= ess.sup
Z∈P◦

(E[ZX | F ]− f∗(Z)),

for all X ∈ LpF (E). Hence, by Proposition 3.12, f is monotone.
(ii) To prove the only if statement, let Z ∈ domf∗ and assume that P [{E[Z |

F ] < −1} ∩ P (f)] > 0. By subcash invariance of f ,

f∗(Z) ≥ ess.sup
X∈Lp

F (E)

(E[ZX | F ]− f(X + nY )− nY )

X′=X+nY= ess.sup
X′∈Lp

F (E)

(E[Z(X ′ − nY ) | F ]− f(X ′)− nY )

= ess.sup
X′∈Lp

F (E)

(E[ZX ′ | F ]− f(X ′)− nY (E[Z | F ] + 1))

= f∗(Z)− nY (E[Z | F ] + 1)

for all Y ∈ L0
+(F) and n ∈ N which contradicts f∗(Z) < +∞ on P (f). To establish

the if statement, observe that the decompositions in (19) and (20) together with
1P (f)domf∗ ⊂ 1P (f)sD imply

f(X + Y ) = ess.sup
Z∈Lq

F (E)

(E[Z(X + Y ) | F ]− f∗(Z))

= ess.sup
Z∈domf∗

(E[Z(X + Y ) | F ]− f∗(Z))

= ess.sup
Z∈sD

(E[Z(X + Y ) | F ]− f∗(Z)) ≥ f(X)− Y

for all X ∈ LpF (E) and Y ∈ L0
+(F).

(iii) To prove the only if statement, assume that there is Z ∈ domf∗ with
P [{E[Z | F ] 6= −1} ∩ P (f)] > 0. Since f is cash invariant we derive for all
Y ∈ L0(F)

f∗(Z) ≥ E[Z(X0 + Y ) | F ]− f(X0 + Y ) = Y (E[Z | F ] + 1) +E[ZX0 | F ]− f(X0).

This contradicts f∗(Z) < +∞ on P (f). Conversely, to establish the if statement,
let X ∈ LpF (E) and Y ∈ L0(F). From the decompositions (19) and (20) together
with 1P (f)domf∗ ⊂ 1P (f)D we derive

f(X + Y ) = ess.sup
Z∈Lq

F (E)

(E[Z(X + Y ) | F ]− f∗(Z))

= ess.sup
Z∈domf∗

(E[Z(X + Y ) | F ]− f∗(Z))

= ess.sup
Z∈D

(E[Z(X + Y ) | F ]− f∗(Z)) = f(X)− Y.
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�

Two immediate consequences are the following representation results for mono-
tone subcash invariant L0(F)–convex functions and conditional risk measures.

Corollary 3.14. Let f : LpF (E)→ L̄0 be proper l.s.c. L0(F)–convex.
(i) If f is monotone and subcash invariant, then for all X ∈ LpF (E)

(21) f(X) = ess.sup
Z∈P◦∩sD

(E[ZX | F ]− f∗(Z)).

(ii) If f is monotone and cash invariant, then for all X ∈ LpF (E)

(22) f(X) = ess.sup
Z∈P◦∩D

(E[ZX | F ]− f∗(Z)).

Elements of P◦ ∩ D can be viewed as transition densities which serve as proba-
bilistic models relative to the initial information F and uncertain future events E .
In this sense, the economic interpretation of static risk measures is preserved under
assuming non trivial initial information.

4. Monotone and (sub)cash invariant hulls

4.1. Indicator and support functions. Let C ⊂ LpF (E) be an L0(F)–convex
set. We define the mapping M(· | C) : LpF (E)→ F by

M(X | C) = ess.sup{A ∈ F | 1AX ∈ 1AC}.

The set C has the closure property if for all X ∈ LpF (E)

1M(X|C)X ∈ 1M(X|C)C,

c.f. [FKV09]. The closure property should not be seen as a property in reference to
the topology of LpF (E). In fact, if 0 ∈ C (which implies that 1AC ⊂ C for all A ∈ F)
the closure property is closely related to order completeness as it states that a family
(1AX)A ⊂ C has a least upper bound in C, namely ess.supA1AX = 1M(X|C)X.

From now on we assume that C has the closure property. The indicator function
δ(· | C) : LpF (E)→ L̄0

+(F) of C is defined by

δ(X | C) =

{
0 on M(X | C)
+∞ on M(X | C)c

.

By the closure property of C, epiδ(· | C) = C × L0
+(F). A proper local function is

l.s.c. if and only if its epigraph is closed, c.f. Proposition 3.4 in [FKV09]. Thus,
δ(· | C) is l.s.c. if and only if C is closed.

The support function δ∗(· | C) : LqF (E)→ L̄0(F) of C is defined by

δ∗(Z | C) = ess.sup
X∈C

E[ZX | F ].

Since C is L0(F)–convex (in particular 1AX + 1AcX ′ ∈ C for all A ∈ F whenever
X,X ′ ∈ C) the support function of C coincides with the conjugate of the indicator
function δ(· | C), i.e. for all Z ∈ LqF (E)

(23) ess.sup
X∈Lp

F (E)

(E[ZX | F ]− δ(X | C)) = ess.sup
X∈C

E[ZX | F ].

Note that this is also the case if C = ∅. (23) justifies the notation δ∗(· | C) of the
support function.
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We define δ∗∗(· | C) : LpF (E)→ L̄0(F) as the conjugate of the support function,
i.e.

δ∗∗(X | C) = ess.sup
Z∈Lp

F (E)

(E[ZX | F ]− δ∗(Z | C)).

If C is closed, we have

(24) δ(· | C) = δ∗∗(· | C).

Lemma 4.1. Let P = {X ∈ LpF (E) | X ≥ 0} be the order inducing L0(F)–cone
and P◦ its polar L0(F)–cone. Then

δ(· | P) = δ∗(· | P◦)(25)
δ∗(· | P) = δ(· | P◦)(26)

δ∗(X | D) =

{
−X on M(X | L0(F))
∞ on M(X | L0(F))c

for all X ∈ LpF (E).(27)

Proof. To see (25), recall that δ∗(X | P◦) = ess.supZ∈P◦E[ZX | F ]. Further,
1M(X|P)X ≥ 0 implies 1M(X|P)ZX ≤ 0 for all Z ∈ P◦. Since M(X | P) ∈ F and
since P◦ is an L0(F)–cone we derive

1M(X|P) ess.sup
Z∈P◦

E[ZX | F ] = ess.sup
Z∈P◦

E[1M(X|P)ZX | F ] = 0.

This proves (25) on M(X | P).
By definition of M(X | P), 1AX /∈ P for all A ∈ F with P [A] > 0 and A ⊂

M(X | P)c. Since P is closed L0(F)–convex Theorem 2.8 in[FKV09] implies that
there exists Z ′0 ∈ L

q
F (E) and ε ∈ L0

++(F) with

(28) E[Z ′0X
′ | F ] + ε ≤ E[Z ′0X | F ]

on M(X | P)c for all X ′ ∈ P. The same is true if Z ′0 is replaced by Z0 = 1M(X|P)Z
′
0.

Since P is an L0(F)–cone we derive that E[Z0X
′ | F ] ≤ 0 for all X ′ ∈ P; whence

Z0 ∈ P◦. Further, since 0 ∈ P◦ we derive from (28) that E[Z0X | F ] > 0 on
M(X | F)c. Thus,

1M(X|P)c ess.sup
Z∈P◦

E[ZX | F ] ≥ 1M(X|P)c ess.sup
Y ∈L0

+(F)

Y E[Z0X | F ] = 1M(X|P)c(+∞)

as P◦ is an L0(F)–cone. This proves (25) on all of Ω.
The identity (26) follows by a dual argument as in (24).
To prove (27) we define f : LpF (E)→ L̄0(F),

f(X) = −1M(X|L0(F))X +∞1M(X|L0(F))c

and show that f∗ = δ(· | D). (Note that f is the function on the right hand side
of (27).) The identity in (27) then follows from a dual argument since D has the
closure property and is L0(F)–convex closed. By definition of f , we have

f∗(Z) = ess.sup
X∈Lp

F (E)

(E[ZX | F ]− f(X))

= ess.sup
X∈L0(F)

(XE[Z | F ] +X)

= ess.sup
X∈L0(F)

X(E[Z | F ] + 1)

for all Z ∈ LqF (E). The equality f∗ = δ(· | D) now follows from the observation
that M(Z | D) = {E[Z | F ] = −1} for all Z ∈ LqF (E). �



18 DAMIR FILIPOVIĆ, MICHAEL KUPPER, AND NICOLAS VOGELPOTH

4.2. Hulls.

Proposition 4.2. Let f : LpF (E)→ L̄0(F) be a proper L0(F)–convex function.
(i) The greatest monotone closed L0(F)–convex function majorized by f is

given by fP◦ : LpF (E)→ L̄0(F),

fP◦(X) = ess.sup
Z∈P◦

(E[ZX | F ]− f∗(Z)).

(ii) The greatest (sub)cash invariant closed L0(F)–convex function majorized
by f is given by f(s)D : LpF (E)→ L̄0(F),

f(s)D(X) = ess.sup
Z∈sD

(E[ZX | F ]− f∗(Z)).

(iii) The greatest monotone (sub)cash invariant closed L0(F)–convex function
majorized by f is given by fP◦,(s)D : LpF (E)→ L̄0(F),

fP◦,(s)D(X) = ess.sup
µ∈P◦∩sD

(µX − f∗(µ)).

Accordingly, we call fP◦ , f(s)D and fP◦,(s)D the monotone, (sub)cash invariant and
monotone (sub)cash invariant hull of f , respectively.

Proof. (i) Monotonicity of fP◦ follows from Lemma 3.13 (i) and closeness follows
from its definition. Further, fP◦ ≤ f∗∗ ≤ f . Now let g : LpF (E) → L̄0(F)
be a monotone closed L0(F)–convex function with g ≤ f . By Lemma 3.13 (i),
1P (g)domg∗ ⊂ 1P (g)P◦. Thus, g∗ = g∗ + δ(· | P◦) ≥ f∗ + δ(· | P◦). Let
f : LpF (E)→ L̄0(F) be a proper L0(F)–convex function. Since P◦ is closed L0(F)–
convex and has the closure property δ(· | P◦) is l.s.c. L0(F)–convex and hence

(29) (fP◦)∗ = f∗ + δ(· | P◦).
Hence, g = g∗∗ ≤ fP◦ .

(ii) follows similarly.
(iii) As in (29), one checks that (fP◦,(s)D)∗ = f∗ + δ(· | P◦ ∩ (s)D). Now the

assertion follows as in (i). �

The next remark provides us with an interpretation of monotone and cash in-
variant hulls.

Remark 4.3. Let f : LpF (E)→ L̄0(F) be proper L0(F)–convex.
(i) Define g : LpF (E)→ L̄0(F) by

g(X) = ess.inf
X′∈Lp

F (E),X′≤X
f(X ′).

Note that g need not be proper. For instance, take f = E[· | F ] : L1
F (E)→

L0(F), then g ≡ −∞. Nevertheless, g is L0(F)–convex and monotone
with g ≤ f , and g = f if and only if f is monotone. Moreover, if g is
closed then g = g∗∗ = fP◦ is the greatest monotone closed L0(F)–convex
function majorized by f . Indeed, for all X ∈ LpF (E)

g(X) = ess.inf
X1,X2∈Lp

F (E),X1+X2=X
(f(X1) + δ(X2 | P)).

With (26) of Lemma 4.1 one checks that the conjugate of the right hand
side equals f∗ + δ(· | P◦). Hence, g∗ = (fP◦)∗ by (29) and in turn g∗∗ =
fP◦ .
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(ii) Define h : LpF (E)→ L̄0(F) by

h(X) = ess.inf
Y ∈L0(F)

(f(X − Y )− Y ).

Then h is L0(F)–convex and cash invariant with h ≤ f , and h = f if and
only if f is cash invariant. Moreover, if h is closed then h = h∗∗ = fD is
the greatest cash invariant closed L0(F)–convex function majorized by f .
Indeed, by Lemma 4.1 (27) we have for all X ∈ LpF (E)

h(X) = ess.inf
X1,X2∈Lp

F (E),X1+X2=X
(f(X1) + δ∗(X2 | D)).

Inspection shows that the dual of the right hand side equals f∗ + δ(· | D).
As in (29) we have (fD)∗ = f∗ + δ(· | D). Hence, h∗ = (fD)∗ and in turn
h∗∗ = fD.

Let f : LpF (E)→ L̄0(F) be a proper L0(F)–convex function. Since

δ(· | P◦) + δ(· | (s)D) = δ(· | P◦ ∩ (s)D)

we derive
fP◦,(s)D = (fP◦)(s)D = (f(s)D)P◦

Further, note that if for instance f is (sub)cash invariant then fP◦,(s)D = fP◦ .
However, if f is monotone (sub)cash invariant we only have fP◦,(s)D = f∗∗ ≤ f as
f need not be closed in general.

5. Examples

5.1. Conditional mean variance as cash invariant hull. In this section, we
consider the L2 type module L2

F (E) and fix β ∈ R, β > 0. We define a conditional
variant f : L2

F (E)→ L0(F) of the L2(E)–(semi)–deviation risk measure by

f(X) = E[−X | F ] +
β

2
E[X2 | F ].

One checks that f is proper L0(F)–convex and by Hölder’s inequality in the form
of (4.13) in [KV09] f is continuous. Next, we consider the mapping h : L2

F (E) →
L0(F)
(30)

h(X) = ess.sup
Y ∈L0(F)

(f(X − Y )− Y ) = ess.sup
Y ∈L0(F)

(
E[−X | F ]− β

2
E[(X − Y )2 | F ]

)
.

An element Y ′ ∈ L0(F) which satisfies the first order condition

β(E[X | F ]− Y ′) = 0

is necessarily a maximizer of the integrands E[−X | F ]− β
2E[(X − Y )2 | F ] of the

righthand side of (30). Thus, plugging in the maximizer Y ∗ = E[X | F ] we derive
that h is of the form

h(X) = E[−X | F ] +
β

2
V ar[X | F ],

where V ar[X | F ] = E[X2 | F ] − E[X | F ]2 denotes the (generalized) conditional
variance of X ∈ L2

F (E). From this we derive that h is proper L0(F)–convex contin-
uous and in particular closed. By Remark 4.3 (ii) we therefore know that h = fD
is the greatest cash invariant closed L0(F)–convex function majorized by f .
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In line with the relevant literature we refer to fD as conditional mean variance.
Since fD is continuous Theorem 3.7 in [FKV09] implies that ∂fD(X) 6= ∅ for all
X ∈ L2

F (E). In particular, for all X ∈ L2
F (E) fD admits a representation of the

form
fD(X) = ess.sup

Z∈L2
F (E)

(E[ZX | F ]− f∗(Z)).

In what follows we will construct a subgradient of fD by means of the following
lemmas.

Lemma 5.1. Let g : L2
F (E)→ L0(F) be a function. If Z∗ ∈ L2

F (E) satisfies

g(X) = E[Z∗X | F ]− g∗(Z∗),
then Z∗ ∈ ∂g(X).

Proof. By definition,

(31) g∗(Z) ≥ E[ZX | F ]− g(X)

for all X,Z ∈ L2
F (E). Now, let X,Z∗ ∈ L2

F (E) and assume g(X) = E[Z∗X |
F ]− g∗(Z∗). Then, (31) implies g(X) ≤ E[Z∗X | F ]−E[Z∗X ′ | F ] + g(X ′) for all
X ′ ∈ L2

F (E), hence Z∗ ∈ ∂g(X). �

Lemma 5.2. Let fD : L2
F (E) → L0(F) denote the conditional mean variance.

Then,

(32) domf∗D = {Z ∈ L2
F (E) | E[Z | F ] = −1}.

Moreover, for all Z ∈ domf∗D

f∗D(Z) =
1

2β
E[(1 + Z)2 | F ]

and, in particular, (1 + Z)/β ∈ ∂f∗D(Z).

Proof. The conditional mean variance is cash invariant closed L0(F)–convex and
P (fD) = Ω. Hence, Lemma 3.13 (iii) yields the inclusion ”⊂” in (32).

To prove the reverse inclusion in (32), let Z ∈ L2
F (E) with E[Z | F ] = −1. We

will show that f∗(Z) = 1
2βE[(1 + Z)2 | F ]. To this end, observe

f∗(Z) = ess.sup
X∈L2

F (E)

(E[ZX | F ]− f(X))

= ess.sup
X∈L2

F (E)

(
E[(1 + Z)X | F ]− β

2
V ar[X | F ]

)
= ess.sup

X∈L2
F (E),E[X|F ]=0

(
E[(1 + Z)X | F ]− β

2
V ar[X | F ]

)
= ess.sup

X∈L2
F (E),E[X|F ]=0

E

[
(1 + Z)X − β

2
X2 | F

]
.(33)

An element X ′ ∈ L2
F (E) which satisfies the first order condition

(34) 1 + Z − βX∗ = 0

is necessarily a point wise maximizer of the integrands (1 + Z)X − β
2X

2 in (33)
(maximized over all of L2

F (E)). In view of (34) we therefore define the maximizer
X∗ = (1 + Z)/β; fortunately, E[X∗ | F ] = 0. Plugging X∗ into (33) yields the
assertion. �
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Combining lemmas 5.1 and 5.2 we conclude: if Z∗ ∈ L2
F (E) maximizes

fD(X) = ess.sup
Z∈L2

F (E)

(E[ZX | F ]− f∗D(Z))

= ess.sup
Z∈L2

F (E),E[Z|F ]=−1

(
E[ZX | F ]− 1

2β
E[(1 + Z)2 | F ]

)
(35)

that is
fD(X) = E[Z∗X | F ]− 1

2β
E[(1 + Z∗)2 | F ]

for some X ∈ L2
F (E), then Z∗ ∈ ∂fD(X).

Theorem 5.3. Let fD : L2
F (E) → L0(F) denote the conditional mean variance.

Then, for all X ∈ L2
F (E)

β(X − E[X | F ])− 1 ∈ ∂fD(X).

Proof. Let X ∈ L2
F (E). Since f(X − E[X | F ]) = f(X) + E[X | F ] we have

∂f(X − E[X | F ]) = ∂f(X). If Z ′ ∈ L2
F (E) satisfies the first order condition

(36) X − E[X | F ]− 1
β

(1 + Z∗) = 0

then Z ′ is necessarily a point wise maximizer of the integrands

Z(X − E[X | F ])− 1
2β

(1 + Z)2

in (35) (adjusted for −E[X | F ] and maximized over all of L2
F (E)). In view of (36)

we define the maximizer Z∗ = β(X − E[X | F ]) − 1; fortunately E[Z∗ | F ] = −1
which means that Z∗ maximizes (35). �

Example 5.4. If we let F = σ(An) as in Example 3.1 we can nicely relate the
preceding results to the static case results presented in [FK07]. More precisely, we
can identify f : L2

F (E) → L0(F) with a sequence of static L2(E)–(semi)–deviation
risk measures f = (f1, f2, f3, . . .), where fn : L2(E ∩Ai)→ R is given by

fn(X) = EPi [−X] +
β

2
EPi

[X2],

where EPi
[·] denotes the expectation with respect to the probability measure Pi.

As derived above, the greatest cash invariant closed L0(F)–convex function ma-
jorized by f is given by the conditional mean variance fD : L2

F (E) → L0(F)
which we can also identify with a sequence of static conditional mean variances
fD = (f1,D, f2,D, f3,D, . . .), where fn,D : L2(E ∩An)→ R is given by

fn,D(X) = EPn [−X] +
β

2
V arPn [X]

where V arPn [·] denotes the variance w.r.t. the probability measure Pn, n ∈ N.
Further, by Theorem 5.3 we know that for all X ∈ L2

F (E)

(β(X1 − EP1 [X1])− 1, β(X2 − EP2 [X2])− 1, β(X3 − EP3 [X3])− 1, . . .) ∈ ∂fD(X),

where Xn denotes the restriction of X to Ω ∩An which lies in L2(E ∩An), n ∈ N.
Alternatively, we could apply the results of Section 5.3 in [FK07]. According to

[FK07] the greatest cash invariant closed convex function majorized by fn is given
by the classical mean variance fn,D for each n ∈ N. Consequently, the greatest cash
invariant closed L0(F)–convex function majorized by f = (f1, f2, f3, . . .) must be
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fD = (f1,D, f2,D, f3,D, . . .). In the same way, one could proceed with the subgradient,
which however is not computed in [FK07].

5.2. Conditional monotone mean variance as monotone hull. As in the
previous section we consider the L2 type module L2

F (E) and fix β ∈ R, β > 0. To
ease notation we denote by f : L2

F (E) → L0(F) (in place of fD) the conditional
mean variance as introduced in the previous section. In line with Proposition 4.2
we define the conditional monotone mean variance fP◦ : L2

F (E) → L0(F) as the
greatest monotone (cash invariant) closed L0(F)–convex function majorized by f .
That is,

fP◦(X) = ess.sup
Z∈P◦

(E[ZX | F ]− f∗(Z))

= ess.sup
Z∈P◦∩D

(
E[ZX | F ]− 1

2β
E[(1 + Z)2 | F ]

)
(37)

By Theorem 3.2 in [KV09] the conditional monotone mean variance fP◦ is contin-
uous and ∂fP◦(X) 6= ∅ for all X ∈ L2

F (E). Again, in what follows, we explicitly
construct a subgradient.

Lemma 5.5. Let f : L2
F (E) → L0(F) and α : L2

F (E) → L̄0(F) be functions such
that α represents f in the sense that f = ess.supZ∈L2

F (E)(E[Z· | F ] − α(Z)). If
Z∗ ∈ L2

F (E) satisfies
f(X) = E[Z∗X | F ]− α(Z∗)

then Z∗ ∈ ∂f(X).

Proof. Since α represents f we have

(38) α(Z) ≥ E[ZX | F ]− f(X).

Now, let X,Z∗ ∈ L2
F (E) and assume f(X) = E[Z∗X | F ] − α(Z∗). Then, (38)

implies f(X) ≤ E[Z∗X | F ] − E[Z∗X ′ | F ] + f(X ′) for all X ′ ∈ L2
F (E), hence

Z∗ ∈ ∂f(X). �

Lemma 5.6. For all X ∈ L2
F (E) and Z ∈ L0

+(F) there exists Y ∈ L0(F) such that

E[(X + Y )− | F ] = Z.

Proof. Let X ∈ L2
F (E), Z ∈ L0

+(F) and define

Y = ess.sup{Y ′ ∈ L0(F) | E[(X + Y ′)− | F ] ≥ Z}.
Then Y is as required. Indeed, observe that the function L0(F) → L0

+(F), Y 7→
E[(X+Y )− | F ], is antitone, that is E[(X+Y1)− | F ] ≥ E[(X+Y2)− | F ] whenever
Y1 ≤ Y2. Further,

E[(X − n)− | F ]↗ +∞ a.s.
as n tends to +∞. Thus, there exists Y ′ ∈ L0(F) with E[(X+Y ′)− | F ] ≥ Z. Hence
Y ∈ L0(F) and by construction E[(X + Y )− | F ] ≥ Z. By way of contradiction,
assume that P [A > 0], A = {E[(X + Y )− | F ] > Z}. Let Yn = Y + 1/n, n ∈ N.
Then

E[(X + Yn)− | F ]↗ E[(X + Y )− | F ] a.s.
Hence, An = {E[(X + Yn)− | F ] > Z} ↗ A. Thus, there exists n0 ∈ N with
P [An0 ] > 0. But then,

E[(X + 1Ac
n0
Y + 1An0

Yn0)− | F ] ≥ Z
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and 1Ac
n0
Y + 1An0

Yn0 > Y on An0 in contradiction to the maximality of Y . Thus,
E[(X + Y )− | F ] = Z. �

Theorem 5.7. Let fP◦ : L2
F (E) → L0(F) denote the conditional monotone mean

variance. For X ∈ L2
F (E) let Y ∈ L0(F) be such that E[−β(X + Y )− | F ] = −1.

Then
−β(X + Y )− ∈ ∂fP◦(X).

(Due to Lemma 5.6, such Y exists.)

Proof. Let X ∈ L2
F (E). In view of Lemma 5.5, it suffices to show that Z∗ =

−β(X + Y )− maximizes (37).
Step 1. Due to f(X + Y ) = f(X) + Y for all Y ∈ L0(F) an element Z∗ ∈ P

maximizes

(39) ess.sup
Z∈P

(
E[ZX | F ]− 1

2β
E[(1 + Z)2 | F ]

)
if and only if it maximizes

ess.sup
Z∈P

(
E[Z(X + Y ) | F ]− 1

2β
E[(1 + Z)2 | F ]

)
.

Thus, we can assume that E[−βX− | F ] = −1 since else we could replace X by
X + Y for the unique Y ∈ L0(F) with E[−β(X + Y )− | F ] = −1.

Step 2. For all Z ∈ P

E[ZX | F ]− 1
2β
E[(1 + Z)2 | F ] = E

[
ZX − 1

2β
Z2 | F

]
− 3

2β
.

Hence, Z∗ ∈ P maximizes (39) if and only if it maximizes

ess.sup
Z∈P

E

[
ZX − 1

2β
Z2 | F

]
.

For Z∗ ∈ P the following statements are equivalent:
(i)

E

[
Z∗X − 1

2β
Z∗2 | F

]
= ess.sup

Z∈P
E

[
ZX − 1

2β
Z2 | F

]
.

(ii) For all Z ∈ P and ε ∈ [0, 1],

E

[
Z∗X − 1

2β
Z∗2 | F

]
≥ E

[
ZεX −

1
2β
Z2
ε | F

]
,

where Zε = εZ + (1− ε)Z∗. (Note that Zε ∈ P for all Z ∈ P.)
(iii) For all Z ∈ P,

d

dε
E

[
ZεX −

1
2β
Z2
ε | F

]
|ε=0 ≤ 0.

Indeed, for all Z ∈ P and ε ∈ [0, 1]

E

[
ZεX −

1
2β
Z2
ε | F

]
= εY1 −

ε2

2β
E[(Z − Z∗)2 | F ] + Y2

for some Y1 = Y1(Z,Z∗), Y2 = Y2(Z,Z∗) ∈ F . In particular, ε 7→ εY1 −
ε2

2βE[(Z − Z∗)2 | F ] + Y2 is point wise concave on [0, 1] and hence (iii)
implies (ii).
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(iv) For all Z ∈ P, E
[
(Z − Z∗)

(
X − 1

βZ
∗
)
| F
]
≤ 0.

Hence, Z∗ = −βX− ∈ P maximizes (39). �

Example 5.8. Again we employ the results of Section 5.3 in [FK07] to derive the
above results for the specific case of F = σ(An), c.f. Example 5.4. We identify the
conditional mean variance, this time simply denoted by f , with its corresponding
sequence of static mean variances f = (f1, f2, f3, . . .).

According to the above results, the greatest monotone closed L0(F)–convex func-
tion majorized by f is given by fP◦ : L2

F (E) → L0(F) identified with fP◦ =
(f1,P◦ , f2,P◦ , f3,P◦ , . . .), where fn,P◦ : L2(E ∩An)→ R is given by

fn,P◦(X) = sup
Z∈L2(E∩An),Z≤0,EPn [Z]=−1

(
EPn

[ZX]− 1
2β
EPn

[(1 + Z)2]
)
,

for all n ∈ N.
Alternatively, due to Section 5.3 in [FK07] the greatest monotone closed convex

function majorized by fn is given by the static monotone mean variance fn,P◦ for
each n ∈ N. Consequently, the greatest monotone closed L0(F)–convex function
majorized by f = (f1, f2, f3, . . .) must be fP◦ = (f1,P◦ , f2,P◦ , f3,P◦ , . . .).

Appendix A. Proof of Theorem 2.4

In this appendix we provide a prove of Zowe’s convex duality result in the form
of Theorem 2.4. The setup and notation is as in Section 2. We first present a
topological lemma.

Lemma A.1. There exists a base of neighborhoods V of 0 ∈ Lk(G) such that

(40) V = (V + Lk+(G)) ∩ (V − Lk+(G)),

where Lk+(G) = {X ∈ Lk(G) | X ≥ 0}, k ∈ [1,+∞] and G ⊂ E denotes a generic
sub σ–algebra of E.

Proof. For each n ∈ N we denote by B1/n the ball of radius 1/n centered at
0 ∈ Lk(G). The collection (B1/n) is the canonical base of neighborhoods in Lk(G).
We claim that V1/n = (B1/n+Lk+(G))∩ (B1/n−Lk+(G)), n ∈ N, defines a neighbor-
hood base as required. Indeed, each V1/n satisfies (40) by construction. Further,
B1/n ⊂ V1/n and V1/(2n) ⊂ B1/n for each n ∈ N implies that (V1/n) is a base of
neighborhoods. �

The epigraph epif of a function f : Lp(E)→ Lr(F) is understood as {(X,Y ) ∈
Lp(E) × Lr(F) | f(X) ≤ Y }. The next lemma proves the first assertion of Theo-
rem 2.4.

Lemma A.2. Let f : Lp(E) → Lr(F) be a convex function. If f is continuous at
X0 ∈ Lp(E) then f has a subgradient at X0.

Proof. The set

A = epif − {(X0, Y ) ∈ {X0} × Lr(F) | Y ≤ f(X0)}
is nonempty and convex. Thus,

B =
⋃

λ∈[0,+∞)

λA
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is a convex cone in Lp(E) × Lr(F), that is B + B ⊂ B and λB ⊂ B for all λ ∈
[0,+∞). By means of B we will construct a sublinear mapping p : Lp(E)→ Lr(F),
that is, p is subadditive p(X1 +X2) ≤ p(X1) + p(X2) and positively homogeneous
p(λX1) = λp(X1) for all X1, X2 ∈ Lp(E) and λ ∈ [0,+∞). To this end, we define

SX = {Y ∈ Lr(F) | (X,Y ) ∈ B},
for all X ∈ Lp(E). We will show that SX is nonempty and bounded from below for
all X ∈ Lp(E).

Since B is a convex cone we observe first that

(41) SX1 + SX2 ⊂ SX1+X2 , for all X1, X2 ∈ Lp(E).

For X ∈ Lp(E) we have

(X, f(X0 +X)− f(X0)) = (X0 +X, f(X0 +X))− (X0, f(X0)) ∈ A,
and hence (X, f(X0 +X)− f(X0)) ∈ B. Thus,

(42) SX 6= ∅ for all X ∈ Lp(E).

Let (0, Y ) ∈ B, Y 6= 0. Then (0, Y ) = λ((X1, Y1) − (X2, Y2)) for some λ ∈
(0,+∞), X1 = X2 = X0 and Y1 ≥ f(X0) ≥ Y2. Thus, Y = λ(Y1 − Y2) ≥ 0, and
hence

(43) S0 ⊂ Lr+(F).

For X ∈ Lp(E) take Y ∈ S−X which is possible due to (42). From (41) and (43)
we derive for all Z ∈ SX

Z + Y ∈ SX + S−X ⊂ S0 ⊂ Lr+(F).

Hence −Y is a lower bound for SX . Since Lr(F) is order complete the mapping
p : Lp(E)→ Lr(F),

p(X) = ess.inf{Y | Y ∈ SX}
is well defined. Next, we show that p is sublinear.

For λ ∈ (0,+∞) we have λB = B, and hence λp(X) = ess.inf{λY | (X,Y ) ∈
B} = ess.inf{λY | (λX, λY ) ∈ B} = p(λX). Since p(0) = 0 it follows that p is
positively homogeneous. Further, from (41) we derive for all X1, X2 ∈ Lp(E)

p(X1 +X2) ≤ Y1 + Y2, for all Y1 ∈ SX1 , Y2 ∈ SX2 .

Thus, p(X1 +X2) ≤ p(X1) + p(X2). Hence, p is subadditive and in turn sublinear.
By the Hahn–Banach extension theorem in the form of Theorem 8.30 in [AB06]
there exists a linear mapping µ : Lp(E) → Lr(F) such that µX ≤ p(X) for all
X ∈ Lp(E). Since f(X)− f(X0) ∈ SX−X0 for all X ∈ Lp(E) we have

(44) µ(X −X0) ≤ p(X −X0) ≤ f(X)− f(X0).

for all X ∈ Lp(E). Thus, µ is a subgradient of f at X0 if we can show that µ is
continuous.

To this end, let V be a neighborhood of 0 ∈ Lr(F). We can assume that V = −V
and, due to Lemma A.1, V = (V +Lr+(F))∩ (V −Lr+(F)). Since f is continuous at
X0 there exists a symmetric neighborhood W (W = −W ) of 0 ∈ Lp(E) such that

f(X0 +W ) ⊂ f(X0) + V.

Hence, f(X0 +W )− f(X0) ⊂ V and therefore

f(X0 +X)− f(X0) ∈ V for all X ∈W.
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From (44) we derive for all X ∈ Lp(E) that µX = µ(X0 +X −X0) ≤ f(X0 +X)−
f(X0). Hence for all X ∈W = −W

µX ∈ f(X0 +X)− f(X0)− Lr+(F) ⊂ V − Lr+(F)

and

µX ∈ −(f(X0 −X)− f(X0)− Lr+(F)) ⊂ −V + Lr+(F) = V + Lr+(F).

We conclude that µ(W ) ⊂ (V + Lr+(F)) ∩ (V − Lr+(F)) = V and continuity of µ
follows at 0 ∈ Lp(E). Linearity of µ yields continuity on all of Lp(E). �

The second assertion of Theorem 2.4 can be proved as follows. We let f :
Lp(E) → Lr(F) be a convex function which is continuous at X0 ∈ Lp(E). We
define domf∗∗ = {X ∈ Lp(E) | f∗∗(X) ∈ Lr(F)}. Lemma A.2 together with (3)
yields domf∗ 6= ∅ and we get

µX0 − f∗(µ) ≤ µX0 − (µX0 − f(X0)) = f(X0), for all µ ∈ domf∗.

Hence, X0 ∈ domf∗∗ and f∗∗(X0) ≤ f(X0). The reverse inequality follows from
the observation that again Lemma A.2 together with (3) yields the existence of µ0

such that f(X0) = µ0X0 − f∗(µ0) which concludes the proof.
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