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Abstract

In this paper, we propose and investigate numerical methods based on QR factorization
for computing all or some Lyapunov or Sacker-Sell spectral intervals for linear differential-
algebraic equations. Furthermore, a perturbation and error analysis for these methods is
presented. We investigate how errors in the data and in the numerical integration affect the
accuracy of the approximate spectral intervals. Although we need to integrate numerically
some differential-algebraic systems on usually very long time-intervals, under certain assump-
tions, it is shown that the error of the computed spectral intervals can be controlled by the
local error of numerical integration and the error in solving the algebraic constraint. Some
numerical examples are presented to illustrate the theoretical results.
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1 Introduction

In this paper we discuss the construction and the analysis of numerical methods for computing
spectral intervals of linear systems of differential-algebraic equations (DAEs)

E(t)ẋ = A(t)x+ f(t), (1)

on the half-line I = [0,∞), together with an initial condition

x(0) = x0. (2)

The spectral intervals are associated with the homogenous equation

E(t)ẋ = A(t)x, (3)

and they allow the analysis of the asymptotic behavior or the growth rate of solutions to initial
value problems.
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Here we assume that E,A ∈ C(I,Rn×n) and f ∈ C(I,Rn) are sufficiently smooth functions.
We use the notation C(I,Rn×n) to denote the space of continuous functions from I to Rn×n.

Linear systems of the form (1) occur when one linearizes a general implicit nonlinear system
of DAEs F (t, x, ẋ) = 0, t ∈ I, along a particular solution [9]. In this paper we restrict ourselves
to regular DAEs, i.e., we require that (1) has a unique solution for sufficiently smooth E,A, f
and appropriately chosen (consistent) initial conditions, see [36] for a discussion of existence and
uniqueness of solution of more general nonregular DAEs.

DAEs arise in constrained multibody dynamics [27], electrical circuit simulation [32, 33], chem-
ical engineering [25, 26] and many other applications, i n particular when the dynamics of a system
is constrained or when different physical models are coupled together in automatically generated
models [42]. While DAEs provide a very convenient modelling concept, many numerical difficulties
arise due to the fact that the dynamics is constrained to a manifold, which often is only given
implicitly, see [36]. These difficulties are typically characterized by one of many index concepts
see [7, 31, 34, 36].

The stability theory for ordinary differential equations (ODEs) and its important part, the
spectral theory, whose basic concepts and fundamental results were already developed by Lyapunov
in [41], was studied extensively in the last 100 years, see [1] and references therein. Numerical
methods for computing spectral intervals were introduced and analyzed since 1980, see [4, 30, 28].
However, only recently, a sequence of works by Dieci and Van Vleck gave a mathematically rigorous
verification for these methods [20, 21, 22, 23, 24].

The stability theory for DAEs has been developed much more recently. The fact that the
dynamics of DAEs is constrained, also requires a modification of most classical concepts of the
qualitative theory that was developed for ODEs. Only recently, the spectral theory has been
extended from ODEs to DAEs, see [12, 13, 11] and [40]. In particular, in [40], the classical spectral
concepts (Lyapunov, Bohl, Sacker-Sell spectral intervals) for ODEs were extended systematically
to general linear DAEs with variable coefficients of the form (1). It was shown that substantial
differences in the theory arise and that most statements in the classical ODE theory hold for
DAEs only under further restrictions. Furthermore, in [40] also an initial attempt to develop
QR methods for computing spectral intervals of DAEs was presented. These methods use the
underlying implicit ODEs for the computation of the spectral intervals.

In this paper we develop new QR methods that apply directly to DAEs. Furthermore, following
the ideas given in [21, 22, 24] for ODEs, we also present a perturbation and error analysis which
proves the applicability of our algorithms. One of the most important results that we show here
is that, although we need to numerically integrate some DAE systems on usually very long time-
intervals, the error in the spectral intervals depends essentially only on the local error of the
numerical integration, the error arising in the solution of the algebraic constraint equations, and
on the degree to which the DAE is integrally separated. These errors, however, can be easily kept
under control by using an appropriate integration method for strangeness-free DAEs accompanied
with a local error estimator and stepsize control, while integral separation is a natural and prevalent
structural condition that is also central to the robustness of Lyapunov exponents. Our emphasis
in this work is on strangeness-free DAEs that enjoy the integral separation property. Results in
the spirit of the present work in the non-integrally separated case for ODEs appear in [22] and
[23].

The outline of the paper is as follows. In the next section, we recall some fundamental concepts
and results from the spectral theory of differential-algebraic equations as developed in [40]. In
Section 3, we construct new discrete and continuous QR methods for approximating the spectral
intervals and discuss their implementation. These new QR methods are compared with those
proposed in [40]. A detailed perturbation and error analysis for the new QR methods is given in
Section 4. Finally, in Section 5 we present numerical examples to illustrate the theoretical results
and the properties of the numerical methods. We finish the paper with some conclusions.
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2 Spectral theory for DAEs

General linear DAEs with variable coefficients have been studied in detail in the last twenty years,
see [36] and the references therein. In order to understand the solution behavior and to solve them
numerically, it is essential to incorporate the necessary information about derivatives of equations
into the system. This has led to the concept of the strangeness-index, which under very mild
assumptions allows for the DAE and (some of) its derivatives to be reformulated as a system
with the same solution, that is strangeness-free, i.e., no further differentiations are needed and the
algebraic and differential part of the system are separated. Note that we have assumed that the
system is regular, otherwise also consistency conditions would arise. With this in mind, we may
assume that the homogeneous DAE in consideration is already strangeness-free and has the form

E(t)ẋ = A(t)x, t ∈ I, (4)

where

E(t) =
[
E1(t)

0

]
, A(t) =

[
A1(t)
A2(t)

]
,

E1 ∈ C(I,Rd×n) and A2 ∈ C(I,R(n−d)×n) are such that the matrix

Ē(t) :=
[
E1(t)
A2(t)

]
(5)

is invertible for all t. As a direct consequence, then E1 and A2 are of full row-rank. For the
numerical analysis, the solutions of (4) (and the coefficients E,A) are supposed to be sufficiently
smooth so that the convergence result for the numerical methods [36] applied to (4) hold. It should
be already noted here that the conditioning of the matrix Ē with respect to inversion will be an
essential factor in the error analysis.

2.1 Lyapunov exponents and Lyapunov spectral intervals

We first discuss the concepts of Lyapunov exponents and Lyapunov spectral intervals.

Definition 1 A matrix function X ∈ C1(I,Rn×k), d ≤ k ≤ n, is called fundamental solution
matrix of (4) if each of its columns is a solution to (4) and rankX(t) = d for all t ∈ I.

A fundamental solution matrix is said to be maximal if k = n and minimal if k = d, respec-
tively.

A major difference between ODEs and DAEs is that fundamental solution matrices for DAEs are
not necessarily square and of full-rank. Every fundamental solution matrix of a strangeness-free
DAE (4) with d differential equations has exactly d linearly independent columns and a minimal
fundamental matrix solution can be easily made maximal by adding n− d zero columns.

Definition 2 For a given fundamental solution matrix X of a strangeness-free DAE system of
the form (4) and for d ≤ k ≤ n, we introduce

λu
i = lim sup

t→∞

1
t

ln ||X(t)ei|| and λ`
i = lim inf

t→∞

1
t

ln ||X(t)ei|| , i = 1, 2, ..., k,

where ei denotes the i-th unit vector. The columns of a minimal fundamental solution matrix form
a normal basis if Σd

i=1λ
u
i is minimal. The λu

i , i = 1, 2, ..., d, belonging to a normal basis are called
(upper) Lyapunov exponents and the intervals [λ`

i , λ
u
i ], i = 1, 2, ..., d, are called Lyapunov spectral

intervals. The set of the Lyapunov spectral intervals is called the Lyapunov spectrum ΣL of (4).
The DAE is called Lyapunov regular if all spectral intervals consist of single points.

Definition 3 Suppose that U ∈ C(I,Rn×n) and V ∈ C1(I,Rn×n) are nonsingular matrix func-
tions such that V and V −1 are bounded. Then the transformed DAE system

Ẽ(t) ˙̃x = Ã(t)x̃, (6)
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with Ẽ = UEV , Ã = UAV − UEV̇ and x = V x̃ is called globally kinematically equivalent
to (4) and the transformation is called a global kinematic equivalence transformation. If U ∈
C1(I,Rn×n) and, furthermore, also U and U−1 are bounded then we call this a strong global
kinematic equivalence transformation.

It is clear that the Lyapunov exponents of a DAE system as well as the normality of a basis formed
by the columns of a fundamental solution matrix are preserved under global kinematic equivalence
transformations. The following lemma is the key to constructing and understanding QR methods
and it is in fact a simplified version of [40, Lemma 7].

Lemma 4 Consider a strangeness-free DAE system of the form (4) with continuous coefficients
and a minimal fundamental solution matrix X. Then there exist matrix functions V ∈ C(I,Rn×d)
and U ∈ C1(I,Rn×d) with orthonormal columns such that in the fundamental matrix equation
EẊ = AX associated with (4), the change of variables X = UR, with R ∈ C1(I,Rd×d) upper
triangular with positive diagonal elements, and the multiplication of both sides of the system from
the left with V T leads to the system

EṘ = AR, (7)

where E := V TEU is nonsingular, A := V TAU − V TEU̇ , and both of them are upper triangular.

Proof. Since a smooth and full column rank matrix function has a smooth QR decomposition,
see [15, Prop. 2.3], there exists a matrix function U with orthonormal columns such that X =
UR, where R is nonsingular and upper triangular. This decomposition is unique if the diagonal
elements of R are chosen positive. By substituting X = UR into the fundamental matrix equation
EẊ = AX, we obtain

EUṘ = (AU − EU̇)R. (8)

Since we have assumed that the DAE is strangeness-free and since A2U = 0, we have that the
matrix EU must have full column-rank. Thus, there exists a smooth QR decomposition

EU = V E ,

where the columns of V are orthornormal and E is upper triangular with positive diagonal elements.
Multiplying both sides of (8) by V T , we obtain

EṘ = [V TAU − V TEU̇ ]R.

The matrix function A := V TAU − V TEU̇ is upper triangular as well. This completes the proof.

Remark 5 Lemma 4 holds for arbitrary matrix functions X ∈ C1(I,Rn×p), with columns that
are linearly independent solutions of (4). However, this lemma shows only the existence of a pair
of orthogonal matrix functions U and V that brings the system into upper triangular implicit
ODE form. In practice it is necessary to construct these transformation matrices numerically.
The construction of U, V was introduced in [40] for implicit ODEs and also implemented in the
continuous QR algorithm presented there. In Section 3, we will extend that construction to the
general case of (4) and also to the case that only the QR decomposition of parts of the fundamental
solution matrix is computed.

System (7) is an implicit ODE, since E is nonsingular. It is called essentially underlying implicit
ODE system (EUODE) of (4), and it can be turned into an ODE by multiplication with E−1 from
the left. The idea of constructing EUODEs as in Lemma 4 was used in [3] for properly-formulated
linear DAEs and their adjoints. Since orthonormal changes of basis keep the Euclidean norm
invariant, the Lyapunov exponents of the columns of the matrices X and R, and therefore those
of the two systems are the same. Thus, in theory, the spectral analysis of the DAE (4) can be
carried via its EUODE, provided that the data of the EUODE can be computed accurately, which
is not the case if E is ill-conditioned.
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2.2 Stability of Lyapunov exponents

In order to study the behavior of Lyapunov exponents under small perturbations, we consider a
perturbed system of DAEs

[E(t) + ∆E(t)]ẋ = [A(t) + ∆A(t)]x, t ∈ I, (9)

where we restrict the perturbations to have the form

∆E(t) =
[

∆E1(t)
0

]
, ∆A(t) =

[
∆A1(t)
∆A2(t)

]
.

Here ∆E and ∆A are assumed to be as smooth as E and A, respectively. Perturbations of this
structure are called admissible. The DAE (4) is said to be robustly strangeness-free if it is still
strangeness-free under all sufficiently small admissible perturbations. Note that it is essential
to restrict the perturbations to this structure, since otherwise arbitrary small perturbations can
change the strangeness-index and therefore also the smoothness-requirements of the system, see
[35].

It is also easy to see that the DAE (4) is robustly strangeness-free under admissible perturba-
tions if and only if the matrix function Ē as in (5) is boundedly invertible.

In the following we restrict ourselves to robustly strangeness-free DAE systems under admissible
perturbations.

Definition 6 The upper Lyapunov exponents λu
1 ≥ ... ≥ λu

d of (4) are said to be stable if for
any ε > 0, there exists δ > 0 such that the conditions supt ||∆E(t)|| < δ, supt ||∆A(t)|| < δ on
the admissible perturbations imply that the perturbed DAE system (9) is strangeness-free, with the
same number of d differential equations and a algebraic equations, and

|λu
i − γu

i | < ε, for all i = 1, 2, ..., d,

where the γu
i are the ordered upper Lyapunov exponents of the perturbed system (9).

It is clear that the stability of upper Lyapunov exponents is invariant under strong global kinematic
equivalence transformations.

Another concept that is needed in the following is that of integral separation.

Definition 7 A minimal fundamental solution matrix X for (4) is called integrally separated if
for i = 1, 2, ..., d− 1 there exist constants c1 > 0 and c2 > 0 such that

||X(t)ei||
||X(s)ei||

· ||X(s)ei+1||
||X(t)ei+1||

≥ c2e
c1(t−s),

for all t, s with t ≥ s ≥ 0. If a DAE system has an integrally separated minimal fundamental
solution matrix, then we say it has the integral separation property.

The integral separation property is invariant under strong global kinematic equivalence transfor-
mations. Furthermore, by using the EUODE (7) and the result on the stability of Lyapunov
exponents for ODEs [1], it is not difficult to show that if the upper Lyapunov exponents of (4)
are distinct, then they are stable under admissible perturbations if and only if there exists an
integrally separated fundamental matrix and some extra boundedness conditions posed on E,A
hold, see [40, Section 3.2].

The integral separation of a fundamental matrix solution can be equivalently expressed in terms
of the integral separation of a sequence of functions. Two continuous and bounded functions g1
and g2 are said to be integrally separated if there exist constants c1, c2 ≥ 0, such that∫ t

s

(g1(r)− g2(r)) dr ≥ c1(t− s)− c2, for all t > s ≥ 0.
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In practice, the integral separation of two functions can be tested via their Steklov difference.
Given H > 0, we introduce the Steklov averages defined by

gH
i (t) :=

1
H

∫ t+H

t

gi(r)dr, (i = 1, 2).

It was shown in [1] that two functions g1, g2 are integrally separated if and only if there exists a
scalar H > 0 such that their Steklov difference is positive, i.e., for H sufficiently large, there exists
a constant c > 0 such that

gH
1 (t)− gH

2 (t) ≥ c > 0, for all t ≥ 0.

For further discussions on integral separation and its importance in the course of approximating
Lyapunov exponents, see [20, 22, 23, 24].

2.3 Sacker-Sell spectrum and Bohl exponents

The second spectral concept that we discuss is that of exponential dichotomy. For this we introduce
shifted DAE systems.

Definition 8 Consider a strangeness-free DAE of the form (4). For λ ∈ R, the DAE system

E(t)ẋ = [A(t)− λE(t)]x, t ∈ I, (10)

is called a shifted DAE system.

By using the transformation as in Lemma 4, we obtain the corresponding shifted EUODE for (10)

E ż = (A− λE)z. (11)

The DAE (4) is said to have exponential dichotomy if its corresponding EUODE has exponential
dichotomy.

Definition 9 The Sacker-Sell (or exponential dichotomy) spectrum of the DAE system (4) is
defined by

ΣS := {λ ∈ R, the shifted DAE (10) does not have an exponential dichotomy} . (12)

This means that the Sacker-Sell spectrum of the DAE system (4) is exactly the Sacker-Sell spec-
trum of its EUODE (7).

For the numerical computation of the Sacker-Sell spectrum we actually make use of the Bohl
exponents of the DAEs. These exponents were introduced in [6] for ODEs, see also [14], and
extended to DAEs in [40].

Definition 10 Let x be a nontrivial solution of (4). The (upper) Bohl exponent κu
B(x) of this

solution is the greatest lower bound of all those values ρ for which there exists a constant Nρ > 0
such that

||x(t)|| ≤ Nρe
ρ(t−s) ||x(s)|| (13)

for all t ≥ s ≥ 0. If such numbers ρ do not exist, then one sets κu
B(x) = +∞.

Similarly, the lower Bohl exponent κ`
B(x) is the least upper bound of all those values ρ′ for

which there exists a constant N ′ρ > 0 such that

||x(t)|| ≥ N ′ρe
ρ′(t−s) ||x(s)|| , 0 ≤ s ≤ t. (14)
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It follows directly from the definition that Lyapunov exponents and Bohl exponents are related
via

κ`
B(x) ≤ λ`(x) ≤ λu(x) ≤ κu

B(x).

Bohl exponents characterize the uniform growth rate of solutions, while Lyapunov exponents
simply characterize the growth rate of solutions departing from t = 0. The formulas of Bohl
exponents for ODEs, see e.g. [14], directly generalize to solutions x of DAEs, i.e.

κu
B(x) = lim sup

s,t−s→∞

ln ||x(t)|| − ln ||x(s)||
t− s

, κ`
B(x) = lim inf

s,t−s→∞

ln ||x(t)|| − ln ||x(s)||
t− s

, (15)

and therefore the endpoints of the Sacker-Sell spectral intervals can be computed by the Bohl
exponents of certain fundamental solutions, see [40]. Moreover, unlike the Lyapunov exponents,
under admissible perturbations, the Bohl exponents are stable without any extra assumption, see
[11, 40]. We will use the Bohl exponents to compute the end-points of the Sacker-Sell spectral
intervals.

2.4 Obtaining Rates and Directions

In this section we discuss why in the case of integrally separated EUODE (7) robust Lyapunov
exponents and Sacker-Sell spectrum/Bohl exponents may be obtained from the diagonal of R.
In particular, if for some nonsingular, upper triangular R0 the fundamental matrix solution R of
EUODE (7) with R(0) = R0 is integrally separated, and for E = [ei,j ], A = [ai,j ] both upper
triangular, then it follows from [23, Theorems 6.1 and 6.2] applied to E−1A that robust (upper)
Lyapunov exponents are given by

λi = lim sup
t→∞

1
t

∫ t

0

ai,i(s)
ei,i(s)

ds

and the upper and lower Bohl exponents are given by

αi = inf
t0

lim inf
t→∞

1
t

∫ t0+t

t0

ai,i(s)
ei,i(s)

ds, βi = sup
t0

lim sup
t→∞

1
t

∫ t0+t

t0

ai,i(s)
ei,i(s)

ds.

To obtain the directions associated with the rates of growth defined by the diagonal elements
of R(t), we consider the approach taken in [20] for the case of integrally separated fundamental
solution matrices. In particular, consider diag(R(t))−1R(t) with R(t) integrally separated. Then
it is shown in [20, Lemma 7.4] that limt→∞ diag(R(t))−1R(t) exists and is a unit upper triangular
matrix Z. Thus, to determine initial conditions that asymptotically behave in accordance with
the rate given by the i-th diagonal entry, one solves the linear system Zx0 = ei for the initial
condition x0.

3 QR Methods for DAEs

In this section we derive numerical methods to compute the Lyapunov and Bohl exponents. We
extend the approaches using smooth QR factorizations that were derived for the computation
of spectral intervals for ODEs in [19, 20, 23] to DAEs. We assume again that the DAE system
is given in strangeness-free form (4), i.e., whenever the evaluation of the functions E(t), A(t) is
needed, this has to be computed from the derivative array as described in [36]. This can be done
for example with the FORTRAN code GELDA [38] or the corresponding MATLAB version [39]. QR
methods for computing Lyapunov and Sacker-Sell spectra of DAEs in strangeness-free form were
first suggested in [40], on the basis of using the EUODE. In the following we will extend and
improve these methods.

Let us briefly recall the main idea leading to the methods given in [40]. We determine a smooth
orthogonal matrix function Q̃ ∈ C1(I,Rn×n) such that

A2Q̃ =
[

0 Ã22

]
, (16)
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with Ã22 pointwise nonsingular. It has been shown in [10, 15], that such a Q̃ always exists.
Moreover, it can be assumed that Ã22 is upper triangular. It is also clear that in general Q̃ is not
unique. However, since this transformation is a kinematic equivalence transformation, the spectra
of the original and the transformed system are the same. So, matrix functions Q̃ may be chosen
to be different, but at the end the computed spectral intervals are the same.

The transformation x̃ = Q̃Tx leads to a transformed homogeneous DAE for x̃ with coefficients[
Ẽ11 Ẽ12

0 0

]
:=
[
E1

0

]
Q̃,

[
Ã11 Ã12

0 Ã22

]
:=
[
A1

A2

]
Q̃−

[
E1

0

]
˙̃Q. (17)

Since in this form the solution component x̃2 associated with the algebraic equations vanishes
identically, i.e., x̃2 = 0, the spectral intervals of the DAE are those of the underlying implicit ODE

Ẽ11
˙̃x1 = Ã11x1. (18)

In this way, the discrete and continuous QR method for ODEs of [20] could be easily adopted to
DAEs, see [40].

In this paper, however, we propose discrete and continuous QRmethods which apply directly to
(4). Furthermore, in contrast to [40] and all the methods for ODEs, we also consider the case that
only parts of the spectral intervals are computed. For this, let X ∈ C1(I,Rn×p) be an arbitrary
matrix function whose columns are linearly independent solutions of (4), with X0 := X(0) given,
1 ≤ p ≤ d. For the computation of the spectral intervals, we want to determine a factorization
X(t) = Q(t)R(t), t ∈ I, where the columns of Q(t) are orthonormal, i.e., QT (t)Q(t) = Ip, and
R(t) is upper triangular. It is clear that if the diagonal elements of R are chosen positive, then
such a pair of matrix functions Q and R exists and is unique.

3.1 Discrete QR algorithm

In the discrete QR algorithm, the fundamental solution matrix X and its triangular factor R are
indirectly evaluated by a reorthogonalized integration of the DAE system (4) via an appropriate
QR factorization. We first choose a mesh 0 = t0 < t1 < ... < tN−1 < tN = T . At t0, we perform
the QR factorization

X0 = Q(t0)R(t0),

where R(t0) has positive diagonal elements.
For j = 1, 2, . . . , N , let X(t, tj−1) be the numerical solution (via numerical integration) to the

matrix initial value problem

E(t)Ẋ(t, tj−1) = A(t)X(t, tj−1), tj−1 ≤ t ≤ tj , (19)
X(tj−1, tj−1) = Q(tj−1).

We stress that Q(tj−1) defined in this way is a consistent initial value assigned at tj−1 for the
DAE system (4).

Then we carry out the QR factorization

X(tj , tj−1) = Q(tj)R(tj , tj−1), (20)

whereR(tj , tj−1) =: [rk,`(tj , tj−1)] has positive diagonal elements. The value of the matrix function
X at time tj is then determined by

X(tj) = Q(tj)R(tj , tj−1)R(tj−1, tj−2) . . . R(t2, t1)R(t1, t0)R(t0), (21)

which is again a QR factorization with positive diagonal elements. Since this is unique, for the
QR factorization X(tj) = Q(tj)R(tj) with positive diagonal elements in R(tj) =: [rk,`(tj)], we
have

R(tj) = R(tj , tj−1)R(tj−1, tj−2) . . . R(t2, t1)R(t1, t0)R(t0). (22)
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Thus, in particular, we have

1
tj

ln[ri,i(tj)] =
1
tj

ln
j∏

`=1

[ri,i(tj , tj−1)] =
1
tj

j∑
`=1

ln[ri,i(tj , tj−1)], i = 1, 2, . . . , p, (23)

and we define functions λi(t) via

λi(t) :=
1
t

ln[ri,i(t)], i = 1, 2, . . . , p. (24)

Then, under the assumption that the columns of X (or equivalently those of R) are integrally sep-
arated, we can approximate the Lyapunov spectral intervals by solving the associated optimization
problems infτ≤t≤T λi(t) and supτ≤t≤T λi(t), i = 1, 2, . . . , p, respectively, with a given τ ∈ (0, T ).

The approximation of the Bohl exponents and hence of the Sacker-Sell spectrum is carried out
analogously, see [40], by solving appropriate optimization problems associated with (15). Namely,
with H > 0, we define

ψH,i(t) :=
1
H

(ln[ri,i(t+H)]− ln[ri,i(t)]). (25)

It has been shown in [20, 40] that the Sacker-Sell spectral intervals for (4) can be approximated
by inf0≤t≤T−H ψH,i(t) and sup0≤t≤T−H ψH,i(t), where H > 0 is chosen sufficiently large.

We summarize the discrete QR algorithm in the following procedure.

Algorithm 1 (Discrete QR algorithm for computing Lyapunov spectra)

• Input: A pair of sufficiently smooth matrix functions (E,A) in the form of
the strangeness-free DAE (4) (if they are not available directly they must
be computed pointwise as output of a routine such as GELDA), a time interval
[0, T ], τ,H ∈ (0, T ), a mesh 0 = t0 < t1 < ... < tN−1 < tN = T and an initial
matrix X0 ∈ Rn×p.

• Output: Approximate bounds for the spectral intervals {λl
i, λ

u
i }

p
i=1,

associated with the first p columns of the fundamental solution matrix X(t).

• Initialization:

1. Set t0 := 0, and determine the QR factorization

X(t0) = Q0R0,

where R0 has positive diagonal elements.

2. Set λi(t0) := 0 and si(t0) := 0 for i = 1, . . . , p (for computing the sum in
(23).

While j < N

1. j := j + 1.

2. Solve the initial value problem (19) for X(t, tj−1) on [tj−1, tj ]. Denote
the computed numerical solution at t = tj by X̄(tj , tj−1).

3. Compute the QR factorization X̄(tj , tj−1) = QjRj with positive diagonal
elements (rj)i,i, i = 1, . . . , p.

4. Update si(tj) := si(tj−1) + ln[rj
i,i] and λi(tj) = 1

tj
si(tj), i = 1, 2, . . . , p.

5. If desired, check the integral separation property by using {si}p
i=1.

6. Update minτ≤t≤tj λi(t) and maxτ≤t≤tj λi(t), i = 1, 2, . . . , p.

9



The corresponding algorithm for computing the Bohl exponents and hence the Sacker-Sell spectra
is almost the same. The only difference is that in Step 6 of the algorithm, we update

min
0≤t≤tj−H

sH
i (t), max

0≤t≤tj−H
sH

i (t),

for tj > H, where

sH
i (t) :=

1
H

(si(t+H)− s(t)).

Remark 11 Algorithm 1 is almost the same as the corresponding discrete QR algorithm for
ODEs. The only differences are that an appropriate implicit DAE solver, e.g., a BDF or IRK
method, see [36], must be used for integrating the initial value problem (19) and that a consistent
initial value has to be computed to start the integration in each step.

It is not difficult to see that Algorithm 1 and the discrete QR method suggested in [40] are mathe-
matically equivalent, i.e., in exact arithmetic they produce the same factors Rj , and consequently,
also the same Lyapunov exponents λi(tj). Indeed, if at t = tj we compute Q̃(tj) defined by (16),
then,

X(tj) = Q̃(tj)T

[
X̃(tj)

0

]
and

X(tj , tj−1) = Q̃(tj)T

[
X̃(tj , tj−1)

0

]
= Q̃(tj)T

[
Q̂(tj)

0

]
R̂(tj , tj−1),

where X̃(tj , tj−1) is the corresponding solution to the underlying ODE (18) that satisfies
X̃(tj−1, tj−1) = Q̂(tj−1) and the factorization X̃(tj , tj−1) = Q̂(tj)X̂(tj , tj−1) is determined for
the first p columns of the matrices computed in [40]. Due to the uniqueness of the QR factoriza-
tion, we obtain

R(tj , tj−1) = R̂(tj , tj−1) and Q(tj) = Q̃(tj)T

[
Q̂(tj)

0

]
.

This variant is less advantageous from a computational point of view, because the extra task of
evaluating Q̃(tj) is needed. However, this computationally redundant transformation gives us an
insight in what happens in the background of the algorithm. In fact, we actually compute QR
factorizations of the solutions to the implicit underlying ODE (18). This observation will be useful
in the perturbation and error analysis of the QR methods in Section 4.

3.2 Continuous QR algorithm

For the continuous QR algorithm we assume that the unique factorization X(t) = Q(t)R(t) with
positive diagonal elements in R is to be determined for t ∈ I. For this we determine differential
equations for the Q factor and the scalar equations for the logarithms of the diagonal elements of
R elementwise. We will see that once the factor Q is obtained by numerical integration, then we
also obtain the logarithms of the diagonal elements of R.

Differentiating X = QR and inserting this into the DAE yields EQ̇R + EQṘ = AQR, or
equivalently

EQ̇+ EQṘR−1 = AQ. (26)

Note that the linear independence of the columns of X implies the invertibility of R. The DAE
(26) is a nonlinear strangeness-free (differentiation-index one) DAE system for Q with the same
algebraic part as that of the DAE system (4) for X. The differential part is linear in Q̇, but
nonlinear in Q, since R depends on Q. Now, following the idea of the continuous QR method
for ODEs, e.g., see [20], we will derive a formula for QT Q̇ and then use the fact that this matrix
function is skew-symmetric to determine its elements.

To achieve this, we use the algebraic equation A2Q = 0 and replace it by its derivative Ȧ2Q+
A2Q̇ = 0 to obtain the system

Ē(Q̇+QṘR−1) = ĀQ, (27)

10



where Ē is defined as in (5) and

Ā =
[
A1

Ȧ2

]
. (28)

Note that here we have to assume differentiability of A2, but comparing with [40], this is not an
extra assumption, since the same is assumed to have (16), too.

Since the original system is assumed to be strangeness-free, we have that Ē is nonsingular and
hence (27) is an implicit ODE. The following lemma is the key for obtaining QT Q̇.

Lemma 12 Consider a strangeness-free DAE of the form (4) and assume that A2 is differentiable,
so that the implicit ODE (27) can be formed. Then there exist a bounded, full-column rank matrix
function P ∈ C(I,Rn×p), and an upper triangular nonsingular matrix function E ∈ C(I,Rp×p)
such that

PT Ē = EQT (29)

holds. Furthermore, if we require PTP = Ip and the diagonal elements of E to be positive, then P
and E are unique. In this case, we also have the following estimates

||E|| ≤
∣∣∣∣Ē∣∣∣∣ , ∣∣∣∣E−1

∣∣∣∣ ≤ ∣∣∣∣Ē−1
∣∣∣∣ .

Proof. It is obvious that (29) is equivalent to Ē−TQ = PE−T . The right hand side is nothing but
the QR factorization of the left-hand side matrix. In order to obtain E in upper triangular form,
we apply a Gram-Schmidt orthogonalization to the columns of Ē−TQ from right to left. Thus, the
proof follows immediately from the existence result for smooth QR factorizations, see [15]. The
estimates for ||E|| and

∣∣∣∣E−1
∣∣∣∣ follow directly from the identities PT ĒQ = E and PT Ē−TQ = E−T ,

respectively.

In our numerical methods, we want to avoid the computation of P and E as in the proof of
Lemma 12. Following the concept of pencil arithmetic introduced in [5], we first perform a QR
factorization [

Ē
QT

]
=
[
T̃1,1 T̃1,2

T̃2,1 T̃2,2

] [
M̃1,1

0

]
,

from which we obtain that T̃T
1,2Ē = −T̃T

2,2Q
T . In general, this factorization does not guarantee

that T̃2,2 is invertible. To obtain this, we compute the QR factorization of the augmented matrix[
Ē 0
QT Ip

]
=
[
T1,1 T1,2

T2,1 T2,2

] [
M1,1 M1,2

0 M2,2

]
, (30)

where the block matrix [Ti,j ] is orthogonal and the block matrix [Mi,j ] is upper triangular. Then
we have that TT

2,2 = M2,2 is nonsingular and upper triangular. In order to get the desired matrices
P and E , we use an additional QR factorization T1,2 = PG, where P fulfills PTP = Ip and G is
lower triangular (the fact that T1,2 is full column-rank is implied directly by the nonsingularity of
T2,2). Finally, we set E = −G−TT2,2.

Remark 13 The last QR factorization in the above process of computing P and E could be
omitted, if we require P not be orthogonal but only continuous and bounded. In this case, we can
simply set P = T1,2 and E = −TT

2,2 and we have that P and E are in this way uniquely defined via
(30). For an alternative way to determine P , see Remark 17. Finally, the computation of P and
E becomes rather simple if P,Q are square matrices of the same size as Ē, i.e., when p = d = n.
Then, only one QR factorization of the form ĒQ = PE is needed. Moreover, in the ODE case,
when E = I, then we have immediately P = Q and E = I, and no extra calculation is needed.

Multiplying (27) from the left by PT defined as in (29), one obtains

EQT Q̇+ EṘR−1 = PT ĀQ.

11



Setting B := ṘR−1, S(Q) := [si,j(Q)] = QT Q̇, andK := PT ĀQ, it follows that S(Q) = E−1K−B.
Since S(Q) is skew-symmetric and B is upper triangular, the strictly lower part of S(Q) is defined
by the lower part low(W ) of W := [wi,j ] = E−1K and its upper triangular part is determined by
the skew-symmetry. We have S(Q) = low(W )− [low(W )]T , i.e.,

si,j =

 wi,j , i > j,
0, i = j,

−wj,i, i < j,
1 ≤ i, j ≤ p. (31)

Thus, Q is obtained by solving the initial value problem for the strangeness-free DAE

EQ̇ = AQ− EQB,

or equivalently
EQ̇ = −EQ[W − S(Q)] +AQ. (32)

Note that the system (32) is again strangeness-free, since the nonlinear part only effects the first
block row.

For the numerical integration, an appropriate solver which preserves the algebraic constraint
as well as the orthogonality condition QTQ = Ip should be used, see [34], combined with reorthog-
onalization. Note that B = W − S(Q) = upp(W ) + [low(W )]T , where upp(W ) denotes the upper
triangular part of W .

Remark 14 In order to determineB = ṘR−1, we first computeW by solving the upper triangular
algebraic system EW = K. Note that due to Lemma 12, the condition number of this problem
is not worse than that of the original DAE problem (4). The computational cost for this is
p3/2+O(p2) per time step. In the special case that p = n, i.e., that E is a nonsingular matrix and
Q is an orthogonal matrix, then the differential equation for Q is simply Q̇ = QS(Q). In this case
we need to calculate only the lower triangular part and the diagonal of W and the computational
cost is n3/6+O(n2). However, in general we expect to use this procedure for the case that p << n,
i.e. p3/2 << n3/6.

If we set A := K −ES(Q) = PT ĀQ−EQT Q̇, then the differential equation for the factor R is
given by the upper triangular matrix equation of size p× p

EṘ = AR, (33)

or equivalently
Ṙ = BR.

However, we are in fact interested only in the diagonal elements ri,i of R (or more exactly, in their
logarithm). The fact that the system is upper-triangular leads to the differential equations

ṙi,i = wi,iri,i, (34)

where wi,i, i = 1, . . . , p is the i-th diagonal element of the matrix W = E−1K (Note that the
diagonal of the latter matrix and that of B = E−1A coincide). To determine these quantities, we
introduce the auxiliary functions φi(t) defined by the solution of the initial value problems

φ̇i(t) = wi,i(t), φi(0) = 0. (i = 1, . . . , p) (35)

Finally, the functions λi(t), defined as in the discrete QR method are obtained via

λi(t) =
1
t
φi(t), i = 1, 2, . . . , p. (36)

To check the integral separation of the functions {wi,i}p
i=1 in practice, we use their Steklov dif-

ferences. Choosing a sufficiently large H, then the Steklov difference of wi,i and wi+1,i+1 is given
by

ψi(t,H) :=
1
H
{[φi(t+H)− φi(t)]− [φi+1(t+H)− φi+1(t)]} , t ∈ I, i = 1, ..., p− 1. (37)
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We summarize the continuous QR procedure for computing approximations to Lyapunov spectral
intervals in the following algorithm.

Algorithm 2 (Continuous QR algorithm for computing Lyapunov spectra )

• Input: A pair of sufficiently smooth matrix functions (E,A) in the form
of the strangeness-free DAE (4) (if they are not available directly they
must be obtained pointwise as output of a routine such as GELDA); the
first derivative of A2 (if it is not available directly, we use a finite
difference approximation); values T,H, τ such that H ∈ (0, T ) and τ ∈ (0, T ),
and Q0 = Q(t0) as initial value for (32).

• Output: Approximate bounds for spectral the intervals {λl
i, λ

u
i }

p
i=1.

• Initialization:

1. Set j = 0, t0 := 0. Compute P (t0), E(t0), and K(t0) as in (29) and (30).

2. Compute W (t0) as in Remark 14.

3. Set λi(t0) = 0, φi(t0) = 0, i = 1, ..., p.

While tj < T

1. j := j + 1.

2. Choose a stepsize hj and set tj = tj−1 + hj.

3. Evaluate Q(tj) by solving (32).

4. Compute P (tj), E(tj),K(tj) as in (30) and by their definitions,
respectively.

5. Solve for W (tj) as in Remark 14.

6. Compute φi(tj), λi(tj), i = 1, ..., p as in (35), (36).

7. If desired, compute the Steklov differences ψi(t,H), i = 1, 2, ..., p − 1, by
(37) to check integral separation.

8. Update minτ≤t≤tj
λi(t) and maxτ≤t≤tj

λi(t).

The corresponding algorithm for computing Sacker-Sell spectra is similar, except that instead of
computing λi(t) at each meshpoint (see Step 6.), we evaluate the Steklov averages ψH,i(t) by the
formula

ψH,i(t) =
1
H

(φi(t+H)− φi(t)), i = 1, 2, ..., p.

Finally, in the last step we compute inf0≤t≤T−H ψH,i(t) and sup0≤t≤T−H ψH,i(t).

Remark 15 If the same mesh is used in Algorithms 1 and 2 and all calculations are done in exact
arithmetic and without discretization errors, then the quantities si at the end of the j-th step of
Algorithm 1 are exactly the values φi(tj) defined in Algorithm 2.

An advantage of the discrete algorithm is a simpler implementation and that existing efficient
DAE solvers for strangeness-free problems like BDF or implicit Runge-Kutta methods, see [2, 7,
34, 36] can be used. On first look the discrete method also seems to be cheaper than its continuous
counterpart. However, this is not true at all. A disadvantage of the discrete method is that it
creates numerical integration errors on each of the local intervals and these may grow very fast, in
particular if the DAE system is very unstable and the subintervals are very long. Consequently,
in order to keep a prescribed accuracy, in the discrete algorithm much smaller stepsizes need to
be used than in the continuous algorithm. The key difference is that in the discrete version, we
evaluate indirectly the whole matrix X and thus its factor R, while in the continuous version, we
integrate the numerically stable factor Q and only the logarithm of the diagonal elements ri,i. In
the next section, we will show that the numerical integration of the factor Q is globally stable.
This property shows that the continuous QR method is clearly superior.
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Let us for a moment recall the variant of the continuous QR method suggested in [40], which
uses a pre-transformation Q̃ as at the beginning of this section. Let Q = Q̃U , where U is the Q
factor in the QR factorization of X̃ = Q̃TX. Then we have Q̇ = ˙̃QU + Q̃U̇ . Inserting this formula
for Q̇ into (26), we have

EQ̃U̇ + EQ̃UṘR−1 = (AQ̃− E ˙̃Q)U. (38)

Let us use again the notation as in (17) and partition U conformably as U =
[
U1

U2

]
. Then from

the algebraic equation, we obtain U2 = 0 and thus we get the implicit underlying ODE for U1 as

Ẽ11U̇1 + Ẽ11U1ṘR
−1 = Ã11U1. (39)

We stress that R is the same upper triangular factor as that of X. Since Ẽ11 is nonsingular,
by Lemma 12, there exist matrices V1 and E1, where V T

1 V1 = Ip and E1 is upper triangular and
nonsingular, such that V T

1 Ẽ1,1 = E1U
T
1 . Similarly as above, multiplying equation (39) by V T

1 from
the left, we obtain

E1U
T
1 U̇1 + E1ṘR

−1 = V T
1 Ã11U1.

By defining K1 = V T
1 Ã11U1 and W1 = E−1

1 K1 and the same argument as that for determining
S(Q), we have that S(U1) = UT

1 U̇1 = low(W1) − [low(W1)]T . Furthermore, U1 can be obtained
numerically by solving the initial value problem for the implicit ODE

Ẽ11U̇1 + Ẽ11U1[W1 − S(U1)] = Ã11U1. (40)

The calculation of the {λi(t)}p
i=1 can then be carried out in the same manner as (35) and (36).

Remark 16 Theoretically, one may multiply (40) by Ẽ−1
11 and obtain the ODE

U̇1 + U1[W1 − S(U1)] = Ẽ−1
11 Ã11U1.

It is also easily verified by elementary calculations that W1 = UT
1 Ẽ

−1
11 Ã11U1. Thus, the appearance

as well as the role of V1 may be eliminated. Furthermore, if U1 is a square matrix (i.e., in the case
p = d), then UT

1 U1 = U1U
T
1 = Id, and the differential equation for U1 simplifies to

U̇1 = U1S(U1).

This alternative formulation is exactly that of the continuous QR method for ODEs [20, 21, 22, 24]
and will be useful for the perturbation and error analysis in Section 4. However, in practice, we
avoid the direct computation of Ẽ−1

11 because it may be costly and very ill-conditioned.

Remark 17 If we apply the continuous QR technique presented in this section to (38), then we
have to determine PT =

[
PT

1 PT
2

]
such that

[
PT

1 PT
2

] [ Ẽ11 Ẽ12

0 Ã22

]
= E

[
UT

1 UT
2

]
.

Using that U2 = 0, we obtain that

PT
1 Ẽ11 = EUT

1 , and PT
1 Ẽ12 + PT

2 Ã22 = 0.

Once P1 is available, then P2 = −Ã−T
22 Ẽ

T
12P1. If we want to have PTP = Ip, then an additional

orthogonalization process must be applied to P . Furthermore, we get

PT

[
Ẽ11 Ẽ12

0 Ã22

]
U = PT

1 Ẽ11U1, PT

[
Ã11 Ã12

0 ˙̃A22

]
U = PT

1 Ã11U1.

This shows that the difference between the previous version suggested in [40] and the current
version of the continuous QR algorithm lies only in the normalization of P and V1. Here P1 plays
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a similar role as V1 in the reduced version, but PT
1 P1 6= Ip, in general. Nevertheless, the explicit

ODE for R is the same, but the implicit forms obtained by different versions are different, in
general. In our opinion, the new version presented in this paper better reflects the nature of the
problem, because in the previous version, the terms associated with Ẽ12, Ã12 and Ã22 are simply
omitted, but instabilities that arise from these terms may effect the solution, in particular in the
non-homogeneous case. Since these are omitted in the analysis and not checked, this may lead to
false conclusions.

4 Perturbation and Error Analysis

A systematic perturbation and error analysis for the QR methods in the ODE case has been
given in [21, 22, 24]. The framework and the results presented there can be used, modified and
extended to the QR methods for DAEs constructed in Section 3. In the light of Lemma 4, we in
fact compute the spectral intervals for the implicit EUODE of triangular form (33). Furthermore,
in both the discrete and continuous variants, we have to numerically integrate strangeness-free
DAE systems such as (19) or (32) instead of ODE systems as in the ODE case. Hence, some extra
assumptions and some more effort are needed in the error analysis for DAEs.

In the following, for simplicity of notation, we perform the error analysis for the case that all
spectral intervals are calculated, i.e., we discuss the case p = d. The case of p < d can be treated
in a completely analogous way.

There are several sources for the error in computing spectral intervals;

a) the error arising in the computation of the strangeness-free form, i.e., in obtaining E1, A1, A2

(and also Ȧ2 in the continuous QR algorithm),

b) the integration (discretization) error in the course of solving DAE systems occurring in the
discrete and continuous methods,

c) the error in solving the linear systems in the context of the implicit integration method and
in the evaluation of W in the continuous method (see Remark 14),

d) the error in performing the occurring QR factorizations in finite precision arithmetic, and

e) the error in the early termination or truncation of the optimization process.

We discuss here only the errors a)–c). The errors d) arising from the QR factorization will be
ignored, since there are excellent backward stable numerical methods available for this task, [29],
and the resulting errors are typically much smaller than the errors resulting from the numerical
integration. The errors e) in the early termination/truncation of the optimization process arise by
considering the system on [0, T ] with a large T instead of [0,∞). Similarly to the ODE case, see
[21, Section 3.3], these errors depend strongly on the difference between the asymptotic behavior of
the system in consideration and its very long, but finite-time, dynamics. One may easily construct
simple examples, where the approximate spectral exponents computed even for a very large T are
completely different from their exact values. However, it is clear that by taking larger intervals of
optimization these errors can be reduced.

In contrast to the case of ordinary differential equations, where only the discretization error, the
error in the QR factorizations and the error in an early termination/truncation of the optimization
process have to be considered, in the DAE case the computation of the strangeness-free form may
be an essential factor in the analysis that cannot be influenced significantly by reducing the
stepsize. The computation of the strangeness-free form may be ill-conditioned or even ill-posed
if the assumptions for its existence do not hold, see [36]. So as before, we assume that the data
E1, A1, A2 are well-determined and available to a high accuracy, which is at least as good as the
one that we can expect from the discretization method. But this clearly has to be checked and
supervised during the computation of the spectral intervals and it has to be incorporated into the
error analysis.
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While in the ODE case explicit integration methods can be used for the numerical integration,
the second critical point in the DAE case is the solution of the linear systems in the necessary
implicit integration methods. The most important term in the solution of these linear systems
(regardless whether one-step or multi-step methods are used) (see [36]) is the matrix (or submatrix)[

E1 − hjcA1

A2

]
,

or [
E1 − hjcA1

A2 − hjcȦ2

]
where c is a constant arising from the method. These linear systems may be ill-conditioned even
for strangeness-free systems, this happens for example when the second block row in these systems
is near rank-deficient, or if E1 is near rank-deficient.

In general, for sufficiently small stepsize it is the condition number of the matrix function Ē in
(5) which determines the error in the solution of these linear systems, provided that a numerically
stable method is used for the solution. The ill- or well-conditioning of these linear systems is again
a property of the DAE under consideration and it should be noted that reducing the step-size
typically does not cure this problem.

In the following, we assume that for all values t the matrix Ē is sufficiently well-conditioned,
in the sense that the numerical solution to the associated linear system can be obtained within
the accuracy dominated by the desired tolerance for the discretization error. But this needs to be
checked during the computational process at every time instance t, and it has to be incorporated
into the error analysis.

Under the assumption that the reduction process to strangeness-free form and the matrix Ē are
sufficiently well-conditioned, i.e., that the errors resulting from these problems can be bounded,
we will show that for systems that are integrally separated, the error in the spectral intervals,
e.g., that of {λu

i }d
i=1, can be estimated by a bound for the local integration errors multiplied by a

factor that depends on the norm of the strict upper triangular part of R (i.e., the deviation from
normality).

To analyze the global error, two kinds of error analysis are necessary. While a forward error
analysis is sufficient for the investigation of the error in computing the DAE solution, a combi-
nation of backward and forward error analysis is used for investigating how the integration error
accumulates and effects the accuracy of the computed spectral intervals.

4.1 Backward error analysis for the discrete QR method

Let us first study the backward error analysis for the discrete QR method. Let Φ ∈ C(Ij ,Rn×n)
and Φ̄ ∈ C(Ij ,Rn×n) be defined as the exact and the approximate (via the numerical integrator)
solutions, respectively, to the initial value problems

E(t)Φ̇(t, tj−1) = A(t)Φ(t, tj−1), E(tj−1)[Φ(tj−1, tj−1)− In] = 0, (41)

in the interval Ij = [tj−1, tj ] of width hj = tj − tj−1, j = 1, 2, . . .. Here we assume that
the data matrices E(t), A(t) are exact data given in strangeness-free form (4). Note that
X(tj , tj−1) = Φ(tj , tj−1)Q(tj−1) = Q(tj)R(tj , tj−1) is the exact QR decomposition with posi-
tive diagonal elements in R(tj , tj−1).

As already mentioned before, we have to use implicit methods for the numerical integration,
and in each step we have to solve a linear system, for which we assume that the error in the solution
is small enough compared to the discretization error. On the other hand, for the next interval we
need consistent initial conditions and for this we have to make sure that the approximate solution
exactly satisfies the algebraic constraint

A2(t)Φ̄(t, tj−1) = 0. (42)
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In order to guarantee that this is the case, it may be necessary to project the numerically computed
solution to satisfy the constraint exactly. This is typically easy if the changes of the constraint
equation (in t) are not too large compared with the dynamics of the differential part. If this is
not the case, then this may lead to fundamental stability problems in the DAE integrator, which
require special techniques, [37]. Here we will assume that this problems is handled by the DAE
integrator. As in the ODE case, we furthermore assume that the local integration errors in the
solution can be estimated, i.e., altogether, we make the following assumption.

Assumption 18 Assume that the approximate solution Φ̄(tj , tj−1) satisfies the exact algebraic
constraint (42), that the local errors Nj := Φ̄(tj , tj−1) − Φ(tj , tj−1) (j = 1, 2, . . .) are available
(or can be estimated) in terms of the maximal local stepsize `j in Ij, and that the roundoff and
solution error in the solution of the linear systems that have to be solved at each integration step
is negligible compared with the discretization error.

We assume further that the initial condition X0 = X(t0) is consistent and exact and has the
exact QR decomposition X0 = Q0R0, where R0 has positive diagonal elements.

Denoting by Xj the numerical (via the numerical integration) solution that approximates the
rectangular fundamental solution X(tj), and assuming that we have determined the exact and
unique QR decomposition Xj = QjRj , j = 0, 1, . . ., where Rj has positive diagonal elements, we
then have that

Xk = Φ̄(tk, tk−1) . . . Φ̄(t2, t1)Φ̄(t1, t0)X0.

Recalling that X̄(t, tj−1) is the approximate solution to (19)), at t = tj we also get

X̄(tj , tj−1) = Φ̄(tj , tj−1)Qj−1 = QjRj , j = 1, . . . , k,

and thus we have
Xj = QjRjRj−1 . . . R1R0. (43)

Similarly to [21, Theorem 3.1], we obtain the following Lemma for the backward error in the
numerical integration process.

Lemma 19 Consider a DAE in strangeness-free form (4) and let Xj be the approximate funda-
mental solution that approximates X(tj). Then, under Assumption 18, we have that

Xj = Q(tj)[R(tj , tj−1) + Ej ] . . . [R(t2, t1) + E2][R(t1, t0) + E1]R0, (44)

where the backward error Ei in time-step i satisfies Ei = QT (ti)NiQ(ti−1), i = 1, 2, . . . , j, i.e., the
numerical realization of the discrete QR method by (43) computes the exact QR factorization of
the right-hand side of (44).

Proof. By comparing with the proof in the ODE case [21], the only difference occurring here
is that the matrices Q(tj) are rectangular matrices and thus Q(tj)QT (tj) in general is singular.
However, we still have that Q(tj)QT (tj) is the orthogonal projector onto ImQ(tj). Hence, under
Assumption 18, we have that

Q(tj)QT (tj)Nj = Q(tj)QT (tj)[Φ̄(tj , tj−1)− Φ(tj , tj−1)]
= Q(tj)QT (tj)Φ̄(tj , tj−1)−Q(tj)QT (tj)Φ(tj , tj−1) (45)
= Φ̄(tj , tj−1)− Φ(tj , tj−1) = Nj .

Using this observation, the proof of [21, Theorem 3.1] can be repeated here. Indeed, considering
the first integration step, we have

Q1R1 = Φ̄(t1, t0)Q0 = [Φ(t1, t0)+N1]Q0 = Q(t1)R(t1, t0)+N1Q0 = Q(t1)[R(t1, t0)+QT (t1)N1Q0].

For the next step we have X2 = Φ̄(t2, t1)Φ̄(t1, t0)Q0R0. Similarly as above, we then have

Φ̄(t2, t1)Q(t1) = Q(t2)[R(t2, t1) +QT (t2)N2Q(t1)].
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Using this and that Q(t1)QT (t1)Φ̄(t1, t0) = Φ̄(t1, t0), we obtain that

X2 = Q(t2)[R(t2, t1) + E2][R(t1, t0) + E1]R0.

Continuing this way, the assertion follows.

Remark 20 We note that the matrix solutions Φ and Φ̄ play only the roles of auxiliary variables
in the error analysis. In the numerical method, we do not determine Φ(tj , tj−1), but directly
compute X(tj , tj−1) = Φ(tj , tj−1)Q(tj−1) by solving (19).

Then with the usual error estimates for strangeness-free systems, see [36], along with the
numerical solution, we obtain estimates for the local error

Mj := Φ̄(tj , tj−1)Q(tj−1)− Φ(tj , tj−1)Q(tj−1) = NjQ(tj−1). (46)

Using this, for the backward errors Ej we obtain the estimate

||Ej || =
∣∣∣∣QT (tj)NjQ(tj−1)

∣∣∣∣ ≤ ||NjQ(tj−1)|| = ||Mj || ≤ ||Nj || .

If a q-th order integrator is used for the numerical solution of (19), then it follows from [36] that
the local errors Nj ,Mj and thus also the backward error Ej are O(`q+1

j ). For small intervals Ij of
width hj we then have hj = cj`j with a small constant cj and thus the local errors are O(hq+1

j ).
We remark that Lemma 19 may be formulated for ODEs when one is computing some but not

all Lyapunov exponents or on the Stiefel manifold [8, 18] in the special case in which the error Nj

is in ImQ(tj) (or alternatively in ImQj).

It follows that we have the same error estimate as in the ODE case and hence, the backward error
analysis given in [21] can be applied directly. For this, let us rephrase some results from [21] in
our notation.

Lemma 21 For j = 1, 2, . . ., the matrices R(tj , tj−1) in (21) are the solution matrices evaluated
at tj of the upper-triangular matrix differential equations

Ṙ(t, tj−1) = B(t)R(t, tj−1), R(tj−1, tj−1) = Id,

where B(t) is given in (33).
At any t̂ = tk, the solution R(tk) of (33) is the same matrix as the exact solution of the

piecewise constant triangular system

˙̃R = BjR̃, tj−1 ≤ t < tj , R̃(0) = R(t0), j = 1, 2, . . . , k, (47)

evaluated at tj, where the matrices Bj ∈ Rd×d are upper triangular and satisfy

R(tj , tj−1) = ehjBj , j = 0, 1, . . . , k − 1. (48)

Proof. See [21, Lemma 2.3, Lemma 2.4].

Introducing the auxiliary notation

R̂(tj , tj−1) := R(tj , tj−1) + Ej , and R̂(tk) =

 1∏
j=k

R̂(tj , tj−1)

R0,

we can rewrite the representation (44) as

Xj = Q(tj)R̂(tj , tj−1) . . . R̂(t2, t1)R̂(t1, t0)R0, (49)
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Then, similarly as in Lemma 21, R̂(tk) is the exact solution at tk of the piecewise constant problem

˙̂
R = B̂jR̂, t ∈ Ij , R̂(0) = R0, j = 1, 2, . . . , k, (50)

where the matrices B̂j ∈ Rd×d satisfy

R̂(tj , tj−1) = ehjB̂j , j = 0, 1, . . . , k − 1. (51)

Note that the matrices B̂j are not necessarily upper triangular.
To bound the norm of the differences B̂j −Bj , we introduce the following assumption.

Assumption 22 Let

δi := min
1≤`≤d

1

min
(
1, exp(

∫ ti

ti−1
w`,`(t)dt

) , (52)

where w`,` is as defined in (34) and let ξi := ||Ξi||, where Ξi denotes the strict upper triangular
part of R(ti, ti−1). We assume that there exist constants ξ, δ < 1 such that

||Ei|| δi ≤ δ < 1, and ξiδi ≤ ξ < 1 for all i = 0, 1, . . . , j.

It is easy to see that ξi = O(hi), and since we have that ||Ei|| = O(hq+1
i ) for small hi if a q-th

order integrator is used, it follows that the conditions in Assumption 22 can be easily fulfilled by
reducing the stepsize hi.

In the following we will make use of the following theorem of [21] on the comparison of the
piecewise constant problem (47) and its perturbation (50) rephrased in terms of strangeness-free
DAEs.

Theorem 23 Consider a well-conditioned strangeness-free DAE system of the form (4). Let
{ti}∞i=0 be a sequence of points (converging to ∞) generated by the numerical realization of the
discrete QR method. Suppose that for a given tolerance TOL the backward error satisfies ||Ei|| ≤ TOL
for all i = 0, 1, . . ., and that Assumptions 18 and 22 hold.

Then, at t = tj, the numerically computed QR factorization computed by the discrete QR

method determines the (exact) QR factorization (49), where the upper-triangular factor R̂(tj) is
the exact solution of problem (50), with perturbed coefficient matrix

hjB̂j = hjBj + Zj +O(
∣∣∣∣E2

j

∣∣∣∣),
and where the perturbation matrix Zj satisfies the componentwise estimate

|Zj | ≤
[
1− (δjξj)d

1− δjξj

]2
|Πj | ,

and the (`, k) element of the matrix Πj satisfies

(|Πj |)`,k ≤ TOL / min
i=`,k

(
exp(

∫ tj

tj−1

wi,i(t)dt)

)
.

Proof. The proof is identical to the proof of Theorem 3.12 in [21].

It follows that, if all the assumptions in Theorem 23 hold and the numerical integration method
for (19) has order q, then the perturbation B̂j −Bj has magnitude O(hq

j).

19



4.2 Backward error analysis for the continuous QR method

For the continuous QR method, the backward error analysis of [21] can be extended in a straight-
forward way. We again need Assumption 18 and make use of (45) shown in the proof of Lemma 19.
The key difference between the discrete and the continuous QR methods is that in the continuous
variant, we neither approximate the matrix solution X(t) nor its upper triangular factor R(t), but
only Q(t) and (the logarithm of) the diagonal elements of R(t).

For j = 0, 1, . . ., let Q̂(t, tj) be the Q-factor in the QR factorization of Φ(t, tj−1)Qj . Then, by
direct differentiation, it is easy to see that Q̂(t, tj) satisfies the differential equation (32), but with
Q̂(t, tj) replacing Q(t) there. Let us introduce

H(E,A,Q) := −EQ[W − S(Q)] +AQ,

where W := [wk,`] = W (E,A,Q) and S(Q) are defined as in Section 3. Note that these expressions
depend on the matrix function P as well, but P can be considered as a function of Q by Lemma
12. Then, on the intervals Ij , j = 1, 2, . . ., we compute approximations to the solutions of the
initial value problems

E(t) d
dt Q̂(t, tj−1) = H(E(t), A(t), Q̂(t, tj−1)), Q̂(tj−1, tj−1) = Qj−1,

d
dt φ̂i(t, tj−1) = wi,i(t), φ̂(tj−1, tj−1) = 0.

(53)

Suppose that we have obtained approximations Q̂c(tj , tj−1) and φc
i (tj) instead of the exact solu-

tions Q̂(tj , tj−1) and φi(tj , tj−1) and then use Qj := Q̂c(tj , tj−1) as the initial value for the next
interval.

Similar to Assumption 18, to guarantee consistent initial conditions for the DAEs in (53), we
also need the following assumption.

Assumption 24 In addition to the normalization condition (Q̂c(tj , tj−1))T Q̂c(tj , tj−1) = Id, we
require that Q̂c(tj , tj−1) exactly satisfies the algebraic equation at tj, i.e., A2(tj)Q̂c(tj , tj−1) = 0.

Then, at t = tk, we evaluate
1
tk

k∑
j=1

φc
i (tj , tj−1),

which gives an approximation to λi(tk). We stress that here we can control the local error for
the initial value problem (53), i.e., the bounds for the differences Q̂(tj , tj−1)c − Q̂(tj , tj−1) and
φc

i (tj , tj−1)− φi(tj , tj−1).
Since the off-diagonal elements of Rj are not evaluated in the numerical process, we can achieve

that the difference
QjRj − Q̂(tj , tj−1)R̂(tj , tj−1)

has the same order of magnitude as the differences Qj − Q̂(tj , tj−1) and the difference in
the diagonal of Rj − R̂(tj , tj−1), e.g., by setting the off-diagonal elements of Rj to be ex-
actly those of R̂(tj , tj−1). We could also have another option to minimize the Frobenius norm∣∣∣∣∣∣QjRj − Q̂(tj , tj−1)R̂(tj , tj−1)

∣∣∣∣∣∣
F
, see [21, Lemma 3.15].

The following theorem then is an analogue of [21, Theorem 3.16].

Theorem 25 Let {Qj}∞j=1 with Qj = Q̂c(tj , tj−1), be the numerical approximations computed
by the continuous QR method to the exact Q-factors of X(tj) for which Assumption 24 holds,
let {φc

i (tj , tj−1)}∞j=1 be the approximations to {φi(tj , tj−1)}∞j=1, and let Q̂(tj , tj−1)R̂(tj , tj−1) be
the exact QR factorization of Φ(tj , tj−1)Qj−1. Finally, let the matrices Rj be upper triangular
matrices with diagonal given by {exp(φc

i (tj , tj−1))}d
i=1 and the off-diagonal elements be chosen so

that the difference in the off diagonal elements of Rj−R̂(tj , tj−1) has the same order of magnitude
as the differences on the diagonal.
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Let N̂j := Qj − Q̂(tj , tj−1) and ∆j := Rj − R̂(tj , tj−1), then the local error in the computation
of Φ(tj , tj−1)Qj−1 satisfies

Φ̄(tj , tj−1)Qj−1 − Φ(tj , tj−1)Qj−1 = QjRj − Q̂(tj , tj−1)R̂(tj , tj−1)
= N̂jR̂(tj , tj−1) + Q̂(tj , tj−1)∆j + N̂j∆j .

(54)

Remark 26 Since the approximations to the orthogonal factors Qj−1 are rectangular, one cannot
obtain an explicit expression for Nj = Φ̄(tj , tj−1)− Φ(tj , tj−1) as in [21, Theorem 3.16]. Further-
more, the local error on the left-hand side of (54), denoted by M̂j , is not the same as Mj in (46).
The matrices Mj are local errors of the numerical solution of (19) starting with the exact initial
value Q(tj), while the matrices M̂j are local errors obtained with the approximate initial value
Qj = Q̂c(tj , tj−1). However, we know from the numerical analysis of differential equations, see [2],
that they are asymptotically equivalent, i.e., when the stepsize hj is small enough, Mj has the
same order of magnitude as M̂j for which practical estimates are available.

The remainder of the error analysis is as in the discrete QR method. By the same arguments,
Lemma 21 and Theorem 23 hold, i.e., the numerical realization of the continuous QR method
computes the exact QR factorization (44), where the triangular factor is the exact solution of a
perturbed piecewise constant problem. The perturbation in the coefficient matrix of the piecewise
constant problem can be estimated elementwise (and also in norm) by the local integration error
amplified by a factor, see Theorem 23.

In this section we have seen that under some certain assumptions on the DAE, the backward
error analysis for the discrete and continuous QR method applied to DAEs is similar to that for
ODEs in [21]. The reason is that both the discrete and the continuous QR realizations (indirectly
but) essentially lead to upper triangular ODE systems for the triangular factors, independently of
the fact whether the original system is an ODE or a DAE. As the main result, we have shown that
the exact realization of the QR methods can be interpreted as the solution of a piecewise-constant
and upper triangular differential system, while the numerical realization can be interpreted as the
solution of a perturbed system. The perturbation arising in the coefficient matrix has the same
magnitude as the local discretization error.

There are only two differences. First, the orthogonal factors in the DAE case in general are
not square matrices. Thus, the formulations and the analysis for the DAEs had to be modified.
Second, we have to solve linear DAEs (19) or nonlinear DAEs (32) instead of ODE systems as
in the ODE case. We have shown that if the original systems is strangeness-free then this also
holds for the DAEs (19) and (32) which then allows to control the local error and to have a rigor-
ous analysis, see [36], in using efficient numerical integration methods for DAEs and established
software packages see [7, 34, 36].

After deriving the backward analysis for strangeness-free DAEs, in the next section we will
study the forward error analysis.

4.3 Forward error analysis

In this section we study the forward error analysis for the discrete and continuous QR methods,
which is applied to more general problems than that in [22, 24]. Consider an implicitly given linear
time-varying system

Ê(t)U̇(t) = Â(t)U(t), t ∈ I, (55)

where Ê, Â are numerically computed, piecewise continuous, upper triangular matrix functions
taking values in Rd×d, and where U(t) ∈ Rd×d. We assume that Ê(t) is nonsingular for all t ∈ I,
and that both Ê−1 and Ê−1Â are uniformly bounded. This class of upper triangular differential
systems includes both (33) and (47).

We then consider the case that the coefficients of (55) are subjected to small perturbations,
i.e., we solve the perturbed system

[Ê(t) + ∆Ê(t)]V̇ (t) = [Â(t) + ∆Â(t)]V (t), t ≥ 0, (56)
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where ∆Ê,∆Â are small perturbations that are also piecewise continuous with the same discon-
tinuity points as Ê, Â, but they are not necessarily upper triangular.

We will show that there exists a pair of orthogonal matrix functions P̂ , Q̂ that bring the
coefficients in (56) to upper triangular form (in fact we apply the continuous QR method described
in Section 3 to (56)) such that P̂ and Q̂ are close to identity matrices. Furthermore, we will estimate
the differences Q̂(t) − Id and P̂ (t) − Id for all t ∈ I. As a consequence, then combining the error
estimation with the backward error analysis, the analysis of the conditioning of the strangeness-free
DAE and the errors in solving the linear systems and QR factorizations in the integration method,
we will obtain explicit error bounds for the computed Lyapunov and Sacker-Sell exponents of (4)
as well as global error bounds for the orthogonal matrices P,Q in the continuous QR method. For
this purpose we will extend the concepts of [22, 24] to strangeness-free DAEs.

To do this, first we carry out an auxiliary calculation.

Lemma 27 Consider the implicit ODEs (55) and (56). Suppose that supt≥0

∣∣∣∣∣∣∆Ê∣∣∣∣∣∣ ≤ ω1,

supt≥0

∣∣∣∣∣∣∆Â∣∣∣∣∣∣ ≤ ω2, and furthermore that supt≥0

∣∣∣∣∣∣Ê−1
∣∣∣∣∣∣ ≤ κ, where ω1, ω2, κ are given posi-

tive numbers. If κω1 < 1, then the perturbed system (56) is equivalent to the explicit ODE system

V̇ (t) = [B̂(t) + ∆B̂(t)]V (t), t ≥ 0, (57)

where B̂(t) = Ê−1(t)Â(t) and the estimate∣∣∣∣∣∣∆B̂∣∣∣∣∣∣ ≤ 1
1− ε1

(Mε1 + ε2)

holds with M = supt≥0

∣∣∣∣∣∣B̂(t)
∣∣∣∣∣∣, ε1 = supt≥0

∣∣∣∣∣∣Ê−1(t)∆Ê(t)
∣∣∣∣∣∣ ≤ κω1, and ε2 =

supt≥0

∣∣∣∣∣∣Ê−1(t)∆Â(t)
∣∣∣∣∣∣ ≤ κω2.

Proof. The proof is straightforward using elementary calculations.

Using Lemma 27 we can extend the forward error analysis for explicit ODEs of [24] to our
implicit ODEs.

Lemma 28 Consider the implicit ODEs (55) and (56) and suppose that the system (55) is
integrally separated, i.e., the diagonal elements b̂i,i, i = 1 . . . , d are integrally separated. Suppose
further, that all the assumptions of Lemma 27 hold and let ω := (Mε1 + ε2)/(1− ε1). Then there
exist a global kinematic equivalence transformation with orthogonal matrices P̂ and Q̂ (that are
close to identity matrices) that bring Ê, Â to upper triangular form

Ê = P̂T ÊQ̂, Â = P̂T ÂQ̂− Q̂T ˙̂
Q.

Moreover, let
∣∣∣b̂k,`(t)

∣∣∣ ≤ κk,` for k < ` and for all t ∈ I. Then there exist computable positive

numbers {αk,`}k 6=`, and {ωk,`}k 6=` such that if ω < mink 6=` {ωk,`} = ωm, then for Q̂ = [q̂k,`] one
has |q̂k,`(t)| ≤ ρk,` for k 6= ` and for all t ∈ I, where ρk,` = αk,`κk,`ω.

Proof. We apply the classical QR factorization to the solution of perturbed ODE system (57). By
the same argument as that in Remark 16 and the uniqueness of QR factorization, the Q-factor
obtained from (57) and that of (56) are the same. By this observation, we apply [24, Lemma 4.1]
to (57) and immediately conclude that Q is near the identity matrix and also obtain the error
bounds for Q̂(t) − Id as in the assertion. Note that the parameters {κk,`}k 6=`, {αk,`}k 6=` and the
bounds {ωk,`}k 6=` can be constructed explicitly as in [24, Lemma 4.1]. By the definition of P̂ , we
have that ẼQ̂ = P̂ Ê . Since the left-hand side is a nearly upper triangular matrix, by invoking the
classical perturbation result for the QR factorization, see e.g. [43], we see that P̂ is close to the
identity matrix as well and a bound of

∣∣∣∣∣∣P̂ (t)− Id

∣∣∣∣∣∣ is available.

As a corollary we get a simplified bound for Q̂.
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Corollary 29 In the notation of Lemma 28, let ρ̃ = maxk 6=` ρk,` and assume that ρ := (n−1)(ρ̃+

ρ̃2) ≤ 1 and ω < ωm. Then,
∣∣∣∣∣∣Q̂(t)− Id

∣∣∣∣∣∣ ≤ ρ and
∣∣∣∣∣∣Q̂(t)− Id

∣∣∣∣∣∣
F
≤
√

2(n2 − n)ρ̃ for all t ∈ I.

Now combining the forward error analysis with the backward error analysis and applying Corollary
29 to (47) and (50) as a particular case of (55) and (56), we obtain a global error bound for the
components P,Q of the continuous QR method. The bound for the component Q of the discrete
QR method is the same as that for the continuous variant.

Theorem 30 Consider a well-conditioned DAE of the form (4). Let the assumptions of Lemma
28 and Corollary 29 hold. Then we have the following global error bound for the Q factor in the
QR methods presented in Section 3

||Qj −Q(tj)|| ≤ ρ, j = 0, 1, 2, . . . ,

where Q(tj) and Qj are the exact and approximate values of the matrix function Q at tj, respec-
tively. Furthermore, if the condition number cond(Ē) of Ē defined in (5) satisfies cond(Ē)ρ < 1/2,
then

||Pj − P (tj)|| ≤
3 cond(Ē)ρ

1− 2 cond(Ē)ρ
, j = 0, 1, 2, . . . ,

where P (tj) and Pj are the exact and the approximate values of the orthogonal scaling factor P
evaluated at tj, respectively, which is defined by (29).

Proof. By carrying out the backward error analysis first, then next the forward error analysis,
from (44), we have the relation Qj = Q(tj)Q̂(tj). By Corollary 29, we get

||Qj −Q(tj)|| =
∣∣∣∣∣∣Q(tj)[Q̂(tj)− Id]

∣∣∣∣∣∣ = ∣∣∣∣∣∣Q̂(tj)− Id

∣∣∣∣∣∣ ≤ ρ.

To show the error bound for P , we refer to formula (29) and its equivalent formulation Ē−TQ =
PE−T for determining P . This is in fact a QR factorization and the perturbation in the left-hand
side is

∣∣∣∣Ē−TQj − Ē−TQ(tj)
∣∣∣∣ ≤ ∣∣∣∣Ē−T

∣∣∣∣ ρ. Invoking [43, Theorem 3.1], we have

||Pj − P (tj)|| ≤
3
∣∣∣∣(Ē−TQ)+

∣∣∣∣ ∣∣∣∣Ē−T
∣∣∣∣ ρ

1− 2
∣∣∣∣(Ē−TQ)+

∣∣∣∣ ∣∣∣∣Ē−T
∣∣∣∣ ρ ,

where for a matrix M , M+ denotes the Moore-Penrose inverse of M .
Using that

∣∣∣∣Ē−T
∣∣∣∣ =

∣∣∣∣Ē−1
∣∣∣∣ and

∣∣∣∣(Ē−TQ)+
∣∣∣∣ ≤ ∣∣∣∣ĒT

∣∣∣∣ =
∣∣∣∣Ē∣∣∣∣, we obtain the estimate for

||Pj − P (tj)||.

Finally, we obtain a perturbation result for the comparison of the spectral exponents in (55)
and (56).

Theorem 31 Consider the problems (55) and (56) with upper Lyapunov exponents λi and µi, re-
spectively, and suppose that the unperturbed system (55) is integrally separated. If all the assump-
tions of Theorem 30 hold, then for sufficiently small ω, the perturbed system is (56) is integrally
separated as well. Furthermore, the following perturbation bound holds:

|λi − µi| ≤
∑
k 6=i

ρ2
k,iγi,k + β̂

d∑
j=1

ρj,i

∑
k<j

ρk,i

+ β
∑
j 6=i

ρi,j + ω, (58)

for i = 1, 2, . . . , d, where β̂ = maxi 6=k supt∈I

∣∣∣b̂i,k(t)
∣∣∣, and γi,k = supt∈I

∣∣∣b̂i,i(t)− b̂k,k(t)
∣∣∣ for 1 ≤

i, k ≤ d.
The same estimate holds for the differences between the lower Lyapunov exponents.
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Proof. We have
(Ê + ∆Ê)−1(Â+ ∆Â) = B̂ + ∆B̂ = D̂ + Û + ∆B̂,

where D̂ = [d̂i,j ] is the diagonal matrix with di,i = b̂i,i and Û = [ûi,k] is the strict upper triangular
matrix with ûi,k = b̂i,k for i < k.

The transformation with P̂ and Q̂ = [q̂i,k] transforms the perturbed system (56) to a system
in upper triangular form

ÊŻ = ÂZ (59)

which is equivalent to
Ż = B̂Z,

where Ê , Â are defined as in Lemma 28 and B̂ = [β̂i,j ] = Ê−1Â .
It is easy to check that the diagonal elements of B̂ are equal to the corresponding diagonal

elements of Q̂T (B̂ + ∆B̂)Q, i.e.,

β̂i,i =
[
Q̂T (B̂ + ∆B̂)Q

]
i,i
.

In order to estimate the difference between β̂i,i and b̂i,i, recall that for the diagonal elements we
have [

Q̂T (B̂ + ∆B̂)Q̂
]

i,i
=
[
Q̂T (D̂ + Û + ∆B̂)Q̂

]
i,i
.

Similar as in the proof of [22, Theorem 3.2], we have[
Q̂T D̂Q̂

]
i,i
− d̂i,i = (q̂2i,i − 1)d̂i,i +

∑
k 6=i

q̂2k,id̂k,k =
∑
k 6=i

q̂2k,i(d̂k,k − d̂i,i).

Furthermore, we have

[
Q̂T ÛQ̂

]
i,i

=
d∑

j=1

∑
k<j

q̂k,ib̂k,j

 q̂j,i

= q̂i,i

∑
k<i

q̂k,ib̂k,i +
∑
j>i

b̂i,j q̂j,i

+
d∑

j=1,j 6=i

 ∑
k<j,k 6=i

q̂k,ib̂k,j

 q̂j,i.

Then, using the estimates |q̂i,k| ≤ ρi,k for i 6= k from Lemma 28, |q̂i,i| ≤ 1 from the orthonormality,

and
∣∣∣b̂i,k∣∣∣ ≤ β̂ for all i 6= k from the definition of β̂ , we have that

∣∣∣β̂i,i − b̂i,i

∣∣∣ ≤
∣∣∣∣[Q̂T D̂Q

]
i,i
− d̂i,i

∣∣∣∣+ ∣∣∣∣[Q̂T ÛQ
]

i,i

∣∣∣∣+ ∣∣∣∣[Q̂T ∆B̂Q
]

i,i

∣∣∣∣
≤

∑
k 6=i

ρ2
k,iγi,k + β̂

d∑
j=1,j 6=i

ρj,i

 ∑
k<j,k 6=i

ρk,i

+ β
∑
j 6=i

ρi,j + ω.

Taking into account that ρi,k = αi,kκi,kω for all i, k, there exists ζi ≥ 0 such that
∣∣∣β̂i,i − b̂i,i

∣∣∣ ≤ ζiω

for i = 1, 2, . . . , d.
With these preparations, we are able to check the integral separation of the upper triangular

system (59 ). Since (55) is an upper triangular system, it is integrally separated if and only if its
diagonal elements are integrally separated [23, Theorem3.4], i.e., there exist constants c1 > 0 and
c2 ≥ 0 such that∫ t

s

(
b̂i,i(r)− b̂i+1,i+1(r)

)
dr ≥ c1(t− s)− c2, for all t ≥ s ≥ 0, i = 1, 2, . . . , d− 1.
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Then, it follows that∫ t

s

(
β̂i,i(r)− β̂i+1,i+1(r)

)
dr =

∫ t

s

(
b̂i,i(r)− b̂i+1,i+1(r)

)
dr +

∫ t

s

(
β̂i,i(r)− b̂i,i(r)

)
dr

+
∫ t

s

(
β̂i+1,i+1(r)− b̂i+1,i+1(r)

)
dr

≥ c1(t− s)− c2 − ζiω(t− s)− ζi+1ω(t− s)
= (c1 − ω(ζi + ζi+1))(t− s)− c2, for all t ≥ s ≥ 0.

If ω is small enough such that c1−ω(ζi +ζi+1) is strictly positive for i = 1, 2, . . . d−1, then the
system (59) is integrally separated. Then, it is possible to approximate the Lyapunov exponents
via the diagonal elements of B̂ [20]. Finally, we have

|λi − µi| =
∣∣∣∣lim sup

t→∞

1
t

∫ t

0

β̂i,i(r)dr − lim sup
t→∞

1
t

∫ t

0

b̂i,i(r)dr
∣∣∣∣

≤
∣∣∣∣lim sup

t→∞

1
t

∫ t

0

[
β̂i,i(r)− b̂i,i(r)

]
dr

∣∣∣∣
≤ lim sup

t→∞

1
t

∫ t

0

∣∣∣β̂i,i(r)− b̂i,i(r)
∣∣∣ dr

≤
∑
k 6=i

ρ2
k,iγi,k + β̂

d∑
j=1,j 6=i

ρj,i

 ∑
k<j,k 6=i

ρk,i

+ β̂
∑
j 6=i

ρi,j + ω.

The proof for the lower exponents is analogous by using the identity

lim inf
t→∞

f(t) = − lim sup
t→∞

(−f(t)),

which holds for arbitrary f(t) ∈ C(I,R).

As a Corollary we get the following upper bounds

Corollary 32 Let the assumptions of Theorem 31 hold. Then, using the same notation as in
Corollary 29, we have

|λi − µi| ≤ ρ2
∑
k 6=i

γi,k + (d− 1)β̂ρ+ (
d

2
− 1)(d− 1)β̂ρ2 + ω = O(ω), i = 1, 2, . . . d. (60)

Remark 33 It can be shown in a similar way that analogous estimates as (58) and (60) hold for
the upper and the lower Bohl exponents (the upper and lower endpoints of Sacker-Sell intervals).
Note again that if we consider only the discretization error arising from numerical integration,
i.e., the case of (47) and (50), then the perturbation bound ω has magnitude O(hq), where h =
maxj≥1 hj is the maximal stepsize and q is the order of the integrator.

4.4 Discussion of the error analysis

The analysis of the previous sections shows that in the case of the discrete QR method, for
well-conditioned strangeness-free DAEs, the main error source is the error arising from numerical
integration. However, the local error on each interval Ij = [tj−1, tj ], j = 1, 2, . . ., can be controlled
and kept below a given tolerance via an appropriate stepsize control. Then, by the backward
error analysis, the problem is transferred to the perturbation analysis of a piecewise constant,
upper triangular system, which has been analyzed in the forward error analysis. The perturbation
occurring in the coefficient matrix of this piecewise constant system has the same magnitude as
the local integration error if the errors in the QR factorizations and the errors in generating the
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strangeness-free formulation and those in solving the linear systems can be controlled. Thus, under
the assumptions stated in the backward and the forward error analysis, we can conclude that the
error of the spectral exponents has the same order of magnitude as the local error tolerance, too.

In the case of the continuous QR method, similarly, we apply again the backward and the
forward error analysis results to estimate the errors arising from the numerical integration of the
Q-factor and the logarithm of the diagonal elements of R. Besides the errors arising from the
use of a numerical integrator, we have to face also round-off errors arising in QR factorizations
(both, in the discrete and the continuous variants), the errors arising in approximating Ȧ2 (in the
continuous QR, if the derivative of A2 is not available), and the errors in solving linear algebraic
system of upper triangular form, see (Remark 14). Again we have to be able to control these
errors by incorporating them within the integration error in the backward error analysis and (or)
within the data perturbation in the forward error analysis.

However, it is clear that the discrete QR method will in general produce less accurate results
if the stepsize is small, but not small enough, because the fundamental solution matrix X may
grow very fast which makes the columns of X become nearly linearly-dependent and then the QR
factorization may produce bad results.

Furthermore, the exponential growth of the different columns of X may be quite different,
e.g., there may exist simultaneously large positive and large negative exponents. This means that
controlling the absolute error in the computation of X is not enough. In this case, one should
use the relative error for the stepsize control (popular software packages for solving initial value
problems for ODEs and DAEs use mixed error control, i.e., a combination involving both the
absolute and the relative error). In the continuous QR method, not only the integration error
of the Q-component, also the accumulation of round-off errors depends strongly on the condition
number of Ē, that is, on the DAE nature of the problem. We refer to [36] for more details on
numerical methods for strangeness-free DAEs.

An alternative approach to the error analysis in the orthogonal factor, the upper triangular
factors, and the Lyapunov and Bohl exponents is presented in [44]. The main idea is that once
one has a backward error result such as Lemma 19, then one would like to show the existence
of an orthogonal change of variables that brings the sequence of perturbed triangular factors,
R(tj , tj−1) + Ej , to upper triangular form again. In this work and in [22, 24] for ODEs this
was done by determining a perturbed triangular differential equation and then showing via the
continuous QR method the existence of and bounds on a near identity orthogonal change of
variables (assuming that the integral separation is strong enough as compared to the size of the
perturbation) via the equations for Q in the continuous QR method. Alternatively, in [44] one
works directly with the perturbed triangular factor and by defining an appropriate zero finding
problem in terms of the discrete QR method one shows the existence of and bounds on the near
identity change orthogonal change of variables. In particular, this avoids forming the perturbed
triangular differential equation and finding bounds on its perturbation.

5 Numerical examples

We have implemented both the continuous and the discrete variants of the QR methods described
in Section 3 in MATLAB. The following preliminary results are obtained with Version Matlab
Version 7.4(R2007a) on an Intel CPU T9300 processor with 2.5 GHz.

To illustrate the properties of the procedures, we consider two examples, one of a Lyapunov
regular DAE system and another DAE system which is not Lyapunov regular. In the second case,
we calculated not only the Lyapunov spectral intervals, but also the Sacker-Sell intervals.

Example 34 Our first example is a Lyapunov-regular DAE system which is constructed similar
to the ODE examples in [17, 20]. We have constructed a DAE system of the form (4) by begin-
ning with an upper triangular implicit ODE system, applying appropriate kinematic equivalence
transformations and then adding additional algebraic variables. In this way we have obtained a
semi-implicit DAE system of the form (17) which was then transformed again to obtain a DAE
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system of the form (4), whose spectral information is the same as that of original implicit ODE
system.

The original triangular implicit ODE system had the form Ē1,1(t) ˙̄x1 = Ā1,1(t)x̄1, where

Ē1,1(t) =
[

1 + 1
t+1 1

0 1

]
, Ā1,1(t) =

[
λ1 − 1

t+1 ω sin t
0 λ2 + cos (t+ 1)

]
, t ∈ I, λi ∈ R (i = 1, 2),

where λi, i = 1, 2, (λ1 < λ2) are given real parameters. We then performed a transformation
transformed to get the implicit ODE system Ẽ1,1(t) ˙̃x1 = Ã1,1(t)x̃1 given by

Ẽ11 = U1Ē1,1V
T
1 , Ã11 = U1Ā1,1V

T
1 + U1Ē1,1V

T
1 V̇1V

T
1 ,

with U1(t) = Gγ1(t), V1(t) = Gγ2(t), where G(γi) is a Givens rotation

Gγ(t) =
[

cos γt sin γt
− sin γt cos γt

]
with some real parameters γ1, γ2. We choose additional blocks Ẽ12 = U1, Ã12 = V1, Ã22 = U1V1

and finally

Ẽ =
[
Ẽ11 Ẽ12

0 0

]
, Ã =

[
Ã11 Ã12

0 Ã22

]
.

Using a 4× 4 orthogonal matrix

G(t) =


cos γ3t 0 0 sin γ3t

0 cos γ4t sin γ4t 0
0 − sin γ4t cos γ4t 0

− sin γ3t 0 0 cos γ3t

 ,
with real values γ3, γ4 we obtained a strangeness-free DAE system of the form (4) with coefficients
E = ẼGT , A = AGT + ẼGT ĠGT . Furthermore, because Lyapunov-regularity together as well
Lyapunov exponents are invariant under orthogonal change of variables, this system is Lyapunov-
regular with the Lyapunov exponents λ1, λ2.

For our numerical tests we have used the values

ω = 3, λ1 = 5, λ2 = 1, γ1 = γ4 = 2, γ2 = γ3 = 1.

In the following two tables the described discrete and continuous QR method for computing
the Lyapunov exponents are compared. We present the interval length T , the step size h, the
computed Lyapunov exponents, the relative error in % and the CPU-time. The last column shows
the computing time if only one spectral interval (the larger one) is computed, i.e., we have the
case p = 1. As integrator in the continuous QR method we have used the classical fourth order
explicit Runge-Kutta method with projection, see [16], applied to

Q̇ = Ē−1
(
ĀQ− ĒQB

)
,

W = QT (Ē−1Ā)Q,
B = upp(W ) + low(W )T ,

where for the solution of the linear systems with Ē we use an LU factorization with partial
pivoting.

For the discrete QR algorithm we have employed a 6-th order BDF method, see e.g., [7].

Example 35 (A DAE system which is not Lyapunov regular.) With the same transformations as
in Example 34, we also constructed a DAE that is not Lyapunov regular by changing the matrix
Ā(t) in Example 34 to

Ā(t) =
[

sin(ln(t+ 1)) + cos(ln(t+ 1)) + λ1 ω sin t
0 sin(ln(t+ 1))− cos(ln(t+ 1)) + λ2

]
, t ∈ I.
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Table 1: Lyapunov exponents with discrete QR algorithm for Ex. 34.

T h

[
λ1

λ2

]
rel. error

in %
CPU-time

in s
CPU-time
in s, p = 1

1000 0.12
[

5.0258
0.9937

] [
0.5170
0.6285

]
2.8079 2.5262

1000 0.10
[

5.0144
0.9948

] [
0.2878
0.5184

]
3.4583 3.0750

1000 0.05
[

4.9875
0.9975

] [
0.2510
0.2538

]
6.8130 6.2326

1000 0.01
[

4.9675
0.9996

] [
0.6502
0.0442

]
33.5097 30.6883

5000 0.12
[

5.0544
0.9934

] [
1.0888
0.6556

]
12.8217 11.9376

5000 0.10
[

5.0429
0.9945

] [
0.8572
0.5499

]
15.4020 14.3763

5000 0.05
[

5.0156
0.9971

] [
0.3125
0.2859

]
31.0260 28.6265

10000 0.12
[

5.0588
0.9935

] [
1.1769
0.6499

]
25.4112 23.6348

10000 0.10
[

5.0472
0.9946

] [
0.9448
0.5433

]
30.7016 28.3451

10000 0.05
[

5.0200
0.9972

] [
0.3990
0.2792

]
60.8064 56.7574

Table 2: Lyapunov exponents with continuous QR algorithm for Ex. 34.

T h

[
λ1

λ2

]
rel. error

in %
CPU-time

in s
CPU-time
in s, p = 1

1000 0.12
[

4.9631
0.9999

] [
0.7383
0.0096

]
3.6563 3.5198

1000 0.10
[

4.9629
1.0001

] [
0.7428
0.0061

]
4.3888 4.2186

1000 0.05
[

4.9627
1.0001

] [
0.7463
0.0134

]
8.7218 8.4196

1000 0.01
[

4.9627
1.0001

] [
0.7460
0.0092

]
43.5736 42.1863

5000 0.12
[

4.9909
0.9997

] [
0.1829
0.0319

]
16.7958 16.4449

5000 0.10
[

4.9907
0.9998

] [
0.1870
0.0217

]
20.1520 19.9026

5000 0.05
[

4.9905
0.9998

] [
0.1893
0.0168

]
40.2386 39.3086

10000 0.12
[

4.9951
0.9997

] [
0.0976
0.0270

]
33.0881 32.5306

10000 0.10
[

4.9949
0.9998

] [
0.1017
0.0156

]
39.7260 39.0194

10000 0.05
[

4.9948
0.9999

] [
0.1038
0.0104

]
79.7169 77.7178
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Table 3: Bohl exponents computed with discrete QR algorithm Ex. 35.

T h H

[
κ`

1 κu
1

κ`
2 κu

2

]
rel. error

in %
CPU-time

in s
CPU-time
in s, p = 1

1000 0.12 100
[
−1.2004 1.3728
−6.3538 −4.8750

] [
15.1172 2.9289
0.9425 35.9545

]
3.6339 2.9289

5000 0.12 100
[
−1.2004 1.4051
−6.3538 −3.5938

] [
15.1172 0.6475
0.9425 0.2241

]
17.0300 15.4671

10000 0.12 100
[
−1.2004 1.4051
−6.3538 −3.4824

] [
15.1172 0.6475
0.9425 0.0941

]
33.2838 30.4316

10000 0.12 500
[
−0.7338 1.3949
−6.1660 −3.5829

] [
48.1142 1.3653
3.8701 0.0808

]
34.3723 31.5720

10000 0.075 100
[
−1.2022 1.4079
−6.3719 −3.5837

] [
14.9948 0.4474
0.6600 0.0581

]
53.2889 48.7271

50000 0.12 100
[
−1.4065 1.4051
−6.3538 −3.5824

] [
0.5461 0.6475
0.9425 0.0941

]
152.3445 152.3445

50000 0.12 500
[
−1.4065 1.3949
−6.1660 −3.5829

] [
0.5482 1.3653
3.8701 0.0808

]
166.3611 151.8304

50000 0.5 100
[
−1.3846 1.3812
−6.2225 −3.5703

] [
2.0963 2.3376
2.9893 0.4321

]
39.6996 36.0344

100000 0.12 100
[
−1.4065 1.4051
−6.3538 −3.5824

] [
0.5482 0.6475
0.9425 0.0941

]
331.4083 299.8992

100000 0.12 500
[
−1.4065 1.3949
−6.3149 −3.5829

] [
0.5482 1.3653
1.5491 0.0808

]
331.5006 301.4223

100000 0.5 100
[
−1.3846 1.3812
−6.2259 −3.5703

] [
2.0963 2.3376
2.9893 0.4321

]
79.3260 72.1256

Here we have used ω = 3, λ1 = 0, λ2 = −5. Since Lyapunov and Sacker-Sell spectra are invariant
with respect to global kinematical equivalence transformation, it is easy to compute the Lyapunov
spectral intervals as [−1, 1] and [−6,−4] and the Sacker-Sell spectral intervals as [−

√
2,
√

2] and
[−5−

√
2,−5 +

√
2].

The examples show that the discrete QR algorithm delivers results of good accuracy. Even for
short intervals with large step-sizes the Lyapunov exponents are computed with a small relative
error similar to the results in [40]. For large intervals T the exponents are well determined, even
for large step-size as h = 0.5. The results of the continuous QR algorithm are usually more
accurate than those of the discrete QR algorithm with a cost that is comparable or sometimes a
little higher.

6 Conclusion

In this paper we have developed QR methods for computing all or just a few spectral intervals for
linear time-varying DAEs. Unlike the method previously proposed in [40], the methods presented
here are applied directly to the DAE. Furthermore, we have derived the perturbation and error
analysis. It has been shown that, under certain natural assumptions, the spectral intervals can
be approximated with an accuracy that is of the same magnitude as that of the local integration
scheme.

As future work, we suggest the investigation of block-versions of the QR methods and their
error analysis, where the integral separation holds between several blocks which contain the equal
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Table 4: Bohl exponents computed with continuous QR algorithm Ex. 35.

T h H

[
κ`

1 κu
1

κ`
2 κu

2

]
rel. error

in %
CPU-time

in s
CPU-time
in s, p = 1

1000 0.12 100
[
−1.2049 1.3801
−6.4039 −4.8928

] [
14.7974 2.4138
0.1604 36.4500

]
4.7465 4.5688

5000 0.12 100
[
−1.2049 1.4121
−6.4039 −3.5983

] [
14.7974 0.1473
0.1604 0.3484

]
22.0405 21.0872

10000 0.12 100
[
−1.2049 1.4121
−6.4039 −3.5860

] [
14.7974 0.1473
0.1604 0.0057

]
43.6055 41.8855

10000 0.12 500
[
−0.7336 1.4020
−6.2131 −3.5864

] [
48.1257 0.8624
3.1350 0.0181

]
45.2865 43.3202

10000 0.075 100
[
−1.2049 1.4125
−6.4043 −3.5858

] [
14.8008 0.1204
0.1544 0.0006

]
69.6667 66.9073

50000 0.12 100
[
−1.4141 1.4121
−6.4039 −3.5860

] [
0.0057 0.1473
0.1604 0.0057

]
213.0068 207.9180

50000 0.12 500
[
−1.4141 1.4020
−6.2131 −3.5864

] [
0.0071 0.8624
3.1350 0.0181

]
213.8641 209.0700

100000 0.12 100
[
−1.4141 1.4121
−6.4039 −3.5860

] [
0.0057 0.1473
0.1604 0.0057

]
424.3621 415.0898

Lyapunov exponents. Furthermore, a direct implementation of the QR methods for some special
classes of DAEs such as DAEs of Hessenberg form would be of interest.
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[6] P. Bohl. Über Differentialungleichungen. J. f. d. Reine und Angew. Math., 144:284–313, 1913.

[7] K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of Initial-Value Problems
in Differential Algebraic Equations. SIAM Publications, Philadelphia, PA, 2nd edition, 1996.

[8] T. J. Bridges and S. Reich. Computing Lyapunov exponents on a Stiefel manifold. Phys. D
156:219–238, 2001.

30



[9] S. L. Campbell. Linearization of DAE’s along trajectories. Z. Angew. Math. Phys., 46:70–84,
1995.

[10] J.-L. Chern and L. Dieci. Smoothness and periodicity of some matrix decompositions. SIAM
J. Matr. Anal. Appl., 22:772–792, 2000.

[11] C.J. Chyan, N.H. Du, and V.H. Linh. On data-dependence of exponential stability and
the stability radii for linear time-varying differential-algebraic systems. J. Diff. Equations,
245:2078–2102, 2008.

[12] N.D. Cong and H. Nam. Lyapunov’s inequality for linear differential algebraic equation. Acta
Math. Vietnam, 28:73–88, 2003.

[13] N.D. Cong and H. Nam. Lyapunov regularity of linear differential algebraic equations of index
1. Acta Math. Vietnam, 29:1–21, 2004.

[14] J.L. Daleckii and M.G. Krein. Stability of solutions of differential equations in Banach spaces.
American Mathematical Society, Providence, RI, 1974.

[15] L. Dieci and T. Eirola. On smooth decompositions of matrices. SIAM J. Matr. Anal. Appl.,
20:800–819, 1999.

[16] L. Dieci, R. D. Russell, and E. S. Van Vleck. Unitary integrators and applications to contin-
uous orthonormalization techniques. SIAM J. Numer. Anal., 31:261–281, 1994.

[17] L. Dieci, R. D. Russell, and E. S. Van Vleck. On the computation of Lyapunov exponents for
continuous dynamical systems. SIAM J. Numer. Anal., 34:402–423, 1997.

[18] L. Dieci and E. S. Van Vleck. Computation of a few Lyapunov exponents for continuous and
discrete dynamical systems. Appl. Numer. Math., 17:275–291, 1995.

[19] L. Dieci and E. S. Van Vleck. Lyapunov and other spectra: a survey. In Collected lectures
on the preservation of stability under discretization (Fort Collins, CO, 2001), pages 197–218.
SIAM, Philadelphia, PA, 2002.

[20] L. Dieci and E. S. Van Vleck. Lyapunov spectral intervals: theory and computation. SIAM
J. Numer. Anal., 40:516–542, 2002.

[21] L. Dieci and E. S. Van Vleck. On the error in computing Lyapunov exponents by QR methods.
Numer. Math., 101:619–642, 2005.

[22] L. Dieci and E. S. Van Vleck. Perturbation theory for approximation of Lyapunov exponents
by QR methods. J. Dyn. Diff. Eq., 18:815–842, 2006.

[23] L. Dieci and E. S. Van Vleck. Lyapunov and Sacker-Sell spectral intervals. J. Dyn. Diff. Eq.,
19:265–293, 2007.

[24] L. Dieci and E. S. Van Vleck. On the error in QR integration. SIAM J. Numer. Anal.,
46:1166–1189, 2008.
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