
The Mcf-Separator – Detecting and Exploiting

Multi-Commodity Flow Structures in MIPs∗

Tobias Achterberg† Christian Raack‡

Abstract

Given a general mixed integer program (MIP), we automatically detect block structures in
the constraint matrix together with the coupling by capacity constraints arising from multi-
commodity flow formulations. We identify the underlying graph and generate cutting planes
based on cuts in the detected network. Our implementation adds a separator to the branch-
and-cut libraries of Scip and Cplex. We make use of the complemented mixed integer rounding
framework (c-MIR) but provide a special purpose aggregation heuristic that exploits the network
structure. Our separation scheme speeds-up the computation for a large set of MIPs coming
from network design problems by a factor of two on average.

Keywords: mixed integer programming, network detection, cut-based inequalities

1 Introduction

In this paper we present a novel separation heuristic for general mixed integer programs (MIPs),
which we call multi-commodity flow cut separator (Mcf), now available in Scip 1.2 [60] and Cplex

12.1 [33].
The Mcf separator identifies a coupled multi-commodity arc-flow formulation in the constraint

matrix and constructs the corresponding network. It then generates inequalities based on cuts
in the detected network. Our separation scheme makes use of the complemented mixed integer
rounding approach (c-MIR) introduced by Marchand [39] and Marchand and Wolsey [40]. Instead
of using the default aggregation heuristic we aggregate inequalities in such a way that the resulting
base inequalities correspond to cuts of the detected network. In this context our approach can
be considered as being an alternative c-MIR aggregation heuristic which exploits combinatorial
structure. If the considered MIP instance contains a network structure, e.g., if it corresponds to a
network design problem, our implementation is able to identify it and to produce strong valid special-
purpose cuts which help to improve the dual bound and to accelerate the branch-and-cut solver. On
the other hand, our implementation is able to decide whether the detected structure is consistent
or not. In particular, we are not generating cutting planes if the structure is not consistent. This
way we introduce almost no overhead for instances that do not fit into our framework, following a
remark from Bixby and Rothberg [17]:

It may also be tempting to consider a new method in the context of a single problem
class. While an idea that provides a big benefit for one problem class can be quite useful,
both for solving problems of that class and for developing insights into generalizations
of such methods, one practical difficulty is that MIP practitioners are typically unaware
that they are confronting a problem of that class. At a minimum, a method should be able
to recognize models to which it can be applied, ideally introducing little or no overhead
when the model does not fit the mold.

∗This research has been supported by the DFG research Center Matheon
†IBM, achterberg@de.ibm.com
‡Zuse Institute Berlin (ZIB), Takustr. 7, D-14195 Berlin, raack@zib.de

1

Let A = (αij)i∈M,j∈N be a rational matrix with m rows and n columns. We denote by M and
N the row and column row indices of A. The set of integer variables is given by I ⊆ N . We consider
the mixed integer program (MIP)

min κT x

Ax ≦ b (1)

xj ∈ Z, ∀j ∈ I

where the linear constraints of the system (1) are given either as equations or as ≤-inequalities.
Upper and lower bounds on variables are already included in the constraint system. Associated with
(1) we define X := {x ∈ RN\I × ZI : Ax ≦ b} to be the mixed integer set containing all feasible
solutions.

Based on the observation that many known strong valid inequalities for different problems can
be obtained by MIR, Marchand and Wolsey [40] (also see [39, 41]) proposed a c-MIR procedure
that is nowadays one of the most successful separation schemes in state-of-the-art MIP-solvers such
as Scip and Cplex, see [1, 17, 59]. The idea is to generate MIR inequalities from single (base)
constraints that are valid for X . Marchand and Wolsey [40] employ four different operations to
obtain such a base inequality. In the first aggregation step a conic combination uTAx ≤ uT b of
the system (1) using weights u ≥ 0 is considered. This is followed by bound substitution trying to
substitute continuous variables by variable upper or lower bounds of the form xj ≤ cxj′ or cxj′ ≤ xj

with j ∈ N\I, j′ ∈ I. In the third step a subset C ⊆ I of bounded integer variables is complemented
using simple upper or lower bounds of the form xj ≤ uj or lj ≤ xj with j ∈ C. Eventually, the
resulting mixed integer knapsack inequality is scaled using an appropriate multiplier δ > 0. Each
of these four operations is carried out by heuristics using information from the (current) solution of
the linear programming relaxation. For an introduction to MIR the reader is referred to [43, 57].
The c-MIR framework is introduced in [39, 41] while some new insights on c-MIR and flow-cover
inequalities are given in [34]. The implementation of c-MIR in Scip together with computational
tests is described in [1, 59]. A similar computational c-MIR study concerning the Cut Generation
Library (CGL) of the COIN-OR-initiative [22] is provided by [26]. Results on the performance of
c-MIR in Cplex can be found in [17].

Despite the fact that MIR inequalities based on different heuristics are generated by Scip and
Cplex, computational results suggest that important cut-based MIR inequalities for certain network
design problems are rarely found, see for instance [49]. This has mainly two reasons. First, the
network structure is not known to these solvers. Secondly, the corresponding aggregation simply
involves too many rows of the original system (1). It is natural to impose a conservative limit on
the maximal number of inequalities considered for aggregation in general purpose MIR or Chvátal-
Gomory based procedures since this limit appears in the exponent of the running time function.
Moreover, it is very likely that (without additional information) the generated inequalities become
very dense if too many inequalities are aggregated. For these reasons, the default c-MIR aggregation
limit in Scip has been set to 7 inequalities. A similar value is used in Cplex.

Our implementation makes use of the c-MIR separation schemes implemented in Scip and Cplex

based on [40]. We skip the default aggregation heuristic and instead construct the vector u using
information from the network detection. The aggregation as described in the following sections can
involve a huge number of flow conservation and capacity constraints. Already for a medium sized
network with 50 nodes and 100 commodities we potentially aggregate more than 2500 constraints
(assuming a cut with two equally sized shores). Nevertheless, since the support of the resulting
base constraint corresponds to a cut of the detected network, the aggregated constraint tends to be
very sparse. It is important to understand that our framework is not explicitly generating cutting
planes. It only calculates weight vectors u. The remaining steps, in particular bound substitution
and complementing, are carried out by the c-MIR functions of Scip, see [1, 59]. Notice that scaling
the base constraint with different values δ > 0 before MIR can be seen as using weight vectors δuT

for aggregation. Also certain bound substitutions can be done already by aggregation as explained
in the next section.

This paper is organized as follows. Section 2 introduces the type of models and matrix structures
which our detection algorithm tries to identify. We also introduce different strong cut-based inequal-

2

ities, and we show that these can be obtained using the same aggregation and c-MIR procedure.
In Section 3, the network detection algorithm is explained in detail. We evaluate the quality of
the algorithm using a large set of publicly available network design instances. Section 4 describes
our aggregation and separation scheme. In particular, we explain how to find promosing cuts in
the detected network. Some important extensions and model variants are considered in Section 5.
In Section 6, we report on our computational experiments with the Mcf separator of Scip and
Cplex. The experiments are carried out with the mentioned network design instances and in ad-
dition using the Miplib 3.0 [15], Miplib 2003 [2], the MIP instances of Hans Mittelmann [42], and
the Cplex-internal testset. We conclude with some remarks in Section 7.

2 Network Design

Combinatorial optimization problems arising for instance from applications in telecommunication
and public transportion very often involve the problem of designing a network [20, 36, 47, 51].
This task can be roughly described as follows. Given a potential network topology (a graph),
network links (connections, streets, bus-lines) and nodes (locations, intersections, stations) have
to be dimensioned to allow for the flow of commodities (data, passengers, goods) corresponding
to certain user demands. If different commodities have to be routed independently through the
network, we speak of multi-commodity flows. Dimensioning in this context means to assign capacity
to the network elements (links and nodes). In practice, the set of possible capacity assignments
typically has a discrete structure. Link capacities in telecommunication applications, for instance,
can be composed of integer multiples of a certain base bandwith. In public transportation they
typically are chosen from a finite set of possible vehicle frequencies and types. But also the routing
of demands might be discrete in the sense that it is restricted to single-path or integer flows.

In the mathematical literature there is a vast variety of approaches to model and solve network
design problems depending on the requirements to incorporate. With our network detection and
cutting plane approach we focus on rather general mixed integer programming models, so-called
arc-flow formulations, which allow to dimension the links of a network such that a multi-commodity
flow of given demands can be accommodated. (Notice that node dimensioning can always be broken
down to link dimensioning by introducing artificial network links.) In the following we will introduce
such models in more detail. In particular, we aim at working out the structure of the corresponding
matrix which our network detection and separation algorithms rely on.

Moreover, we will introduce the concepts of network cuts and cut-based inequalities. It is well
known that cutting planes defined on network cuts are among the most effective when used within
branch-and-cut frameworks to solve network design problems, see [5, 13, 14, 24, 30, 38, 45, 49] for
computational studies. Cut-based inequalities define facets of the corresponding polyhedra under
very mild conditions and they are usually sparse. We will show how important classes of cut-based
inequalities can be obtained with the c-MIR-approach using an appropriate aggregation of flow-
conservation and capacity constraints. It will be emphasized that the same aggregation and MIR
procedure can be used for many of the model variations used in practice.

2.1 Model and matrix structure

First, we consider a basic network flow model, which is described in the following. A discussion
on more general model types can be found in Section 5. We are given a connected directed graph
G = (V, A) with nodes V and arcs A and a set of commodities K. With every k ∈ K a vector dk ∈ QV

of demand (supply) values is associated. We call v a supply node with respect to commodity k if
dk

v > 0 and a demand node if dk
v < 0. For every commodity k ∈ K we have to construct a flow in G,

which can be considered as being a vector fk ∈ RA
+ with the property that for every node v ∈ V the

flow leaving v on all outgoing arcs minus the flow entering v on all incoming arcs equals the value
dk

v . We assume that
∑

v∈V dk
v = 0 for all k ∈ K, i.e., there is no flow leaving the network or entering

it from “outside”. Very often a commodity corresponds to a single point-to-point demand, that is,
there is exactly one (source) node s ∈ V with dk

s > 0 and one (target) node t ∈ V with dk
t < 0.

To accommodate the multi-commodity flow we have to dimension the network arcs. Every arc

3

1

1

1 -c

1

-1
1 1

1

1

-1
-1

-1

-1 1
-1

1

-1

1

1

1

1

-1
-1

-1

-1 1
-1

1

-1
1 1

1

1

-1
-1

-1

-1 1
-1

1 1 1 -c

1

1

2

Figure 1: A digraph and the corresponding matrix representing a coupled multi-commodity flow.
A node has a flow-row in every commodity. An arc has a column in every commodity and corresponds
to one coupling capacity row.

a ∈ A can be equipped with integer multiples of the capacity value ca ∈ Q, ca > 0, while the number
of capacity modules installable on a is bounded by ua ∈ Z ∪ {∞}, ua ≥ 1. A flow f ∈ RA×K

+ is
said to be feasible if for every arc a the total flow (over all commodities) is not exceeding the arc
capacity. The capacitated network design problem now asks for a capacity assignment to the arcs
plus a feasible network flow for all commodities that minimizes a given linear (flow and/or capacity)
cost function [5, 13, 37].

Let fk
a be the flow of commodity k ∈ K on arc a ∈ A. Variables ya ∈ Z+ state how often capacity

ca is provided on arc a ∈ A. A natural way to describe all feasible multi-commodity flows together
with all feasible capacity assignments is to use an arc-flow formulation of the form:

∑

a∈δ+(v)

fk
a −

∑

a∈δ−(v)

fk
a = dk

v ∀v ∈ V, k ∈ K (2a)

∑

k∈K

fk
a − caya ≤ 0 ∀a ∈ A (2b)

ya ≤ ua ∀a ∈ A (2c)

f, y ≥ 0, (2d)

where δ+(v) and δ−(v) denote all arcs in A having v as source and target node, respectively. The
flow conservation equations (2a) describe the flow for each individual commodity. The capacity
constraints (2b) ensure that the flows are feasible by providing sufficient capacity on the network
arcs.

The constraint matrix corresponding to the system (2), as visualized in Figure 1, consists of
|K| blocks, which all correspond to the same |V | × |A| node-arc incidence matrix of the graph
G = (V, A). Such a matrix has the property to contain one +1 and one −1 entry in every column
which correspond to the source and target node of the arc represented by the column. The |K|
blocks are coupled by the capacity constraints that, for each arc, sum up the flow-variables of all
commodities and limit this total flow by the arc capacity.

2.2 Cuts and cut-based inequalities

Let S be a nonempty proper subset of the nodes V and let δ(S) := δ+(S)∪δ−(S) be the corresponding
dicut, where δ+(S) denotes all arcs in a with source in S and target in V \S and δ−(S) subsumes
all arcs with target in S and source in V \S. For the ease of exposition we stick to the single-
commodity case here with flow-variables fa for every a ∈ A and node demands (supplies) dv. The
multi-commodity case is covered by considering single-commodity relaxations of (2) obtained by
aggregating all flow-rows (2a) corresponding to a subset of the commodities Q ⊆ K and setting
fa :=

∑

k∈Q fk
a for every a ∈ A as well as dv :=

∑

k∈Q dk
v for every v ∈ V , see for instance [5, 50].

To develop cut-based inequalities we regard the structure GS = ({S, V \S}, δ(S)) as a two-node
network and restrict ourselves to consider the flow across the cut (the flow between S and V \S)

4

1

-1
1 1

1

1

-1
-1

-1

-1 1
-1

δ(S)

SS

δ(S)

Figure 2: The cut δ(S) obtained by aggregating the flow-rows of a nodeset S

and the capacity provided on the dicut δ(S). We denote by dS :=
∑

v∈S dv =: −d
V \S

the total cut

demand (supply) of the artificial node S and assume that dS < 0, that is, S is a (single-commodity)
demand node. Notice that in the multi-commodity case the sign of dS depends on the choice of
the subset Q considered for the single-commodity relaxation. Now it obviously holds that the cut
demand is bounded by the cut capacity, that is, informally:

capacity(δ−(S)) ≥ demand(V \S → S) (3)

Similarly the supply of S (which is the demand of V \S) cannot exceed the capacity on δ+(S).
Observation (3) is crucial both from the theoretical and practical point of view. In practice, if in-
equality (3) is tight the network cut δ(S) can be considered as being a bottleneck. The observation
also has theoretical consequences, especially for network flow theory and the max-flow-min-cut the-
orem [3]. When solving network design problems using branch-and-cut frameworks, inequality (3)
can be used to derive cutting planes, which is our main motivation here.

For the network design model (2) observation (3) breaks down to

∑

a∈δ−(S)

caya ≥ dV \S . (4)

We will now generalize this base inequality, and we will show how it can be obtained by aggregating
original constraints of the system (2), see also Figure 2. First, summing up (and relaxing) all flow
equations (2a) corresponding to S and restricting the capacity constraints (2b) to the dicut δ(S)
results in the following (two-node, single-commodity) cutset relaxation of the formulation (2):

∑

a∈δ+(S)

fa −
∑

a∈δ−(S)

fa ≤ dS (5a)

fa − caya ≤ 0 ∀a ∈ δ(S) (5b)

ya ≤ ua ∀a ∈ δ(S) (5c)

The key to derive strong valid cut-based inequalities for network design problems is to study the
convex hull of the solution space defined by (5) and the integrality of ya. This structure is known
as a single node flow set and has been studied extensively in the literature [4, 7, 11, 28, 29, 41, 46,
52, 53, 55, 56] in particular for the case that ya is a binary variable, i.e., ua = 1 for all a ∈ A. Note
that this has been done mainly for the fact that single node flow sets arise as natural relaxations of
general MIPs and not because they correspond to network cuts. In contrast, related structures with
unbounded integer variables have been studied in [5, 50] as cutset polyhedra motivated by network
design.

We now add all capacity constraints (5b) corresponding to a subset A− of the arcs δ−(S) to
inequality (5a) which gives the mixed integer knapsack base inequality

∑

a∈δ+(S)

fa −
∑

a∈Ā−

fa −
∑

a∈A−

caya ≤ dS , (6)

where Ā− := δ−(S)\A−. We observe that setting A− := δ−(S) and relaxing yields (4). The
solution space corresponding to (6) is known as a mixed (integer) knapsack set, see [6, 41] and the
references therein. By applying MIR to (6) we will recover some well-known strong valid inequalities
for network design problems in the sequel. Since (6) is an aggregation of original constraints all

5

presented MIR inequalities can, in principle, be obtained by using the c-MIR heuristic of Marchand
and Wolsey [40, 41].

Let us first consider the unbounded case, that is, ua = ∞ for all a ∈ δ(S). For simplicity we
assume that the installable capacity ca is independent from the arcs a, i.e., ca = c > 0 for all a ∈ A. In
this case, dividing (6) by c and applying MIR gives the well-known flow-cutset inequalities [5, 13, 21].

∑

a∈Ā−

fa +
∑

a∈A−

rya ≥ r

⌈

d
V \S

c

⌉

, (7)

where r denotes the remainder of the division of dV \S by c. By setting A− := δ−(S) we obtain the
cutset inequalities

∑

a∈δ−(S)

ya ≥

⌈

d
V \S

c

⌉

. (8)

Inequality (8) is crucial since it provides a lower bound on the number of capacity modules that has
to be provided on the cut to allow for feasible flows. Atamtürk [5] proves that flow-cutset inequalities
together with all trivial inequalities yield a complete description of the cutset polyhedron for S. On
the other hand, the cutset inequalities (8) turn out to be the most effective cuts in practice, see for
instance [5, 14, 21] (directed models), [35, 37, 38, 49, 50] (undirected models), and [13, 30, 49, 50]
(so-called bidirected models). If the capacities are not arc-independent (or similarly if there is more
than one arc facility), the base inequality (4) can be divided by one of the given capacities ca

before applying MIR. In fact, the facet defining cutset inequalities and flow-cutset inequalities in
[5, 13, 35, 38, 50] are of this type, see also [48].

Cutset inequalities and flow-cutset inequalities clearly remain valid if we impose upper bounds
on the capacity variables. In many applications the capacity variables are binary, modeling the
decision wether or not to install a certain arc facility. For uncapacitated network design problems
with c > dV \S for all nonempty S ⊂ V , the inequalities (8) and (7) reduce to the Steiner-cut (or

dicut) and mixed dicut inequalities

∑

a∈δ−(S)

ya ≥ 1 and
∑

a∈Ā−

fa +
∑

a∈A−

dV \Sya ≥ dV \S ,

see for instance [45]. Notice that ⌈
d

V \S

c
⌉ = 1 and r = d

V \S
in this case.

In the bounded case (ua < ∞ for all a ∈ A) with arc-dependent capacities (ca for all a ∈ A) a
large class of valid inequalities for (5), which incorporate the bounds on the capacity variables, is
given by flow-cover inequalities [28, 46, 52]. Marchand and Wolsey [40, 41] and recently Louveaux
and Wolsey [34] observed that strong valid lifted flow cover inequalities can be obtained by MIR.
(Among others, this observation led to the development of the c-MIR framework.) Starting from the
relaxation (6) they allow to complement a subset C of the capacity variables using the upper bounds
ua. The resulting base inequalities are divided by some constant c > 0 and MIR is applied. If C is a
flow-cover and c = ca for an appropriate a ∈ A this leads to flow-cover inequalities dominating those
introduced for instance in [52]. In this context, strong flow cover inequalities (simultaneously lifted
by using the superadditive MIR function) can be derived in the same way as flow-cutset and mixed
dicut inequalities with the additional feature of complementing simple bounds. Notice that the more
general c-MIR approach of Marchand and Wolsey [40] and its implementation in Scip [1, 59] does
not explicitly choose a (flow)-cover for complementing but uses a simple heuristic to determine C
which is based on the solution of the LP-relaxation.

In the light of Marchand and Wolsey [40] and Louveaux and Wolsey [34], it is important to
understand that using the capacity constraints (5b) of A− in the aggregation for (6) is equivalent
to a bound substitution setting fa := caya − f̄a for a ∈ A− with f̄a ≥ 0 being the slack of the
capacity constraint. The artificial variables f̄a are deleted anyway by MIR (if they are considered
as continuous), that is, resubstitution is not necessary. Note that the capacity constraints we use
for aggregation may extend the concept of simple variable upper bounds fa ≤ caya. First, in the
multi-commodity case the term fa subsumes all flow-variables fk

a for k ∈ K, and second, the arc
capacity formulation might involve more variables than only a single arc facility ya, see Section 5.

6

Hence the implicit bound substitution we carry out here is more general than the one proposed in
[34, 40]. Flow-cutset inequalities as well as flow cover inequalities can contain both outflow and
inflow-variables [5, 52]. In this case one explicitly has to substitute the variable upper bounds by
introducing the slacks of the capacity constraints, apply MIR, and resubstitute the original variables.
The inequalities considered by our separation scheme contain only inflow-variables (or by switching
to V \S only outflow-variables). This allows us to include the bound substitution in the aggregation
step (although Scip might do additional bound substitution using simple variable upper bounds in
its default heuristic).

2.3 Summary

In our implementation we generate cut-based inequalities using the c-MIR approach based on arc-flow
formulations hidden in the constraint system Ax ≦ b of the given MIP. We first identify a subsystem
of the from (2) and construct the corresponding network as described in Section 3, that is, we resolve
the structure given in Figure 1 backwards. In the detected network we identify interesting cuts, see
Section 4. For every such cut we call the c-MIR procedure of Scip with a weight vector u that results
in a base inequality of the form (6). Given a cut and the corresponding nodeset S, the corresponding
aggregation can be summarized as follows:

• Aggregate all flow-rows (2a) for nodes in S and commodities in a subset Q of K.

• Add all capacity constraints (2b) corresponding to a subset A− of the arcs δ−(S).

• For every capacity c, that is, for every coefficient c of an integral variable in one of the used
capacity constraints, use δ = 1/|c| as a multiplier to scale the base inequality.

MIR is applied to all these scaled base inequalities. In the first step we restrict our attention to
the commodity subset consisting of all demand commodities with respect to S, that is, Q = K−

S :=
{k ∈ K : dk

S < 0}, where dk
S :=

∑

v∈S dk
v . In the second step we consider the subset A− = δ−(S)

and additionally the subset A− that gives the most violated inequality among all possible subsets
A−. The reverse direction with Q = K+

S := {k ∈ K : dk
S > 0} and subsets of δ+(S) is considered

by repeating the same procedure for V \S. The separation scheme is described in more detail in
Section 4. Clearly, the corresponding aggregation involves a large number of the original constraints
(2a) and (2b) already for small sized networks.

Allthough the network design model (2) and the corresponding c-MIR aggregation are already
rather general, we have to consider model variations which are frequently used in practice. These are
in particular multi-facility problems, undirected capacity models, and single-path-flow formulations.
In Section 5 we explain how these extensions and variants are incorporated into our framework.

3 Network Detection

3.1 Introduction

We start with a high-level presentation of our network detection algorithm. Thereafter we will
explain the corresponding sub-procedures in more detail. Notice that we have not implemented
our algorithms in the way we present them here. Our aim is to describe the core idea of our
implementation. To obtain a fast and stable algorithm one has to introduce more involved data
structures. We will point out necessary improvements and implementational issues in the detailed
description of the four sub-procedures Flow Detection, Arc Detection, Node Detection, and
Network Construction whenever possible.

We will start by explaining the main ingredients of the detection. The idea is to start with
flow conservation constraints or flow-rows of the form (2a). The flow structure of the network is
characterized by a {0, +1,−1}-matrix such that each column has at most one +1 and at most one −1
entry as it can be seen in Figure 1. A subset of the rows of A will be called an embedded network if
it has this property, up to scaling of individual rows. Our Flow Detection procedure is based on a
Row Scanning Addition Algorithm introduced by Bixby and Fourer [16], see also Brown and Wright

7

1

1

-1
1 1

1

1

-1
-1

-1

-1 1
-1

1

-1
1

1

1

-1
-1

-1

-1 1
-1

1

-1
1 1

1

1

-1
-1

-1

-1 1
-1

1

(a) Flow Detection resulting in a disconnected
graph with one component per commodity

1

1

1 -c

1

-1
1 1

1

1

-1
-1

-1

-1 1
-1

1

-1

1

1

1

1

-1
-1

-1

-1 1
-1

1

-1
1 1

1

1

-1
-1

-1

-1 1
-1

1 1 1 -c

1

1

2

2

2

2

2

2

2

2

(b) Arc Detection: using capacity constraints to
assign arc-ids

1

1

-1
1 1

1

1

-1
-1

-1

-1 1
-1

1

-1
1

1

1

-1
-1

-1

-1 1
-1

1

-1
1 1

1

1

-1
-1

-1

-1 1
-1

1

2

2

2

1
5

1
5

1
5

1

1

1

2

2

2 5

5

5
1

1

1

1

1

1

(c) Node Detection: Compare arc-id patterns in
the different commodities and assign the same
node-id to (almost) identical patterns

 1

5

1

1

1 -c

1

-1
1 1

1

1

-1
-1

-1

-1 1
-1

1

-1

1

1

1

1

-1
-1

-1

-1 1
-1

1

-1
1 1

1

1

-1
-1

-1

-1 1
-1

1 1 1 -c

1

1

2

1

5
1

5
1

5

(d) Network Construction: Ask flow-variables
for source and target node, construct incidence
function according to majority vote, minority
votes are inconsistencies

Figure 3: The network detection algorithm

[19]. It identifies an embedded network by consecutively adding flow-rows to the system starting
with an empty set of rows. Each flow-row in the matrix represents one node in the flow network,
a +1 coefficient corresponds to an outgoing flow, a −1 coefficient corresponds to an incoming flow.
An equation can be multiplied by −1 in order to fit to the flow structure. In addition, if the current
row is an inequality but all previous rows are equations, we can also multiply all previous rows by
−1 to make the current row fit. This operation is called reflection [16, 19].

The flow structure could result in a flow network with multiple independent components, see
Figure 3(a). In the perfect case, these components are isomorphic and represent the different com-
modities of the problem. Now the task is to find these isomorphisms. Notice that the problem
of deciding whether two graphs are isomorphic has not yet been proven to belong to P or to be
NP-complete [25]. Since in practice the different components are usually not identical due to user
and solver preprocessing as explained below, it is more important in our context to decide wether
one graph is contained in another or alternatively to maximize the largest common subgraph. Both
problems are NP-complete (NP-hard) [25].

The main idea to solve the graph isomorphism problems in the network detection is to find
capacity coupling constraints of the form (2b) defined on the arcs of the network. We identify the
capacity constraints and the corresponding arcs in the Arc Detection procedure. In the perfect
(directed) case, a capacity constraint contains one flow-variable of each commodity and one or more
capacity-variables. The structure of the capacity constraints, however, depends on the formulation,
see Section 5. The Arc Detection procedure assigns arcs to the coupling capacity constraints and
all corresponding flow-variables, see Figure 3(b).

To determine the nodes of the graph G we compare the arc-patterns of the flow-rows in the
different commodities in the Node Detection procedure. The arc-pattern of a flow-row is given by
the arc-ids of the involved flow-variables. If two flow-rows of two different commodities have a similar
arc-pattern we decide to map them to the same node, see Figure 3(c). Eventually, we determine
the source and target incidence functions for the network arcs in the Network Construction

procedure. In a perfect network, the flow-variables of an arc (of a capacity constraint) should point
to the same source and target node in the different commodities. Then, the source and target node
assignment means to just use these two uniquely determined nodes, see Figure 3(d). In reality,

8

however, flow-variables of the same arc might have different source or target nodes in the different
commodities, that is, the detected network matrices are not isomorphic or arcs and nodes have been
assigned incorrectly. For every arc a ∈ A we use the majority vote of the flow-variables across the
commodities and assign source and target accordingly. Additionally, we record the minority votes as
inconsistencies in the network data structure. The number of inconsistencies divided by the number
of commodities gives the arc inconsistency ratio Ψ(a) ∈ [0, 1), which is used to discard individual
arcs. The average inconsistency ratio over all network arcs is called the network inconsistency
Ψ(G) ∈ [0, 1), which is used to decide whether or not our network detection was successful and
whether the separation scheme should be applied.

3.2 Inconsistency and presolving

If Ψ(G) = 0 we detected a consistent coupled multi-commodity flow network. The commodity net-
work matrices can be considered being isomorphic and we correctly assigned arcs and nodes to rows
and columns. If, however, Ψ(G) is close to 1 our detection failed or there is no consistent embedded
network in the constraint matrix. In our implementation we fixed the maximum inconsistency ratio
Ψmax to 0.02. If Ψ(G) > Ψmax, then all network data structures are released and it is not tried
to generate cutting planes. In addition we do not allow for arcs with individual inconsistency ratio
Ψ(a) greater than Ψmax

a = 0.5. The influence of the inconsistency parameters Ψmax and Ψmax
a is

tested in Section 6.1.
There are several reasons for potential inconsistencies. First, our detection is a heuristic. Its

success largely depends on a proper identification and ordering of flow and capacity-rows, see the
detailed description below. But already the formulation of the concrete MIP instance can be “cor-
rupted” even if it corresponds to a coupled multi-commodity flow. As a consequence, the detection
procedures cannot expect pure and isomorphic network matrices. The same node or the same arc
do not need to be present in every commodity and an arc does not necessarily have both a source
and a target node.

User presolving It is known that the rank of a network matrix corresponding to a directed
network G = (V, A) is exactly |V | − 1. For every commodity, an arbitrary row in (2a) can be
omitted. To save constraints, this preprocessing is sometimes already carried out by the modeler
and results in deleting a node from G for every commodity, see Figure 4. Moreover, the node that
is deleted typically differs from commodity to commodity. For example, if each commodity has a
single source node, it is common to omit the flow conservation constraint of this source node from
the formulation.

Another common presolving technique is to discard all flow-variables that correspond to arcs
pointing into source-nodes or pointing away from target-nodes. This is done to avoid cycle-flows in
the solutions. Deleting flow-variables corresponds to deleting arcs in the network matrix. Again the
omitted arcs differ from commodity to commodity. It turns out that, in practice, our detection has to
face multi-commodity formulations with blocks for individual commodities that are not isomorphic,
although they originally correspond to the same network. However, our detection procedures is still
correctly identifying most of the underlying graphs even if the formulations have passed these user
presolving techniques, see Table 2.

Solver presolving In order to decrease the size of the formulation, state-of-the-art MIP-solvers
carry out a series of preprocessing steps before starting the actual branch-and-cut procedure. The

1

-1
1 1

1

1

-1
-1

-1

-1 1
-1

Figure 4: A node and all incoming arcs deleted by user presolving. Notice that two of the remaining
arcs have no source.

9

1

-1
1 1

1

1

-1
-1

-1

-1 1
-1

Figure 5: Loosely connected nodes and arcs deleted by solver presolving.

model is transformed by deleting redundant constraints and by fixing, substituting, and deleting
variables. We refer to [1] for a description of the presolving methods used in Scip. We observed
that by preprocessing, in particular loosely connected nodes and arcs are deleted from the original
graph, see Figure 5. If for instance node v has only one outgoing arc a and no incoming arc, the
resulting flow-row has the form fa = dv. Hence fa can be fixed and removed from the system. If,
alternatively, v has only one outgoing arc a and only one incoming arc a′, one of the corresponding
flow-variables can be substituted by the other since fa − fa′ = dv.

As shown in Table 2, the number of nodes and arcs deleted by preprocessing may amount to
more than 20% even for pure network design instances of type (2). But also if the network size
is strongly reduced (as for the instance sets avub, arc.set, fc) the inconsistency ratio Ψ(G) is not
necessarily increasing. Also our separator performs very well, compare with Table 3. The remaining
graphs after presolving seem to reflect the core of the network such that generated cut-inequalities
still capture important structural information.

3.3 Notation

Before explaining the four sub-procedures of our network detection strategy in more detail, we
introduce some useful notation. Our detection algorithm identifies potential flow-row and capacity-
row candidates, which are subsets MF ⊆ M and MC ⊆ M of the rows of A. During the course of
the algorithm, these sets are reduced in order to obtain two disjoint subsets, which correspond to
the nodes and arcs in the final multi-commodity flow network structure. Constructing the network
means to map the rows and columns of the matrix A to network elements and commodities. The
mappings are

rowcom : M → K ∪ {0}, i 7→ rowcom(i)

colcom : N → K ∪ {0}, j 7→ colcom(j)

rowarc : M → A ∪ {0}, i 7→ rowarc(i)

colarc : N → A ∪ {0}, j 7→ colarc(j)

rownode : M → V ∪ {0}, i 7→ rownode(i),

where rowcom and colcom map rows and columns of the flow-system to commodities, the functions
rowarc and colarc map the coupling (capacity) constraints and the flow-variables to arcs of the net-
work, and rownode assigns a node to every flow-row. A mapping to 0 means that the corresponding
row or column has not been assigned. To construct the graph G = (V, A) we use the source and
target incidence functions

s : A → V, a 7→ s(a)

t : A → V, a 7→ t(a)

All of our algorithms, based on data structures provided by Scip, rely on sparse array rep-
resentations of the rows and columns of the matrix A. Whenever iterating rows or columns, we
in fact iterate all corresponding non-zeroes. For a subset N ′ ⊆ N of the column indices, the set
M [N ′] := {i ∈ M : ∃j ∈ N ′ with αij 6= 0} contains all row indices with a non-zero entry in one
of the columns of N ′. Similarly, for a row index set M ′ ⊆ M , the set N [M ′] := {j ∈ N : ∃i ∈
M ′ with αij 6= 0} corresponds to all columns with a non-zero entry in one of the rows of M ′. We
abbreviate M [j] := M [{j}] and call M [j] the support of column j. Similarly, N [i] := N [{i}] denotes
the support of row i.

10

3.4 Flow Detection

The goal of the flow detection Algorithm 1 is to find an embedded network in A that is inclusion-
wise maximal with respect to the rows. For finding the embedded network we use a modified
row-scanning-addition algorithm [16]. Roughly speaking, this algorithm starts with an empty set of
flow-rows and adds rows until a maximal embedded network has been built.

Prior to calling Algorithm 1 we identify a potential set of flow-row candidates MF among all
rows M . Initially, the set MF contains all rows in A that have, up to scaling, entries in the set
{0, +1,−1}. Note that in contrast to Bixby and Fourer [16] we do not allow for scaling of columns in
order to obtain a {0,−1, 1} system. All nonzero coefficients of a row in MF have the same absolute
value. We do not explicitly scale rows but keep track of the scaling factors. The actual scaling is
carried out by the weighted aggregation in the c-MIR procedure. Since in practice the degree of
network nodes is relatively small and for efficiency reasons we do not allow for flow-rows with more
than 10% non-zeroes, that is, we limit the node degree to 0.1|A| (in the single-commodity case).

Our flow detection algorithm is strongly driven by a scoring of the flow-row candidates. To every
row i in MF we assign a score sF (i) ∈ R+. The larger sF (i), the more we trust row i to be part of
a flow-system. The following properties of row i (in decreasing order of their importance) increase
its score sF (i) in our implementation:

• Row i does not need to be scaled, i.e., its coefficients are among {0,−1, +1}.

• All variables (with non-zero coefficient) are continuous (corresponding to splittable flows).

• All variables in row i (with non-zero coefficient) are integer or all variables in row i (with
non-zero coefficient) are binary (corresponding to integer splittable or single-path flows).

• Row i has both positive and negative coefficients. (There are both inflow and outflow variables)

• Row i is an equation.

We use the number of non-zeroes and the absolute dual value of row i in the initial solution of
the LP relaxation for tie-breaking. The larger these values are the earlier the flow-row candidate is
considered: scanning and evaluation of the flow-row candidates in Steps 4 and 10 of Algorithm 1
are carried out in non-increasing order of sF .

The submatrix defined by the flow-rows might contain independent blocks, i.e., the corresponding
network is not necessarily connected. These different blocks, that is, the corresponding rows and
columns, are assigned to different commodities. In contrast to the row-scanning-addition algorithm
of Bixby and Fourer [16] our procedure constructs the flow-system of every commodity one by one
(Steps 5-13). We denote by MF (k) all flow-rows that are assigned to commodity k, MF (k) := {i ∈
MF : rowcom(i) = k}. Similarly, the set NF (k) := N [MF (k)] contains all flow-variables assigned to
commodity k. If MF (k) cannot be increased, a new commodity is created until all potential flow-row
candidates have been considered. In Step 14 of Algorithm 1 we say that a finished commodity k is
too small if |MF (k)| < 3 or there exists a commodity k′ such that |MF (k)| < 0.5|MF (k′)|. In this
case the commodity mappings for the corresponding rows and columns are released. These rows
can then indeed be used again for new commodities. But notice that every row is considered at
most once as the starting row of a commodity in Step 4, which guarantees the termination of the
algorithm.

Every step of the addition method results in a feasible flow-system (an embedded and connected
sub-network) for the current commodity k. Given a flow-row candidate i ∈ MF \ MF (k), we say
that i fits to MF (k), if

• i is adjacent to MF (k), i.e., the intersection of NF (k) and N [i] is non-empty,

• the augmented system MF (k) ∪ {i} is an embedded network, i.e., it has at most one +1 and
at most one −1 entry in every column (up to scaling and reflection).

In Steps 9-13 we scan all columns of MF (k) for adjacent flow-rows. For efficiency reasons we take
the first row that fits. But note that this row has the largest score w.r.t. the current column. To
accelerate the loop 9-13 we consider only those columns j in Step 9 that have exactly one entry in

11

MF (k). This is achieved by introducing arrays that count the number of +1 and −1 entries in the
current commodity for every column. In our implementation these arrays are also used for testing
if a row fits to MF (k), also see [16].

Algorithm 1: Flow Detection

Input : flow-row candidates MF , scoring sF : MF → R+

Output : set of commodities K, mappings rowcom : M → K ∪ {0}, colcom : N → K ∪ {0}
Sort MF in non-increasing order of sF1

Initialize rowcom(i) := 0 for all i ∈ M2

Initialize k := 03

for i ∈ MF with rowcom(i) = 0 do // Scan flow-row candidates4

k := k + 1 // Create new commodity5

i′ := i6

rowcom(i′) := k // Add row i′ to commodity k7

colcom(j) := k for all j ∈ N [i′] // Add non-zero columns of i′ to commodity k8

for j with colcom(j) = k do // Search for adjacent rows9

for i′ ∈ M [j] with rowcom(i′) = 0 do10

if row i′ fits to system MF (k) then goto 7; // i′ is best row of j11

end12

end13

if flow-system MF (k) is too small then // Delete commodity k14

colcom(j) := 0 for all j ∈ NF (k)15

rowcom(i′) := 0 for all i′ ∈ MF (k)16

k := k − 117

end18

end19

MF := MF \ {i ∈ MF : rowcom(i) = 0} // Remove nonassigned candidates20

NF := N [MF]21

To fit a row into a flow-system one can reflect it, i.e., multiply it by −1. Since our separation
approach (see Section 4) relies on aggregating flow-rows, this operation can be applied as long as the
current row i is an equation (or similarly, every row of the current system MF (k) is an equation). In
case there is a ≤-inequality among MF (k) and a ≤-constraint has to be reflected in Step 11 to make
it fit to MF (k) we decrease its score such that it is considered later in the loop 10-12. This way we
avoid to introduce slacks when aggregating subsets of the rows of (1) in the c-MIR procedure by
summing up ≤ and ≥-constraints.

After calculating a maximal embedded network within MF all rows that do not participate in
the flow-system are removed from MF (Step 21 of Algorithm 1).

3.5 Arc Detection

The goal of the arc detection procedure given by Algorithm 2 is to identify the coupling of the
commodities K and to assign arc-ids to the (coupling) capacity constraints as well as to all involved
flow-variables. The set MC of capacity-row candidates initially contains all rows in M that are not
flow-rows and that contain at least one flow-variable. Hence:

MC := {i ∈ M \ MF : N [i] ∩ NF 6= ∅}

These candidates are sorted in non-increasing order of a score sC : MC → R+ similar to the flow-row
candidates in Algorithm 1. The most important property of a capacity-row candidate in this context
is to contain a flow-variable for every commodity, i.e., to couple the flow-systems MF (k), k ∈ K.
Basically, the score sC(i) is largest if the constraint i ∈ MC is of the form (2b). Properties that
influence the score of capacity-row candidates are given in the following in decreasing order of their
importance. Note that capacity-row candidates given as equations can always be reflected. For
simplicity we assume that they are given as ≤-inequalities in the following. We increase sC(i)

12

• for every covered commodity, i.e., for every k ∈ K such that N [i] ∩ NF (k) 6= ∅,

• if i contains (close to) one flow-variable per commodity, i.e., if the number of flowvariables
|N [i] ∩ NF | divided by the number of covered commodities |{k ∈ K : N [i] ∩ NF (k) 6= ∅}| is
close to 1,

• if i is a (capacity) constraint bounding flow from above, i.e., it holds that αij > 0 for all
j ∈ N [i] ∩ MF and αij < 0 for all j ∈ N [i] \ MF ,

• if αij = 1 for all j ∈ N [i] ∩ MF without scaling, or

• if αij = 1 for all j ∈ N [i] ∩ MF by scaling.

We use the absolute dual values of the capacity-row candidates for tie-breaking. As for flow-rows we
keep track of the necessary scaling factors. These will be used as weights in the c-MIR aggregation,
see Section 4.

Algorithm 2: Arc Detection

Input : capacity-row candidates MC , scoring sC : MC → R+, mappings
rowcom : M → K ∪ {0} and colcom : N → K ∪ {0}

Output : mappings rowarc : M → A ∪ {0} and colarc : N → A ∪ {0}
Sort MC in non-increasing order of sC1

Initialize colarc(j) := 0 for all j ∈ N , rowarc(i) := 0 for all i ∈ M2

Initialize a := 03

for i ∈ MC do // Scan capacity-row candidates4

flowvars := |N [i] ∩ NF |5

unassigned := |{j ∈ N [i]∩NF : colarc(j) = 0}| // Count unassigned flow-variables6

if unassigned > flowvars/3 then // 1/3 of the flow-variables unassigned7

a := a + 1 // Create new arc8

rowarc(i) := a9

colarc(j) := a for all j ∈ N [i] ∩ NF with colarc(j) = 010

end11

end12

MC := MC \ {i ∈ MC : rowarc(i) = 0} // Remove nonassigned candidates13

Algorithm 2 simply assigns an arc-id to every capacity-row candidate and all unassigned flow-
variables in the support of the capacity-row candidate if one third of the flow-variables is still
unassigned. Note that in a perfect network all capacity constraints are disjoint w.r.t. the flow-
variables hence the flow-variables are all unassigned in Step 7. Here we allow for some overlap
between capacity constraints, for example to cope with presolving reduction. The loop 4 is carried
out in non-increasing order of sC . Eventually, all capacity-rows without an arc-id are removed from
MC . Algorithm 2 terminates with a bijection rowarc : MC ↔ A of capacity-rows to arc-ids and vice
versa. Flow-variables j ∈ NF with colarc(j) = 0 are considered to be uncapacitated since they do
not have a supporting capacity constraint. For these variables we will create (uncapacitated) arcs
in a final step after the construction of the network, see below.

3.6 Node Detection

Algorithm 3 uses the incidence information given by the arc-id mapping colarc to identify (almost)
isomorphic nodes in the different commodities. Two flow-rows in different commodities are consid-
ered to belong to the same node if they have a similar incidence pattern w.r.t. to their arc-ids.

Algorithm 3 scans all flow-rows in non-increasing order of sF . In the single-commodity case every
flow-row simply gets a different node-id. Given a flow-row i ∈ MF belonging to commodity k in the
case |K| > 1, we try to identify flow-rows in all commodities k′ 6= k with a similar arc-pattern. To
calculate the arc-pattern of a flow-row i we count for every arc a, how often it appears as an outgoing

13

and incoming arc in the support of the constraint, i.e., how many flow-variables with positive and
negative coefficients in the support of i are assigned to arc a.

Algorithm 3: Node Detection

Input : flow-row candidates MF , mappings rowcom : M → K ∪ {0} and
colarc : N → A ∪ {0}

Output : mapping rownode : M → V ∪ {0}
Initialize rownode(i) := 0 for all i ∈ M1

Initialize v := 02

for i ∈ MF with rownode(i) = 0 do // Scan flow-rows3

v := v + 1 // Create new node4

rownode(i) := v // Assign node v to flow-row i5

if |K| = 1 then continue6

k = rowcom(i)7

pattern := PatternOf(i)8

for i′ ∈ MF with rowcom(i′) 6= k do // Scan flow-rows of commodities k′ 6= k9

k′ := rowcom(i′)10

score := ComparePattern(pattern, PatternOf(i′))11

Remember bestrow(k′) with largest score for k′
12

end13

for k′ ∈ K \ {k} do // Assign node v to rows with closest arc-pattern to i14

rownode(bestrow(k′)) := v15

end16

end17

If the problem formulation is of the ideal form (2) and if we managed to detect the flow-system and
arcs correctly in Algorithm 1 and 2, then PatternOf(i) returns an incidence vector in {0, +1,−1}A

giving all outgoing and incoming arcs of the flow-row i. Due to inconsistencies in the system or
matrix preprocessing the entries might differ from 0, +1, or −1.

Function PatternOf(i)

Input : flow-row i
Output : pattern ∈ ZA

pattern(a) = 0 for all a ∈ A // Initialize arc-pattern of row i1

for j ∈ N [i] do2

a = colarc(j)3

if a = 0 then continue // Uncapacitated flow-variable4

if αij > 0 then pattern(a) = pattern(a) + 1 // Outgoing arc5

if αij < 0 then pattern(a) = pattern(a) − 1 // Incoming arc6

end7

return pattern8

In Step 11 of Algorithm 3 we compare all arc-patterns of flow-rows i′ of commodities k′ 6= k with
the pattern of row i of commodity k using the function ComparePattern. Notice that it suffices
to scan only those flow-rows i′ in the loop 9-13 that are coupled with i by a capacity constraint.
Hence we consider only rows i′ ∈ MF that have at least one arc in common with i. The function
ComparePattern returns the (weighted) overlap of the two arc-patterns. As a tie-breaker we use the
number of non-overlapping entries of the two pattern vectors divided by the number of columns of
the matrix A. As already mentioned, there might be uncapacitated flow-variables that have no arc-
id. In our implementation we also count the number of these uncapacitated flow-variables (both with
positive and negative sign) in the two flow-rows and use this information as an additional tie-breaker
when comparing two patterns. Hence flow-rows should have a similar number of uncapacitated flow-
variables in addition to a similar arc-pattern to receive a large score.

14

Function ComparePattern(pattern1, pattern2)

Input : arc-patterns pattern1, pattern2
Output : score ∈ R+

Initialize score := 01

for a ∈ A do2

if pattern1(a) · pattern2(a) > 0 then // Patterns overlap and signs match3

score := score + min(pattern1(a)
pattern2(a) ,

pattern2(a)
pattern1(a)) // Increase weighted overlap4

end5

Calculate tiebreaker 0 ≤ ǫ ≪ 16

score := score − ǫ7

end8

return score9

It should be mentioned that every individual commodity flow-system MF (k) can be reflected once,
which means to reflect every flow-row in the system. This has to be considered when comparing the
arc-patterns.

Subsequent to the the node-detection procedure we perform a cleanup of the network information
obtained so far. We remove commodities that have no arcs (no flow-variable with an arc-id) or too
few nodes (too few flow-rows assigned to different nodes). A commodity has too few nodes if its
total number is smaller than 3 or it has less then 50% of the nodes of the largest commodity. In
general one wishes to have commodity systems of almost the same size. Removing a commodity
means to release the corresponding data structures and assignments to nodes and arcs.

3.7 Network Construction

For constructing a digraph G based on the nodeset V and arcset A it remains to construct the source
and target incidence functions s : A → V and t : A → V . The corresponding information is hidden
in our data structures. Given a flow-variable j ∈ NF assigned to some arc a ∈ A, there are at most
two flow-rows in MF having j in their support, one with positive and one with negative coefficient.
These flow-rows are assigned to nodes. It follows that every flow-variable, if assigned to an arc, has
a source and a target node.

Algorithm 4 iterates all arcs in A and asks all the corresponding flow-variables for their source and
target node. Due to inconsistencies in the formulation or in the network detection the flow-variables
of the same arc might answer differently. Based on the majority of the votes the incidence function
is constructed. For every arc a ∈ A we evaluate its inconsistency Ψ(a) ∈ [0, 1) in Step 24, where
Ψ(a) corresponds to the number of minority votes divided by the number of involved commodities.
Inconsistent arcs, that is, arcs a with Ψ(a) > Ψmax

a , are deleted. The mean of the arc inconsistencies
defines the network inconsistency ratio Ψ(G) ∈ [0, 1). This ratio is used to decide about the quality
of the detected network structure. If the inconsistency ratio is too large, that is Ψ(G) > Ψmax,
all data structures are released and we do not try to generate inequalities based on the detected
network, see Algorithm 5. The influence of the parameters Ψmax and Ψmax

a is tested in Section 6.1.
It remains to answer the question what happens with uncapacitated flow-variables that could

not be assigned to arcs in the arc detection Algorithm 2. For these variables we try to create
uncapacitated arcs in a procedure following the network construction. We create a new uncapacitated
arc (s, t) for s, t ∈ V if there are enough uncapacitated flow-variables in different commodities having
s as source and t as target node. More precisely, if for the number uncap(s,t) of uncapacitated flow-
variables corresponding to (s, t) it holds that uncap(s,t) ≥ ⌈0.8|K|⌉ we create a new arc a = (s, t).
Notice that for (s, t) there can only be one matching flow-variable for every commodity. Also notice
that for the single-commodity case this means that we create a new arc for each uncapacitated
flow-variable in the flow-system.

The constructed graph G = (V, A) might be disconnected for two reasons. First, the arc-capacity
constraints do not necessarily couple all commodity flowsystems but only subsets of them. Secondly,
the network might get disconnected by deleting inconsistent arcs. Our separation procedure is

15

applied to every individual component of G. Each of these components might correspond to a multi-
commodity system. For simplicity, in the rest of this paper we assume that there is only one such
component in the sequel, i.e., G is connected.

Algorithm 4: Network Construction

Input : nodes V, arcs A, mappings rowarc : M → A ∪ {0} and colcom : N → K ∪ {0}
Output : digraph G = (V, A) with incidence functions s : A → V and t : A → V , network

inconsistency Ψ(G) ∈ [0, 1)
Initialize inconsistencies := 01

for a ∈ A do2

i := rowarc−1(a) // Capacity row of arc a3

for k ∈ K do4

nvars(k) := |{j ∈ N [i] : colcom(j) = k}| // # flow-variables per commodity5

end6

ncom := |{k ∈ K : nvars(k) > 0}| // # commodities in row i7

// Ask all flow-variables for source and target node

Initialize scount(v) := 0, tcount(v) := 0 for all v ∈ V8

for j ∈ N [i] with colcom(j) > 0 do9

k := colcom(j)10

for i′ ∈ M [j] ∩ MF do // j has at most two incident flow-rows11

v := rownode(i′)12

if αi′j > 0 then // Increase source count for v13

scount(v) := scount(v) + 1/nvars(k)14

else // Increase target count for v15

tcount(v) := tcount(v) + 1/nvars(k)16

17 end18

end19

// Majority vote wins

s(a) := argmax{scount(v) : v ∈ V, scount(v) ≥ tcount(v)} // Assign best source to a20

t(a) := argmax{tcount(v) : v ∈ V, tcount(v) ≥ scount(v)} // Assign best target to a21

// Minority votes give arc inconsistency

totalcount :=
∑

v∈V (scount(v) + tcount(v))22

Ψ(a) := (totalcount − scount(s(a)) − tcount(t(a)))/ncom // Arc inconsistency23

Ψ(G) := Ψ(G) + Ψ(a)/|A| // Network inconsistency24

end25

for a ∈ A do26

if Ψ(a) > Ψmax
a then A := A \ a; // Delete inconsistent arcs27

end28

3.8 Detection – Results

In the following we discuss the success of our detection strategy. For our tests we selected publicly
available network design instances (with formulations similar to type (2)) as well as general MIP
instances. Table 1 introduces these testsets. It states the name of the testset, its source, and the
number of instances contained. For the network design instances we also give details about the used
formulations within the testset. For model variations also see Section 5. There are single-commodity
(SCF) and multi-commodity (MCF) instances. The flow can be splittable (S) or unsplittable (US).
The capacity formulation can be directed (DI) or undirected (UN) with a single arc facility (SF),
multiple arc facilities (MF), or a big-M capacity (M) in case of uncapacitated problems. The capacity
variables are either binary (BIN) with an additional generalized upper bound constraint (BIN+GUB)
or they are integer (INT). Some instances are randomly generated (RG).

The miplib testset contains all instances from the Miplib 3 [15] and Miplib 2003 [2] libraries.

16

Testset Size Source Paper Problem description

arc.set 35 A. Atamtürk, [8] [9] MCF, S, US, BIN, DI, SF
avub 60 A. Atamtürk, [8] [10] SCF, BIN, DI, MF, RG
cut.set 15 A. Atamtürk, [8] [5] MCF, INT, DI
fc 20 A. Atamtürk, [8] [4] SCF, BIN, DI, SF, RG
fctp 32 J. Gottlieb, [27] SCF, BIN, DI, SF, bipartite graphs
sndlib 52 ZIB, [12] [44] MCF, INT, BIN+GUB, DI, UN, MF
ufcn 83 L.A. Wolsey, [58] [45] SCF, BIN, DI, M
miplib 92 ZIB, [2, 15] [2, 15] general MIP instances
mittelmann 59 H. Mittelmann, [42] – general MIP instances

Table 1: Publicly available network design instances with different formulations and general MIP
testsets

The mittelmann testset subsumes instances available on the webpage of Hans Mittelmann [42, Jan-
uary 2009] used to benchmark MIP-solvers. From the latter we removed instances that are already
contained in miplib and fctp such that all testsets in Table 1 are disjoint. Note that Hans Mittel-
mann changes the definition of his testset frequently. Table 8 in Appendix A provides information
about all instances regarding the number of rows (rows) and columns (vars), the value of the LP
relaxation (lp), and the best dual (bestdual) and primal (bestprimal) bounds obtained during all our
computational tests.

For all the network design instances except for the cut.set testset we could determine the original
network the formulations are based on, that is, we know the correct number of nodes, arcs, and
commodities. Thus we can compare the detected with the original networks.

All the presented results correspond to our implementation in Scip 1.1.0.8 using Cplex 11.2.1
as linear programming solver. This development version can be made available on request by the
authors. There is no difference in the Mcf separator of Scip 1.1.0.8 and the publicly available
Scip 1.2 [60], but note that changes in other Scip plugins and the framework itself could affect the
computational results.

All calculations were done on a 64bit 3.00GHz Quad-Core machine with 6144 KB of cache and 8
GB of RAM using a single CPU. The detailed computational results for the network detection are
presented in Appendix B with Table 9 and Table 10 giving the results for instances with known and
unknown original network, respectively. Table 2 summarizes these results. We performed two tests.
First, we switched off the preprocessing of Scip such that our network detection procedures worked
on the original formulation (detection – no presolve). But note that the original formulation might
already contain model reductions by user presolving. In the second test, Scip was run in its default
settings with preprocessing switched on (detection – presolve). For both tests and every testset,
Table 2 reports on the number of instances for which we detect a network (nets), the number of
instances with a detected network and inconsistency ratio of at most Ψmax = 0.02 (nice), and the
maximum inconsistency ratio among all instances in the testset (max (Ψ)). Recall that the value
Ψmax is used in our framework as a default parameter to decide whether or not to separate. In case
the original network is available, we compare it with the detected network by taking the arithmetic
mean of the percentage deviation from the original number of nodes (V), arcs (A), and commodities
(K). A single node deviation, for instance, is given by the ratio 100 · ||V | − |V ⋆||/|V ⋆|, where |V ⋆|
and |V | correspond to the number of nodes in the original and detected network, respectively.

Let us first discuss the results for the network design instances. With solver presolving switched
off we find a consistent network in almost all of the instances. The inconsistency ratio is close to
zero on average and the deviations from the original network are insignificant. There are only a few
exceptions. Two fctp-networks are not detected (bk4x3 and gr4x6), and one detected fctp-network
significantly differs from the original one (ran4x64). (All other fctp-networks are correctly identified,
see Table 9 in Appendix B). It turns out that some of the fctp flow-rows are rejected because they
have a density exceeding 10% of the total number of variables, which is done by the flow-detection
procedure for efficiency reasons, see above. Note that the fctp instances are based on complete

17

testset # detection – no presolve detection – presolve
mean diff % mean diff %

nets nice max(Ψ(G)) V A K nets nice max(Ψ(G)) V A K

arc.set 35 35 35 0.009 0.0 0.0 0.7 35 35 0.008 20.1 13.4 0.9
cut.set 15 15 0 0.403 - - - 15 0 0.366 - - -
fc 20 20 20 0.000 0.0 0.0 0.0 20 20 0.002 23.3 11.5 0.0
fctp 32 30 30 0.000 3.1 3.3 6.7 30 30 0.000 3.1 3.3 6.7
avub 60 60 60 0.000 0.3 0.4 0.0 60 60 0.002 26.9 21.8 0.0
sndlib 52 52 52 0.000 0.3 0.0 0.0 52 51 0.023 0.4 0.1 0.0
ufcn 83 83 83 0.018 3.8 4.2 0.0 83 83 0.009 9.3 8.3 0.0
miplib 92 46 20 0.669 - - - 57 23 0.656 - - -
mittelmann 59 41 2 0.712 - - - 41 6 0.621 - - -

Table 2: Network detection results summary

bipartite graphs which can result in dense flow-rows. In addition, the proposed algorithm is not able
to identify consistent networks in the cut.set instances. We observed that the algorithm already
fails in the flow-detection procedure. For individual cut.set instances we do not know the original
network but according to Atamtürk [5] the set consists of problems with 19 to 29 nodes and 23 to
93 commodities. In contrast, our flow-detection procedure detects 1 to 6 commodities with up to
168 nodes (see Table 10 in Appendix B). The matrix is not correctly decomposed into commodity
blocks caused by additional coupling constraints that are misleadingly used as flow-rows.

If presolving is switched on, the detected networks obviously differ in size from the original ones.
The mean deviation in the number of nodes and arcs exceeds 20% for arc.set , fc, and avub while
the number of commodities is stable for all network design instances. For most of the instances
the network size is decreased because of deleted flow-rows or flow-variables. This does however not
mean that these networks are less consistent. Only for the sndlib testset the inconsistency ratios are
noticeably increasing.

For roughly half of the general MIP instances (miplib and mittelmann) we detect a network but
only a few of them are consistent. The inconsistency ratio can be close to one in general, which is
not surprising. It is remarkable that with presolving switched on the number of detected networks
and the number of consistent networks increases while the maximum inconsistency ratio decreases
for both the miplib and mittelmann testset. It seems that some networks can be identified easier
if redundant rows and columns are removed from the system. In the default settings, we find 6
mittelmann and 23 miplib instances with a network that can be considered being consistent.

4 Separation

In case the described network detection scheme identified a network G = (V, A) with Ψ(G) ≤ Ψmax,
we apply the following separation scheme. Our separation heuristic relies on calculating a weight
vector u ∈ QM

+ that is used to aggregate original constraints of the system (1). For every weight
vector we additionally provide a set ∆ of multipliers δ > 0 where 1/δ > 0 is chosen among the
(absolute values of the) coefficients of integer variables in the capacity coupling constraints i ∈ MC

with ui 6= 0. The final base mixed integer rows are given by δuTAx ≤ δuT b for all δ ∈ ∆.
The vector u and a multiplier δ ∈ ∆ are passed to the the c-MIR framework of Scip which

carries out the aggregation and scaling. It additionally applies bound substitution, complementing,
and scaling as proposed by Marchand and Wolsey [40] before the MIR inequality is generated, see
[1, 59] for details. We chose the vector u such that the resulting inequality is of the form (6)
corresponding to a cut in the detected network. The vector u already incorporates the necessary
scaling and reflecting of flow and capacity rows from the network detection procedures. In the
following description we ignore this fact and assume that all flow and capacity rows are correctly
scaled, that is, ui ∈ {0, 1} for all i ∈ M . To select constraints for aggregation based on the network
structure we make use of the calculated mappings rowarc : MC → A, rowcom : MF → K, and
rownode : MF → V . From rowarc we construct a function arcrow : A → MC ∪{0} that returns the

18

capacity constraint for every arc a ∈ A or 0 if arc a is uncapacitated. From rownode and rowcom
we construct a function nodecomrow : V ×K → MF ∪ {0} that returns the flow-row corresponding
to node v ∈ V and commodity k ∈ K or 0 if node v (and hence the corresponding flow-row) is not
existing for commodity k. Notice that our detection algorithm ensures that there can be at most
one capacity row for every arc and at most one flow-row for every node and commodity.

The high-level separation scheme of our implementation is given by Algorithm 5. Our cut
selection strategy is very close to procedures proposed in [13, 14, 30, 45, 49] which have been
successfully used in branch-and-cut frameworks to solve different types of network design problems.
We favor the generation of cut-based inequalities in the space of the capacity variables over the
generation of mixed inequalities containing both flow and capacity variables. This is based on
experimental observations that the latter are not as efficient in improving the dual bounds and
performance, see for instance [13, 45, 49].

Algorithm 5: Separation scheme

Input : mappings arcrow : A → MC ∪ {0} and nodecomrow : V × K → MF ∪ {0}, primal
and dual solution (x∗, π∗) of the linear programming relaxation

if Ψ(G) > Ψmax then return // Stop if network is inconsistent1

Initialize weights ui := 0 for all i ∈ M2

Calculate a collection C of nodesets S ⊂ V using (x∗, π∗)3

for S ∈ C do4

for k ∈ K do5

Determine cut demand dk
S :=

∑

v∈S dk
v , where dk

v := bi with i := nodecomrow(v, k)6

end7

Determine demand commodities K−
S := {k ∈ K : dk

S < 0}8

for v ∈ S, k ∈ K−
S do i := nodecomrow(v, k) and ui := 1 // Set flow-row weights9

Initialize set of multipliers ∆ := ∅.10

for a ∈ δ−(S) do11

i := arcrow(a) and ui := 1 // Set capacity-row weights12

for j ∈ I ∩N [i] do add 1/|αij | to ∆ // Use coeffs of int variables for scaling13

end14

for δ ∈ ∆ do15

violation = cMIR(u, δ) // Generate cutset inequality (8)16

if violation > 0 then add c-MIR-cut to the cut-pool17

end18

if no violated c-MIR-cut was found then19

Chose δ ∈ ∆ and determine a subset A− ⊆ δ−(S)20

for a ∈ δ−(S)\A− do21

i := arcrow(a) and ui := 0 // Remove capacity-row for a from aggregation22

end23

violation = cMIR(u, δ) // Generate flow-cutset inequality (7)24

if violation > 0 then add c-MIR-cut to the cut-pool25

end26

end27

Algorithm 5 starts by calculating a set of cuts in the detected network (see below for details).
If nodeset S is in the list C, then also the reverse direction is considered, i.e., V \S ∈ C (for the
undirected case see Section 5). For every nodeset S we determine the set of demand commodities
K−

S , i.e., the set of commodities that has to be routed from V \S to S. We set the weights u such
that in the ideal case a cutset inequality of the form (8) is generated by the c-MIR framework
(Step 16 of Algorithm 5). This inequality contains only capacity variables since flow-variables for
arcs in δ−(S) are canceled out by the corresponding capacity constraints and flow-variables for arcs
in δ+(S) get a zero-coefficient by MIR. Several such inequalities might be generated because we try
different scaling factors δ > 0. In our implementation we use a maximum of 20 from the largest

19

multipliers in ∆. Two multipliers δ1 ≥ δ2 are considered to be identical if δ1/δ2 < 1.001.
To get tight base inequalities (having no slack) we only accept tight flow-rows for aggregation in

Step 9 of Algorithm 5, and we are not accepting capacity-rows with a slack greater than 0.1 (the
largest coefficient being normalized to 1) in Step 12. Recall that in the ideal case flow-rows are
equations. The nodesets S ∈ C are selected to prefer tight capacity rows on the cut, see below.

In a second step, if no violated cutset inequality was found, we try to generate a flow-cutset
inequality (mixed dicut inequality, flow-cover inequality) of the form (7) containing both flow and
capacity-variables. For these mixed inequalities we only try the multiplier in ∆ (Step 20) that gave
the tightest cutset inequality. Among all possible subsets A− of the cut-arcs δ−(S) we determine
the one that gives the most violated mixed inequality in Steps 20-23, see also [5, 45, 49]. This can
be done in linear time as follows. We heuristically assume that the right-hand side of the capacity
constraints is zero as in (5b), i.e., there is no pre-installed capacity on δ−(S). In this case the
right-hand side of the base inequality (6) does not depend on the chosen subset A−. It follows that
the MIR coefficients do not depend on A−. Hence the change of the violation of the MIR inequality
can be pre-calculated for every arc a that is removed from A−. Remove, as an example, arc a from
A− in the base inequality (6). This changes the activity of the MIR inequality (7) by f∗

a − ry∗
a. We

can start with A− = δ−(S) and remove all arcs a from A− with f∗
a < ry∗

a which gives the most
violated inequality (7) for the given scaling factor δ ∈ ∆

Network cut selection – shrinking It remains to explain our cut selection strategy in Step 3.
We always add all (singleton) nodesets S with |S| = 1 or |V \S| = 1 to the cut-collection C. In
addition we apply a shrinking heuristic, which has been first proposed by Bienstock et al. [14] and
Günlük [30], see also [45, 49]. To every nodepair {s, t} ∈ V × V , for which an arc a = (s, t) or
a = (t, s) exists, we assign a weight wst ∈ R and iteratively contract the two nodes with the largest
weight until Ω ≥ 2 node clusters are left. In the remaining graph we enumerate all cuts and add
the corresponding sets S and V \ S in the original graph to C. The weight of a nodepair {s, t} is
initialized with the minimum of all corresponding arc-weights wa defined by

wa := s∗a − |π∗
a|,

where s∗a denotes the slack value of the capacity constraint arcrow(a) with respect to the solution x∗.
Similarly, π∗

a denotes the dual value of the row arcrow(a). Note that by complementary slackness s∗a
and |π∗

a| cannot be positive simultaneously. We set wa to infinity if the arc a is uncapacitated. With
shrinking weights defined this way, cuts are preferred that have many arcs with small slack and large
absolute dual. If (all of) the capacity constraints in the cut are tight then also the base inequality
will be tight. For tight base constraints, it is more likely to derive a violated MIR inequality. To
substract the dual values for tight arcs is based on the heuristic argument that the inequalities we
generate increase the capacity on the cut. Hence, they introduce slacks in the capacity constraints
on the cut. It follows that using large absolute duals should maximally improve the dual bound.
With weights that can be positive and negative, this shrinking scheme is a fast max-cut heuristic.

Obviously, the number of considered cuts increases exponentially with the size of Ω. In our
implementation we use a value of Ω = 5. The effect of the parameter Ω is evaluated in Section 6.2.

Many authors studying different network design problems showed that a crucial condition for a
cut-based inequality to be strong (to define a facet) is that the two subgraphs G[S] and G[V \S],
i.e., the graphs defined by the nodes in S (V \S) and the arcs with both endnodes in S (V \S), are
(strongly) connected, see [13, 23, 35, 37, 50]. In our implementation we remove nodesets S from the
list C if either G[S] or G[V \S] is disconnected. The connectivity check is carried out using a breadth
first search algorithm on these graphs. Note, however, that every individual shore in the network
partition is connected since we start with a connected network and only contract arcs.

5 Extensions

In the following we present some extensions to the algorithms introduced above. Our implementation
also incorporates different model alternatives of (2). We show how these variations influence our
detection and cutting plane procedure.

20

Multi-facility problems The capacity on a given arc is not necessarily the single product of a
capacity and an (integer) capacity variable. It can be a general scalar product. In this case we speak
of multi-facility problems [5, 10, 50, 54]. Given a set of admissible facilities Ta for every arc a ∈ A
and capacity values ct

a ∈ Q+, t ∈ Ta, the capacity constraints change to

∑

k∈K

fk
a −

∑

t∈Ta

ct
ayt

a ≤ 0 ∀a ∈ A (2b’)

Capacity constraints of the form (2b’) do not influence our algorithms. In fact, our detection
and separation framework is independent from the structure of the capacity variables and their
coefficients in the capacity constraints. It only relies on the fact that (almost) all arc-flow-variables
appear in the coupling inequality. For models with unbounded capacity variables it is known that
the aggregation described in Section 2 and Algorithm 5 results in strong valid multi-facility cutset
and flow-cutset inequalities. One simply uses the capacity constraints (2b’) for bound substitution
(or similarly adds them to (5a)) and considers all the facility capacities for scaling before MIR, see
[5, 49, 50]. Exactly the same is done by our procedure.

Unsplittable flow models Many applications require that the flow is unsplittable, that is, the
flow of a commodity has to use a single path from the source to the destination [9, 18, 31, 32]. To
model unsplittable flow one typically introduces binary flow-variables fk

a that state whether or not
the flow of commodity k uses arc a. Additionally, the flow conservation constraints are formulated
with a vector dk defined by

dk
v =











1 v = s

−1 v = t

0 else

, ∀v ∈ V, k = (s, t) ∈ K,

where (s, t) ∈ V × V denotes the source-target node-pair of commodity k. The actual demand
values d(s,t) ∈ Q+ that have to be routed on a single path from s to t are included in the capacity
constraints:

∑

k=(s,t)∈K

d(s,t)fk
a − caya ≤ 0 ∀a ∈ A. (2b’’)

This results in capacity constraints with coefficients for flow-variables that are commodity dependent.
Note that the same formulation alternative can be used in the context of splittable flow and single-
source, single-target commodities. In this case the flow-variable fk

a denotes the fraction of flow
routed on arc a for commodity k. This formulation does not affect any of the detection procedures
since none of them evaluates the coefficients in the capacity constraints. Because of a potentially
smaller score, capacity-rows of type (2b’’) will be considered later in the arc detection Algorithm 2.
But this is only of interest if there are also capacity-rows of type (2b) among MC that cover all
commodities.

While this model variant has no influence on the network detection, we have to adapt the weights
in the separation scheme. The aim to add the capacity constraints for δ−(S) to the aggregated flow-
system (5a) is to cancel out the corresponding flow variables in order to obtain the base constraint (6).
Since the coefficients of the capacity constrains depend on the commodities we have to scale the flow-
rows for every commodity accordingly. Before applying Algorithm 5 we heuristically normalize all
capacity constraints in such a way that the coefficients for flow-variables of the same commodity are
identical. Let us assume that the coefficient of the single-source, single-target commodity k = (s, t)
is d(s,t) in all capacity constraints after normalization. In this case, every flow-row for commodity k
has to be scaled by d(s,t) which is carried out in Step 9 of Algorithm 5. Notice that normalization
and scaling has no effect on the standard model with capacity constraints of type (2b).

We refer to Brockmüller et al. [18] for MIR cutset inequalities and the case that the flow is
unsplittable.

Undirected capacity models Undirected capacity models appear frequently in telecommunica-
tion applications since capacities in practice are typically installed bidirectional and (s, t) demands

21

are routed using the same paths as (t, s) demands [31, 32, 35, 37, 38, 49, 50, 54]. Assume that the
digraph G = (V, A) has anti-parallel arcs, i.e., for every arc a = (v, w) there exists the inverted arc
a′ = (w, v). In undirected (single-facility) formulations there is only one capacity-variable yvw for
every of these anti-parallel arc-pairs, and the anti-parallel flows have to share the common capacity
cvwyvw:

∑

k∈K

(fk
(v,w) + fk

(w,v)) − cvwyvw ≤ 0 ∀a = (v, w) ∈ A, v < w (2b’’’)

For every commodity there are two flow-variables in every capacity constraint. While the flow-
system is still directed, the direction of the flow is arbitrary and the capacitated network can be
considered being undirected.

Our implementation is able to distinguish directed and undirected capacity models. Basically
one can think of two different implementations. The user is able to decide which algorithm to use by
setting a modeltype parameter. In the default setting we try to detect the modeltype automatically.

The flow detection Algorithm 1 is identical for both model types, directed or undirected. If the
user is not explicitly claiming either of two detection variants, we decide about the modeltype when
assigning the score to the potential capacity-rows just before the arc detection Algorithm 2. If, on
average, the number of flow-variables per commodity in the capacity-row is greater than or equal to
two we switch to the undirected detection algorithm. The scoring is modified accordingly. In the
arc detection procedure we then construct edges instead of arcs. Again, every edge corresponds to
either exactly one capacity constraint or it is uncapacitated. The node detection in Algorithm 3 is
adapted in the way that the incidence pattern of a node does not depend on the direction of the
incident arcs. We only compare the arc-ids of two flow-rows but not their {+1,−1} pattern. When
constructing the incidence functions in Algorithm 4 we do not distinguish between source and target
node count but consider the sum count(v) := scount(v)+ tcount(v) and simply assign the two nodes
with largest count(V) to be source and target of edge a.

Given a nodeset S, the separation scheme Algorithm 5 considers the set of cut-edges δ(S) for
undirected models. Since the generated inequalities are identical for S and V \S we only add one of
the two nodesets to the list C. Since the direction of traffic is arbitrary we calculate the set K+

S ∪K−
S .

Flow-rows corresponding to K+
S are reflected, i.e., the weight ui is set to −1 for i = nodecomrow(v, k)

with v ∈ S and k ∈ K+
S . Hence, the right-hand side value in the base constraints (4) and (6) (the

cut demand) gives dS = −
∑

k∈K+

S

dk
S +

∑

k∈K−
S

dk
S < 0. For flow-cutset inequalities we consider

a subset A∗ of the cut-edges δ(S) instead of the set A−. For more details on general flow-cutset
inequalities and undirected models the interested reader is referred to [49, 50].

6 Computational Results

In this section we evaluate the performance of the Mcf-separator implemented in Scip and Cplex.
We start by comparing the solvers in their default settings (mcf) with the Mcf-separator being
switched off (nomcf) which is summarized in Tables 3 and 4 for Scip as well as Table 5 for Cplex.
The corresponding detailed results for Scip can be found in Tables 11 and 12 in Appendix C.

For the maximum performance of our separation strategy we fixed a series of parameters based on
extensive computational tests. We intended to accelerate the solvers by an order of magnitude for the
network design instances without cutting too aggressively and without decreasing the performance
for general MIPs. For the main test mcf versus nomcf we fixed the inconsistency parameters to
Ψmax = 0.02 and Ψmax

a = 0.5 and set Ω = 5. The effect of changing Ψmax
a and Ψmax is studied in

Section 6.1. In Section 6.2 we report on the impact of the parameter Ω which relates to the number
of network cuts used for separation.

For Scip we used the testsets introduced in Table 1. Table 8 in Appendix A gives an overview
of the instances together with the best primal and dual bounds found in all Scip runs. For Cplex,
in addition, we report on the results using the Cplex-internal testset. The Scip tests have been
carried out using the same machine and the same Scip version as in Section 3.8. For the Cplex

12.1 tests we used a single CPU of a 64bit 3.33GHz Quad-Core machine with 6144 KB of cache
and 16 GB of RAM. For all tests we fixed the time limit to one hour and the memory limit to 6
GB. We will distinguish easy and hard instances in our exposition. Hard instances cannot be solved

22

testset nomcf – means mcf – means mcf/nomcf
rootgap time nodes rootgap time nodes wins t-outs time nodes

closed % closed %

arc.set all 25 58.4 31.7 3326 71.4 16.6 1103 20/4 0/0 0.52 0.33
sep 25 58.4 31.7 3326 71.4 16.6 1103 0.52 0.33

cut.set all 11 88.7 16.6 1232 88.7 16.5 1232 0/0 0/0 1.00 1.00
nosep 11 88.7 16.6 1232 88.7 16.5 1232 1.00 1.00

fc all 20 93.6 3.3 415 94.2 3.5 305 2/10 0/0 1.08 0.74
sep 19 93.8 3.2 384 94.5 3.4 276 1.08 0.72

nosep 1 89.1 5.9 1570 89.1 5.9 1570 1.00 1.00

fctp all 16 76.9 4.5 1679 77.3 4.6 1603 3/5 0/0 1.02 0.95
sep 13 73.8 6.7 3049 74.3 6.8 2885 1.02 0.95

nosep 3 89.9 0.3 50 89.9 0.3 50 1.06 1.00

avub all 45 86.8 55.2 4267 94.2 17.8 1396 25/8 0/14 0.32 0.33
sep 44 86.5 60.0 4658 94.1 18.9 1491 0.32 0.32

nosep 1 100.0 0.5 1 100.0 0.6 1 1.20 1.00

sndlib all 22 47.7 84.7 24197 64.1 45.1 10710 18/2 0/3 0.53 0.44
sep 21 48.7 95.3 25943 65.8 49.2 11049 0.52 0.43

nosep 1 26.3 6.4 5555 26.3 6.5 5555 1.02 1.00

ufcn all 58 85.7 22.1 3984 89.7 11.6 1804 32/11 0/9 0.52 0.45
sep 58 85.7 22.1 3984 89.7 11.6 1804 0.52 0.45

miplib all 67 62.7 7.0 816 62.5 6.9 784 4/2 0/1 0.99 0.96
sep 13 86.5 9.0 1479 85.5 8.4 1212 0.94 0.82

nosep 54 56.9 6.5 704 56.9 6.5 704 1.00 1.00

mittelmann all 56 61.3 82.2 3579 61.1 85.2 3676 1/2 0/0 1.04 1.03
sep 3 68.0 31.6 22815 64.1 57.8 37098 1.83 1.63

nosep 53 61.0 86.8 3217 61.0 87.1 3217 1.00 1.00

Table 3: Summary for easy instances – mcf versus nomcf – Scip

to optimality by the considered solver within the time limit regardless of whether the separator is
switched on or off. All other instances are considered to be easy. Notice that this definition depends
on the solver.

Tables 3-5 contain 2-3 rows for every individual testset, where row all refers to all instances,
row sep corresponds to those instances for which the Mcf-separator was switched on and found at
least one violated inequality, and row nosep summarizes the results for the rest of the instances (no
network found, network inconsistent, or no inequality found). The respective number of instances is
given in the third column (#). If there are no instances in sep or nosep the corresponding rows are
omitted.

For the instances that are easy (Table 3 Scip and Table 5 Cplex) we report on the geometric
means of the CPU time in seconds (time) and the explored branch-and-bound nodes (nodes) used
to solve the problems. For the Scip runs in Table 3 we additionally provide the arithmetic means
of the closed root gap (closed rootgap) which is defined as

100 · (root − lp)/(bestprimal − lp),

where lp denotes the value of the initial LP relaxation, bestprimal the best known primal solution
value (see Table 8 in Appendix A), and root the value of the LP at the root node after cutting before
branching. All mean values are given for both the mcf and nomcf runs. The last four columns in
Table 3 and Table 5 (mcf/nomcf) compare the mcf and nomcf runs with respect to the number of
wins (wins) and the number of time or memory limit hits (t-outs), and they provide the time (time)
and node (nodes) ratios of the respective geometric means. If by switching on the Mcf-separator
the time to solve the problem is decreased by at least 10% we say that the mcf -run “wins”. If it

23

testset nomcf – means mcf – means mcf/nomcf
closed gaps % endgap closed gaps % endgap

root dual primal % root dual primal % wins endgap

arc.set all 10 33.9 59.3 86.9 1.4 35.6 61.8 86.5 1.3 2/1 0.93
sep 10 33.9 59.3 86.9 1.4 35.6 61.8 86.5 1.3 0.93

cut.set all 4 58.0 68.0 100.0 12.6 58.0 68.0 100.0 12.6 0/0 1.00
nosep 4 58.0 68.0 100.0 12.6 58.0 68.0 100.0 12.6 1.00

fctp all 16 21.2 24.0 97.1 24.9 21.3 24.1 97.5 24.8 0/0 0.99
sep 16 21.2 24.0 97.1 24.9 21.3 24.1 97.5 24.8 0.99

avub all 15 31.1 37.7 29.1 83.9 72.5 75.6 91.7 10.2 14/0 0.12
sep 15 31.1 37.7 29.1 83.9 72.5 75.6 91.7 10.2 0.12

sndlib all 30 31.9 56.5 90.5 7.6 42.0 63.8 94.2 6.2 17/2 0.82
sep 29 32.7 57.8 90.5 8.5 43.2 65.3 94.3 6.9 0.81

nosep 1 9.6 20.4 91.7 0.2 9.6 20.4 91.7 0.2 1.00

ufcn all 25 74.5 80.9 84.5 10.7 81.8 87.7 91.5 7.2 19/2 0.67
sep 25 74.5 80.9 84.5 10.7 81.8 87.7 91.5 7.2 0.67

miplib all 25 19.0 36.3 38.2 15.9 19.0 36.5 38.2 15.9 0/0 1.00
sep 3 11.4 28.8 99.7 14.8 11.5 30.2 99.7 14.2 0.97

nosep 22 20.0 37.3 32.0 16.1 20.0 37.4 32.0 16.1 1.00

mittelmann all 3 19.6 52.4 100.0 2.7 19.6 52.4 100.0 2.7 0/0 1.00
nosep 3 19.6 52.4 100.0 2.7 19.6 52.4 100.0 2.7 1.00

Table 4: Summary for hard instances – mcf versus nomcf – Scip

increases by at least 10% the nomcf -run “wins”.
For the hard instances (Table 4 Scip only) we report on the arithmetic mean of the closed root

gaps (root), the closed dual gaps (dual), the closed primal gaps (primal), and the endgaps (endgap).
The closed root gap is defined as above. The closed dual and closed primal gaps are defined as

100 · (dual − lp)/(bestprimal − lp)

and
100 · (bestprimal − bestdual)/(primal − bestdual),

respectively. The endgap is given by

100 · (primal − dual)/|bestdual|.

The values lp and bestprimal are defined as above and can be found in Table 8 together with the
bestdual which refers to the best known dual bound. The numbers primal and dual correspond to
the primal and dual bound at the end of the optimization. Note that in case that primal = bestdual
for an individual run we set the closed primal gap to 100%. If the LP value is already optimal
(lp = bestprimal = bestdual) then rootgap as well as dualgap are considered to be 100%. If primal
or dual bounds are not finite or in case that bestdual = 0 the corresponding gaps are not defined
and hence not considered in the calculation of the mean. Again all mean values are given for both
the mcf and nomcf runs. The last two columns in Table 4 (mcf/nomcf) compare the mcf and
nomcf runs with respect to the number of wins (wins) and the endgap. If by switching on the
Mcf-separator the endgap decreases by at least 10% we say that the mcf -run wins. If it increases
by at least 10% the nomcf -run wins.

In Table 3 it can be seen that our implementation of the Mcf-separator in Scip drastically
reduces the computation times and branch-and-bound nodes for almost all of the network design
instances. In particular for the testsets arc.set , avub, sndlib, and ufcn we save between 56% and
67% of the tree nodes and between 47% and even 68% of the solving time on average. Moreover,

24

14 avub, 2 sndlib, and 9 ufcn instances can be solved within the time limit of one hour only if the
Mcf separator is switched on. Table 4 shows similar effects for the hard instances of these 4 testsets.
The average endgap is decreased and the mcf -run wins in most of the cases. The results for the
hard avub instances are remarkable. We decrease the endgap from 83.9% to 10.2% on average which
is caused by improving both the dual and the primal bounds. Already at the root node we close
the optimality gap by 72.5% compared to 31.1% without the Mcf separator. For the very easy
testsets fc and also fctp (excluding the n37* instances) with an average solving time of less than
5s we decrease the number of nodes but slightly increase the solving time (from 3.3s to 3.5s and
from 4.5s to 4.6s on average), see Table 3. For these instances it does not pay off to tighten the
relaxation. Our separator has no effect on the hard fctp n37* instances (see Table 4 and 12) and for
the (hard and easy) cut.set instances the Mcf separator is switched off because the networks are
not consistent, also compare with Table 2.

testset # nomcf – means mcf – means mcf/nomcf
time nodes time nodes wins t-outs time nodes

arc.set all 25 14.9 3244 10.2 1258 15/4 0/0 0.70 0.39
sep 23 16.9 3344 11.2 1194 0.68 0.36

nosep 2 3.2 2286 3.2 2286 1.01 1.00

cut.set all 12 12.7 892 12.7 1232 0/0 0/0 1.00 1.00
nosep 12 12.7 892 12.7 1232 1.00 1.00

fc all 20 1.5 270 1.6 260 5/7 0/0 1.04 0.97
sep 20 1.5 270 1.6 260 1.04 0.97

fctp all 17 3.9 751 4.1 687 3/5 1/0 1.04 0.92
sep 15 5.0 1329 5.3 1202 1.05 0.91

nosep 2 0.1 1 0.1 1 1.00 1.00

avub all 41 4.6 413 1.8 163 18/2 0/3 0.50 0.33
sep 40 4.8 454 1.9 175 0.49 0.32

nosep 1 0.1 1 0.1 1 1.00 1.00

sndlib all 25 93.3 20353 41.1 7427 18/1 0/4 0.45 0.37
sep 22 81.1 15624 31.8 4967 0.40 0.32

nosep 3 258.5 141400 258.4 141400 1.00 1.00

ufcn all 67 3.3 349 3.5 404 8/11 0/0 1.05 1.15
sep 59 3.4 379 3.6 448 1.05 1.18

nosep 8 2.6 186 2.6 186 1.01 1.00

miplib all 66 3.0 558 2.9 556 3/1 0/0 0.99 1.00
sep 8 5.7 1060 5.2 1023 0.93 0.97

nosep 58 2.7 511 2.7 511 1.00 1.00

mittelmann all 56 23.2 1101 22.4 1073 3/2 0/0 0.97 0.98
sep 6 73.2 5232 52.2 4135 0.72 0.79

nosep 50 20.1 912 20.2 912 1.00 1.00

cplex all 1266 34.9 1201 34.2 1170 45/35 5/5 0.98 0.97
sep 115 42.8 6665 34.9 5006 0.82 0.75

nosep 1151 34.1 1011 34.2 1011 1.00 1.00

cplex10s all 780 132.5 3225 128.8 3118 30/25 5/5 0.97 0.97
sep 77 142.9 15230 106.8 10856 0.75 0.71

nosep 703 131.4 2719 131.5 2719 1.00 1.00

cplex100s all 411 504.4 8989 484.1 8589 20/13 5/5 0.96 0.96
sep 42 546.3 38192 365.8 24486 0.67 0.64

nosep 369 499.8 7623 499.8 7623 1.00 1.00

Table 5: Summary for easy instances – mcf versus nomcf – Cplex

25

The results for the general MIP sets miplib and mittelmann are not conclusive since the number
of affected instances is very small (only 16 miplib and 3 mittelmann instances overall). There is
some decrease in the computation time and nodes for miplib and one instance can only be solved in
the mcf -run but for 2 out of 3 mittelmann instances the performance degrades.

Table 5 shows that the results for Cplex are comparable to the results for Scip with respect
to the easy network design instances. The effect is not as dramatic since Cplex is already very
fast without the Mcf separator (compare the average nomcf computation times in Table 3 and
Table 5). But the decrease of the computation time is still between 30% and 55% for the arc.set ,
avub, and sndlib instances with 61%-67% saved branch-and-bound nodes. In contrast to Scip the
time increases for the ufcn testset but these instances are very easy for Cplex with average solving
times below 5s in the nomcf run similar to the fc and fctp testsets.

Let us discuss the results in Table 5 for the general MIP instances with Cplex. In contrast to
Table 3 and Scip we can trust these values since the overall testset is very large with a reasonable
number of affected instances. In addition to the miplib and mittelmann testsets we consider an
internal Cplex-library containing 1266 easy instances (cplex). The subsets cplex10s and cplex100s
correspond to those instances within cplex that need at least 10s and 100s of CPU time to be solved,
respectively, by the slower of the two versions, mcf and nomcf. Among all 1388 MIP instances
(miplib, mittelmann, and cplex) 129 instances or 9.3% are affected by the Mcf separator. We save
17.9% of the computation time and 23.6% of the search tree nodes on average for these 129 instances
which refers to a 2% time and 2.8% node savings over the whole testset. Moreover, it turns out that
the harder the instances are to solve the larger are the benefits of the Mcf separator. The saved
time amounts to 25% for the 77 affected instances in cplex10s and to even 36% for the 42 affected
instances in cplex100s .

In all cases (Scip, Cplex, easy and hard), if the separator is switched off or does not find
violated inequalities there is almost no degradation of the computation time (see the nosep rows).
This means that the detection as well as the separation procedures are very fast. Summarizing it
can be said that using the Mcf separator many instances can now be solved within 1 hour that
could not be solved before. For the instances the separator is designed for a significant reduction
in the computation time and the branch-and-bound nodes is observed which is driven by improved
dual bounds at the root node. Whenever the solvers struggle in solving a specific problem class
switching on the Mcf separator gives substantial benefits (see e.g. avub, sndlib for Scip and sndlib,
cplex100s for Cplex).

6.1 The impact of inconsistency

The two parameters Ψmax
a and Ψmax control our algorithm with respect to inconsistent or not existing

networks in the constraint matrix. If violated inequalities are identified these are always valid since
our framework relies on aggregating original constraints and on applying MIR to aggregations. But
the larger the inconsistency in the network the lower the chance to produce base inequalities that
correspond to network cuts or to have any relation to a network. For very large inconsistency
we basically simulate randomized aggregation. Moreover, since the number of considered original
constraints can be very large (in contrast to the default c-MIR heuristics) and there is not necessarily
a proper cancellation of flow-variables in case of inconsistency we might produce dense and unstable
cutting planes.

testset # Ψmax = 0.02⋆ Ψmax = 0.02⋆ Ψmax = ∞ Ψmax = ∞
Ψmax

a
= 0.5⋆ Ψmax

a
= ∞ Ψmax

a
= 0.5⋆ Ψmax

a
= ∞

sep wins time sep wins time sep wins time sep wins time

cut.set 11 0 0/0 1.00 0 0/0 1.00 9 4/2 0.90 9 3/3 1.02
sndlib 22 21 18/2 0.53 21 18/2 0.53 22 19/2 0.51 22 19/2 0.51
miplib 67 13 4/2 0.99 13 4/2 0.99 18 5/3 0.98 20 5/6 0.99
mittelmann 56 3 1/2 1.04 3 1/2 1.03 9 3/3 1.03 10 6/3 1.01

Table 6: Impact of inconsistency – Scip easy. Default values are marked with ⋆.

26

Increasing Ψmax
a means to increase the size of the networks (and hence the size of the aggregations)

by allowing for more inconsistent arcs (and the corresponding capacity constraints). These are arcs
with uncertain source or target assignment. On the other hand, increasing Ψmax means to consider
more instances for separation. In the first test, using Scip, we released both parameters Ψmax

a and
Ψmax individually and simultaneously. Table 6 reports on the results for cut.set , sndlib, miplib, and
mittelmann. All other testsets are not affected since the inconsistency ratios are very small for all
contained instances, see also Table 2. The second column in Table 6 gives the total number of easy
instances in the testset. For every run there are three columns providing the number of affected
instances (sep), the ratio of the wins (wins), and the time ratio (time). The ratios compare the
respective mcf -run with the nomcf -run. The time ratios are based on geometric means over the
whole testset (not only the affected instances). The number of clusters Ω is fixed to 5 in all runs.
Columns 3-5 in Table 6 summarize the values for the default settings for comparison. These are
precisely the values you can already find in Table 3.

It can be seen that releasing the maximum arc inconsistency ratio Ψmax
a alone (Columns 6-8) does

not remarkably change the behavior of the solver. Recall that the network inconsistency ratio Ψ(G)
is defined as the mean of the arc inconsistency ratios Ψ(a). Hence in case of a very small value Ψ(G)
there cannot be many inconsistent arcs such that releasing Ψmax

a while keeping Ψmax small has not
a great impact on our algorithm. On the other hand, relaxing the maximum network inconsistency
ratio Ψmax while keeping Ψmax

a = 0.5 (Column 9-11) even seems to improve the performance. There
are more instances considered for separation (+9 cut.set , +1 sndlib, +5 miplib, and +6 mittelmann)
and the wins and time ratios are improving. We even get a 10% decrease in computation time for the
cut.set instances. It turns out that for networks with large inconsistency ratio it suffices to delete
inconsistent arcs (which for many instances might result in empty networks anyway). But, as shown
in Columns 12-14 of Table 6, releasing both inconsistency parameters worsens the performance at
least for cut.set and miplib in terms of wins and time ratios.

In a second test we study the impact of different values for Ψmax while fixing Ψmax
a = ∞. We

restrict our attention to the easy instances within the miplib testset. Figure 6 shows the number of
instances that are considered to contain a consistent network (nice) and the number of instances for
which at least one violated inequality was found (sep). The value wins(mcf)-wins(nomcf) refers to
the difference of the number of instances for which the computation time was decreased (wins(mcf))
and increased (wins(nomcf)) by at least 10% using the Mcf separator. There are 14 easy instances
in miplib with an embedded network and Ψ(G) = 0. For 11 of these instances we found at least one
violated inequality. It is no surprise that the number of considered instances increases with Ψmax.
Since the largest inconsistency ratio in miplib is 0.656 (compare with Table 2) a value Ψmax = 0.8

nice
sep

wins(mcf) - wins(nomcf)

maximum network inconsistency ratio Ψmax

n
u
m

b
er

o
f
in

st
a
n
ce

s

0

10

20

30

40

1
e-

6

0
.0

0
5

0
.0

1
0
.0

2

0
.0

5
0
.1 0
.2

0
.5

0
.8

Figure 6: Impact of inconsistency – Scip miplib easy. Ψmax
a set to ∞ and Ψmax increasing

27

means that the multi-commodity flow separator is switched on for all 40 easy miplib instances
containing an embedded network. But it is remarkable that the number of affected instances only
slightly increases to 20. For most of the instances with very large inconsistency ratios the generated
inequalities are not violated such that separation based on the network detection has no effect.
Moreover, for values of Ψmax larger than 0.05 there are more and more instances for which using
the Mcf separator increases the computation time. Notice that wins(mcf)-wins(nomcf) decreases.
Hence even if violated inequalities are found they do not help.

Summarizing the observed phenomena from Table 6 and Figure 6, one should switch on at least
one of the two mechanisms refusing inconsistent networks or network components. Releasing the
maximum network inconsistency Ψmax alone seems to have a positive effect for Scip. This has not
been observed with Cplex such that we decided to use a more conservative default setting with
both Ψmax

a and Ψmax being active. For Ψmax a good trade-off between performance and the number
of affected instances seems to be between 0.02 and 0.05. Based on a number of similar test scenarios
we fixed Ψmax

a to 0.5.

6.2 The impact of aggressive cutting

By changing the value of Ω we control the size of the partition used to enumerate network cuts and
thus the size of the network cut collection C, see Section 4. For directed networks the number of
considered cuts amounts to a maximum of 2Ω − 2, but recall that we allow for cutsets only if both
cut-shores are connected. The parameter Ω should be large enough to produce enough interesting
cutsets and cut-based inequalities. But setting it too large can result in unacceptable computation
times for calculating the inequalities itself and also for solving the LP relaxations since too many
violated inequalities might be added.

In the test reported in Table 7 we increased the value Ω from 3 to 9 fixing the inconsistency
parameters Ψmax and Ψmax

a to their default values. Table 7 contains all testsets accept cut.set for
which no inequalities are separated independent of Ω. We report on the number of easy instances
contained in each of the testsets (#) as well as the number of affected instances (sep) which is
constant over the considered scenarios. For every run we report on the ratio of the wins (wins), the
geometric mean of the time ratios (time), and the arithmetic mean of the number of inequalities
added to the LP (#cuts). The means are taken over all easy instances of the testset.

First it can be observed that the number of generated cutting planes increases with Ω but the
increase is not exponential. The number of added inequalities approximately doubles from Ω = 3 to
Ω = 9. Only the sndlib instances really benefit from a large Ω value. For this testset the time ratio
decreases from 0.64 for Ω = 3 to 0.37 for Ω = 9. The performance is slightly deteriorated for fc,
avub, ufcn, miplib, and mittelmann while it is slightly improved for arc.set and fctp. We decided to
fix Ω to the conservative value 5. For certain classes of network design instances it can be crucial to
cut more aggressively.

testset # sep Ω = 3 Ω = 5⋆ Ω = 7 Ω = 9
wins time #cuts wins time #cuts wins time #cuts wins time #cuts

arc.set 25 25 20/3 0.53 110 20/4 0.52 133 19/3 0.57 169 20/0 0.50 205
fc 20 19 3/13 1.13 423 2/10 1.08 464 6/11 1.10 620 3/14 1.24 819
fctp 16 13 3/3 0.99 424 3/5 1.02 455 4/3 0.98 506 3/6 0.99 699
avub 45 44 27/8 0.32 249 25/8 0.32 256 25/8 0.36 278 22/11 0.34 329
sndlib 22 21 18/2 0.64 102 18/2 0.53 144 15/4 0.38 220 16/2 0.37 296
ufcn 58 58 29/11 0.52 118 32/11 0.52 135 30/13 0.53 202 24/16 0.54 358
miplib 67 13 4/1 0.99 54 4/2 0.99 58 3/3 0.99 66 4/3 1.00 73
mittelmann 56 3 1/2 1.03 6 1/2 1.04 8 0/3 1.04 5 0/2 1.04 5

Table 7: Impact of the partition size Ω – Scip easy. Default values are marked with ⋆.

28

7 Concluding remarks

Based on the observation that cut-based MIR inequalities can be used to drastically reduce com-
putation times and gaps when generated within branch & cut procedures to solve network design
problems, and based on the fact that these strong inequalities are not detected by state of the art
MIP solvers, we proposed a separation framework for general MIP that is now implemented in Scip

and Cplex. This algorithm consists of two main steps.
First, we try to identify the block structure of a multi-commodity flow formulation in the con-

straint matrix of a general MIP. Coupling capacity constraints are used to resolve the isomorphism of
the graphs represented by the network matrices of individual commodity blocks. The corresponding
underlying network is constructed.

In a second step we derive cutting planes based on the identified network structure. Using
mappings from network elements to rows of the original MIP formulation, we replace the default
aggregation heuristic of the c-MIR separator implemented in Scip and Cplex. In our framework,
rows are aggregated such that the resulting base inequalities correspond to network cuts. These
base inequalities are then used to generate MIR cut-set inequalities, flow-cover inequalities, dicut
inequalities, and the like, depending on the type of capacity constraints and variables. In contrast
to default aggregation of the c-MIR separator the number of aggregated rows depends on the size
of the network and can be in the order of hundreds. However, the calculated base inequalities are
sparse due to the {+1, +1} pattern in the detected network matrices.

One of the key-features in our implementation is to decide about the consistency of the detected
networks. On the one hand, we delete inconsistent network elements in order to work on the
consistent network core. In addition, only if the calculated overall network inconsistency ratio is
very small we trust the detected structures on which we try not generate cutting planes. With this
machinery we are able to recognize network design type models for which the methods are successful,
introducing almost no overhead for other models.

By extensive computational tests we showed that the proposed separation scheme speeds-up the
computation for a large set of network design problems by a factor of two on average. Many of
these problems can only be solved within one hour of CPU time if the Mcf separator is switched
on. In roughly 10% of general MIP instances we found consistent embedded networks. For these
instances the computation time is decreased by 18% on average. There is almost no degradation for
the remaining instances.

Given these results and the fact that state-of-the-art MIP solvers have almost no knowledge
about the underlying problem, one might consider a new paradigm of exploiting structure in MIP
solving. Many known and very successful approaches (cutting planes, heuristics, branching rules) for
special purpose problems can be used within the MIP solver if the constraint matrices are scanned
for known structures more consequently.

References

[1] T. Achterberg. Constraint Integer Programming. PhD thesis, Technische Universität Berlin,
2007. http://opus.kobv.de/tuberlin/volltexte/2007/1611/.

[2] T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research Letters, 34(4):
361–372, 2006. URL http://miplib.zib.de/.

[3] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows: Theory, Algorithms, and Applications.
Prentice Hall, 1993.

[4] A. Atamtürk. Flow pack facets of the single node fixed-charge flow polytope. Operations
Research Letters, 29:107–114, 2001.

[5] A. Atamtürk. On capacitated network design cut-set polyhedra. Mathematical Programming,
92:425–437, 2002.

[6] A. Atamtürk. On the facets of the mixed-integer knapsack polyhedron. Mathematical Program-
ming, 98:145–175, 2003.

29

[7] A. Atamtürk. Cover and pack inequalities for mixed integer programming. Annals of Operations
Research, 139(1):21–38, 2005.

[8] A. Atamtürk. MIP instances. University of California, Berkeley http://www.ieor.berkeley.

edu/~atamturk/data/, 2009.

[9] A. Atamtürk and D. Rajan. On splittable and unsplittable capacitated network design arc-set
polyhedra. Mathematical Programming, 92:315–333, 2002.

[10] A. Atamtürk, , G. L. Nemhauser, and M. W. P. Savelsbergh. Valid inequalities for problems
with additive variable upper bounds. Mathematical Programming, 91:145–162, 2001.

[11] E. Balas. Facets of the knapsack polytope. Mathematical Programming, 8:146–164, 1975.

[12] Zuse Institute Berlin. SNDlib – Survivable Network Design Library. http://sndlib.zib.de/,
2009.

[13] D. Bienstock and O. Günlük. Capacitated network design – polyhedral structure and compu-
tation. INFORMS Journal on Computing, 8:243–259, 1996.

[14] D. Bienstock, S. Chopra, Oktay Günlük, and C. Y. Tsai. Minimum cost capacity installation
for multicommodity network flows. Mathematical Programming, 81:177–199, 1998.

[15] R. E. Bixby, S. Ceria, C. M. McZeal, and M. W. P Savelsbergh. An updated mixed integer
programming library: MIPLIB 3.0. Optima, 58:12–15, June 1998. URL http://www.caam.

rice.edu/~bixby/miplib/miplib.html.

[16] R.E. Bixby and R. Fourer. Finding embedded network rows in linear programs I. Extraction
heuristics. Management Science, 34(3):342–376, 1988.

[17] R.E. Bixby and E. Rothberg. Progress in computational mixed integer programming – a look
back from the other side of the tipping point. Annals of Operations Research, 149(1):37–41,
2007.

[18] B. Brockmüller, O. Günlük, and L. A. Wolsey. Designing private line networks: polyhedral
analysis and computation. Transactions on Operational Research, 16:7–24, 2004.

[19] G.G. Brown and W.G. Wright. Automatic identification of embedded network rows in large-
scale optimization models. Mathematical Programming, 29:41–56, 1984.

[20] M. R. Bussieck, P. Kreuzer, and U. T. Zimmermann. Discrete optimization in public rail
transport. Mathematical Programming, 79(1–3):415–444, 1997.

[21] S. Chopra, I. Gilboa, and S. T. Sastry. Source sink flows with capacity installation in batches.
Discrete Applied Mathematics, 86:165–192, 1998.

[22] COmputational INfrastructure for Operations Research (COIN-OR). Cut Generation Library
(CGL). https://projects.coin-or.org/Cgl, 2009.

[23] G. Dahl and M. Stoer. A polyhedral approach to multicommodity survivable network design.
Numerische Mathematik, 68:149–167, 1994.

[24] G. Dahl and M. Stoer. A cutting plane algorithm for multicommodity survivable network design
problems. INFORMS Journal on Computing, 10:1–11, 1998.

[25] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman and Company, New York, 1979.

[26] J. P. M. Gonçalves and Laszlo Ladanyi. An implementation of a separation procedure for mixed
integer rounding inequalities. IBM Research Report RC23686 (W0508-022), IBM, 2005.

30

[27] J. Gottlieb and H. Mittelmann. FCTP instances. Arizona State University, http://plato.la.
asu.edu/ftp/fctp/, 2009.

[28] Z. Gu, G. L. Nemhauser, and M. W. P. Savelsbergh. Lifted flow cover inequalities for mixed
0-1 integer programs. Mathematical Programming, 85:436–467, 1999.

[29] Z. Gu, G. L. Nemhauser, and M. W. P. Savelsbergh. Sequence independent lifting in mixed
integer programming. INFORMS Journal on Computing, pages 109–129, 2000.

[30] O. Günlük. A branch and cut algorithm for capacitated network design problems. Mathematical
Programming, 86:17–39, 1999.

[31] S. P. M. Hoesel, A. M. C. A. Koster, R. L. M. J. van de Leensel, and M. W. P. Savelsbergh.
Polyhedral results for the edge capacity polytope. Mathematical Programming, 92(2):335–358,
2002.

[32] S. P. M. Hoesel, A. M. C. A. Koster, R. L. M. J. van de Leensel, and M. W. P. Savelsbergh. Bidi-
rected and unidirected capacity installation in telecommunication networks. Discrete Applied
Mathematics, 133:103–121, 2004.

[33] IBM-ILOG. Cplex. http://www.ilog.com/products/cplex/, 2009.

[34] Q. Louveaux and L. A. Wolsey. Lifting, superadditivity, mixed integer rounding and single node
flow sets revisited. 4OR, 1(3):173–207, 2003.

[35] T. L. Magnanti and P. Mirchandani. Shortest paths, single origin-destination network design
and associated polyhedra. Networks, 33:103–121, 1993.

[36] T. L. Magnanti and R. T. Wong. Network Design and Transportation Planning: Models and
Algorithms. TRANSPORTATION SCIENCE, 18(1):1–55, 1984.

[37] T. L. Magnanti, P. Mirchandani, and R. Vachani. The convex hull of two core capacitated
network design problems. Mathematical Programming, 60:233–250, 1993.

[38] T. L. Magnanti, P. Mirchandani, and R. Vachani. Modelling and solving the two-facility capac-
itated network loading problem. Operations Research, 43:142–157, 1995.

[39] H. Marchand. A polyhedral Study of the Mixed Knapsack Set and its use to Solve Mixed Integer
Programs. PhD thesis, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, July
1997.

[40] H. Marchand and L. A. Wolsey. Aggregation and mixed integer rounding to solve MIPs. Op-
erations Research, 49(3):363–371, 2001.

[41] H. Marchand and L. A. Wolsey. The 0-1 knapsack problem with a single continuous variable.
Mathematical Programming, 85:15–33, 1999.

[42] H. Mittelmann. Benchmarks for optimization software. http://plato.asu.edu/bench.html,
January 2009.

[43] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John Wiley &
Sons, 1988.

[44] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly. SNDlib 1.0–Survivable Network Design
Library. Networks, 2009. To appear.

[45] F. Ortega and L. A. Wolsey. A branch-and-cut algorithm for the single-commodity, uncapaci-
tated, fixed-charge network flow problem. Networks, 41:143–158, 2003.

[46] M. W. Padberg, T. J. Van Roy, and L. A. Wolsey. Valid linear inequalities for fixed charge
problems. Operations Research, 33:842–861, 1985.

31

[47] M. Pióro and D. Medhi. Routing, Flow, and Capacity Design in Communication and Computer
Networks. Morgan Kaufmann Publishers, 2004.

[48] Y. Pochet and L. A. Wolsey. Integer knapsack and flow covers with divisible coefficients. Discrete
Applied Mathematics, 59:57–74, 1995.

[49] C. Raack, A. M. C. A. Koster, S. Orlowski, and R. Wessaely. Capacitated network design using
general flow-cutset inequalities. In Proceedings of the Third International Network Optimization
Conference (INOC 2007), Spa, Belgium, 2007.

[50] C. Raack, A. M. C. A. Koster, S. Orlowski, and R. Wessäly. On the strength of cut-based
inequalities for capacitated network design polyhedra. ZIB-Report 07-08, Konrad-Zuse-Zentrum
für Informationstechnik Berlin, 2007.

[51] M.G.C. Resende and P.M. Pardalos, editors. Handbook of Optimization in Telecommunications.
Springer, 2006.

[52] T. J. Van Roy and L. A. Wolsey. Valid inequalities for mixed 0-1 programs. Discrete Applied
Mathematics, 14:199–213, 1986.

[53] R. Weismantel. On the 0/1 knapsack polytope. Mathematical Programming, 77:49–68, 1997.

[54] R. Wessäly. Dimensioning Survivable Capacitated NETworks. PhD thesis, Technische Univer-
sität Berlin, April 2000.

[55] L. A. Wolsey. Faces for a linear inequality in 0-1 variables. Mathematical Programming, 8:
165–178, 1975.

[56] L. A. Wolsey. Valid inequalities and superadditivity for 0-1 integer programs. Mathematics of
Operations Research, 2:66–77, 1977.

[57] L. A. Wolsey. Integer Programming. John Wiley & Sons, 1998.

[58] L.A. Wolsey. UFCN instances. CORE, Université catholique de Louvain http://www.core.

ucl.ac.be/wolsey/ufcn.htm, 2009.

[59] K. Wolter. Implementation of Cutting Plane Separators for Mixed Integer Programs. Master’s
thesis, Technische Universität Berlin, 2006.

[60] Zuse Institut Berlin. Scip - Solving Constraint Integer Programs. http://scip.zib.de/, 2009.

A Used instances

Table 8 contains all instances used in the computational tests presented in Section 6 except for the
Cplex-internal testset. We report on the number of rows (rows), the number of columns (vars),
the value of the linear programming relaxation (lp), and the values of the best dual (bestdual) and
primal bounds (bestprimal) we found in all of our Scip runs. These values are used to calculate the
measures rootgap, primalgap, and dualgap presented in Table 11 and 12 and summarized in Table 3
and 4.

problem rows vars lp bestdual bestprimal

arc.set

ns25-pr12 2313 5868 52957.5 53905 53905
ns25-pr3 2210 8601 29920 30575 30575
ns25-pr4 1138 3393 16175 16705 16705
ns25-pr6 2639 6919 25362.5 26175 26175
ns25-pr9 2220 7350 29175 29430 29430

Table 8: continued on next page

32

problem rows vars lp bestdual bestprimal

ns4-pr12 2313 5868 63911 64072 64072
ns4-pr3 2210 8601 36073 36124.5 36141
ns4-pr4 1138 3393 19257.16667 19323 19323
ns4-pr6 2639 6919 29170.75 29314 29314
ns4-pr9 2220 7350 35212.5 35214.5 35231
ns60-pr12 2313 5868 43501.25 45795 45795
ns60-pr3 2210 8601 23572.5 26310 26310
ns60-pr4 1138 3393 12623.75 13825 13825
ns60-pr6 2639 6919 21205 23165 23165
ns60-pr9 2220 7350 22962.5 24475 24475
nu120-pr12 2313 5868 38370 42215 42215
nu120-pr3 2210 8601 21306.44231 26305.33451 28785
nu120-pr4 1138 3393 12067.91667 15755 15755
nu120-pr6 2639 6919 21615 24515 24515
nu120-pr9 2220 7350 19512.5 23642.34321 24945
nu25-pr12 2313 5868 52957.5 53905 53905
nu25-pr3 2210 8601 29920 31341.97133 31720
nu25-pr4 1138 3393 16175 16780 16780
nu25-pr6 2639 6919 25362.5 26175 26175
nu25-pr9 2220 7350 29175 29676.12093 30015
nu4-pr12 2313 5868 63911 64150 64150
nu4-pr3 2210 8601 36073 36613.21154 36915
nu4-pr4 1138 3393 19257.16667 19640 19640
nu4-pr6 2639 6919 29170.75 29400 29400
nu4-pr9 2220 7350 35212.5 35420.77222 35520
nu60-pr12 2313 5868 43501.25 45840 45840
nu60-pr3 2210 8601 23572.5 26178.20136 26830
nu60-pr4 1138 3393 12623.75 14195 14195
nu60-pr6 2639 6919 21205 23165 23165
nu60-pr9 2220 7350 22962.5 24420.96148 24940

cut.set

n1-3 600 1248 3319.117647 7235 7235
n10-3 912 1710 2764.117647 8985 8985
n11-3 432 864 1360.294118 4356 4356
n12-3 2430 6120 13298.23529 20407.86241 20560
n13-3 1723 3472 4287.647059 13385 13385
n14-3 1078 2300 3438.823529 9566 9566
n15-3 29494 153140 23703.94118 30621.81273 50765.41948
n2-3 1800 3456 6181.176471 12640 12640
n3-3 2425 9028 7465.294118 14022.23351 16001
n4-3 1236 3596 4080.882353 8993 8993
n5-3 1062 2550 2883.823529 8105 8105
n6-3 2760 7178 6311.764706 15175 15175
n7-3 2336 5626 9380.588235 15426 15426
n8-3 1362 2790 4200.588235 12535 12535
n9-3 2364 7644 7889.705882 12950.45195 14409

fc

fc.30.50.1 247 434 120 307 307
fc.30.50.10 247 434 93 204 204
fc.30.50.2 247 434 152 325 325
fc.30.50.3 247 434 98.3125 294 294
fc.30.50.4 247 434 100 763 763
fc.30.50.5 247 434 160 301 301
fc.30.50.6 247 434 129 272 272
fc.30.50.7 247 434 98 231 231
fc.30.50.8 247 434 186 347 347

Table 8: continued on next page

33

problem rows vars lp bestdual bestprimal

fc.30.50.9 247 434 85 741 741
fc.60.20.1 414 708 171 487 487
fc.60.20.10 414 708 180 913 913
fc.60.20.2 414 708 241.8522167 584 584
fc.60.20.3 414 708 168.8730159 493 493
fc.60.20.4 414 708 123 442 442
fc.60.20.5 414 708 182 414 414
fc.60.20.6 414 708 203 480 480
fc.60.20.7 414 708 177 492 492
fc.60.20.8 414 708 202 500 500
fc.60.20.9 414 708 171 397 397

fctp

bal8x12 116 192 451.1880952 471.55 471.55
bk4x3 19 24 321.6666667 350 350
gr4x6 34 48 185.55 202.35 202.35
n3700 5150 10000 972305.748 1044288.906 1333058
n3701 5150 10000 961764.0223 1032761.019 1310970
n3702 5150 10000 961184.2125 1030732.544 1315025
n3703 5150 10000 934212.2189 1004210.525 1316442
n3704 5150 10000 969800.2071 1041739.908 1327179
n3705 5150 10000 973361.017 1041675.373 1329843
n3706 5150 10000 960882.1498 1038148.26 1310913
n3707 5150 10000 935136.8543 1011762.868 1301218
n3708 5150 10000 967522.8052 1034600.74 1329479
n3709 5150 10000 959314.2185 1032234.141 1324904
n370a 5150 10000 979219.5448 1058369.149 1353042
n370b 5150 10000 988308.1237 1054184.669 1346406
n370c 5150 10000 965430.9494 1041864.223 1329640
n370d 5150 10000 965430.9494 1041864.223 1329640
n370e 5150 10000 961651.3119 1038332.371 1296715
ran10x10a 120 200 1252.742491 1499 1499
ran10x10b 120 200 2613.469453 3073 3073
ran10x10c 120 200 11203.09246 13007 13007
ran10x12 142 240 2426.224725 2714 2714
ran10x26 296 520 3857.022783 4270 4270
ran12x12 168 288 1826.549744 2291 2291
ran12x21 285 504 3157.377442 3664 3664
ran13x13 195 338 2691.439469 3252 3252
ran14x18 284 504 3016.944354 3618.383345 3712
ran16x16 288 512 3116.429512 3823 3823
ran17x17 323 578 1215.2457 1373 1373
ran4x64 324 512 9637.933333 9711 9711
ran6x43 307 516 6244.707023 6330 6330
ran8x32 296 512 4937.584531 5247 5247

avub

nexp.100.20.1.1 2080 1980 43.9 48 48
nexp.100.20.1.2 2080 1980 42.16666667 50 50
nexp.100.20.1.3 2080 1980 44.90909091 51 51
nexp.100.20.1.4 2080 1980 42.07142857 55 55
nexp.100.20.1.5 2080 1980 41.66666667 48 48
nexp.100.20.2.1 2080 2970 79.81818182 91 91
nexp.100.20.2.2 2080 2970 67.73333333 75.58832584 77
nexp.100.20.2.3 2080 2970 79.63636364 88 88
nexp.100.20.2.4 2080 2970 52.4 63 63
nexp.100.20.2.5 2080 2970 66.93333333 76 76
nexp.100.20.4.1 2080 4950 84 121 121

Table 8: continued on next page

34

problem rows vars lp bestdual bestprimal

nexp.100.20.4.2 2080 4950 79.81818182 124 124
nexp.100.20.4.3 2080 4950 81.27272727 127 127
nexp.100.20.4.4 2080 4950 59.52941176 113 113
nexp.100.20.4.5 2080 4950 80.18181818 131 131
nexp.100.20.8.1 2080 8910 12.70103093 152.8761993 157
nexp.100.20.8.2 2080 8910 12.06872852 159.1561744 164
nexp.100.20.8.3 2080 8910 15.45017182 173.2858026 222
nexp.100.20.8.4 2080 8910 13.91065292 163.9339052 169
nexp.100.20.8.5 2080 8910 12.12371134 145.0365993 219
nexp.150.20.1.1 4620 4470 59 69 69
nexp.150.20.1.2 4620 4470 58.54545454 66 66
nexp.150.20.1.3 4620 4470 52.16666667 68 68
nexp.150.20.1.4 4620 4470 57.63636364 71 71
nexp.150.20.1.5 4620 4470 56.33333333 66 66
nexp.150.20.2.1 4620 6705 96.93333333 107 107
nexp.150.20.2.2 4620 6705 90.4 96.74020384 103
nexp.150.20.2.3 4620 6705 117.0909091 123 123
nexp.150.20.2.4 4620 6705 111.2307692 123.4045085 126
nexp.150.20.2.5 4620 6705 96.30769231 106 106
nexp.150.20.4.1 4620 11175 137.6363636 191.8333333 193
nexp.150.20.4.2 4620 11175 83.29411765 159 159
nexp.150.20.4.3 4620 11175 113.8181818 173 173
nexp.150.20.4.4 4620 11175 73.64705882 147 147
nexp.150.20.4.5 4620 11175 115.2727273 176 176
nexp.150.20.8.1 4620 20115 20.81099656 239.20596 318
nexp.150.20.8.2 4620 20115 17.70446735 216.7981222 275
nexp.150.20.8.3 4620 20115 17.20962199 210.573206 367
nexp.150.20.8.4 4620 20115 13.66323024 182.4681098 260
nexp.150.20.8.5 4620 20115 18.22680412 217.6294399 325
nexp.50.20.1.1 540 490 12.03030303 29 29
nexp.50.20.1.2 540 490 24 27 27
nexp.50.20.1.3 540 490 24.72727273 28 28
nexp.50.20.1.4 540 490 33.75 37 37
nexp.50.20.1.5 540 490 18.6 30 30
nexp.50.20.2.1 540 735 22.05555556 37 37
nexp.50.20.2.2 540 735 37.6 44 44
nexp.50.20.2.3 540 735 32.18181818 41 41
nexp.50.20.2.4 540 735 33.2 42 42
nexp.50.20.2.5 540 735 50 54 54
nexp.50.20.4.1 540 1225 37.45454546 61 61
nexp.50.20.4.2 540 1225 49.09090909 71 71
nexp.50.20.4.3 540 1225 42.36363636 70 70
nexp.50.20.4.4 540 1225 41.53030303 64 64
nexp.50.20.4.5 540 1225 44.63636364 67 67
nexp.50.20.8.1 540 2205 7.257731959 90 90
nexp.50.20.8.2 540 2205 8.384879725 104 104
nexp.50.20.8.3 540 2205 6.130584192 83 83
nexp.50.20.8.4 540 2205 6.955326461 91 91
nexp.50.20.8.5 540 2205 7.972508591 94 94

sndlib

atlanta-DBM 269 660 39014475.95 46244642.4 46244642.4
atlanta-UUM 232 618 80132352.9 86492550.3 86492550.3
cost266-DBE 1540 4275 16058601.95 19247538.53 19787597.22
cost266-DBM 1483 4275 16058601.95 18346585.66 18928995.52
cost266-UUE 1446 4161 20161515.66 24446908.15 25148940.56
cost266-UUM 1389 4161 20086679.37 22718580 23574240

Table 8: continued on next page

35

problem rows vars lp bestdual bestprimal

dfn-bwin-DBE 235 3285 17890.9462 53983.92272 82322.82
dfn-bwin-UUE 180 3196 28912.17693 70174.56047 92143.71
dfn-gwin-DBE 261 1031 15018.81029 23572 23572
dfn-gwin-DBM 216 1031 15018.81029 22660 22660
dfn-gwin-UUE 203 938 27467.25724 38904 38904
dfn-gwin-UUM 158 938 27467.25724 38752 38752
di-yuan-DBE 214 855 274606.25 553700 553700
di-yuan-UUE 161 774 316143.75 656600 656600
france-DBM 715 2205 10964 12400 12400
france-UUM 645 2115 18878 20200 20200
germany50-DBM 2526 8189 438028 461662.2689 474700
germany50-UUM 2088 6971 597932.5 617513.2 628490
giul39-DDE 1865 7052 1706.732812 2050.952458 2761
janos-us-DDM 760 2184 1488134.75 1490871.1 1493112
janos-us-ca-DDM 1643 4758 1488681.897 1490273.263 1492416
newyork-DBE 403 1568 41753.8 824721.6604 999702
newyork-DBM 354 1568 41753.8 846739.7 999702
newyork-UUE 338 1470 74943.8 864347.1473 999702
newyork-UUM 289 1470 74943.8 852034.6 999702
nobel-eu-DBE 879 3771 570687.5 601505.1037 610910
nobel-eu-UUE 838 3771 817152.5 840162.4697 863900
nobel-ger-DBE 333 1771 115406 126070.7711 129940
nobel-ger-UUE 307 1770 147488 156094.3439 162420
norway-DBE 882 2754 84836.5925 331034.6295 383890
norway-DBM 831 2754 84836.5925 333307.2 383890
norway-UUE 804 2652 162715.395 412130.1817 452680
norway-UUM 753 2652 162715.395 415215.0786 452680
pdh-DBE 212 703 4489313.45 9689062 9689062
pdh-DBM 178 703 4489313.45 9615107 9615107
pdh-UUE 145 527 4593661.173 11114202 11114202
pdh-UUM 111 527 4593661.173 10903843 10903843
pioro40-DBM 1738 6942 254029.2926 254632.7885 255454
pioro40-UUM 1649 6942 412076.045 412774.4549 414045
polska-DBM 168 396 14948.55627 15717 15717
polska-UUM 150 396 22633.7508 23619 23619
sun-DDM 264 695 684.6945 859.3029916 897.72
ta1-DBE 621 2606 2344400.755 5896728 5896728
ta1-DBM 566 2606 2344400.755 4686829.552 5896728
ta1-UUE 494 2288 3693674.557 6855895 7533070
ta1-UUM 439 2288 3693674.557 5331466 7621520
ta2-DBE 3055 10101 36065210.45 36471255.99 36471255.99
ta2-DBM 2947 10101 36065210.45 36471255.99 36471255.99
ta2-UUE 2687 9241 36964014.23 37871728.59 37871728.59
ta2-UUM 2579 9241 36964014.18 37534290 37871728.59
zib54-DBE 2430 6748 2224025.844 9773826.66 9773826.66
zib54-UUE 1809 5150 4081019.858 10334015.82 10334015.82

ufcn

beasleyC1 1750 2500 52 85 85
beasleyC2 1750 2500 47.33333333 144 144
beasleyC3 1750 2500 237.9878049 653.7467057 779
beavma 372 390 293174.2758 383284.9997 383284.9997
berlin 2704 5304 130.0666667 1008.759977 1044
brasil 3364 6612 2208.708333 12976.96639 13680
fixnet6 600 1000 3192.042 3983 3983
g150x1100 1250 2200 34562.12 67196.46414 71827
g150x1650 1800 3300 31884.515 63313.75911 69130

Table 8: continued on next page

36

problem rows vars lp bestdual bestprimal

g180x666 846 1332 496101.2425 624632 624632
g200x740 940 1480 34077.54267 43807.57406 44316
g200x740b 940 1480 145993.88 178286.1284 179279
g200x740c 940 1480 655765.895 680124 680124
g200x740d 940 1480 548918.9429 586038 586038
g200x740e 940 1480 559469.2194 600396 600396
g200x740f 940 1480 572132.2166 617872 617872
g200x740g 940 1480 7911.513 36249.13905 45308
g200x740h 940 1480 86698.8429 125673.348 131639
g200x740i 940 1480 2292.465 25884.70859 31175
g40x132 172 264 13997.266 26629 26629
g50x170 220 340 10711.592 25576 25576
g55x188 243 376 9178.605 24487 24487
g55x188c 243 376 22549.394 35464 35464
h50x2450 2549 4900 11147.73151 32906.88083 32906.88083
h50x2450b 2549 4900 2822.584647 3030.198086 3030.198086
h50x2450c 2549 4900 3400.372829 4896.196619 4896.196619
h50x2450d 2549 4900 3251.877445 4639.264786 4639.264786
h50x2450e 2549 4900 2999.379052 4077.684199 4077.684199
h80x6320b 6558 12640 5086.547046 6003.179413 6003.179413
h80x6320c 6558 12640 5461.33783 6273.627361 6273.627361
h80x6320d 6558 12640 5325.160104 6382.09905 6382.09905
k10x90 100 180 399.73 568 568
k14x182 196 364 3995.514 8491 8491
k14x182b 196 364 4442.844 11042 11042
k15x210 225 420 1982.74 16128 16128
k15x420 435 840 350.08 819 819
k15x630 645 1260 449.89 936 936
k16x240 256 480 2769.838 10072.41885 10674
k16x240b 256 480 3320.771 11146.48643 11393
k20x380 400 760 952.566 1941 1941
k20x380b 400 760 1764.92 11343 11343
k20x380c 400 760 1858.48 17159 17159
k20x380d 400 760 1937.75 20979 20979
k20x380e 400 760 2013.35 6904 6904
l121x232 353 464 169104.5134 192446 192446
l451x885 1336 1770 399355.0014 431050 431050
l451x885b 1336 1770 530266.6196 560847 560847
l61x114 175 228 56275.99471 60085 60085
mc11 1920 3040 608.8443396 9711.1359 12008
mc7 1920 3040 367.7573964 3167.928932 3696
mc8 1920 3040 91.76470588 1284.278026 1615
mtest4ma 1174 1950 33968.06567 52148 52148
p100x588 688 1176 3957.217778 8711.17038 8999
p100x588b 688 1176 5554.011111 43614.81892 48793
p100x588c 688 1176 97579.11063 172770 172770
p100x588d 688 1176 1.899352402 5 5
p200x1188 1388 2376 5575.126667 11109.11095 11396
p200x1188b 1388 2376 7860.811111 50629.67929 56403
p200x1188c 1388 2376 5678.607089 15078 15078
p500x2988 3488 5976 59130.6729 71280.72127 71917
p500x2988b 3488 5976 61188.729 160303.2449 179975
p500x2988c 3488 5976 14122.96285 15215 15215
p500x2988d 3488 5976 2.161832061 6 6
p50x288 338 576 4178.478 6134 6134
p50x288b 338 576 5818.04 21753 21753
p50x576 626 1152 12203.142 19407 19407

Table 8: continued on next page

37

problem rows vars lp bestdual bestprimal

p50x864 914 1728 11284.682 19007 19007
p80x400 480 800 4824.65 8458.861661 8548
p80x400b 480 800 6418.8 36136.51828 39915
r20x100 120 200 6747.217 15603 15603
r20x200 220 400 5088.257 14783 14783
r30x160 190 320 10608.074 21827 21827
r50x360 410 720 575.02 1653 1653
r80x800 880 1600 3651.48 5150.009169 5338
sp100x200 300 400 18517.54178 34507 34507
sp150x300 450 600 13333.96896 30918 30918
sp150x300b 450 600 38.09703259 56 56
sp150x300c 450 600 406383.7402 560735.9965 560735.9965
sp150x300d 450 600 34.1089901 68.99999927 68.99999927
sp50x100 150 200 49287.62252 50968 50968
sp80x160 240 320 14573.39492 19549 19549
sp90x180 270 360 58915.83556 68862 68862
sp90x250 340 500 18733.09473 23571 23571

miplib

10teams 230 2025 917 924 924
a1c1s1 3312 3648 2364.279909 11503 11503
aflow30a 479 842 983.1674253 1158 1158
aflow40b 1442 2728 1005.664817 1168 1168
air03 124 10757 338864.25 340160 340160
air04 823 8904 55535.43639 56137 56137
air05 426 7195 25877.60927 26374 26374
arki001 1048 1388 7579621.831 7580813.046 7580813.046
atlanta-ip 21732 48738 81.24319887 90.00987861 90.00987861
bell3a 123 133 869515.1309 878430.316 878430.316
bell5 91 104 8912505.574 8966406.491 8966406.491
blend2 274 353 6.915675114 7.598985 7.598985
cap6000 2176 6000 -2451537.325 -2451377 -2451377
dano3mip 3202 13873 576.2316203 577.2959336 716.6428571
danoint 664 521 62.63728042 65.66666667 65.66666667
dcmulti 290 548 184569.1643 188182 188182
disctom 399 10000 -5000 -5000 -5000
ds 656 67732 57.23456605 59.3658192 116.59
dsbmip 1182 1886 -305.198175 -305.198175 -305.198175
egout 98 141 511.4151251 568.1007 568.1007
enigma 21 100 0 0 0
fast0507 507 63009 172.1455667 174 174
fiber 363 1298 198107.3575 405935.18 405935.18
fixnet6 478 878 3192.042 3983 3983
flugpl 18 18 1167875.166 1201500 1201500
gen 780 870 112273.8902 112313.3627 112313.3627
gesa2 1392 1224 25492512.14 25779856.37 25779856.37
gesa2-o 1248 1224 25489759.78 25779856.37 25779856.37
gesa3 1368 1152 27846437.46 27991042.65 27991042.65
gesa3 o 1224 1152 27844600.02 27991042.65 27991042.65
glass4 396 322 800002400 1200012600 1200012600
gt2 29 188 20146.7613 21166 21166
harp2 112 2993 -74325169.34 -73899813 -73899813
khb05250 101 1350 95919464 106940226 106940226
l152lav 97 1989 4656.363636 4722 4722
liu 2178 1156 560 560 1138
lseu 28 89 947.9572368 1120 1120
manna81 6480 3321 -13297 -13164 -13164

Table 8: continued on next page

38

problem rows vars lp bestdual bestprimal

markshare1 6 62 0 1 1
markshare2 7 74 0 1 1
mas74 13 151 10482.79528 11801.18573 11801.18573
mas76 12 151 38893.90364 40005.05414 40005.05414
misc03 96 160 1910 3360 3360
misc06 820 1808 12841.68939 12850.86074 12850.86074
misc07 212 260 1415 2810 2810
mitre 2054 10724 114782.4674 115155 115155
mkc 3411 5325 -605.25 -566.33 -557.206
mod008 6 319 290.9310727 307 307
mod010 146 2655 6532.083333 6548 6548
mod011 4480 10958 -62081950.29 -54558535.01 -54558535.01
modglob 291 422 20430947.62 20740508.09 20740508.09
momentum1 42680 5174 79192.66721 109143.4935 109143.4935
momentum2 24237 3732 10696.11156 12314.21959 12314.21959
momentum3 56822 13532 94175.457 95161.32147 236426.335
msc98-ip 15850 21143 19530897.71 19839497.01 19839497.01
mzzv11 9499 10240 -22944.98755 -21718 -21718
mzzv42z 10460 11717 -21622.99848 -20540 -20540
net12 14021 14115 68.39787582 214 214
noswot 182 128 -43 -41 -41
nsrand-ipx 735 6621 49667.89226 51200 51200
nw04 36 87482 16310.66667 16862 16862
opt1217 64 769 -20 -16 -16
p0033 16 33 2838.546739 3089 3089
p0201 133 201 7125 7615 7615
p0282 241 282 246740.1476 258411 258411
p0548 176 548 7740.671835 8691 8691
p2756 755 2756 2704.482763 3124 3124
pk1 45 86 0 11 11
pp08a 136 240 2748.345238 7350 7350
pp08aCUTS 246 240 5480.606156 7350 7350
protfold 2112 1835 -41.95744681 -31 -31
qiu 1192 840 -931.6388569 -132.873137 -132.873137
qnet1 503 1541 14274.10267 16029.69268 16029.69268
qnet1 o 456 1541 12557.24792 16029.69268 16029.69268
rd-rplusc-21 125899 622 100 165395.2753 165395.2753
rentacar 6803 9557 28928379.62 30356760.98 30356760.98
rgn 24 180 48.79999856 82.19999765 82.19999765
roll3000 2295 1166 11099.05045 12890 12890
rout 291 556 981.8642857 1077.56 1077.56
set1ch 492 712 35118.10985 54537.75 54537.75
seymour 4944 1372 403.8464741 414.4202538 423
sp97ar 1761 14101 652560391.1 659537423 661670441.4
stein27 118 27 13 18 18
stein45 331 45 22 30 30
stp3d 159488 204880 481.8777862 482.4321875 500.736
swath 884 6805 334.4968581 467.407491 467.407491
t1717 551 73885 134531.0214 135582.8176 170195.1
timtab1 171 397 157896.0366 764772 764772
timtab2 294 675 210652.4709 669812.8095 1145245
tr12-30 750 1080 21260.24478 130596 130596
vpm1 234 378 16.76666667 20 20
vpm2 234 378 11.17074055 13.75 13.75

mittelmann

30:70:4 5:0 5:100 12050 10772 8.1 9 9

Table 8: continued on next page

39

problem rows vars lp bestdual bestprimal

30:70:4 5:0 95:100 12526 10976 3 3 3
30:70:4 5:0 95:98 12471 10990 11.5 12 12
acc-1 2286 1620 0 0 0
acc-2 2520 1620 0 0 0
acc-3 3249 1620 0 0 0
acc-4 3285 1620 0 0 0
acc-5 3052 1339 0 0 0
acc-6 3047 1335 0 0 0
bc1 1913 1751 2.146801502 3.338362548 3.338362548
bienst1 576 505 11.72413793 46.75 46.75
bienst2 576 505 11.72413793 54.6 54.6
binkar10 1 1026 2298 6637.188027 6742.200024 6742.200024
dano3 3 3202 13873 576.2316203 576.344633 576.344633
dano3 4 3202 13873 576.2316203 576.4352247 576.4352247
dano3 5 3202 13873 576.2316203 576.924916 576.924916
lrn 8491 7253 44246903.22 44482699.34 44482699.34
markshare 4 0 4 34 0 1 1
markshare 5 0 5 45 0 0 2
mik.250-20-75.1 195 270 -59156.75737 -49716 -49716
mik.250-20-75.2 195 270 -59987.19637 -50768 -50768
mik.250-20-75.3 195 270 -60670.36664 -52242 -52242
mik.250-20-75.4 195 270 -61651.2271 -52301 -52301
mik.250-20-75.5 195 270 -60527.43721 -51532 -51532
neos1 5020 2112 15.5 19 19
neos10 46793 23489 -1196.333333 -1135 -1135
neos11 2706 1220 6 9 9
neos12 8317 3983 9.411612426 13 13
neos13 20852 1827 -126.1783778 -95.47480656 -95.47480656
neos14 552 792 32734.11478 74333.34334 74333.34334
neos17 486 535 0.0006814985015 0.1500025774 0.1500025774
neos2 1103 2101 -4407.097239 454.864697 454.864697
neos20 2446 1165 -475 -434 -434
neos21 1085 614 2.216483516 7 7
neos22 5208 3240 777191.4286 779715 779715
neos23 1568 477 56 137 137
neos3 1442 2747 -6158.209105 368.842751 368.842751
neos4 38577 22884 -4.860344075e+10 -4.860344075e+10 -4.860344075e+10
neos5 63 63 13 15 15
neos6 1036 8786 83 83 83
neos648910 1491 814 16 32 32
neos7 1994 1556 562977.4297 721934 721934
neos8 46324 23228 -3725 -3719 -3719
neos808444 18329 19846 0 0 0
neos818918 2450 2750 1680 1700 1700
neos823206 709 1830 19.81417814 83.86019578 83.86019578
neos897005 11612 44630 14 14 14
neos9 31600 81408 780 798 798
ns1648184 806 705 -1260.954861 -1234.666667 -1231.31746
ns1671066 316 2840 7.634607843 7.634607843 7.634607843
ns1688347 4191 2685 15.11176471 27 27
ns1692855 4562 3047 15.11176471 26 30
nug08 912 1632 203.5 214 214
prod1 208 250 -84.41587189 -56 -56
prod2 211 301 -86.98076893 -62 -62
qap10 1820 4150 332.5662276 340 340
seymour1 4944 1372 403.8464741 410.7637014 410.7637014
swath2 884 6805 334.4968581 385.1996929 385.1996929

Table 8: continued on next page

40

problem rows vars lp bestdual bestprimal

swath3 884 6805 334.4968581 397.7613437 397.7613437

Table 8: General information for all instances – Scip runs

B Results – Network Detection

Table 9 presents the results of the network detection for those instances for which the original
network is known. It reports on the number of nodes (|V |), the number of arcs (|A|), and the
number of commodities (|K|) in the original network (original). For the detected networks with
the presolving of Scip switched off respectively on (detection – no presolve respectively detection –
presolve) the network inconsistency (Ψ(G)) and the difference in the network size (nodes |V |, arcs
|A|, commodities |K|) compared with the original network is provided. If no network has been found
the corresponding entries are marked with ‘-’. For every testset we present the arithmetic mean of
the (absolute) difference of the original and the detected network elements. The detection results
are summarized in Table 2.

problem original detection – no presolve detection – presolve
|V | |A| |K| Ψ(G) |V | |A| |K| Ψ(G) |V | |A| |K|

arc.set

ns25-pr12 27 72 81 0.000 0 0 0 0.000 -7 -14 0
ns25-pr3 29 122 70 0.006 0 0 +1 0.007 -3 -6 +1
ns25-pr4 18 58 58 0.009 0 0 +1 0.008 -4 -8 +1
ns25-pr6 27 74 93 0.000 0 0 0 0.000 -8 -16 0
ns25-pr9 24 84 87 0.007 0 0 +1 0.006 -3 -6 +1
ns4-pr12 27 72 81 0.000 0 0 0 0.006 -7 -14 +1
ns4-pr3 29 122 70 0.007 0 0 +1 0.007 -3 -6 +1
ns4-pr4 18 58 58 0.000 0 0 0 0.008 -4 -8 +1
ns4-pr6 27 74 93 0.000 0 0 0 0.000 -8 -16 0
ns4-pr9 24 84 87 0.006 0 0 +1 0.007 -3 -6 +1
ns60-pr12 27 72 81 0.000 0 0 0 0.000 -7 -14 0
ns60-pr3 29 122 70 0.006 0 0 +1 0.007 -3 -6 +1
ns60-pr4 18 58 58 0.000 0 0 0 0.008 -4 -8 +1
ns60-pr6 27 74 93 0.000 0 0 0 0.000 -8 -16 0
ns60-pr9 24 84 87 0.007 0 0 +1 0.007 -3 -6 +1
nu120-pr12 27 72 81 0.000 0 0 0 0.006 -7 -14 +1
nu120-pr3 29 122 70 0.007 0 0 +1 0.006 -3 -6 +1
nu120-pr4 18 58 58 0.009 0 0 +1 0.008 -4 -8 +1
nu120-pr6 27 74 93 0.000 0 0 0 0.000 -8 -16 0
nu120-pr9 24 84 87 0.007 0 0 +1 0.006 -3 -6 +1
nu25-pr12 27 72 81 0.000 0 0 0 0.000 -7 -14 0
nu25-pr3 29 122 70 0.007 0 0 +1 0.006 -3 -6 +1
nu25-pr4 18 58 58 0.008 0 0 +1 0.008 -4 -8 +1
nu25-pr6 27 74 93 0.000 0 0 0 0.000 -8 -16 0
nu25-pr9 24 84 87 0.007 0 0 +1 0.006 -3 -6 +1
nu4-pr12 27 72 81 0.000 0 0 0 0.005 -7 -14 +1
nu4-pr3 29 122 70 0.007 0 0 +1 0.007 -3 -6 +1
nu4-pr4 18 58 58 0.000 0 0 0 0.000 -4 -8 0
nu4-pr6 27 74 93 0.000 0 0 0 0.000 -8 -16 0
nu4-pr9 24 84 87 0.006 0 0 +1 0.007 -3 -6 +1
nu60-pr12 27 72 81 0.000 0 0 0 0.000 -7 -14 0
nu60-pr3 29 122 70 0.007 0 0 +1 0.006 -3 -6 +1
nu60-pr4 18 58 58 0.000 0 0 0 0.000 -4 -8 0
nu60-pr6 27 74 93 0.000 0 0 0 0.000 -8 -16 0
nu60-pr9 24 84 87 0.006 0 0 +1 0.006 -3 -6 +1

Table 9: continued on next page

41

problem original detection – no presolve detection – presolve
|V | |A| |K| Ψ(G) |V | |A| |K| Ψ(G) |V | |A| |K|

mean diff in % 0.0 0.0 0.7 20.1 13.4 0.9

fc

fc.30.50.1 30 217 1 0.000 0 0 0 0.000 -6 -16 0
fc.30.50.10 30 217 1 0.000 0 0 0 0.000 -8 -27 0
fc.30.50.2 30 217 1 0.000 0 0 0 0.000 -4 -19 0
fc.30.50.3 30 217 1 0.000 0 0 0 0.000 -6 -15 0
fc.30.50.4 30 217 1 0.000 0 0 0 0.000 -9 -23 0
fc.30.50.5 30 217 1 0.000 0 0 0 0.002 -9 -44 0
fc.30.50.6 30 217 1 0.000 0 0 0 0.000 -3 -8 0
fc.30.50.7 30 217 1 0.000 0 0 0 0.000 -9 -28 0
fc.30.50.8 30 217 1 0.000 0 0 0 0.000 -6 -16 0
fc.30.50.9 30 217 1 0.000 0 0 0 0.000 -8 -24 0
fc.60.20.1 60 354 1 0.000 0 0 0 0.000 -14 -39 0
fc.60.20.10 60 354 1 0.000 0 0 0 0.000 -13 -32 0
fc.60.20.2 60 354 1 0.000 0 0 0 0.000 -13 -38 0
fc.60.20.3 60 354 1 0.000 0 0 0 0.000 -18 -43 0
fc.60.20.4 60 354 1 0.000 0 0 0 0.000 -16 -49 0
fc.60.20.5 60 354 1 0.000 0 0 0 0.001 -17 -56 0
fc.60.20.6 60 354 1 0.000 0 0 0 0.000 -18 -78 0
fc.60.20.7 60 354 1 0.000 0 0 0 0.000 -7 -24 0
fc.60.20.8 60 354 1 0.000 0 0 0 0.000 -8 -30 0
fc.60.20.9 60 354 1 0.000 0 0 0 0.000 -20 -67 0
mean diff in % 0.0 0.0 0.0 23.3 11.5 0.0

fctp

bal8x12 20 96 1 0.000 0 0 0 0.000 0 0 0
bk4x3 7 12 1 - - - - - - - -
gr4x6 10 24 1 - - - - - - - -
n3700 150 5000 1 0.000 0 0 0 0.000 0 0 0
n3701 150 5000 1 0.000 0 0 0 0.000 0 0 0
n3702 150 5000 1 0.000 0 0 0 0.000 0 0 0
n3703 150 5000 1 0.000 0 0 0 0.000 0 0 0
n3704 150 5000 1 0.000 0 0 0 0.000 0 0 0
n3705 150 5000 1 0.000 0 0 0 0.000 0 0 0
n3706 150 5000 1 0.000 0 0 0 0.000 0 0 0
n3707 150 5000 1 0.000 0 0 0 0.000 0 0 0
n3708 150 5000 1 0.000 0 0 0 0.000 0 0 0
n3709 150 5000 1 0.000 0 0 0 0.000 0 0 0
n370a 150 5000 1 0.000 0 0 0 0.000 0 0 0
n370b 150 5000 1 0.000 0 0 0 0.000 0 0 0
n370c 150 5000 1 0.000 0 0 0 0.000 0 0 0
n370d 150 5000 1 0.000 0 0 0 0.000 0 0 0
n370e 150 5000 1 0.000 0 0 0 0.000 0 0 0
ran10x10a 20 100 1 0.000 0 0 0 0.000 0 0 0
ran10x10b 20 100 1 0.000 0 0 0 0.000 0 0 0
ran10x10c 20 100 1 0.000 0 0 0 0.000 0 0 0
ran10x12 22 120 1 0.000 0 0 0 0.000 0 0 0
ran10x26 36 260 1 0.000 0 0 0 0.000 0 0 0
ran12x12 24 144 1 0.000 0 0 0 0.000 0 0 0
ran12x21 33 252 1 0.000 0 0 0 0.000 0 0 0
ran13x13 26 169 1 0.000 0 0 0 0.000 0 0 0
ran14x18 32 252 1 0.000 0 0 0 0.000 0 0 0
ran16x16 32 256 1 0.000 0 0 0 0.000 0 0 0
ran17x17 34 289 1 0.000 0 0 0 0.000 0 0 0
ran4x64 68 256 1 0.000 -63 -252 +2 0.000 -63 -252 +2
ran6x43 49 258 1 0.000 0 0 0 0.000 0 0 0

Table 9: continued on next page

42

problem original detection – no presolve detection – presolve
|V | |A| |K| Ψ(G) |V | |A| |K| Ψ(G) |V | |A| |K|

ran8x32 40 256 1 0.000 0 0 0 0.000 0 0 0
mean diff in % 3.1 3.3 6.7 3.1 3.3 6.7

avub

nexp.100.20.1.1 100 990 1 0.000 0 0 0 0.000 -61 -388 0
nexp.100.20.1.2 100 990 1 0.000 0 0 0 0.000 -59 -356 0
nexp.100.20.1.3 100 990 1 0.000 0 0 0 0.000 -66 -457 0
nexp.100.20.1.4 100 990 1 0.000 0 0 0 0.000 -64 -447 0
nexp.100.20.1.5 100 990 1 0.000 0 0 0 0.000 -65 -431 0
nexp.100.20.2.1 100 990 1 0.000 0 0 0 0.000 -61 -388 0
nexp.100.20.2.2 100 990 1 0.000 0 0 0 0.000 -54 -325 0
nexp.100.20.2.3 100 990 1 0.000 0 0 0 0.000 -63 -414 0
nexp.100.20.2.4 100 990 1 0.000 0 0 0 0.000 -51 -313 0
nexp.100.20.2.5 100 990 1 0.000 0 0 0 0.000 -58 -351 0
nexp.100.20.4.1 100 990 1 0.000 0 0 0 0.000 0 -102 0
nexp.100.20.4.2 100 990 1 0.000 0 0 0 0.000 0 -107 0
nexp.100.20.4.3 100 990 1 0.000 0 0 0 0.000 0 -92 0
nexp.100.20.4.4 100 990 1 0.000 0 0 0 0.000 0 -85 0
nexp.100.20.4.5 100 990 1 0.000 0 0 0 0.000 0 -133 0
nexp.100.20.8.1 100 990 1 0.000 0 0 0 0.000 0 -102 0
nexp.100.20.8.2 100 990 1 0.000 0 0 0 0.000 0 -107 0
nexp.100.20.8.3 100 990 1 0.000 0 0 0 0.000 0 -119 0
nexp.100.20.8.4 100 990 1 0.000 0 0 0 0.000 0 -85 0
nexp.100.20.8.5 100 990 1 0.000 0 0 0 0.000 0 -133 0
nexp.150.20.1.1 150 2235 1 0.000 0 0 0 0.000 -91 -852 0
nexp.150.20.1.2 150 2235 1 0.000 0 0 0 0.000 -87 -806 0
nexp.150.20.1.3 150 2235 1 0.000 0 0 0 0.000 -88 -776 0
nexp.150.20.1.4 150 2235 1 0.000 0 0 0 0.000 -95 -907 0
nexp.150.20.1.5 150 2235 1 0.000 0 0 0 0.000 -88 -786 0
nexp.150.20.2.1 150 2235 1 0.000 0 0 0 0.000 -91 -842 0
nexp.150.20.2.2 150 2235 1 0.000 0 0 0 0.000 -81 -673 0
nexp.150.20.2.3 150 2235 1 0.000 0 0 0 0.000 -87 -806 0
nexp.150.20.2.4 150 2235 1 0.000 0 0 0 0.000 -95 -906 0
nexp.150.20.2.5 150 2235 1 0.000 0 0 0 0.000 -88 -776 0
nexp.150.20.4.1 150 2235 1 0.000 0 0 0 0.000 0 -220 0
nexp.150.20.4.2 150 2235 1 0.000 0 0 0 0.000 0 -190 0
nexp.150.20.4.3 150 2235 1 0.000 0 0 0 0.000 0 -212 0
nexp.150.20.4.4 150 2235 1 0.000 0 0 0 0.000 0 -176 0
nexp.150.20.4.5 150 2235 1 0.000 0 0 0 0.000 0 -193 0
nexp.150.20.8.1 150 2235 1 0.000 0 0 0 0.000 0 -220 0
nexp.150.20.8.2 150 2235 1 0.000 0 0 0 0.000 0 -177 0
nexp.150.20.8.3 150 2235 1 0.000 0 0 0 0.000 0 -176 0
nexp.150.20.8.4 150 2235 1 0.000 0 0 0 0.000 0 -154 0
nexp.150.20.8.5 150 2235 1 0.000 0 0 0 0.000 0 -190 0
nexp.50.20.1.1 50 245 1 0.000 0 0 0 0.000 -8 -23 0
nexp.50.20.1.2 50 245 1 0.000 -2 -16 0 0.000 -26 -82 0
nexp.50.20.1.3 50 245 1 0.000 -2 -16 0 0.000 -26 -89 0
nexp.50.20.1.4 50 245 1 0.000 -1 -5 0 0.000 -24 -78 0
nexp.50.20.1.5 50 245 1 0.000 0 0 0 0.000 -15 -39 0
nexp.50.20.2.1 50 245 1 0.000 0 0 0 0.000 -11 -25 0
nexp.50.20.2.2 50 245 1 0.000 0 0 0 0.000 -19 -80 0
nexp.50.20.2.3 50 245 1 0.000 0 0 0 0.000 -16 -39 0
nexp.50.20.2.4 50 245 1 0.000 0 0 0 0.000 -25 -78 0
nexp.50.20.2.5 50 245 1 0.000 0 0 0 0.002 -28 -95 0
nexp.50.20.4.1 50 245 1 0.000 0 0 0 0.000 0 -19 0
nexp.50.20.4.2 50 245 1 0.000 -1 -5 0 0.000 -1 -23 0

Table 9: continued on next page

43

problem original detection – no presolve detection – presolve
|V | |A| |K| Ψ(G) |V | |A| |K| Ψ(G) |V | |A| |K|

nexp.50.20.4.3 50 245 1 0.000 0 0 0 0.000 0 -32 0
nexp.50.20.4.4 50 245 1 0.000 -1 -2 0 0.000 -4 -26 0
nexp.50.20.4.5 50 245 1 0.000 0 0 0 0.000 -1 -25 0
nexp.50.20.8.1 50 245 1 0.000 -1 -4 0 0.000 -2 -27 0
nexp.50.20.8.2 50 245 1 0.000 0 0 0 0.000 0 -22 0
nexp.50.20.8.3 50 245 1 0.000 -1 -2 0 0.000 -2 -25 0
nexp.50.20.8.4 50 245 1 0.000 0 0 0 0.000 -1 -29 0
nexp.50.20.8.5 50 245 1 0.000 -1 -2 0 0.000 -1 -23 0
mean diff in % 0.3 0.4 0.0 26.9 21.8 0.0

sndlib

atlanta-DBM 15 44 15 0.000 0 0 0 0.010 0 0 0
atlanta-UUM 15 22 14 0.000 0 0 0 0.023 0 0 0
cost266-DBE 37 114 37 0.000 0 0 0 0.003 0 0 0
cost266-DBM 37 114 37 0.000 0 0 0 0.003 0 0 0
cost266-UUE 37 57 36 0.000 0 0 0 0.004 0 0 0
cost266-UUM 37 57 36 0.000 0 0 0 0.008 0 0 0
dfn-bwin-DBE 10 90 10 0.000 0 0 0 0.000 0 0 0
dfn-bwin-UUE 10 45 9 0.000 0 0 0 0.000 0 0 0
dfn-gwin-DBE 11 94 11 0.000 0 0 0 0.002 0 0 0
dfn-gwin-DBM 11 94 11 0.000 0 0 0 0.002 0 0 0
dfn-gwin-UUE 11 47 10 0.000 0 0 0 0.002 0 0 0
dfn-gwin-UUM 11 47 10 0.000 0 0 0 0.002 0 0 0
di-yuan-DBE 11 84 8 0.000 0 0 0 0.000 0 0 0
di-yuan-UUE 11 42 7 0.000 0 0 0 0.000 0 0 0
france-DBM 25 90 25 0.000 0 0 0 0.008 0 0 0
france-UUM 25 45 24 0.000 0 0 0 0.012 0 0 0
germany50-DBM 50 176 47 0.000 0 0 0 0.002 0 0 0
germany50-UUM 50 88 40 0.000 0 0 0 0.003 0 0 0
giul39-DDE 39 172 39 0.000 0 0 0 0.000 0 0 0
janos-us-DDM 30 84 26 0.000 -4 0 0 0.004 -4 0 0
janos-us-ca-DDM 39 122 39 0.000 0 0 0 0.004 0 0 0
newyork-DBE 16 98 16 0.000 0 0 0 0.001 0 0 0
newyork-DBM 16 98 16 0.000 0 0 0 0.001 0 0 0
newyork-UUE 16 49 15 0.000 0 0 0 0.001 0 0 0
newyork-UUM 16 49 15 0.000 0 0 0 0.001 0 0 0
nobel-eu-DBE 28 82 27 0.000 0 0 0 0.006 0 0 0
nobel-eu-UUE 28 41 27 0.000 0 0 0 0.009 0 0 0
nobel-ger-DBE 17 52 15 0.000 0 0 0 0.012 0 0 0
nobel-ger-UUE 17 26 15 0.000 0 0 0 0.015 0 0 0
norway-DBE 27 102 27 0.000 0 0 0 0.001 0 0 0
norway-DBM 27 102 27 0.000 0 0 0 0.001 0 0 0
norway-UUE 27 51 26 0.000 0 0 0 0.002 0 0 0
norway-UUM 27 51 26 0.000 0 0 0 0.003 0 0 0
pdh-DBE 11 68 10 0.000 0 0 0 0.000 0 0 0
pdh-DBM 11 68 10 0.000 0 0 0 0.000 0 0 0
pdh-UUE 11 34 7 0.000 0 0 0 0.000 0 0 0
pdh-UUM 11 34 7 0.000 0 0 0 0.000 0 0 0
pioro40-DBM 40 178 39 0.000 0 0 0 0.000 0 0 0
pioro40-UUM 40 89 39 0.000 0 0 0 0.000 0 0 0
polska-DBM 12 36 11 0.000 0 0 0 0.008 0 0 0
polska-UUM 12 18 11 0.000 0 0 0 0.010 0 0 0
sun-DDM 27 102 6 0.000 0 0 0 0.003 0 0 0
ta1-DBE 24 110 19 0.000 0 0 0 0.002 0 0 0
ta1-DBM 24 110 19 0.000 0 0 0 0.002 0 0 0
ta1-UUE 24 55 16 0.000 0 0 0 0.003 0 0 0

Table 9: continued on next page

44

problem original detection – no presolve detection – presolve
|V | |A| |K| Ψ(G) |V | |A| |K| Ψ(G) |V | |A| |K|

ta1-UUM 24 55 16 0.000 0 0 0 0.003 0 0 0
ta2-DBE 65 216 42 0.000 0 0 0 0.002 -1 -2 0
ta2-DBM 65 216 42 0.000 0 0 0 0.003 -1 -2 0
ta2-UUE 65 108 38 0.000 0 0 0 0.003 -1 -1 0
ta2-UUM 65 108 38 0.000 0 0 0 0.005 -1 -1 0
zib54-DBE 54 162 42 0.000 0 0 0 0.005 -1 -2 0
zib54-UUE 54 81 32 0.000 0 0 0 0.006 -1 -1 0
mean diff in % 0.3 0.0 0.0 0.4 0.1 0.0

ufcn

beasleyC1 500 1250 1 0.000 0 0 0 0.000 -193 -386 0
beasleyC2 500 1250 1 0.000 0 0 0 0.000 -190 -380 0
beasleyC3 500 1250 1 0.000 -1 -2 0 0.000 -199 -398 0
beavma 89 195 1 0.000 0 0 0 0.000 -11 -15 0
berlin 52 2652 1 0.000 0 0 0 0.000 0 0 0
brasil 58 3306 1 0.000 0 0 0 0.000 0 0 0
fixnet6 100 500 1 0.000 0 0 0 0.000 -1 -51 0
g150x1100 150 1100 1 0.000 0 0 0 0.000 0 0 0
g150x1650 150 1650 1 0.000 0 0 0 0.000 0 0 0
g180x666 180 666 1 0.000 0 0 0 0.000 0 0 0
g200x740 200 740 1 0.000 0 0 0 0.000 0 0 0
g200x740b 200 740 1 0.000 0 0 0 0.000 0 0 0
g200x740c 200 740 1 0.000 0 0 0 0.000 0 0 0
g200x740d 200 740 1 0.000 0 0 0 0.000 0 0 0
g200x740e 200 740 1 0.000 0 0 0 0.000 0 0 0
g200x740f 200 740 1 0.000 0 0 0 0.000 0 0 0
g200x740g 200 740 1 0.000 0 0 0 0.000 0 0 0
g200x740h 200 740 1 0.000 0 0 0 0.000 0 0 0
g200x740i 200 740 1 0.000 0 0 0 0.000 0 0 0
g40x132 40 132 1 0.000 0 0 0 0.000 0 0 0
g50x170 50 170 1 0.000 0 0 0 0.000 0 0 0
g55x188 55 188 1 0.000 0 0 0 0.000 0 0 0
g55x188c 55 188 1 0.000 0 0 0 0.000 0 0 0
h50x2450 50 2450 1 0.000 0 -49 0 0.000 0 -49 0
h50x2450b 50 2450 1 0.000 0 -49 0 0.000 0 -49 0
h50x2450c 50 2450 1 0.000 0 -49 0 0.000 0 -49 0
h50x2450d 50 2450 1 0.000 0 -49 0 0.000 0 -49 0
h50x2450e 50 2450 1 0.000 0 -49 0 0.000 0 -49 0
h80x6320b 80 6320 1 0.000 0 -79 0 0.000 0 -79 0
h80x6320c 80 6320 1 0.000 0 -79 0 0.000 0 -79 0
h80x6320d 80 6320 1 0.000 0 -79 0 0.000 0 -79 0
k10x90 10 90 1 0.000 0 0 0 0.000 0 0 0
k14x182 14 182 1 0.000 0 0 0 0.000 0 0 0
k14x182b 14 182 1 0.000 0 0 0 0.000 0 0 0
k15x210 15 210 1 0.000 0 0 0 0.000 0 0 0
k15x420 15 420 1 0.000 0 0 0 0.000 0 0 0
k15x630 15 630 1 0.000 0 0 0 0.000 0 0 0
k16x240 16 240 1 0.000 0 0 0 0.000 0 0 0
k16x240b 16 240 1 0.000 0 0 0 0.000 0 0 0
k20x380 20 380 1 0.000 0 0 0 0.000 0 0 0
k20x380b 20 380 1 0.000 0 0 0 0.000 0 0 0
k20x380c 20 380 1 0.000 0 0 0 0.000 0 0 0
k20x380d 20 380 1 0.000 0 0 0 0.000 0 0 0
k20x380e 20 380 1 0.000 0 0 0 0.000 0 0 0
l121x232 121 232 1 0.000 0 0 0 0.006 -6 -36 0
l451x885 451 885 1 0.000 0 0 0 0.004 -9 -129 0

Table 9: continued on next page

45

problem original detection – no presolve detection – presolve
|V | |A| |K| Ψ(G) |V | |A| |K| Ψ(G) |V | |A| |K|

l451x885b 451 885 1 0.000 0 -1 0 0.004 -9 -134 0
l61x114 61 114 1 0.000 0 -1 0 0.009 -5 -20 0
mc11 400 1520 1 0.000 0 0 0 0.000 0 0 0
mc7 400 1520 1 0.000 0 0 0 0.000 0 0 0
mc8 400 1520 1 0.000 0 0 0 0.000 0 0 0
mtest4ma 100 975 1 0.000 0 0 0 0.000 0 0 0
p100x588 100 588 1 0.000 0 0 0 0.000 0 0 0
p100x588b 100 588 1 0.000 0 0 0 0.000 0 0 0
p100x588c 100 588 1 0.000 0 0 0 0.000 0 0 0
p100x588d 100 588 1 0.000 0 0 0 0.000 0 0 0
p200x1188 200 1188 1 0.000 0 0 0 0.000 0 0 0
p200x1188b 200 1188 1 0.000 0 0 0 0.000 0 0 0
p200x1188c 200 1188 1 0.000 0 0 0 0.000 0 0 0
p500x2988 500 2988 1 0.000 0 0 0 0.000 0 0 0
p500x2988b 500 2988 1 0.000 0 0 0 0.000 0 0 0
p500x2988c 500 2988 1 0.000 0 0 0 0.000 0 0 0
p500x2988d 500 2988 1 0.000 0 0 0 0.000 0 0 0
p50x288 50 288 1 0.000 0 0 0 0.000 0 0 0
p50x288b 50 288 1 0.000 0 0 0 0.000 0 0 0
p50x576 50 576 1 0.000 0 0 0 0.000 0 0 0
p50x864 50 864 1 0.000 0 0 0 0.000 0 0 0
p80x400 80 400 1 0.000 0 0 0 0.000 -2 -4 0
p80x400b 80 400 1 0.000 0 0 0 0.000 -2 -4 0
r20x100 20 100 1 0.000 0 0 0 0.000 -1 -2 0
r20x200 20 200 1 0.000 0 0 0 0.000 0 0 0
r30x160 30 160 1 0.000 0 0 0 0.000 -4 -8 0
r50x360 50 360 1 0.000 0 0 0 0.000 -1 -2 0
r80x800 80 800 1 0.000 0 0 0 0.000 0 0 0
sp100x200 100 200 1 0.000 -60 -124 0 0.000 -76 -136 0
sp150x300 150 300 1 0.000 -52 -105 0 0.000 -89 -143 0
sp150x300b 150 300 1 0.000 -23 -53 0 0.000 -79 -110 0
sp150x300c 150 300 1 0.000 -13 -30 0 0.000 -68 -85 0
sp150x300d 150 300 1 0.000 0 -4 0 0.000 -86 -86 0
sp50x100 50 100 1 0.018 -39 -82 0 0.000 -47 -94 0
sp80x160 80 160 1 0.000 -19 -39 0 0.000 -47 -68 0
sp90x180 90 180 1 0.000 -17 -41 0 0.000 -65 -110 0
sp90x250 90 250 1 0.000 -71 -205 0 0.000 -79 -210 0
mean diff in % 3.8 4.2 0.0 9.3 8.3 0.0

Table 9: Network detection results with Scip– Instances with known
original network

Table 10 presents the results of the network detection for those instances for which no original
network is known. It reports on the number of nodes (|V |), the number of arcs (|A|), and the
number of commodities (|K|) in the detected networks in case the presolving of Scip is switched
off respectively on (detection – no presolve respectively detection – presolve). In addition, the
network inconsistency (Ψ(G)) of the detected networks is provided. If no network has been found
the corresponding entries are marked with ‘-’. The detection results are summarized in Table 2.

problem detection – no presolve detection – presolve
Ψ(G) |V | |A| |K| Ψ(G) |V | |A| |K|

cut.set

n1-3 0.239 51 228 2 0.350 9 16 1
n10-3 0.248 61 311 4 0.327 5 8 1

Table 10: continued on next page

46

problem detection – no presolve detection – presolve
Ψ(G) |V | |A| |K| Ψ(G) |V | |A| |K|

n11-3 0.258 48 197 5 0.302 7 12 1
n12-3 0.258 96 108 1 0.305 14 26 1
n13-3 0.352 55 54 1 0.291 7 12 1
n14-3 0.259 74 353 4 0.268 51 54 1
n15-3 0.346 168 326 1 0.346 168 326 1
n2-3 0.244 74 79 1 0.246 5 8 1
n3-3 0.403 17 30 1 0.318 73 82 1
n4-3 0.267 73 86 1 0.239 83 668 3
n5-3 0.268 52 57 1 0.299 11 20 1
n6-3 0.243 141 2007 6 0.307 61 109 1
n7-3 0.257 98 103 1 0.329 74 75 1
n8-3 0.280 46 49 1 0.326 9 15 1
n9-3 0.279 86 89 1 0.366 17 32 1

miplib

10teams - - - - - - - -
a1c1s1 0.019 340 648 6 0.045 126 191 4
aflow30a 0.000 29 421 1 0.000 29 421 1
aflow40b 0.000 39 1364 1 0.000 39 1364 1
air03 - - - - - - - -
air04 0.625 4 9 1 0.646 7 12 1
air05 0.668 6 14 1 0.635 3 5 1
arki001 0.000 11 36 1 0.000 11 36 1
atlanta-ip 0.518 16 46 1 0.512 149 200 1
bell3a 0.000 19 38 1 0.018 8 16 2
bell5 0.016 12 26 2 0.000 3 9 1
blend2 - - - - - - - -
cap6000 - - - - - - - -
dano3mip 0.214 550 1274 1 0.081 78 612 1
danoint 0.000 72 464 1 0.000 55 404 1
dcmulti - - - - - - - -
disctom - - - - - - - -
ds - - - - - - - -
dsbmip - - - - - - - -
egout 0.016 11 15 1 0.000 8 21 1
enigma - - - - - - - -
fast0507 - - - - - - - -
fiber 0.015 28 44 11 0.005 23 38 11
fixnet6 0.000 100 448 1 0.000 99 449 1
flugpl - - - - - - - -
gen 0.000 52 55 5 0.486 16 18 2
gesa2 0.000 24 24 13 0.000 24 24 13
gesa2-o 0.000 24 24 1 0.000 24 24 1
gesa3 0.093 36 70 12 0.093 35 70 11
gesa3 o 0.020 26 28 1 0.022 25 50 1
glass4 - - - - - - - -
gt2 - - - - - - - -
harp2 - - - - - - - -
khb05250 0.000 76 100 1 0.000 76 100 1
l152lav - - - - - - - -
liu - - - - - - - -
lseu - - - - - - - -
manna81 0.190 46 51 7 0.190 46 51 7
markshare1 - - - - - - - -
markshare2 - - - - - - - -
mas74 - - - - - - - -

Table 10: continued on next page

47

problem detection – no presolve detection – presolve
Ψ(G) |V | |A| |K| Ψ(G) |V | |A| |K|

mas76 - - - - - - - -
misc03 - - - - 0.417 5 4 1
misc06 0.041 8 14 1 0.099 6 6 1
misc07 - - - - 0.438 6 5 1
mitre - - - - - - - -
mkc 0.095 319 319 1 0.271 7 6 24
mod008 - - - - - - - -
mod010 - - - - - - - -
mod011 - - - - 0.445 19 24 3
modglob - - - - - - - -
momentum1 0.021 74 184 1 0.026 311 658 1
momentum2 0.003 287 1375 1 0.002 285 1193 1
momentum3 0.000 502 4519 1 0.005 898 4035 1
msc98-ip 0.529 186 345 1 0.535 143 303 1
mzzv11 0.669 6 7 1 0.645 10 23 1
mzzv42z 0.661 10 17 2 0.656 7 11 2
net12 0.209 12 17 2 0.395 20 32 1
noswot 0.250 6 5 1 0.250 6 5 1
nsrand-ipx - - - - 0.322 11 17 5
nw04 - - - - - - - -
opt1217 - - - - - - - -
p0033 - - - - - - - -
p0201 - - - - 0.561 4 3 2
p0282 - - - - 0.089 8 9 5
p0548 - - - - 0.137 4 6 3
p2756 - - - - 0.195 11 14 1
pk1 - - - - - - - -
pp08a 0.000 72 162 1 0.000 69 154 1
pp08aCUTS 0.095 72 132 1 0.091 69 121 1
protfold 0.479 142 368 1 0.499 140 263 1
qiu - - - - - - - -
qnet1 0.478 13 49 5 0.313 8 28 6
qnet1 o 0.213 36 103 24 0.000 10 37 24
rd-rplusc-21 - - - - 0.000 18 19 1
rentacar 0.240 206 414 1 0.405 15 44 1
rgn - - - - - - - -
roll3000 0.474 33 82 1 0.457 63 129 1
rout 0.344 30 240 1 0.344 30 240 1
set1ch 0.000 251 451 1 0.000 191 385 1
seymour 0.445 58 91 1 0.450 111 201 1
sp97ar 0.219 16 43 3 0.233 17 50 4
stein27 - - - - - - - -
stein45 0.481 19 26 1 0.481 19 26 1
stp3d 0.408 26645 99201 1 0.004 2352 10915 2
swath - - - - - - - -
t1717 - - - - - - - -
timtab1 - - - - 0.000 3 5 2
timtab2 - - - - 0.000 4 7 2
tr12-30 0.000 24 47 12 0.017 20 39 12
vpm1 0.000 8 7 4 0.000 5 8 4
vpm2 - - - - - - - -

mittelmann

30:70:4 5:0 5:100 0.404 91 104 1 0.416 176 201 1
30:70:4 5:0 95:100 0.424 108 128 1 0.421 108 129 1
30:70:4 5:0 95:98 0.418 50 62 1 0.411 58 69 1

Table 10: continued on next page

48

problem detection – no presolve detection – presolve
Ψ(G) |V | |A| |K| Ψ(G) |V | |A| |K|

acc-1 0.514 293 764 1 0.515 155 673 1
acc-2 0.517 116 422 1 0.514 155 673 1
acc-3 0.373 149 168 1 0.407 175 220 1
acc-4 0.374 169 204 1 0.387 180 225 1
acc-5 0.488 250 334 1 0.469 286 440 1
acc-6 0.466 238 355 1 0.473 287 470 1
bc1 - - - - - - - -
bienst1 0.022 64 347 1 0.000 51 386 1
bienst2 0.022 64 347 1 0.000 51 386 1
binkar10 1 0.249 21 20 1 0.500 14 13 1
dano3 3 0.214 550 1278 1 0.081 78 612 1
dano3 4 0.214 550 1268 1 0.081 78 612 1
dano3 5 0.214 550 1261 1 0.081 78 612 1
lrn 0.298 41 93 1 0.280 30 81 1
markshare 4 0 - - - - - - - -
markshare 5 0 - - - - - - - -
mik.250-20-75.1 - - - - - - - -
mik.250-20-75.2 - - - - - - - -
mik.250-20-75.3 - - - - - - - -
mik.250-20-75.4 - - - - - - - -
mik.250-20-75.5 - - - - - - - -
neos1 0.243 82 216 23 0.267 42 312 8
neos10 0.375 17 54 1 0.221 8 53 2
neos11 0.481 165 372 1 0.410 105 528 1
neos12 0.440 596 1531 1 0.415 254 2081 1
neos13 - - - - - - - -
neos14 0.138 147 233 1 0.189 176 214 1
neos17 - - - - - - - -
neos2 0.476 5 82 2 0.479 3 31 1
neos20 0.307 28 37 1 0.394 31 44 1
neos21 0.165 61 87 1 0.031 27 44 9
neos22 0.193 20 34 1 0.210 30 33 18
neos23 0.298 7 16 2 0.124 23 35 3
neos3 0.476 5 82 2 0.478 4 83 2
neos4 - - - - 0.054 267 971 1
neos5 0.404 91 104 1 - - - -
neos6 - - - - - - - -
neos648910 0.058 3 3 1 0.000 7 7 1
neos7 0.007 38 141 1 0.007 38 141 1
neos8 0.488 23 56 1 0.451 16 44 1
neos808444 0.557 220 337 5 0.465 289 517 5
neos818918 0.712 6 5 1 0.304 70 110 5
neos823206 0.232 30 63 55 0.000 28 29 1
neos897005 0.391 14 13 1 0.460 485 535 1
neos9 0.596 55 1302 1 0.621 46 1217 1
ns1648184 0.055 30 244 2 0.055 32 244 2
ns1671066 0.000 19 20 1 0.000 18 19 1
ns1688347 0.366 156 320 1 0.491 304 968 1
ns1692855 0.366 156 313 1 0.449 164 327 1
nug08 - - - - - - - -
prod1 - - - - - - - -
prod2 - - - - - - - -
qap10 - - - - - - - -
seymour1 0.451 36 59 1 0.459 60 102 1
swath2 - - - - - - - -
swath3 - - - - - - - -

Table 10: continued on next page

49

problem detection – no presolve detection – presolve
Ψ(G) |V | |A| |K| Ψ(G) |V | |A| |K|

Table 10: Network detection results with Scip– Instances with unknown
original network

C Results – Separation

Table 11 presents the results of the separation for all easy instances. We compare the performance
of Scip with (mcf) and without (nomcf) the Mcf separator. Every easy instance can be solved by
Scip in one of the two settings within one hour of CPU time. We provide the closed gap at the root
node before branching (rootgap) which is defined as

100 · (root − lp)/(bestprimal − lp),

where lp denotes the value of the LP relaxation, bestprimal the best known primal solution value
(see Table 8 in Appendix A), and root the value of the LP at the root node after cutting before
branching. In addition, the time in seconds and the number of branch-and-bound nodes used to
solve the instance are provided. Note that if an easy problem hits the time limit we use the number
of nodes explored so far. If it hits the memory limit before the time limit has been reached we set
time = 3600s and scale the nodes accordingly. The number of cuts (# cuts) found by the Mcf

separator is given in the last column. Values in bold face indicate that they are at least 10% below
the opposite value (time and nodes) or at least 1 percentage point above the opposite value (rootgap).
If the Mcf separator is switched off (no network has been found or the network inconsistency ratio
Ψ(G) is above Ψmax = 0.02) then column #cuts contains a “-”. Runs marked with “⋆” have hit the
memory limit. For every testset two additional rows provide the arithmetic mean of the rootgap and
the geometric means of CPU time and nodes (means) as wells as the number of values in bold face
for every measure (wins).

problem nomcf mcf
rootgap time nodes rootgap time nodes #cuts
closed % closed %

arc.set

ns25-pr12 63.8 13.9 2940 78.5 2.0 219 34
ns25-pr3 45.7 2112.5 159702 48.8 1827.0 134719 27
ns25-pr4 43.9 11.8 2742 59.0 14.5 3078 29
ns25-pr6 74.8 4.3 783 78.7 2.5 222 26
ns25-pr9 10.1 192.9 17314 10.0 286.0 21740 42
ns4-pr12 67.7 12.9 3151 67.7 16.4 3925 17
ns4-pr4 9.3 9.2 3512 68.1 4.4 1706 6
ns4-pr6 42.1 121.0 57036 60.6 7.6 1531 10
ns60-pr12 72.7 3.3 409 86.2 2.6 46 87
ns60-pr3 52.4 1975.3 81589 53.5 1347.6 49704 62
ns60-pr4 48.8 4.9 254 80.8 5.2 152 52
ns60-pr6 61.7 6.7 1190 84.2 1.8 27 65
ns60-pr9 42.7 478.2 27341 43.1 405.0 25251 82
nu120-pr12 67.1 11.2 316 100.0 3.9 2 609
nu120-pr4 38.8 104.0 12628 49.4 71.9 7959 262
nu120-pr6 95.5 6.5 39 100.0 3.9 1 412
nu25-pr12 82.5 6.8 72 82.6 5.6 54 100
nu25-pr4 58.1 64.8 8877 74.2 20.4 2484 81
nu25-pr6 87.8 4.8 61 82.7 5.6 116 160
nu4-pr12 72.1 51.7 13798 79.4 16.4 1988 18
nu4-pr4 65.8 35.8 9526 78.7 9.2 1116 20

Table 11: continued on next page

50

problem nomcf mcf
rootgap time nodes rootgap time nodes #cuts
closed % closed %

nu4-pr6 82.0 31.6 4257 87.5 9.1 572 14
nu60-pr12 71.9 20.3 1699 94.8 6.3 14 531
nu60-pr4 45.5 38.5 3560 61.7 28.8 3193 224
nu60-pr6 58.1 34.1 4416 74.1 7.8 233 370
means 58.4 31.7 3326 71.4 16.6 1103

wins 1 4 4 20 20 20

cut.set

n1-3 100.0 0.5 3 100.0 0.5 3 -
n10-3 97.9 0.3 16 97.9 0.3 16 -
n11-3 92.9 1.0 10 92.9 1.0 10 -
n13-3 92.2 11.8 2067 92.2 11.8 2067 -
n14-3 89.0 4.1 353 89.0 4.1 353 -
n2-3 96.7 1.1 21 96.7 1.1 21 -
n4-3 78.6 464.4 28958 78.6 464.7 28958 -
n5-3 74.8 97.5 9971 74.8 97.8 9971 -
n6-3 89.6 3568.6 246628 89.6 3569.5 246628 -
n7-3 83.6 52.0 1865 83.6 51.7 1865 -
n8-3 80.7 9.6 965 80.7 9.5 965 -
means 88.7 16.6 1232 88.7 16.5 1232

wins 0 0 0 0 0 0

fc

fc.30.50.1 88.6 1.3 19 89.7 1.5 33 685
fc.30.50.10 100.0 0.9 6 100.0 1.0 4 649
fc.30.50.2 94.2 2.0 15 93.4 2.2 11 537
fc.30.50.3 84.6 2.3 815 88.5 2.3 137 554
fc.30.50.4 97.1 3.2 953 97.5 2.4 495 549
fc.30.50.5 100.0 1.2 5 100.0 1.6 3 668
fc.30.50.6 88.8 1.9 129 89.7 2.4 125 479
fc.30.50.7 100.0 1.0 6 100.0 1.9 5 700
fc.30.50.8 89.0 2.5 471 93.2 2.5 23 289
fc.30.50.9 98.2 3.1 278 98.3 3.0 90 773
fc.60.20.1 91.7 9.2 1994 92.2 8.3 2028 337
fc.60.20.10 96.1 6.9 1283 96.9 6.5 497 268
fc.60.20.2 88.1 8.4 2897 89.7 10.4 1988 465
fc.60.20.3 92.3 5.8 961 92.8 6.1 961 352
fc.60.20.4 91.8 10.7 8367 91.2 10.3 8260 405
fc.60.20.5 98.6 1.2 12 100.0 1.6 3 292
fc.60.20.6 89.2 9.7 3764 88.6 8.1 3578 494
fc.60.20.7 89.1 5.9 1571 89.1 5.9 1571 0
fc.60.20.8 93.9 3.9 288 93.1 5.1 651 499
fc.60.20.9 100.0 1.5 4 100.0 2.1 4 301
means 93.6 3.3 415 94.2 3.5 305

wins 0 10 2 5 2 11

fctp

bal8x12 100.0 0.2 1 97.8 0.4 4 216
bk4x3 100.0 0.0 1 100.0 0.0 1 -
gr4x6 100.0 0.0 1 100.0 0.0 1 -
ran10x10a 94.6 0.5 15 94.2 0.6 9 372
ran10x10b 84.4 0.2 15 85.5 0.3 21 527
ran10x10c 70.3 1.9 2550 72.5 1.5 1411 561
ran10x12 100.0 0.3 1 100.0 0.4 1 425
ran10x26 55.6 28.4 31469 55.3 26.8 31563 844
ran12x12 68.0 13.6 19096 68.3 16.9 26827 632

Table 11: continued on next page

51

problem nomcf mcf
rootgap time nodes rootgap time nodes #cuts
closed % closed %

ran12x21 60.1 53.2 61542 58.8 71.7 88530 744
ran13x13 60.7 32.1 50831 65.3 26.9 41173 522
ran16x16 61.3 296.4 394888 62.3 313.3 440247 680
ran17x17 76.3 6.7 4697 73.2 5.4 2958 575
ran4x64 69.8 1.2 231 69.8 1.3 231 0
ran6x43 56.6 1.0 110 60.4 0.9 82 442
ran8x32 72.0 10.1 10999 72.8 9.4 9248 745
means 76.9 4.5 1679 77.3 4.6 1603

wins 3 5 5 5 3 6

avub

nexp.100.20.1.1 100.0 0.8 1 100.0 0.6 1 55
nexp.100.20.1.2 100.0 2.4 1 100.0 2.9 1 210
nexp.100.20.1.3 100.0 1.6 1 100.0 1.7 1 35
nexp.100.20.1.4 86.6 14.2 933 100.0 3.9 1 170
nexp.100.20.1.5 100.0 2.3 1 100.0 2.1 1 102
nexp.100.20.2.1 89.3 7.2 10 89.2 24.3 1817 119
nexp.100.20.2.3 100.0 4.2 1 100.0 4.4 2 94
nexp.100.20.2.4 75.4 2295.2 634375 86.3 37.4 8277 171
nexp.100.20.2.5 71.0 3600.0 1302612 80.7 87.1 14457 225
nexp.100.20.4.1 63.2 3600.0 325144 94.6 37.2 14341 641
nexp.100.20.4.2 67.3 3600.0 178770 96.1 28.4 4158 620
nexp.100.20.4.3 73.3 3600.0 361786 95.2 2546.1 531289 516
nexp.100.20.4.4 76.7 3600.0 112480 96.9 38.7 2434 698
nexp.100.20.4.5 82.6 3600.0 310722 99.2 15.2 762 518
nexp.150.20.1.1 100.0 4.9 1 100.0 6.1 1 67
nexp.150.20.1.2 100.0 3.1 1 100.0 3.7 1 172
nexp.150.20.1.3 100.0 7.3 1 96.8 24.5 201 214
nexp.150.20.1.4 86.3 422.8 13165 84.7 1454.5 43179 321
nexp.150.20.1.5 100.0 5.3 1 100.0 5.6 1 267
nexp.150.20.2.1 69.4 3600.0 302168 80.8 589.9 42504 56
nexp.150.20.2.3 67.7 3600.0 354263 91.5 885.4 162779 268
nexp.150.20.2.5 70.7 3600.0 228516 76.0 1305.2 78584 30
nexp.150.20.4.2 71.9 3600.0 31754 95.5 2143.0 85008 854
nexp.150.20.4.3 71.1 3600.0 40544 97.6 1151.2 39474 597
nexp.150.20.4.4 75.5 3600.0 46633 97.3 440.6 15564 854
nexp.50.20.1.1 100.0 0.2 1 100.0 0.2 1 142
nexp.50.20.1.2 100.0 0.1 1 100.0 0.1 1 76
nexp.50.20.1.3 100.0 0.1 1 100.0 0.1 1 95
nexp.50.20.1.4 100.0 0.0 1 100.0 0.0 1 35
nexp.50.20.1.5 100.0 0.5 1 100.0 0.6 1 0
nexp.50.20.2.1 100.0 1.2 11 100.0 0.9 11 214
nexp.50.20.2.2 100.0 0.4 1 100.0 0.6 4 68
nexp.50.20.2.3 100.0 1.8 13 100.0 0.9 1 129
nexp.50.20.2.4 75.4 3.1 1454 80.9 3.1 1303 164
nexp.50.20.2.5 100.0 0.4 1 100.0 0.5 1 62
nexp.50.20.4.1 82.6 16.4 8906 97.3 2.4 6 223
nexp.50.20.4.2 75.2 20.3 7767 75.3 19.9 9209 6
nexp.50.20.4.3 86.7 15.6 7242 90.0 11.4 3778 174
nexp.50.20.4.4 85.9 8.7 2710 87.6 6.0 902 64
nexp.50.20.4.5 97.4 2.4 8 100.0 0.7 1 131
nexp.50.20.8.1 77.5 585.8 325852 83.4 273.4 156790 172
nexp.50.20.8.2 78.2 3600.0⋆ 2533846⋆ 94.9 60.4 23889 582
nexp.50.20.8.3 82.8 829.5 602812 94.3 8.2 1799 496
nexp.50.20.8.4 83.2 3600.0 2656207 93.7 26.5 10430 703

Table 11: continued on next page

52

problem nomcf mcf
rootgap time nodes rootgap time nodes #cuts
closed % closed %

nexp.50.20.8.5 85.1 192.1 99668 83.4 458.7 218807 122
means 86.8 55.2 4267 94.2 17.8 1396

wins 3 8 9 23 25 21

sndlib

atlanta-DBM 49.4 6.3 3474 71.6 1.9 829 34
atlanta-UUM 26.3 6.4 5556 26.3 6.5 5556 -
dfn-gwin-DBE 60.7 82.4 20260 67.3 61.4 10855 216
dfn-gwin-DBM 66.7 56.6 16285 69.4 44.9 8923 74
dfn-gwin-UUE 64.7 76.1 40495 66.8 61.6 24978 146
dfn-gwin-UUM 64.5 287.5 214582 66.5 107.3 60790 54
di-yuan-DBE 51.5 62.0 19753 57.6 43.2 9449 283
di-yuan-UUE 64.8 168.0 109972 69.4 62.3 24589 215
france-DBM 44.3 407.4 132148 54.9 166.5 42159 64
france-UUM 31.1 130.9 69384 64.0 15.6 5123 28
pdh-DBE 56.1 49.6 22184 59.3 51.8 21442 287
pdh-DBM 56.9 60.3 26828 62.4 41.6 16895 157
pdh-UUE 71.7 23.7 12629 75.6 16.1 6649 304
pdh-UUM 74.4 16.0 10149 76.0 11.4 5289 60
polska-DBM 53.0 0.8 659 56.4 1.1 942 16
polska-UUM 35.8 7.4 13897 49.2 3.5 5799 16
ta1-DBE 27.2 3600.0⋆ 1608597⋆ 87.6 812.7 488521 86
ta2-DBE 21.1 14.9 250 100.0 2.6 1 32
ta2-DBM 0.0 47.5 1769 27.5 16.4 384 2
ta2-UUE 0.0 3600.0⋆ 181005⋆ 47.4 2620.2 207059 16
zib54-DBE 72.1 3238.2 153710 80.2 3600.0 121784 661
zib54-UUE 57.2 1599.0 105420 73.7 547.6 27183 434
means 47.7 84.7 24197 64.1 45.1 10710

wins 0 2 2 21 18 18

ufcn

beasleyC1 74.5 1.9 17 75.5 3.0 58 9
beasleyC2 73.4 241.5 103685 70.1 429.3 205234 29
beavma 88.4 0.9 31 100.0 0.6 7 270
fixnet6 82.0 1.4 7 82.0 1.4 7 2
g180x666 67.2 3600.0 1407689 96.3 226.1 97553 523
g200x740c 77.1 15.0 7493 79.8 8.8 2283 109
g200x740d 68.2 3600.0 2038110 85.9 242.4 116280 378
g200x740e 62.4 3600.0 1783097 89.5 1479.1 752118 487
g200x740f 62.2 3600.0 1838978 93.8 40.4 17293 609
g40x132 88.7 6.1 9379 90.0 4.8 7634 121
g50x170 88.8 26.4 40826 88.7 78.6 121031 140
g55x188c 92.8 1.2 31 100.0 0.7 2 109
h50x2450 88.2 3600.0 512965 94.0 646.9 62232 293
h50x2450b 87.8 36.9 1942 100.0 3.6 1 361
h50x2450c 87.0 1888.2 241900 95.0 23.4 402 284
h50x2450d 88.0 3600.0 628139 96.0 22.9 300 367
h50x2450e 93.9 19.2 50 95.6 18.3 7 389
h80x6320b 93.6 38.0 518 93.6 35.9 273 25
h80x6320c 87.8 314.2 45656 87.9 208.7 28161 23
h80x6320d 92.2 100.1 6345 92.3 66.0 3083 15
k10x90 90.5 0.5 42 91.9 0.5 81 83
k14x182 83.6 2.3 779 82.2 4.0 3345 70
k14x182b 94.7 1.0 15 89.5 1.5 111 94
k15x210 93.9 0.8 64 100.0 0.7 1 82
k15x420 92.7 1.6 9 100.0 1.1 2 144

Table 11: continued on next page

53

problem nomcf mcf
rootgap time nodes rootgap time nodes #cuts
closed % closed %

k15x630 87.2 2.9 49 99.7 1.9 3 185
k20x380 81.8 73.9 120588 83.5 56.5 75872 103
k20x380b 100.0 0.4 1 100.0 0.2 1 64
k20x380c 99.9 1.0 4 99.9 0.8 3 73
k20x380d 100.0 0.8 2 100.0 0.8 3 76
k20x380e 100.0 0.2 1 100.0 0.4 1 32
l121x232 93.8 0.4 8 89.5 0.5 13 25
l451x885 58.2 785.8 644282 56.6 950.4 744828 35
l451x885b 70.5 11.4 6032 69.8 11.4 6363 34
l61x114 100.0 0.1 1 100.0 0.1 1 36
mtest4ma 85.8 3600.0 1034729 95.4 11.1 337 318
p100x588c 58.5 6.0 1302 59.4 7.4 2302 11
p100x588d 100.0 0.2 1 100.0 0.1 1 19
p200x1188c 48.4 2005.1 918761 51.3 999.6 505917 10
p500x2988c 96.5 3.4 5 100.0 3.4 1 12
p500x2988d 100.0 0.6 1 100.0 0.3 1 16
p50x288 94.2 1.2 169 95.4 1.3 87 82
p50x288b 88.2 391.3 459786 89.5 150.2 149012 112
p50x576 95.1 1.4 57 95.6 1.2 99 98
p50x864 96.0 2.7 229 100.0 1.4 1 149
r20x100 87.8 2.8 2567 86.9 2.8 2350 79
r20x200 79.7 566.9 1328162 80.0 963.7 2253459 90
r30x160 81.8 112.0 287070 84.1 47.3 104204 75
r50x360 83.5 3600.0 2286022 93.0 1001.2 593978 186
sp100x200 86.2 1.4 702 85.8 1.9 1411 241
sp150x300 93.9 0.8 69 94.3 0.8 53 94
sp150x300b 62.7 501.5 1044093 65.2 262.4 580764 49
sp150x300c 77.6 2.5 1336 84.4 1.4 677 75
sp150x300d 77.7 3600.0 10056270 78.7 1616.0 3977407 56
sp50x100 100.0 0.0 1 100.0 0.0 1 6
sp80x160 100.0 0.1 1 100.0 0.0 1 48
sp90x180 100.0 0.2 2 100.0 0.3 2 267
sp90x250 88.7 0.1 7 96.2 0.1 4 77
means 85.7 22.1 3984 89.7 11.6 1804

wins 5 11 13 31 32 34

miplib

10teams 100.0 6.1 154 100.0 6.1 154 -
aflow30a 65.1 10.0 1768 63.7 10.2 1348 967
aflow40b 52.3 2732.6 465560 53.8 1432.7 250510 1392
air03 100.0 28.1 4 100.0 28.0 4 -
air04 18.8 50.3 100 18.8 50.2 100 -
air05 19.5 22.7 280 19.5 22.6 280 -
arki001 24.9 1842.0 912993 24.9 1834.5 912993 0
bell3a 48.0 12.5 48539 48.0 12.3 48539 0
bell5 90.7 0.8 2003 80.8 0.4 1140 8
blend2 18.8 0.3 177 18.8 0.3 177 -
cap6000 28.1 2.8 2949 28.1 2.8 2949 -
dcmulti 92.3 0.7 54 92.3 0.7 54 -
disctom 100.0 1.9 1 100.0 1.9 1 -
dsbmip 100.0 0.1 1 100.0 0.1 1 -
egout 100.0 0.0 1 100.0 0.0 1 328
enigma 100.0 0.2 356 100.0 0.2 356 -
fast0507 0.0 663.5 1998 0.0 662.2 1998 -
fiber 91.8 0.7 24 94.2 0.9 37 585

Table 11: continued on next page

54

problem nomcf mcf
rootgap time nodes rootgap time nodes #cuts
closed % closed %

fixnet6 83.0 1.4 11 75.8 1.4 11 2
flugpl 10.6 0.0 80 10.6 0.0 80 -
gen 100.0 0.1 1 100.0 0.1 1 -
gesa2 99.8 1.1 7 99.8 1.1 7 45
gesa2-o 100.0 1.1 10 100.0 1.1 10 0
gesa3 79.1 1.0 16 79.1 1.0 16 -
gesa3 o 85.8 1.2 10 85.8 1.2 10 -
gt2 100.0 0.1 1 100.0 0.1 1 -
khb05250 99.9 0.5 10 99.9 0.6 8 3
l152lav 0.2 1.8 29 0.2 1.7 29 -
lseu 56.5 0.2 407 56.5 0.2 407 -
manna81 100.0 0.6 2 100.0 0.6 2 -
mas74 1.5 756.0 3070052 1.5 754.7 3070052 -
mas76 5.9 64.2 329883 5.9 64.1 329883 -
misc03 18.9 0.8 176 18.9 0.8 176 -
misc06 59.1 0.3 7 59.1 0.3 7 -
misc07 0.7 20.9 30984 0.7 20.7 30984 -
mitre 100.0 9.9 1 100.0 9.6 1 -
mod008 47.2 0.2 90 47.2 0.2 90 -
mod010 100.0 1.0 2 100.0 1.0 2 -
mod011 70.6 75.5 2642 70.6 75.1 2642 -
modglob 96.3 0.5 66 96.3 0.5 66 -
mzzv11 82.8 375.7 3166 82.8 373.3 3166 -
mzzv42z 80.3 196.0 251 80.3 195.9 251 -
net12 11.4 897.1 5075 11.4 897.0 5075 -
noswot 0.0 379.6 1072776 0.0 376.0 1072776 -
nw04 0.5 45.9 132 0.5 45.0 132 -
opt1217 100.0 0.3 1 100.0 0.4 1 -
p0033 100.0 0.0 2 100.0 0.0 2 -
p0201 26.9 0.6 113 26.9 0.6 113 -
p0282 100.0 0.4 7 100.0 0.4 7 -
p0548 99.4 0.2 8 99.4 0.2 8 -
p2756 98.8 1.3 21 98.8 1.3 21 -
pk1 0.0 70.8 227351 0.0 70.5 227351 -
pp08a 97.0 1.0 629 97.0 0.8 196 84
pp08aCUTS 93.3 1.0 91 93.3 1.0 91 -
qiu 0.0 72.7 12812 0.0 72.4 12812 -
qnet1 80.3 2.3 71 80.3 2.2 71 -
qnet1 o 90.2 1.4 27 91.6 2.0 24 130
rentacar 49.1 2.7 15 49.1 2.7 15 -
rgn 98.8 0.2 34 98.8 0.2 34 -
rout 0.3 31.9 29025 0.3 31.4 29025 -
set1ch 99.9 0.4 9 99.9 0.5 16 318
stein27 0.0 0.8 4175 0.0 0.8 4175 -
stein45 0.0 19.0 52415 0.0 18.9 52415 -
timtab1 55.8 566.9 925498 55.8 566.6 925498 2
tr12-30 99.6 3600.0 1358717 99.6 2873.6 1090119 32
vpm1 100.0 0.1 1 100.0 0.1 1 0
vpm2 69.5 1.1 994 69.5 1.1 994 -
means 62.7 7.0 816 62.5 6.9 784

wins 3 2 2 3 4 7

mittelmann

30:70:4 5:0 5:100 90.7 182.4 146 90.7 183.7 146 -
30:70:4 5:0 95:100 100.0 147.7 166 100.0 148.5 166 -

Table 11: continued on next page

55

problem nomcf mcf
rootgap time nodes rootgap time nodes #cuts
closed % closed %

30:70:4 5:0 95:98 100.0 120.4 228 100.0 121.1 228 -
acc-1 100.0 36.6 61 100.0 36.7 61 -
acc-2 100.0 57.0 84 100.0 57.1 84 -
acc-3 100.0 229.5 348 100.0 229.9 348 -
acc-4 100.0 1274.0 2102 100.0 1276.0 2102 -
acc-5 100.0 299.5 941 100.0 300.1 941 -
acc-6 100.0 140.0 593 100.0 140.2 593 -
bc1 36.2 183.6 5459 36.2 185.2 5459 -
bienst1 63.9 21.7 17068 57.1 16.9 12309 169
bienst2 51.3 109.9 89778 50.4 164.8 106597 279
binkar10 1 63.9 274.9 157069 63.9 275.5 157069 -
dano3 3 36.4 54.8 8 36.4 55.0 8 -
dano3 4 29.3 127.2 23 29.3 127.7 23 -
dano3 5 15.2 207.8 226 15.2 204.7 226 -
lrn 84.9 3097.6 115652 84.9 3097.2 115652 -
markshare 4 0 0.0 134.9 2341936 0.0 135.3 2341936 -
mik.250-20-75.1 82.6 2.7 7218 82.6 2.7 7218 -
mik.250-20-75.2 83.7 2.3 4746 83.7 2.3 4746 -
mik.250-20-75.3 81.5 2.6 5684 81.5 2.6 5684 -
mik.250-20-75.4 77.1 23.0 95266 77.1 23.0 95266 -
mik.250-20-75.5 81.7 3.9 12576 81.7 3.9 12576 -
neos1 100.0 4.1 2 100.0 4.1 2 -
neos10 55.5 43.3 7 55.5 43.4 7 -
neos11 0.0 210.7 5602 0.0 210.6 5602 -
neos12 12.4 538.3 1083 12.4 539.9 1083 -
neos13 0.0 226.1 2774 0.0 229.9 2774 -
neos14 87.4 681.4 407182 87.4 679.6 407182 -
neos17 67.0 17.4 14365 67.0 17.3 14365 -
neos2 55.7 27.1 19237 55.7 27.2 19237 -
neos20 2.4 5.8 841 2.4 5.8 841 -
neos21 10.2 17.5 1575 10.2 17.6 1575 -
neos22 100.0 1.2 1 100.0 1.2 1 -
neos23 36.5 15.2 16909 36.5 15.1 16909 -
neos3 35.3 283.9 206128 35.3 287.3 206128 -
neos4 100.0 2.4 1 100.0 2.4 1 -
neos5 19.2 1254.9 5375739 19.2 1253.5 5375739 -
neos6 100.0 190.4 7171 100.0 190.8 7171 -
neos648910 0.0 1.6 80 0.0 1.6 80 0
neos7 88.8 12.7 7699 84.9 67.5 38776 7
neos8 100.0 41.9 1 100.0 42.1 1 -
neos808444 100.0 2822.0 941 100.0 2860.0 941 -
neos818918 0.0 2706.6 1048671 0.0 2705.5 1048671 -
neos823206 95.9 356.4 21033 95.9 360.6 21033 0
neos897005 100.0 204.5 21 100.0 222.5 21 -
neos9 100.0 50.8 1 100.0 51.1 1 -
ns1671066 100.0 169.2 137689 100.0 170.1 137689 0
ns1688347 66.4 2094.7 12380 66.4 2101.6 12380 -
nug08 100.0 41.8 1 100.0 41.8 1 -
prod1 34.3 17.5 23482 34.3 17.6 23482 -
prod2 32.7 81.4 68500 32.7 81.4 68500 -
qap10 18.5 167.9 5 18.5 168.2 5 -
seymour1 12.2 453.0 5772 12.2 452.5 5772 -
swath2 14.7 61.4 5157 14.7 61.5 5157 -
swath3 11.4 866.1 140698 11.4 871.5 140698 -
means 61.3 82.2 3579 61.1 85.2 3676

Table 11: continued on next page

56

problem nomcf mcf
rootgap time nodes rootgap time nodes #cuts
closed % closed %

wins 2 2 2 0 1 1

Table 11: Results of the mcf separator with Scip– easy instances

Table 12 presents the results of the separation for all hard instances. We compare the performance
of Scip with (mcf) and without (nomcf) the Mcf separator. Every hard instance cannot be solved
by Scip in both settings within one hour of CPU time. We provide the closed gap at the root node
before branching (rootgap) defined as

100 · (root − lp)/(bestprimal − lp),

the closed dual gap after optimization (dualgap) given by

100 · (dual − lp)/(bestprimal − lp),

the closed primal gap after optimization (primalgap) given by

100 · (bestprimal − bestdual)/(primal − bestdual),

the endgap defined as
100 · (primal − dual)/|bestdual|,

and the number of cuts (#cuts) found by the Mcf separator. The numbers primal and dual
correspond to the primal and dual bound at the end of the optimization. The value lp denotes
the value of the initial LP relaxation, bestprimal and bestdual are the best known primal and dual
bounds (see Table 8 in Appendix A), and root is the value of the LP at the root node after cutting
and before branching. In case that primal = bestdual for an individual run we set the closed primal
gap to 100%. If the LP value is already optimal (lp = bestprimal = bestdual) then rootgap as
well as dualgap are considered to be 100%. If primal or dual bounds are not finite or in case that
bestdual = 0 the corresponding gaps are not defined and marked with “-”. Values in bold face
indicate that they are at least 10% below the opposite value (endgap) or at least 1 percentage point
above the opposite value (rootgap, primalgap, dualgap). If the Mcf separator is switched off (no
network has been found or the network inconsistency ratio Ψ(G) is above Ψmax = 0.02) then column
#cuts contains a “-”. Runs marked with “⋆” have hit the memory limit. For every testset two
additional rows provide the arithmetic means of the gaps (means) and the number of values in bold
face for every measure (wins).

problem nomcf mcf
closed gaps % endgap closed gaps % endgap

root dual primal % root dual primal % #cuts

arc.set

ns4-pr3 15.6 71.8 100.0 0.1 17.3 71.3 84.6 0.1 5
ns4-pr9 0.0 5.4 100.0 0.0 0.0 8.3 100.0 0.0 12
nu120-pr3 37.0 61.1 100.0 11.1 38.6 64.1 93.9 10.8 392
nu120-pr9 43.1 76.0 100.0 5.5 43.2 72.3 79.8 7.8 328
nu25-pr3 62.1 72.2 47.4 2.9 66.9 78.8 70.9 1.7 86
nu25-pr9 32.0 56.4 62.9 1.9 35.0 59.6 64.1 1.8 135
nu4-pr3 42.5 64.1 89.6 0.9 42.2 61.5 100.0 0.9 1
nu4-pr9 20.5 47.1 83.2 0.5 19.6 51.1 100.0 0.4 21
nu60-pr3 52.2 73.5 86.7 3.7 54.2 77.3 73.1 3.7 299
nu60-pr9 34.4 65.4 99.0 2.8 39.1 73.7 99.0 2.1 351
means 33.9 59.3 86.9 1.4 35.6 61.8 86.5 1.3

Table 12: continued on next page

57

problem nomcf mcf
closed gaps % endgap closed gaps % endgap

root dual primal % root dual primal % #cuts

wins 0 2 4 1 6 7 4 2

cut.set

n12-3 71.6 93.7 100.0 2.2 71.6 93.7 100.0 2.2 -
n15-3 24.3 24.5 100.0 66.7 24.3 24.5 100.0 66.7 -
n3-3 70.2 76.2 100.0 14.5 70.2 76.2 100.0 14.5 -
n9-3 65.7 77.4 100.0 11.4 65.7 77.4 100.0 11.4 -
means 58.0 68.0 100.0 12.6 58.0 68.0 100.0 12.6

wins 0 0 0 0 0 0 0 0

fc

fctp

n3700 18.7 20.0 96.8 28.6 19.1 19.9 100.0 27.7 1307
n3701 18.5 19.8 100.0 27.1 18.8 20.3 100.0 26.9 1363
n3702 18.8 19.6 98.1 28.1 18.9 19.7 98.1 28.1 1377
n3703 16.8 18.3 100.0 31.1 16.6 17.6 100.0 31.4 1108
n3704 18.9 19.8 100.0 27.5 19.2 20.1 100.0 27.4 1242
n3705 18.0 19.2 95.8 28.9 17.9 18.8 95.8 29.0 2059
n3706 21.0 22.1 96.2 27.3 20.6 22.1 98.3 26.7 2280
n3707 19.6 20.7 100.0 28.7 19.6 20.9 100.0 28.6 1145
n3708 17.1 18.3 100.0 28.6 17.3 18.5 100.0 28.5 1294
n3709 18.8 19.5 100.0 28.5 19.0 19.9 100.0 28.4 1969
n370a 19.9 21.2 100.0 27.8 20.2 21.1 100.0 27.9 1427
n370b 17.4 18.2 95.5 29.1 17.5 18.4 100.0 27.7 1191
n370c 19.6 20.4 95.3 29.2 19.8 21.0 95.4 29.0 1220
n370d 19.6 20.4 95.3 29.2 19.8 21.0 95.4 29.0 1220
n370e 22.2 22.9 100.0 24.9 21.9 22.6 97.3 25.7 1345
ran14x18 53.6 83.9 80.3 3.7 54.7 83.8 80.3 3.7 1031
means 21.2 24.0 97.1 24.9 21.3 24.1 97.5 24.8

wins 0 0 1 0 1 0 3 0

avub

nexp.100.20.2.2 53.1 63.4 16.8 13.7 74.2 81.5 58.5 3.6 84
nexp.100.20.8.1 27.3 38.6 2.5 162.0 93.6 96.9 100.0 2.9 747
nexp.100.20.8.2 33.0 44.9 2.8 158.2 92.0 95.9 82.9 4.5 1309
nexp.100.20.8.3 31.5 39.9 34.6 124.7 50.3 55.8 100.0 52.7 350
nexp.100.20.8.4 26.9 36.8 2.3 192.8 91.9 96.4 83.5 4.0 1123
nexp.100.20.8.5 23.0 30.1 30.1 218.3 59.3 63.7 86.0 60.0 617
nexp.150.20.2.2 46.5 49.3 100.0 6.6 47.4 49.9 100.0 6.5 228
nexp.150.20.2.4 59.2 66.0 100.0 4.1 73.1 78.9 100.0 2.5 62
nexp.150.20.4.1 49.8 57.2 2.1 41.0 97.9 97.9 100.0 0.6 1042
nexp.150.20.4.5 53.0 59.0 0.0 59.0 97.9 98.4 100.0 0.6 901
nexp.150.20.8.1 11.0 14.8 25.4 202.4 71.8 73.4 91.8 36.0 1303
nexp.150.20.8.2 15.7 19.5 17.1 225.6 75.9 77.4 100.0 26.8 1597
nexp.150.20.8.3 7.3 10.2 46.6 234.2 32.5 34.3 75.8 132.9 540
nexp.150.20.8.4 13.5 16.8 22.5 258.7 67.2 68.5 100.0 42.5 1220
nexp.150.20.8.5 15.6 18.7 34.4 208.9 63.1 64.4 97.3 51.6 1336
means 31.1 37.7 29.1 83.9 72.5 75.6 91.7 10.2

wins 0 0 0 0 14 14 13 14

sndlib

cost266-DBE 40.1 80.0 100.0 3.9 44.4 82.0 100.0 3.5 312
cost266-DBM 47.6 76.2 95.0 3.9 54.7 78.6 100.0 3.4 76
cost266-UUE 21.8 76.6 100.0 4.8 38.5 84.6 100.0 3.1 264
cost266-UUM 19.5 62.1 86.2 6.4⋆ 42.1 73.7 90.2 4.4⋆ 81
dfn-bwin-DBE 46.6 54.7 74.1 72.4 49.4 55.6 99.2 53.4 1221
dfn-bwin-UUE 55.3 62.7 72.4 45.5 57.8 65.2 100.0 31.3 441

Table 12: continued on next page

58

problem nomcf mcf
closed gaps % endgap closed gaps % endgap

root dual primal % root dual primal % #cuts

germany50-DBM 38.9 58.6 100.0 3.3 40.2 64.4 92.0 3.1 63
germany50-UUM 34.1 63.1 54.5 3.3 36.2 61.0 100.0 1.9 23
giul39-DDE 22.4 28.8 96.6 37.8 26.3 30.5 98.5 36.2 264
janos-us-DDM 15.6 32.3 92.7 0.2⋆ 47.0 54.0 91.0 0.2 11
janos-us-ca-DDM 9.6 20.4 91.7 0.2 9.6 20.4 91.7 0.2 0
newyork-DBE 63.2 75.8 100.0 28.1 74.8 81.7 84.5 25.1 716
newyork-DBM 67.0 77.0 99.4 26.2 69.3 77.5 100.0 25.4⋆ 267
newyork-UUE 57.6 76.2 93.1 26.6 73.0 82.2 99.3 19.1 256
newyork-UUM 57.9 76.8 99.3 25.3⋆ 74.1 81.7 99.9 19.8⋆ 126
nobel-eu-DBE 28.0 73.8 51.4 3.2 28.3 74.8 80.4 2.1 720
nobel-eu-UUE 12.0 38.5 100.0 3.4 12.2 46.2 83.4 3.6 465
nobel-ger-DBE 35.0 66.0 100.0 3.9 35.6 67.4 79.5 4.6 1038
nobel-ger-UUE 24.3 53.5 100.0 4.4 21.4 57.1 100.0 4.1 876
norway-DBE 48.2 79.9 100.0 18.2 60.3 79.7 80.5 22.2 715
norway-DBM 48.0 74.2 97.1 23.6⋆ 64.8 83.1 93.2 16.3⋆ 446
norway-UUE 40.4 77.8 100.0 15.7 53.5 84.5 100.0 10.9 261
norway-UUM 36.0 71.3 89.2 21.2⋆ 51.1 79.8 100.0 14.1⋆ 115
pioro40-DBM 24.9 42.3 100.0 0.3 25.9 41.2 86.5 0.4 6
pioro40-UUM 16.1 28.6 100.0 0.3 23.6 35.5 92.4 0.3 9
sun-DDM 41.8 73.0 100.0 6.7⋆ 44.5 74.5 100.0 6.3⋆ 28
ta1-DBM 0.0 20.5 76.7 68.1⋆ 20.7 43.5 100.0 42.8⋆ 11
ta1-UUE 5.7 30.0 65.7 44.4 26.6 55.7 90.2 25.9⋆ 21
ta1-UUM 0.1 20.5 80.3 69.1⋆ 15.0 39.2 94.5 47.3⋆ 7
ta2-UUM 0.0 24.7 100.0 1.8⋆ 40.1 58.5 100.0 1.0⋆ 4
means 31.9 56.5 90.5 7.6 42.0 63.8 94.2 6.2

wins 1 2 9 2 25 23 12 17

ufcn

beasleyC3 70.2 73.9 79.7 26.5 68.6 72.1 98.4 23.4 255
berlin 81.5 86.8 89.8 12.3 84.7 89.3 100.0 9.7 152
brasil 77.2 84.2 94.7 14.3 87.6 92.7 75.8 8.2 114
g150x1100 68.1 78.2 68.4 15.3 77.2 87.6 96.8 7.1 196
g150x1650 66.4 75.0 83.7 16.5 73.6 82.3 95.2 10.9 193
g200x740 67.4 73.7 99.8 6.1 85.3 93.9 99.8 1.4 370
g200x740b 72.3 82.2 69.4 3.6 87.0 96.5 100.0 0.6 297
g200x740g 68.5 69.4 80.7 37.5 73.4 74.3 89.5 29.4 584
g200x740h 77.4 81.1 84.3 7.6 82.8 86.0 75.9 6.5 561
g200x740i 71.4 72.4 52.5 49.3 78.7 80.6 64.9 32.7 487
g55x188 82.2 97.1 100.0 1.8 83.3 96.7 100.0 2.0 139
k16x240 75.4 92.1 100.0 6.2 76.2 90.8 100.0 7.2 126
k16x240b 77.9 93.9 100.0 4.4 79.9 94.2 100.0 4.2 152
mc11 51.7 53.6 77.9 61.2 78.4 79.3 92.1 26.3 532
mc7 39.0 41.4 45.2 81.8 81.6 83.0 61.0 28.6 474
mc8 58.3 64.0 94.8 44.0 75.7 77.3 98.5 27.3 447
p100x588 88.0 93.2 99.3 4.0 88.7 93.8 99.7 3.6 227
p100x588b 82.5 85.6 78.7 17.5 83.5 86.7 96.0 13.7 340
p200x1188 89.0 94.0 83.4 3.7 89.6 94.5 100.0 2.9 205
p200x1188b 82.5 85.6 90.1 15.1 84.1 88.1 82.0 13.9 292
p500x2988 87.2 93.7 92.2 1.2 88.9 95.0 82.6 1.1 349
p500x2988b 80.5 82.3 78.5 16.5 81.3 82.8 96.5 13.2 440
p80x400 86.1 95.5 100.0 2.0 88.7 96.7 100.0 1.5 162
p80x400b 82.4 87.5 87.2 13.2 83.2 88.7 95.8 10.9 205
r80x800 79.4 85.7 83.2 5.4 83.4 88.5 86.6 4.3 262
means 74.5 80.9 84.5 10.7 81.8 87.7 91.5 7.2

wins 1 2 4 2 18 18 15 19

Table 12: continued on next page

59

problem nomcf mcf
closed gaps % endgap closed gaps % endgap

root dual primal % root dual primal % #cuts

miplib

a1c1s1 67.8 84.6 0.0 13.7 67.8 84.6 0.0 13.7 -
atlanta-ip 0.4 55.5 0.0 6.6 0.4 56.1 0.0 6.5 -
dano3mip 0.6 0.8 99.9 24.2 0.6 0.8 99.9 24.2 -
danoint 1.7 37.9 100.0 2.9 1.9 42.3 100.0 2.7 28
ds 0.3 3.6 19.3 498.7 0.3 3.6 19.3 498.7 -
glass4 0.0 25.0 0.0 58.3 0.0 25.0 0.0 58.3 -
harp2 35.1 99.9 100.0 0.0 35.1 99.9 100.0 0.0 -
liu 0.0 0.0 68.8 150.0 0.0 0.0 68.8 150.0 -
markshare1 0.0 0.0 0.0 400.0 0.0 0.0 0.0 400.0 -
markshare2 0.0 0.0 0.0 1500.0 0.0 0.0 0.0 1500.0 -
mkc 42.7 81.0 100.0 1.6 42.7 81.0 100.0 1.6 -
momentum1 56.9 59.1 - - 56.9 59.1 - - -
momentum2 0.5 7.2 0.0 12.2 0.5 7.2 0.0 12.2 0
momentum3 0.7 0.7 - - 0.7 0.7 - - 21
msc98-ip 55.7 55.7 0.0 1.0 55.7 55.7 0.0 1.0 -
nsrand-ipx 27.3 63.3 0.0 5.8 27.3 63.3 0.0 5.8 -
protfold 14.5 46.6 0.0 38.2 14.5 46.6 0.0 38.2 -
rd-rplusc-21 0.0 0.0 0.0 99.9 0.0 0.0 0.0 99.9 0
roll3000 76.2 96.1 100.0 0.5 76.2 96.1 100.0 0.5 -
seymour 22.6 55.2 89.6 2.3 22.6 55.2 89.6 2.3 -
sp97ar 8.6 40.1 13.0 3.0 8.6 40.2 13.0 3.0 -
stp3d 0.2 2.0 - - 0.2 2.9 - - 0
swath 29.0 41.8 0.0 20.9 29.0 41.8 0.0 20.9 -
t1717 1.5 2.9 49.4 51.7 1.5 2.9 49.4 51.7 -
timtab2 31.8 47.7 99.4 73.5 31.8 47.7 99.4 73.4 2
means 19.0 36.3 38.2 15.9 19.0 36.5 38.2 15.9

wins 0 0 0 0 0 1 0 0

mittelmann

markshare 5 0 0.0 0.0 100.0 - 0.0 0.0 100.0 - -
ns1648184 5.7 84.2 100.0 0.4 5.7 84.2 100.0 0.4 -
ns1692855 53.0 73.1 100.0 15.4 53.0 73.1 100.0 15.4 -
means 19.6 52.4 100.0 2.7 19.6 52.4 100.0 2.7

wins 0 0 0 0 0 0 0 0

Table 12: Results of the mcf separator with Scip– hard instances

60

