The McCF-Separator — Detecting and Exploiting
Multi-Commodity Flow Structures in MIPs*

Tobias Achterberg! Christian Raack!

Abstract

Given a general mixed integer program (MIP), we automatically detect block structures in
the constraint matrix together with the coupling by capacity constraints arising from multi-
commodity flow formulations. We identify the underlying graph and generate cutting planes
based on cuts in the detected network. Our implementation adds a separator to the branch-
and-cut libraries of SciP and CPLEX. We make use of the complemented mixed integer rounding
framework (c-MIR) but provide a special purpose aggregation heuristic that exploits the network
structure. Our separation scheme speeds-up the computation for a large set of MIPs coming
from network design problems by a factor of two on average.

Keywords: mixed integer programming, network detection, cut-based inequalities

1 Introduction

In this paper we present a novel separation heuristic for general mixed integer programs (MIPs),
which we call multi-commodity flow cut separator (MCF), now available in Scip 1.2 [60] and CPLEX
12.1 [33].

The MCF separator identifies a coupled multi-commodity arc-flow formulation in the constraint
matrix and constructs the corresponding network. It then generates inequalities based on cuts
in the detected network. Our separation scheme makes use of the complemented mized integer
rounding approach (¢-MIR) introduced by Marchand [39] and Marchand and Wolsey [40]. Instead
of using the default aggregation heuristic we aggregate inequalities in such a way that the resulting
base inequalities correspond to cuts of the detected network. In this context our approach can
be considered as being an alternative c-MIR aggregation heuristic which exploits combinatorial
structure. If the considered MIP instance contains a network structure, e.g., if it corresponds to a
network design problem, our implementation is able to identify it and to produce strong valid special-
purpose cuts which help to improve the dual bound and to accelerate the branch-and-cut solver. On
the other hand, our implementation is able to decide whether the detected structure is consistent
or not. In particular, we are not generating cutting planes if the structure is not consistent. This
way we introduce almost no overhead for instances that do not fit into our framework, following a
remark from Bixby and Rothberg [17]:

It may also be tempting to consider a new method in the context of a single problem
class. While an idea that provides a big benefit for one problem class can be quite useful,
both for solving problems of that class and for developing insights into generalizations
of such methods, one practical difficulty is that MIP practitioners are typically unaware
that they are confronting a problem of that class. At a minimum, a method should be able
to recognize models to which it can be applied, ideally introducing little or no overhead
when the model does not fit the mold.

*This research has been supported by the DFG research Center MATHEON
TIBM, achterberg@de.ibm.com
¥Zuse Institute Berlin (ZIB), Takustr. 7, D-14195 Berlin, raack@zib.de

Let A = (aj)iem,jen be a rational matrix with m rows and n columns. We denote by M and
N the row and column row indices of A. The set of integer variables is given by I C N. We consider
the mixed integer program (MIP)

min k1 x

Az <b (1)
:L'jEZ, Vjel

where the linear constraints of the system (1) are given either as equations or as <-inequalities.
Upper and lower bounds on variables are already included in the constraint system. Associated with
(1) we define X := {z € RN\ x Z! . Az < b} to be the mixed integer set containing all feasible
solutions.

Based on the observation that many known strong valid inequalities for different problems can
be obtained by MIR, Marchand and Wolsey [40] (also see [39, 41]) proposed a ¢-MIR procedure
that is nowadays one of the most successful separation schemes in state-of-the-art MIP-solvers such
as Scrp and CPLEX, see [1, 17, 59]. The idea is to generate MIR inequalities from single (base)
constraints that are valid for X. Marchand and Wolsey [40] employ four different operations to
obtain such a base inequality. In the first aggregation step a conic combination u” Az < uTb of
the system (1) using weights u > 0 is considered. This is followed by bound substitution trying to
substitute continuous variables by variable upper or lower bounds of the form z; < cz; or czj < x;
with 7 € N\I,j" € I. In the third step a subset C' C I of bounded integer variables is complemented
using simple upper or lower bounds of the form z; < u; or [; < x; with j € C. Eventually, the
resulting mixed integer knapsack inequality is scaled using an appropriate multiplier § > 0. Each
of these four operations is carried out by heuristics using information from the (current) solution of
the linear programming relaxation. For an introduction to MIR the reader is referred to [43, 57].
The ¢-MIR framework is introduced in [39, 41] while some new insights on ¢-MIR and flow-cover
inequalities are given in [34]. The implementation of ¢-MIR in ScIp together with computational
tests is described in [1, 59]. A similar computational ¢-MIR study concerning the Cut Generation
Library (CGL) of the COIN-OR-initiative [22] is provided by [26]. Results on the performance of
¢-MIR in CPLEX can be found in [17].

Despite the fact that MIR inequalities based on different heuristics are generated by Scip and
CPLEX, computational results suggest that important cut-based MIR inequalities for certain network
design problems are rarely found, see for instance [49]. This has mainly two reasons. First, the
network structure is not known to these solvers. Secondly, the corresponding aggregation simply
involves too many rows of the original system (1). It is natural to impose a conservative limit on
the maximal number of inequalities considered for aggregation in general purpose MIR or Chvétal-
Gomory based procedures since this limit appears in the exponent of the running time function.
Moreover, it is very likely that (without additional information) the generated inequalities become
very dense if too many inequalities are aggregated. For these reasons, the default c-MIR aggregation
limit in SCIP has been set to 7 inequalities. A similar value is used in CPLEX.

Our implementation makes use of the c-MIR separation schemes implemented in Scip and CPLEX
based on [40]. We skip the default aggregation heuristic and instead construct the vector u using
information from the network detection. The aggregation as described in the following sections can
involve a huge number of flow conservation and capacity constraints. Already for a medium sized
network with 50 nodes and 100 commodities we potentially aggregate more than 2500 constraints
(assuming a cut with two equally sized shores). Nevertheless, since the support of the resulting
base constraint corresponds to a cut of the detected network, the aggregated constraint tends to be
very sparse. It is important to understand that our framework is not explicitly generating cutting
planes. It only calculates weight vectors u. The remaining steps, in particular bound substitution
and complementing, are carried out by the c-MIR functions of Scip, see [1, 59]. Notice that scaling
the base constraint with different values § > 0 before MIR can be seen as using weight vectors du”
for aggregation. Also certain bound substitutions can be done already by aggregation as explained
in the next section.

This paper is organized as follows. Section 2 introduces the type of models and matrix structures
which our detection algorithm tries to identify. We also introduce different strong cut-based inequal-

ities, and we show that these can be obtained using the same aggregation and c-MIR procedure.
In Section 3, the network detection algorithm is explained in detail. We evaluate the quality of
the algorithm using a large set of publicly available network design instances. Section 4 describes
our aggregation and separation scheme. In particular, we explain how to find promosing cuts in
the detected network. Some important extensions and model variants are considered in Section 5.
In Section 6, we report on our computational experiments with the MCF separator of Scip and
CpPLEX. The experiments are carried out with the mentioned network design instances and in ad-
dition using the M1pLIB 3.0 [15], MIPLIB 2003 [2], the MIP instances of Hans Mittelmann [42], and
the CPLEX-internal testset. We conclude with some remarks in Section 7.

2 Network Design

Combinatorial optimization problems arising for instance from applications in telecommunication
and public transportion very often involve the problem of designing a network [20, 36, 47, 51].
This task can be roughly described as follows. Given a potential network topology (a graph),
network links (connections, streets, bus-lines) and nodes (locations, intersections, stations) have
to be dimensioned to allow for the flow of commodities (data, passengers, goods) corresponding
to certain user demands. If different commodities have to be routed independently through the
network, we speak of multi-commodity flows. Dimensioning in this context means to assign capacity
to the network elements (links and nodes). In practice, the set of possible capacity assignments
typically has a discrete structure. Link capacities in telecommunication applications, for instance,
can be composed of integer multiples of a certain base bandwith. In public transportation they
typically are chosen from a finite set of possible vehicle frequencies and types. But also the routing
of demands might be discrete in the sense that it is restricted to single-path or integer flows.

In the mathematical literature there is a vast variety of approaches to model and solve network
design problems depending on the requirements to incorporate. With our network detection and
cutting plane approach we focus on rather general mixed integer programming models, so-called
arc-flow formulations, which allow to dimension the links of a network such that a multi-commodity
flow of given demands can be accommodated. (Notice that node dimensioning can always be broken
down to link dimensioning by introducing artificial network links.) In the following we will introduce
such models in more detail. In particular, we aim at working out the structure of the corresponding
matrix which our network detection and separation algorithms rely on.

Moreover, we will introduce the concepts of network cuts and cut-based inequalities. It is well
known that cutting planes defined on network cuts are among the most effective when used within
branch-and-cut frameworks to solve network design problems, see [5, 13, 14, 24, 30, 38, 45, 49] for
computational studies. Cut-based inequalities define facets of the corresponding polyhedra under
very mild conditions and they are usually sparse. We will show how important classes of cut-based
inequalities can be obtained with the c-MIR-approach using an appropriate aggregation of flow-
conservation and capacity constraints. It will be emphasized that the same aggregation and MIR
procedure can be used for many of the model variations used in practice.

2.1 Model and matrix structure

First, we consider a basic network flow model, which is described in the following. A discussion
on more general model types can be found in Section 5. We are given a connected directed graph
G = (V, A) with nodes V and arcs A and a set of commodities K. With every k € K a vector d* € QY
of demand (supply) values is associated. We call v a supply node with respect to commodity k if
d® > 0 and a demand node if d¥ < 0. For every commodity k € K we have to construct a flow in G,
which can be considered as being a vector f* Rjﬁ with the property that for every node v € V' the
flow leaving v on all outgoing arcs minus the flow entering v on all incoming arcs equals the value
d®. We assume that Y eV d¥ =0 for all k € K, i.e., there is no flow leaving the network or entering
it from “outside”. Very often a commodity corresponds to a single point-to-point demand, that is,
there is exactly one (source) node s € V with d* > 0 and one (target) node t € V with d¥ < 0.

To accommodate the multi-commodity flow we have to dimension the network arcs. Every arc

1 1
—p 114
1-1 1
1 11
&
1 1
11
1 1 1 c,
1 1 1 -c,

Figure 1: A digraph and the corresponding matrix representing a coupled multi-commodity flow.
A node has a flow-row in every commodity. An arc has a column in every commodity and corresponds
to one coupling capacity row.

a € A can be equipped with integer multiples of the capacity value ¢, € Q, ¢, > 0, while the number
of capacity modules installable on a is bounded by u, € Z U {co},u, > 1. A flow f € RﬁXK is
said to be feasible if for every arc a the total flow (over all commodities) is not exceeding the arc
capacity. The capacitated network design problem now asks for a capacity assignment to the arcs
plus a feasible network flow for all commodities that minimizes a given linear (flow and/or capacity)
cost function [5, 13, 37].

Let f¥ be the flow of commodity k € K on arc a € A. Variables y, € Z, state how often capacity
¢, is provided on arc a € A. A natural way to describe all feasible multi-commodity flows together
with all feasible capacity assignments is to use an arc-flow formulation of the form:

Sofk= > o= d weVikekK (2a)
a€é+(v) agé—(v)
Zf(’f—caya < 0 VYaeA (2b)
keK
Yo < uq YaeA (2¢)
fy= 0, (2d)

where §%(v) and 6~ (v) denote all arcs in A having v as source and target node, respectively. The
flow conservation equations (2a) describe the flow for each individual commodity. The capacity
constraints (2b) ensure that the flows are feasible by providing sufficient capacity on the network
arcs.

The constraint matrix corresponding to the system (2), as visualized in Figure 1, consists of
|K| blocks, which all correspond to the same |V| x |A| node-arc incidence matrix of the graph
G = (V, A). Such a matrix has the property to contain one +1 and one —1 entry in every column
which correspond to the source and target node of the arc represented by the column. The |K|
blocks are coupled by the capacity constraints that, for each arc, sum up the flow-variables of all
commodities and limit this total flow by the arc capacity.

2.2 Cuts and cut-based inequalities

Let S be a nonempty proper subset of the nodes V and let §(S) := 6T (S)Ud~ (S) be the corresponding
dicut, where d%(S) denotes all arcs in a with source in S and target in V\S and 6~ (S) subsumes
all arcs with target in S and source in V\S. For the ease of exposition we stick to the single-
commodity case here with flow-variables f, for every a € A and node demands (supplies) d,. The
multi-commodity case is covered by considering single-commodity relaxations of (2) obtained by
aggregating all flow-rows (2a) corresponding to a subset of the commodities @ C K and setting
fa =2 keq fF for every a € A as well as d,, := > okeQ d¥ for every v € V, see for instance [5, 50].
To develop cut-based inequalities we regard the structure Gg = ({S,V\S},4(5)) as a two-node
network and restrict ourselves to consider the flow across the cut (the flow between S and V\S)

Figure 2: The cut §(S) obtained by aggregating the flow-rows of a nodeset S

and the capacity provided on the dicut 6(5). We denote by dg := 3, g d, =t —dy, ¢ the total cut
demand (supply) of the artificial node S and assume that dg < 0, that is, S is a (single-commodity)
demand node. Notice that in the multi-commodity case the sign of dg depends on the choice of
the subset @ considered for the single-commodity relaxation. Now it obviously holds that the cut

demand is bounded by the cut capacity, that is, informally:
capacity (0~ (S)) > demand(V'\S — S) (3)

Similarly the supply of S (which is the demand of V\S) cannot exceed the capacity on §1(S5).
Observation (3) is crucial both from the theoretical and practical point of view. In practice, if in-
equality (3) is tight the network cut §(S) can be considered as being a bottleneck. The observation
also has theoretical consequences, especially for network flow theory and the max-flow-min-cut the-
orem [3]. When solving network design problems using branch-and-cut frameworks, inequality (3)
can be used to derive cutting planes, which is our main motivation here.

For the network design model (2) observation (3) breaks down to

Z CaYa Z dV\S . (4)
a€d—(S)

We will now generalize this base inequality, and we will show how it can be obtained by aggregating
original constraints of the system (2), see also Figure 2. First, summing up (and relaxing) all flow
equations (2a) corresponding to S and restricting the capacity constraints (2b) to the dicut §(S5)
results in the following (two-node, single-commodity) cutset relaxation of the formulation (2):

Z fa - Z fa < dS (53“)
aedt(S) a€d—(S)

fo—Coya < 0 Vae€d(S) (5Db)

Yo < ug Ya €0(5) (5¢)

The key to derive strong valid cut-based inequalities for network design problems is to study the
convex hull of the solution space defined by (5) and the integrality of y,. This structure is known
as a single node flow set and has been studied extensively in the literature [4, 7, 11, 28, 29, 41, 46,
52, 53, 55, 56] in particular for the case that y, is a binary variable, i.e., u, = 1 for all @ € A. Note
that this has been done mainly for the fact that single node flow sets arise as natural relaxations of
general MIPs and not because they correspond to network cuts. In contrast, related structures with
unbounded integer variables have been studied in [5, 50] as cutset polyhedra motivated by network
design.

We now add all capacity constraints (5b) corresponding to a subset A~ of the arcs 6~ (5) to
inequality (5a) which gives the mixed integer knapsack base inequality

Z fa_ Z fa_ Z Caya§d57 (6)

acdt(S) acA- ac€A~

where A= := §7(S)\A~. We observe that setting A~ := §7(S) and relaxing yields (4). The
solution space corresponding to (6) is known as a mixed (integer) knapsack set, see [6, 41] and the
references therein. By applying MIR to (6) we will recover some well-known strong valid inequalities
for network design problems in the sequel. Since (6) is an aggregation of original constraints all

presented MIR inequalities can, in principle, be obtained by using the c-MIR heuristic of Marchand
and Wolsey [40, 41].

Let us first consider the unbounded case, that is, u, = oo for all a € §(S). For simplicity we
assume that the installable capacity ¢, is independent from the arcs a, i.e., c, = ¢ > Oforalla € A. In
this case, dividing (6) by ¢ and applying MIR gives the well-known flow-cutset inequalities [5, 13, 21].

dy

A

ZfﬁZryazr[c}, (7)
a€A- acA-

where 7 denotes the remainder of the division of dV\S by c. By setting A~ := 6~ (S) we obtain the

cutset inequalities
d
VA\S
> w7)

a€d—(S)

Inequality (8) is crucial since it provides a lower bound on the number of capacity modules that has
to be provided on the cut to allow for feasible flows. Atamtiirk [5] proves that flow-cutset inequalities
together with all trivial inequalities yield a complete description of the cutset polyhedron for S. On
the other hand, the cutset inequalities (8) turn out to be the most effective cuts in practice, see for
instance [5, 14, 21] (directed models), [35, 37, 38, 49, 50] (undirected models), and [13, 30, 49, 50]
(so-called bidirected models). If the capacities are not arc-independent (or similarly if there is more
than one arc facility), the base inequality (4) can be divided by one of the given capacities ¢,
before applying MIR. In fact, the facet defining cutset inequalities and flow-cutset inequalities in
[5, 13, 35, 38, 50] are of this type, see also [48].

Cutset inequalities and flow-cutset inequalities clearly remain valid if we impose upper bounds
on the capacity variables. In many applications the capacity variables are binary, modeling the
decision wether or not to install a certain arc facility. For uncapacitated network design problems
with ¢ > dy,\ ¢ for all nonempty S C V, the inequalities (8) and (7) reduce to the Steiner-cut (or

dicut) and mized dicut inequalities

S o we=1 and > fo+ D dyygya = dyas,

a€d—(S) acA- a€A—

see for instance [45]. Notice that [dv%] =L and r = dy, 4 in this case.

In the bounded case (u, < oo for all a € A) with arc-dependent capacities (¢, for all a € A) a
large class of valid inequalities for (5), which incorporate the bounds on the capacity variables, is
given by flow-cover inequalities [28, 46, 52]. Marchand and Wolsey [40, 41] and recently Louveaux
and Wolsey [34] observed that strong valid lifted flow cover inequalities can be obtained by MIR.
(Among others, this observation led to the development of the c-MIR framework.) Starting from the
relaxation (6) they allow to complement a subset C' of the capacity variables using the upper bounds
ug. The resulting base inequalities are divided by some constant ¢ > 0 and MIR is applied. If C'is a
flow-cover and ¢ = ¢, for an appropriate a € A this leads to flow-cover inequalities dominating those
introduced for instance in [52]. In this context, strong flow cover inequalities (simultaneously lifted
by using the superadditive MIR function) can be derived in the same way as flow-cutset and mixed
dicut inequalities with the additional feature of complementing simple bounds. Notice that the more
general ¢-MIR approach of Marchand and Wolsey [40] and its implementation in Scip [1, 59] does
not explicitly choose a (flow)-cover for complementing but uses a simple heuristic to determine C
which is based on the solution of the LP-relaxation.

In the light of Marchand and Wolsey [40] and Louveaux and Wolsey [34], it is important to
understand that using the capacity constraints (5b) of A~ in the aggregation for (6) is equivalent
to a bound substitution setting f, := c,y, — f, for a € A~ with f, > 0 being the slack of the
capacity constraint. The artificial variables f, are deleted anyway by MIR (if they are considered
as continuous), that is, resubstitution is not necessary. Note that the capacity constraints we use
for aggregation may extend the concept of simple variable upper bounds f, < ¢,y,. First, in the
multi-commodity case the term f, subsumes all flow-variables f* for k € K, and second, the arc
capacity formulation might involve more variables than only a single arc facility y,, see Section 5.

Hence the implicit bound substitution we carry out here is more general than the one proposed in
[34, 40]. Flow-cutset inequalities as well as flow cover inequalities can contain both outflow and
inflow-variables [5, 52]. In this case one explicitly has to substitute the variable upper bounds by
introducing the slacks of the capacity constraints, apply MIR, and resubstitute the original variables.
The inequalities considered by our separation scheme contain only inflow-variables (or by switching
to V\ S only outflow-variables). This allows us to include the bound substitution in the aggregation
step (although Sc1P might do additional bound substitution using simple variable upper bounds in
its default heuristic).

2.3 Summary

In our implementation we generate cut-based inequalities using the c-MIR approach based on arc-flow
formulations hidden in the constraint system Az < b of the given MIP. We first identify a subsystem
of the from (2) and construct the corresponding network as described in Section 3, that is, we resolve
the structure given in Figure 1 backwards. In the detected network we identify interesting cuts, see
Section 4. For every such cut we call the c-MIR procedure of SCIpP with a weight vector u that results
in a base inequality of the form (6). Given a cut and the corresponding nodeset .S, the corresponding
aggregation can be summarized as follows:

e Aggregate all flow-rows (2a) for nodes in S and commodities in a subset @ of K.
e Add all capacity constraints (2b) corresponding to a subset A~ of the arcs §=(95).

e For every capacity c, that is, for every coefficient ¢ of an integral variable in one of the used
capacity constraints, use § = 1/|c| as a multiplier to scale the base inequality.

MIR is applied to all these scaled base inequalities. In the first step we restrict our attention to
the commodity subset consisting of all demand commodities with respect to S, that is, Q = Kg :=
{k € K : df% < 0}, where d¥% := Y, _gd¥. In the second step we consider the subset A~ = §(S)
and additionally the subset A~ that gives the most violated inequality among all possible subsets
A~. The reverse direction with Q@ = K& := {k € K : d% > 0} and subsets of §7(S) is considered
by repeating the same procedure for V\S. The separation scheme is described in more detail in
Section 4. Clearly, the corresponding aggregation involves a large number of the original constraints
(2a) and (2b) already for small sized networks.

Allthough the network design model (2) and the corresponding c-MIR aggregation are already
rather general, we have to consider model variations which are frequently used in practice. These are
in particular multi-facility problems, undirected capacity models, and single-path-flow formulations.
In Section 5 we explain how these extensions and variants are incorporated into our framework.

3 Network Detection

3.1 Introduction

We start with a high-level presentation of our network detection algorithm. Thereafter we will
explain the corresponding sub-procedures in more detail. Notice that we have not implemented
our algorithms in the way we present them here. Our aim is to describe the core idea of our
implementation. To obtain a fast and stable algorithm one has to introduce more involved data
structures. We will point out necessary improvements and implementational issues in the detailed
description of the four sub-procedures Flow Detection, Arc Detection, Node Detection, and
Network Construction whenever possible.

We will start by explaining the main ingredients of the detection. The idea is to start with
flow conservation constraints or flow-rows of the form (2a). The flow structure of the network is
characterized by a {0, 41, —1}-matrix such that each column has at most one +1 and at most one —1
entry as it can be seen in Figure 1. A subset of the rows of A4 will be called an embedded network if
it has this property, up to scaling of individual rows. Our Flow Detection procedure is based on a
Row Scanning Addition Algorithm introduced by Bixby and Fourer [16], see also Brown and Wright

H
-

[
o

o

[N

y

1
a4l 1 1
1 — E A
1 1 1
111 11-1 2
il il 1 1D 1
a4 11 1 a1
1 —> -1 2
1 1 1 1
111 111
1 1 1 C.
1 1 1 3 2
(a) Flow Detection resulting in a disconnected (b) Arc Detection: using capacity constraints to
graph with one component per commodity assign arc-ids
1 2 5 .
1
R y\\ﬁ‘ E—
1) 111
-1 1 1
1110 12 5 1 1 [)

1

1 yz\ 1 1;
1 1 -1 1
1141 Caraos

1 1 1 C.

1 1 1 c,
(¢) Node Detection: Compare arc-id patterns in (d) Network Construction: Ask flow-variables
the different commodities and assign the same for source and target node, construct incidence
node-id to (almost) identical patterns function according to majority vote, minority

votes are inconsistencies

Figure 3: The network detection algorithm

[19]. Tt identifies an embedded network by consecutively adding flow-rows to the system starting
with an empty set of rows. Each flow-row in the matrix represents one node in the flow network,
a +1 coefficient corresponds to an outgoing flow, a —1 coefficient corresponds to an incoming flow.
An equation can be multiplied by —1 in order to fit to the flow structure. In addition, if the current
row is an inequality but all previous rows are equations, we can also multiply all previous rows by
—1 to make the current row fit. This operation is called reflection [16, 19].

The flow structure could result in a flow network with multiple independent components, see
Figure 3(a). In the perfect case, these components are isomorphic and represent the different com-
modities of the problem. Now the task is to find these isomorphisms. Notice that the problem
of deciding whether two graphs are isomorphic has not yet been proven to belong to P or to be
NP-complete [25]. Since in practice the different components are usually not identical due to user
and solver preprocessing as explained below, it is more important in our context to decide wether
one graph is contained in another or alternatively to maximize the largest common subgraph. Both
problems are N'P-complete (NP-hard) [25].

The main idea to solve the graph isomorphism problems in the network detection is to find
capacity coupling constraints of the form (2b) defined on the arcs of the network. We identify the
capacity constraints and the corresponding arcs in the Arc Detection procedure. In the perfect
(directed) case, a capacity constraint contains one flow-variable of each commodity and one or more
capacity-variables. The structure of the capacity constraints, however, depends on the formulation,
see Section 5. The Arc Detection procedure assigns arcs to the coupling capacity constraints and
all corresponding flow-variables, see Figure 3(b).

To determine the nodes of the graph G we compare the arc-patterns of the flow-rows in the
different commodities in the Node Detection procedure. The arc-pattern of a flow-row is given by
the arc-ids of the involved flow-variables. If two flow-rows of two different commodities have a similar
arc-pattern we decide to map them to the same node, see Figure 3(c). Eventually, we determine
the source and target incidence functions for the network arcs in the Network Construction
procedure. In a perfect network, the flow-variables of an arc (of a capacity constraint) should point
to the same source and target node in the different commodities. Then, the source and target node
assignment means to just use these two uniquely determined nodes, see Figure 3(d). In reality,

however, flow-variables of the same arc might have different source or target nodes in the different
commodities, that is, the detected network matrices are not isomorphic or arcs and nodes have been
assigned incorrectly. For every arc a € A we use the majority vote of the flow-variables across the
commodities and assign source and target accordingly. Additionally, we record the minority votes as
inconsistencies in the network data structure. The number of inconsistencies divided by the number
of commodities gives the arc inconsistency ratio ¥(a) € [0, 1), which is used to discard individual
arcs. The average inconsistency ratio over all network arcs is called the network inconsistency
U(G) € [0,1), which is used to decide whether or not our network detection was successful and
whether the separation scheme should be applied.

3.2 Inconsistency and presolving

If U(G) = 0 we detected a consistent coupled multi-commodity flow network. The commodity net-
work matrices can be considered being isomorphic and we correctly assigned arcs and nodes to rows
and columns. If, however, ¥(G) is close to 1 our detection failed or there is no consistent embedded
network in the constraint matrix. In our implementation we fixed the maximum inconsistency ratio
Pmax to 0.02. If ¥(G) > U™ then all network data structures are released and it is not tried
to generate cutting planes. In addition we do not allow for arcs with individual inconsistency ratio
U(a) greater than ¥T** = 0.5. The influence of the inconsistency parameters U™ and WI** ig
tested in Section 6.1.

There are several reasons for potential inconsistencies. First, our detection is a heuristic. Its
success largely depends on a proper identification and ordering of flow and capacity-rows, see the
detailed description below. But already the formulation of the concrete MIP instance can be “cor-
rupted” even if it corresponds to a coupled multi-commodity flow. As a consequence, the detection
procedures cannot expect pure and isomorphic network matrices. The same node or the same arc
do not need to be present in every commodity and an arc does not necessarily have both a source
and a target node.

User presolving It is known that the rank of a network matrix corresponding to a directed
network G = (V, A) is exactly |V| — 1. For every commodity, an arbitrary row in (2a) can be
omitted. To save constraints, this preprocessing is sometimes already carried out by the modeler
and results in deleting a node from G for every commodity, see Figure 4. Moreover, the node that
is deleted typically differs from commodity to commodity. For example, if each commodity has a
single source node, it is common to omit the flow conservation constraint of this source node from
the formulation.

Another common presolving technique is to discard all flow-variables that correspond to arcs
pointing into source-nodes or pointing away from target-nodes. This is done to avoid cycle-flows in
the solutions. Deleting flow-variables corresponds to deleting arcs in the network matrix. Again the
omitted arcs differ from commodity to commodity. It turns out that, in practice, our detection has to
face multi-commodity formulations with blocks for individual commodities that are not isomorphic,
although they originally correspond to the same network. However, our detection procedures is still
correctly identifying most of the underlying graphs even if the formulations have passed these user
presolving techniques, see Table 2.

Solver presolving In order to decrease the size of the formulation, state-of-the-art MIP-solvers

carry out a series of preprocessing steps before starting the actual branch-and-cut procedure. The

-1 1

Figure 4: A node and all incoming arcs deleted by user presolving. Notice that two of the remaining
arcs have no source.

Figure 5: Loosely connected nodes and arcs deleted by solver presolving.

model is transformed by deleting redundant constraints and by fixing, substituting, and deleting
variables. We refer to [1] for a description of the presolving methods used in Scip. We observed
that by preprocessing, in particular loosely connected nodes and arcs are deleted from the original
graph, see Figure 5. If for instance node v has only one outgoing arc ¢ and no incoming arc, the
resulting flow-row has the form f, = d,. Hence f, can be fixed and removed from the system. If,
alternatively, v has only one outgoing arc a and only one incoming arc a’, one of the corresponding
flow-variables can be substituted by the other since f, — f,, = d,.

As shown in Table 2, the number of nodes and arcs deleted by preprocessing may amount to
more than 20% even for pure network design instances of type (2). But also if the network size
is strongly reduced (as for the instance sets avub, arc.set, fc) the inconsistency ratio ¥(G) is not
necessarily increasing. Also our separator performs very well, compare with Table 3. The remaining
graphs after presolving seem to reflect the core of the network such that generated cut-inequalities
still capture important structural information.

3.3 Notation

Before explaining the four sub-procedures of our network detection strategy in more detail, we
introduce some useful notation. Our detection algorithm identifies potential flow-row and capacity-
row candidates, which are subsets Mp C M and Mo € M of the rows of A. During the course of
the algorithm, these sets are reduced in order to obtain two disjoint subsets, which correspond to
the nodes and arcs in the final multi-commodity flow network structure. Constructing the network
means to map the rows and columns of the matrix A to network elements and commodities. The
mappings are

rowcom : M — KU{0}, i rowcom(i)
colcom : N — KU{0}, j— colcom(j)
rowarc : M — AU{0}, i~ rowarc(i)
colarc : N — AU{0}, j+ colarc(j)
rownode : M — V U{0}, i+ rownode(i),

where rowcom and colcom map rows and columns of the flow-system to commodities, the functions
rowarc and colarc map the coupling (capacity) constraints and the flow-variables to arcs of the net-
work, and rownode assigns a node to every flow-row. A mapping to 0 means that the corresponding
row or column has not been assigned. To construct the graph G = (V, A) we use the source and
target incidence functions

s: A=V, aw s(a)
t: A=V, a—t(a)

All of our algorithms, based on data structures provided by ScCIP, rely on sparse array rep-
resentations of the rows and columns of the matrix A. Whenever iterating rows or columns, we
in fact iterate all corresponding non-zeroes. For a subset N’ C N of the column indices, the set
MIN'| .= {i e