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Abstract
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that have rank one and are structure preserving. We also present results on the behavior
of Jordan structures under rank one structured perturbations for rather general classes
of structured matrices, both real and complex, that cover many particular cases and
support the perturbation theory developed in this paper, and will be used in subsequent
publications as well. The classes that we consider are defined as follows.

Let F denote either the field of complex numbers C or the field of real numbers R
and let In denote the n×n identity matrix. The superscript (·)T denotes the transpose
and (·)∗ denotes the conjugate transpose of a matrix or vector; thus X∗ = XT for
X ∈ Rm×n.

Definition 1.1 Let J ∈ F2n×2n be an invertible skew-symmetric matrix. A matrix
A ∈ F2n×2n is called J-Hamiltonian if JA = (JA)T .

The classical and most important example in applications, see Section 1.3, are the
classes obtained with the matrix

J =

[
0 In

−In 0

]
. (1.1)

In this case we typically drop the prefix J in the name of the matrix classes.
Other types of symmetries are introduced using an invertible symmetric matrix

instead of a skew-symmetric J in Definition 1.1:

Definition 1.2 Let H ∈ Fn×n be an invertible symmetric matrix. A matrix A ∈ Fn×n

is called H-symmetric if HA = (HA)T .

If J is skew-symmetric invertible, and N is such that JN = −(JN)T , then N is
called J-skew-Hamiltonian. Note that the rank of any J-skew-Hamiltonian matrix is
even, and since we are concerned only with rank one perturbations in this paper, J-
skew-Hamiltonian matrices will not be considered here. For a similar reason, we do
not consider here matrices N such that HN = −(HN)T , where H is symmetric and
invertible.

In this paper we consider the complex case in the above definitions. The real
case, as well as rank one perturbation analysis of J-symplectic matrices (defined by
the equality ST JS = J with invertible skew symmetric matrix J) and H-orthogonal
matrices (defined by the equality ST HS = H with invertible symmetric matrix H)
will be studied in subsequent papers. An analogous but different perturbation theory
for rank one structured perturbations can be also developed for the case when H is
taken to be Hermitian and the transpose is replaced by the conjugate transpose (in the
complex case) in Definition 1.2. This will be addressed elsewhere as well.

1.1 Notation

In the following the set of positive integers is denoted by N. Jm(λ) denotes an upper
triangular m×m Jordan block with eigenvalue λ and Rm stands for the m×m matrix
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with 1 on the leftbottom - topright diagonal and zeros elsewhere, i.e.,

Jm(λ) =


λ 1 0

λ
. . .
. . . 1

0 λ

 , Rm =

 0 1

. .
.

1 0

 .

The k-th standard basis vector of length n will be denoted by ek,n or in short ek if the
length is clear from the context. The spectrum of a matrix A ∈ Fn×n, i.e., the set of
eigenvalues including possibly nonreal eigenvalues of real matrices, is denoted by σ(A).
An eigenvalue λ ∈ σ(A) is said to be simple if the corresponding algebraic multiplicity
is one, i.e., λ is a simple root of the characteristic polynomial of A.

χ(Z) = det (xI − Z) is the characteristic polynomial of a square size matrix Z.
Throughout the paper we will use a fixed matrix norm ‖ · ‖ which denotes the

spectral norm ‖ · ‖2.
A block diagonal matrix with diagonal blocks X1, . . . , Xq (in that order) is denoted

by X1 ⊕X2 ⊕ · · · ⊕Xq.
If vT = [v1, . . . , vn]T ∈ Cn then Toep (v) denotes the n×n upper triangular Toeplitz

matrix

Toep (v) =


v1 v2 . . . vn

0 v1

. . .
...

...
. . .

. . . v2

0 . . . 0 v1

 .

We also introduce the anti-diagonal matrices

Σk =


0 · · · 0 (−1)0

... . .
.

(−1)1 0

0 . .
. ...

(−1)k−1 0 · · · 0

 =


0 1

−1
1

−1

. .
.

0

 = (−1)k−1ΣT
k , (1.2)

i.e., Σk is symmetric if k is odd, and skew-symmetric if k is even.

1.2 Motivation

The perturbation theory for eigenvalues of matrices is well established [31]. This is
also the case if the perturbations are generic low rank matrices, see [4, 19, 26, 28, 29].
But when the perturbations are restricted to be structure preserving then surprisingly
different effects may occur.

Example 1.3 Let

A =

[
J3(0) 0

0 −J3(0)
T

]
, J =

[
0 I3

−I3 0

]
.
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Then A is J-Hamiltonian and has two Jordan blocks of size 3 associated with the eigen-
value 0. The perturbation analysis under unstructured generic rank 1 perturbations,
Theorem 3.1 in [26] (a particular case of which is part of Theorem 2.3 below), yields
that the perturbed matrix still has one block J3(0), while the other block has vanished
and split into three (generically different) nonzero eigenvalues.

In contrast to this (as we will show below) a generic Hamiltonian rank one pertur-
bation will lead to a Jordan structure with a 4 × 4 block J4(0) plus two (generically)
nonzero simple eigenvalues. Thus the size of the largest block even increases.

This example demonstrates that the classical understanding of perturbation theory
has to be changed for classes of structured matrices. The perturbation theory for
structured generic low rank perturbations is dominated by two conflicting effects, the
generic structured perturbation trying to destroy the most sensitive part in the Jordan
structure (which is the largest Jordan block) and the structure which requires certain
Jordan structures.

1.3 Applications

The perturbation theory that we present in this paper has several important applica-
tions in control.

Let us first discuss the problem of passivity of systems. Consider a linear time-
invariant control system

ẋ = Ax + Bu, x(0) = 0,

y = Cx + Du, (1.3)

with matrices A ∈ Fn,n, B ∈ Fn,m, C ∈ Fp,n, D ∈ Fp,m. Here u is the input, x the state,
and y the output. Let us assume that all eigenvalues of A are in the open left half
complex plane and that D is square and invertible. The system is called passive, see
e.g., [2], if there exists a nonnegative scalar valued function Θ such that the dissipation
inequality

Θ(x(t1))−Θ(x(t0)) ≤
∫ t1

t0

u∗y + y∗u dt

holds for all t1 ≥ t0, i.e., the system absorbes supply energy. It is well known, [2, 16],
that one can check whether the system is passive by checking whether the Hamiltonian
matrix

H =

[
F G
H −F ∗

]
:=

[
A−BR−1C −BR−1B∗

−C∗R−1C −(A−BR−1C)∗

]
(1.4)

has no purely imaginary eigenvalues, where R = D + D∗.
In many real world applications the system model (1.3) is only an approximation

arising from a discretization of an infinite dimensional problem, a linearization of a
nonlinear system, a realization or a reduced order approximate model, see, e.g., [12,
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13, 16, 17, 27, 30] and often in this approximation process the passivity is lost, and one
tries to modify the non-passive approximate system by a small norm (typically also
small rank) perturbation to a nearby passive system. Our perturbation theory will be
important in understanding and computing minimal perturbations.

Another important application arises in robust control. Consider a control system

ẋ(t) = Ax(t) + B1w(t) + B2u(t), x(t0) = x0,

z(t) = C1x(t) + D11w(t) + D12u(t),

y(t) = C2x(t) + D21w(t) + D22u(t).

(1.5)

In this system, x is again the state, u the input, and w is an exogenous input
that may include noise, linearization errors, and un-modelled dynamics. The vector y
contains measured outputs, while z is a regulated output or an estimation error.

The optimal H∞ control problem is the task of designing a dynamic controller
that minimizes (or at least approximately minimizes) the influence of the disturbances
w on the output z in the H∞-norm, see [33]. The computation of this controller is
usually achieved by first solving two Hamiltonian eigenvalue problems that both are
low rank perturbations (rank one in the single input case) of other Hamiltonian matrices
where the perturbation matrices depend on the same parameter γ that gives an upper
bound for the H∞-norm to be minimized. By minimizing the value of γ under certain
constraints then allows to find the optimal controller. Very often the optimal solution
is obtained when an eigenvalue of the Hamiltonian matrix (as a function of γ) hits the
imaginary axis, and thus becomes a multiple eigenvalue. The structured perturbation
analysis of the eigenvalues as functions of this low rank perturbation allows the analysis
and computation of the optimal controller, see [5, 25].

There are many further applications of the perturbation theory for structured matri-
ces, such as the analysis of numerical methods for the Hamiltonian eigenvalue problem
or its generalizations, see, e.g., [1, 7, 6, 11, 24] or the solution of algebraic Riccati equa-
tions [18, 20]. Although in most applications the system matrices are real, in this paper
we first study the complex case to lay down the basis for the structured perturbation
theory. The real case will be discussed in a subsequent paper.

2 General results

In this section we recall and/or derive some mathematical results on structured rank one
perturbations that will become important in the further analysis, in this and subsequent
papers.

2.1 Perturbation theory under generic perturbations

We say that a set W ⊆ Fn (abbreviation for Fn×1) is algebraic if there exists a finite
set of polynomials f1(x1, . . . , xn), . . . , fk(x1, . . . , xn) with coefficients in F such that a
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vector [a1, . . . , an]T ∈ Fn belongs to W if and only if

fj(a1, . . . , an) = 0, j = 1, 2, . . . , k.

In particular, the empty set is algebraic and Fn is algebraic. We say that a set W ⊆ Fn

is generic if W is not empty and the complement Fn \W is contained in the union of
finitely many algebraic sets. Clearly, if the set W ⊆ Fn is generic and if S ∈ Fn×n is
invertible then SW is also generic. In the following, if we say that a set W ⊆ Fn × Fn

is generic if W , canonically identified with a subset of F2n is generic as a subset of F2n.
The following lemma is almost obvious, but useful.

Lemma 2.1 Let Y (x1, . . . , xr) ∈ Fm×n be a matrix whose entries are polynomials in
the variables x1, . . . , xr. If

rank Y (a1, . . . , ar) = k

for some [a1, . . . , ar]
T ∈ Fr, then the set

{[b1, . . . , br]
T ∈ Fr : rank Y (b1, . . . , br) ≥ k} (2.1)

is generic.

Proof. Let
fj(x1, . . . , xr) = det Yj(x1, . . . , xr), j = 1, 2, . . . , s,

where Y1(x1, . . . , xr), . . . , Ys(x1, . . . , xr) are the k × k submatrices of Y (x1, . . . , xr).
Then the complement of the set (2.1) consists of the common zeros of the polyno-
mials f1, . . . , fs, i.e., it is an algebraic set, and the set (2.1) is nonempty by hypothesis.
This shows that (2.1) is generic.

In the following result we discuss ranks of powers of generic rank one perturbations
to nilpotent matrices.

Theorem 2.2 Consider a matrix A ∈ Fn×n satisfying Am = 0 for some m ∈ N.

(1) If X ∈ Fn×n is any rank one matrix, then

rank ((A + X)m) ≤ m.

(2) If in addition Am−1 6= 0, then

rank ((A + uvT )m) = m

for a generic set of vectors

[
u
v

]
∈ F2n.

(3) If in addition Am−1 6= 0, then for every invertible B, C ∈ Fn×n we have

rank ((A + CuuT B)m) = m

for a generic set of vectors u ∈ Fn.
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Proof. Multiplying out (A + X)m we obtain

(A + X)m = Am + Am−1X + Am−2X(A + X) + Am−3X(A + X)2

+ · · ·+ AX(A + X)m−2 + X(A + X)m−1. (2.2)

Since Am = 0 and all other summands in the right hand side of (2.2) have ranks at
most one, part (1) follows.

For part (2) let us assume without loss of generality that A is in Jordan canonical
form, i.e.,

A = Jk1(0)⊕ Jk2(0)⊕ · · · ⊕ Jkt(0), (2.3)

where kj ≤ k1 = m, j = 2, 3, . . . , t.
We obviously have that

rank ((A + emeT
1 )m) = m,

so by Lemma 2.1, part (2) follows (note that we cannot have rank ((A + uvT )m) > m
by part (1)).

Finally, consider part (3). From

A + CuuT B = C(C−1AC + uuT BC)C−1,

we see that without loss of generality we may assume that C = I. Furthermore,

A + uuT B = X(X−1AX + (X−1u)(uT (X−1)T )(XT BX))X−1,

and choosing the invertible matrix X so that X−1AX is in Jordan canonical form, we
may also assume without loss of generality that A is given by (2.3). Denote by ∆(u),
u = [u1, . . . , un]T ∈ Fn, the determinant of the m ×m upper left corner of the matrix
(A + uuT B)m. In view of Lemma 2.1, we only need to show that

∆(w1, . . . , wn) 6= 0 for some w1, . . . , wn ∈ F. (2.4)

By (2.2) we have that

(A + uuT B)m

= Am−1uuT B + Am−2uuT B(A + uuT B) + Am−3uuT B(A + uuT B)2 + (2.5)

· · ·+ AuuT B(A + uuT B)m−2 + uuT B(A + uuT B)m−1.

This formula shows that ∆(u) is a polynomial in u1, . . . , un of the form

∆(u) = ∆2m(u) + ∆2m+2(u) + · · ·+ ∆2m2(u),

where ∆p(u) is a homogeneous polynomial of degree p. Clearly, to prove (2.4), we only
need to find w1, . . . , wn ∈ F such that

∆2m(w1, . . . , wn) 6= 0 (2.6)

7



(here we use the easily proved fact, that if one homogeneous component of a polynomial
in several variables takes a nonzero value, then the whole polynomial takes a nonzero
value).

Note that ∆2m(u) is the determinant of the upper left m×m corner of the matrix

Am−1uuT B +Am−2uuT BA+Am−3uuT BA2 + · · ·+ AuuT BAm−2 +uuT BAm−1 (2.7)

(cf. formula (2.5)). Let [b1, . . . , bn]T be the first column of B. Since the upper left
m ×m corner of A is the nilpotent Jordan block Jm(0), it follows that the upper left
m×m corner of the matrix (2.7) is an upper triangular m×m matrix with

um(u1b1 + . . . + unbn)

on the main diagonal. Clearly, one can choose w1, . . . , wn ∈ F so that

wm(w1b1 + . . . + wnbn) 6= 0,

(here we use the hypothesis that B is invertible, and therefore at least one of b1, . . . , bn

is nonzero), and (2.6) follows.

2.2 Unstructured generic rank one perturbation theory

The general perturbation analysis for generic low rank perturbations has been studied
in [19, 26, 28, 29]. For the case of rank one perturbations - which is of interest in this
paper - we have the following result.

Theorem 2.3 Let A ∈ Cn×n be a matrix having the pairwise distinct eigenvalues
λ1, . . . , λp with geometric multiplicities g1, . . . , gp and having the Jordan canonical form

g1⊕
k=1

Jn1,k
(λ1)⊕ · · · ⊕

gp⊕
k=1

Jnp,k
(λp),

where nj,1 ≥ · · · ≥ nj,gj
, j = 1, . . . , p. Consider the rank one matrix B = uvT , with

u, v ∈ Cn. Then generically (with respect to the entries of u and v) the Jordan blocks of
A+B with eigenvalue λj are just the gj−1 smallest Jordan blocks of A with eigenvalue
λj, and all other eigenvalues of A + B are simple; if gj = 1, then generically λj is not
an eigenvalue of A + B.

More precisely, there is a generic set Ω ⊆ Cn × Cn such that for every (u, v) ∈ Ω,
the Jordan structure of A + uvT is described in (a) and (b) below:

(a) the Jordan structure of A + uvT for the eigenvalues λ1, . . . , λp is given by

g1⊕
k=2

Jn1,k
(λ1)⊕ · · · ⊕

gp⊕
k=2

Jnp,k
(λp);
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(b) the eigenvalues of A+uvT that are different from any of λ1, . . . , λp, are all simple.

Part (a) of Theorem 2.3 is the main theorem of [26] specialized to the case of rank
one perturbations; a result similar to that of [26] has been obtained in [28]. For the
proof of part (b) we need some preparations. We start with the following well known
example:

Example 2.4 Let

Z(1)(λ, α) = Jm(λ) + αemeT
1 =


λ 1 . . . 0

0 λ
. . .

...
...

. . .
. . . 1

α . . . 0 λ

 ∈ Cm×m, λ ∈ C, α ∈ C \ {0}.

Then χ(Z(1)(λ, α)) = (x−λ)m−α; in particular, Z(1)(λ, α) has m distinct eigenvalues.

Next, we note that by [26], it follows that there exists a generic set Ω′ of vectors
(u, v) ∈ Cn × Cn for which (a) holds. Clearly, we may assume Ω′ is open. We then
obtain the following lemma.

Lemma 2.5 Let A be as in Theorem 2.3. Then there exists ε > 0 and an open dense
(in {(u, v) ∈ Cn × Cn : ‖u‖, ‖v‖ < ε}) set Ω′′ ⊆ Ω′ such that for every (u, v) ∈ Ω′′,
‖u‖, ‖v‖ < ε, the Jordan form of A + uvT is as in Theorem 2.3.

Proof. Denote by D(z, ε) the closed disc of radius ε centered at z ∈ C. Let ε > 0
be so small that for every u, v ∈ Cn with ‖u‖, ‖v‖ < ε, all eigenvalues of A + B are
within the union of the closed pairwise nonintersecting discs of radius ε centered at
each of the points λ1, . . . , λp. It will be assumed from now on in that ‖u‖, ‖v‖ < ε.

Let χ(λj, u, v) for j = 1, 2, . . . , p be the characteristic polynomials in the inde-
pendent variable x for the restrictions of A + B to its spectral invariant subspaces
corresponding to the eigenvalues of A + B within the disc D(λj, ε). Notice that the
coefficients of χ(λj, u, v) are analytic functions of the components of u and v. Indeed,
this follows from the formula for the projection onto the spectral invariant subspace

1

2πi

∫
Γ

(zI − (A + B))−1dz,

for a suitable closed simple contour Γ. (To prove the analyticity of the integral as
function of u and v, use approximation of the integral by Riemann sums, and within
every summand of the Riemann sum use the formula

(z0I − (A + B))−1 = (adj (z0I − (A + B)))/(det (z0I − (A + B))),

where adj Z stands for the algebraic adjoint of a matrix Z).
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Let q(λj, u, v) be the number of distinct eigenvalues of A + B in the disc D(λj, ε)
Let

qmax(λj) = max
u,v∈Cn, ‖u‖,‖v‖<ε

{q(λj, u, v)}.

Next, we fix λj. Denote by S(p1, p2) the Sylvester resultant matrix of the two
polynomials p1(x), p2(x) (see, e.g., [3, 15]); note that S(p1, p2) is a square matrix of
size degree (p1) + degree (p2) and recall the well known fact (see [22] for example) that
the rank deficiency of p1(x), p2(x) coincides with the degree of the greatest common
divisor of the polynomials p1(x) and p2(x). We have

q(λj, u, v) = rank S

(
χ(λj, u, v),

∂χ(λj, u, v)

∂x

)
− (nj,1 + · · ·+ nj,gj

) + 1.

The entries of S(χ(λj, u, v),
∂χ(λj ,u,v)

∂x
) are scalar (independent of u, v) multiples of the

coefficients of χ(λj, u, v), and therefore the set Q(λj) of all vectors (u, v) ∈ Cn × Cn,
‖u‖, ‖v|| < ε, for which q(λj, u, v) = qmax(λj) is the complement of the set of common
zeros of finitely many analytic functions of the components of u and v. In particular,
Q(λj) is open and dense in

{(u, v) ∈ Cn × Cn : ‖u‖, ‖v‖ < ε}.

On the other hand, still for a fixed λj, consider

u0 :=
1

2
εn

 u1

...
up

 , (2.8)

where the vectors uk ∈ Cnk,1+···+nk,gk are such that all uk’s are zeros except for uj which
has 1 in the nj,1th position and zeros elsewhere. Also let

v0 =

 v1

...
vp

 ,

partitioned conformably with (2.8), where all all vk’s are zeros except for vj which has
1 in the first position and zeros elsewhere. One checks easily (cf. Example 2.4) that in
the disc D(λj, ε) the matrix A + u0v

T
0 has:

(1) nj,1 simple eigenvalues different from λj; and

(2) the eigenvalue λj with partial multiplicities nj,2, . . . , nj,gj
.

If by chance the pair (u0, v0) is not in Ω′, then we slightly perturb (u0, v0) to obtain a
new pair (u′0, v

′
0) ∈ Ω′ such that (1) and (2) are still valid for the matrix A + u′0(v

′
0)

T .
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(This is possible because Ω′ is generic, the property of eigenvalues being simple persists
under small perturbations, and the total number of eigenvalues of A + uvT within
D(λj, ε), counted with multiplicities, is equal to nj,1 + · · ·+ nj,gj

, for every (u, v) ∈ Cn,
‖u‖, ‖v‖ < ε.) Since Ω′ is open, clearly there exists δ > 0 such that (1) and (2) are
valid for every A + uvT , where (u, v) ∈ Cn × Cn and ‖u− u0‖, ‖v − v0‖ < δ. Since the
set of all such pairs of vectors (u, v) is open in Cn × Cn, it follows from the properties
of the set Q(λj) established in the preceding paragraph that in fact we have

q(λj, u, v) = qmax(λj), for all u, v ∈ Cn, ‖u− u0‖, ‖v − v0‖ < δ.

So for the following open set
Ω

(1)
j := Q(λj) ∩ Ω′

which is dense in {(u, v) ∈ Cn × Cn : ‖u‖, ‖v‖ < ε}, we have that the part of Jordan

form of A + uvT , where (u, v) ∈ Ω
(1)
j , corresponding to the eigenvalues within D(λj, ε)

consists of
Jnj,2

(λj)⊕ · · · ⊕ Jnj,pj
(λj)

and nj,1 simple eigenvalues different from λj.
Now let

Ω′′ =

(
p⋂

j=1

Ω
(1)
j

)
∩ Ω′

to satisfy Lemma 2.5.

Proof of Theorem 2.3. As noted above, in view of the main result of [26], we only
need to prove part (b). Let χ(u, v) be the characteristic polynomial (in the independent
variable x) of A + B. Then the number of distinct roots of χ(u, v) is given by the rank
of the Sylvester resultant matrix S(χ(u, v), ∂

∂x
χ(u, v)) minus n − 1 (cf. the proof of

Lemma 2.5). Therefore, the set Ω0 of all pairs of vectors (u, v) on which the number
of distinct roots of χ(u, v) is maximal, is a generic set. By Lemma 2.5, the maximal
number of distinct roots of χ(u, v) is equal to

n1,1 + · · ·+ np,1 +

p∑
j=1

min{gj − 1, 1}.

Thus, for the generic set U = Ω0 ∩ Ω′ the Jordan structure of A + uvT is described by
(a) and (b), as required.

We will re-prove the part (a) of Theorem 2.3 in Section 2.4, using the Brunovsky
canonical form.

2.3 Structured canonical forms

In the following we will recall the canonical forms for J-Hamiltonian and H-symmetric
matrices which is available in many sources, see, e.g., [20, 23], or [21, 32] in the frame-
work of pairs of symmetric and skew-symmetric matrices.
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Theorem 2.6 Let H ∈ Cn×n be symmetric and invertible and let A ∈ Cn×n be H-
symmetric. Then there exists an invertible matrix P ∈ Cn×n such that

P−1AP = Jn1(λ1)⊕ · · · ⊕ Jnm(λm), P T HP = Rn1 ⊕ · · · ⊕Rnm , (2.9)

where n1, . . . , nm ∈ N and λ1, . . . , λm ∈ C are not necessarily pairwise distinct. The
form (2.9) is uniquely determined by the pair (A, H), up to a simultaneous permutation
of diagonal blocks in the right hand sides of (2.9).

Theorem 2.7 Let J ∈ Cn×n be skew-symmetric and invertible (i.e., n is even), and
let A ∈ Cn×n be J-Hamiltonian. Then there exists an invertible matrix P ∈ Cn×n such
that P−1AP and P T JP are block diagonal matrices

P−1AP = A1 ⊕ A2 ⊕ A3, P T JP = J1 ⊕ J2 ⊕ J3, (2.10)

where the blocks have the following forms.

(i) A1 = J2n1(0)⊕ · · · ⊕ J2np(0), J1 = Σ2n1 ⊕ · · · ⊕ Σ2np,

with n1, . . . , np ∈ N;

(ii) A2 =

[
J2m1+1(0) 0

0 J2m1+1(0)

]
⊕ · · · ⊕

[
J2mq+1(0) 0

0 J2mq+1(0)

]
,

J2 =

[
0 Σ2m1+1

−Σ2m1+1 0

]
⊕ · · · ⊕

[
0 Σ2mq+1

−Σ2mq+1 0

]
,

with m1, . . . ,mq ∈ N ∪ {0};

(iii) A3 = A3,1 ⊕ · · · ⊕ A3,k, J3 = J3,1 ⊕ · · · ⊕ J3,k ,
where

A3,j =

[
J`j,1

(λj) 0
0 −J`j,1

(λj)
T

]
⊕ · · · ⊕

[
J`j,qj

(λj) 0

0 −J`j,qj
(λj)

T

]
,

J3,j =

[
0 I`j,1

−I`j,1
0

]
⊕ · · · ⊕

[
0 I`j,qj

−I`j,qj
0

]
,

with `j,1, . . . , `j,qj
∈ N and λj ∈ C with Re(λj) > 0 or Re(λj) = 0 and Im(λj) > 0

for j = 1, . . . , k. Moreover, λ1, . . . , λk are pairwise distinct.

The form (2.10) is uniquely determined by the pair (A, J), up to a simultaneous per-
mutation of diagonal blocks in the right hand sides of (2.10).
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2.4 The Brunovsky form

To analyze the effect of rank one perturbations, we will make use of the following theo-
rem, which follows directly from the Brunovsky canonical form, [9], see also [10] or [14]
for example, of general multi-input control systems ẋ = Ax+Bu under transformations

(A, B) 7→ (C−1(A + BR)C, C−1BD)

with invertible C, D, and arbitrary R of suitable sizes.

Theorem 2.8 Let A ∈ Cn×n be a matrix in Jordan canonical form

A = Jn1(λ1)⊕ · · · ⊕ Jng(λg)⊕ Jng+1(λg+1)⊕ · · · ⊕ Jnν (λν), (2.11)

where λ1 = · · · = λg =: λ̂ ∈ C, λg+1, . . . , λν ∈ C \ {λ̂}, n1 ≥ · · · ≥ ng. Moreover, let
B = uvT , where

u =

 u1

...
uν

 , v =

 v1

...
vν

 , ui, vi ∈ Cni , i = 1, . . . , ν.

Assume that the first component of each vector vi, i = 1, . . . , ν is nonzero. Then the
matrix

S :=
(
Toep (v1)⊕ · · · ⊕ Toep (vν)

)−1

exists and satisfies S−1AS = A and

S−1BS =
[
weT

1,n1
, . . . , weT

1,nν

]
, (2.12)

where w = S−1u. Moreover, the matrix S−1(A + B)S has at least g − 1 Jordan chains

associated with λ̂ of lengths at least n2, . . . , ng given by

e1 − en1+1, . . . , en2 − en1+n2 ;
e1 − en1+n2+1, . . . , en3 − en1+n2+n3 ;
...

. . .
...

e1 − en1+···+ng−1+1, . . . , eng − en1+···+ng−1+ng .

(2.13)

Proof. Clearly Toep (vi) is invertible if the first component of vi is nonzero, so S exists.
Moreover, S commutes with A, and eT

1,ni
(Toep (vi)) = vT

i , so we have

S−1BS = S−1uvT S =
[
weT

1,n1
, . . . , weT

1,nν

]
.

It is then straightforward to check that the given chains are indeed Jordan chains
associated with λ̂.

We emphasize that in Theorem 2.8 there is no claim whether the Jordan chains
(2.13) associated with λ̂ can be extended to a longer chain or not, nor is there a claim
whether (2.13) form a full basis of the corresponding root subspace or not.
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Example 2.9 If λ̂ = 0, ν = g = 3, n1 = 4, n2 = 3, n3 = 2, then the Brunovsky form
of A + B and the corresponding Jordan chains associated with λ̂ = 0 of length 3 and 2
are given by

w1 1 0 0 w1 0 0 w1 0
w2 0 1 0 w2 0 0 w2 0
w3 0 0 1 w3 0 0 w3 0
w4 0 0 0 w4 0 0 w4 0
w5 0 0 0 w5 1 0 w5 0
w6 0 0 0 w6 0 1 w6 0
w7 0 0 0 w7 0 0 w7 0
w8 0 0 0 w8 0 0 w8 1
w9 0 0 0 w9 0 0 w9 0


,



1
0
0
0
−1
0
0
0
0


,



0
1
0
0
0
−1
0
0
0


,



0
0
1
0
0
0
−1
0
0


,



1
0
0
0
0
0
0
−1
0


,



0
1
0
0
0
0
0
0
−1


.

In the following, we want to apply Theorem 2.8 to the canonical forms in Section 2.3
which are close to but not quite in Jordan canonical form. Therefore, we will introduce
the so called partial Brunovsky form with respect to a particular eigenvalue λ̂. With this
form, the characteristic polynomial associated with the eigenvalue λ̂ can be conveniently
characterized.

Theorem 2.10 (Partial Brunovsky form) Let A ∈ Cn×n be a matrix in the form

A = Jn1(λ̂)⊕ · · · ⊕ Jng(λ̂)⊕ Ã, (2.14)

where λ̂ ∈ C, σ(Ã) ⊆ C \ {λ̂}, n1 ≥ · · · ≥ ng. Assume that Ã has the Jordan canonical
form

Jng+1(λg+1)⊕ · · · ⊕ Jnν (λν),

where λg+1, . . . , λν are not necessarily pairwise distinct. Moreover, let B = uvT , where
u, v = [vT

1 , . . . , vT
g , ṽT ]T ∈ Cn, vi ∈ Cni, i = 1, . . . , g. Assume that the first component

of each vector vi, i = 1, . . . , g is nonzero. Then the following statements hold:

(1) The matrix S :=
(
Toep (v1)⊕ · · · ⊕ Toep (vg)

)−1 ⊕ I ∈ Cn×n exists and satisfies

S−1AS = A and S−1BS =
[
weT

1,n1
, . . . , weT

1,ng
, zT
]
, (2.15)

where w = S−1u and for some appropriate vector z.

(2) The matrix S−1(A + B)S has at least g − 1 Jordan chains associated with λ̂ of
lengths at least n2, . . . , ng given by (2.13).

(3) Partition w = S−1u as

w =


w1

...
wg

w̃

 , wi =

 wi,1

...
wi,ni

 ∈ Cni , i = 1, . . . , g,
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let a = n1 + · · ·+ng denote the algebraic multiplicity of the eigenvalue λ̂ of A, and

let λ1, . . . , λn−a denote the n − a eigenvalues of Ã (counted with multiplicities).

Set µi = λi − λ̂, i = 1, . . . , n− a.

Then the characteristic polynomial pλ̂(λ) of A + B − λ̂I has the form

pλ̂(λ) = λaq(λ) +

(
ν∏

i=g+1

(µi − λ)ni

)
·

(
(−λ)a + (−1)a−1

g∑
i=1

ni∑
k=1

wi,kλ
a−k

)
, (2.16)

for some polynomial q(λ).

Proof. Part (1) and (2) follow exactly as in Theorem 2.8. Concerning part (3), we may
assume without loss of generality that A + B is in Brunovsky form. Indeed, all that is
needed is another similarity transformation with a matrix of the form Ia⊕ S̃−1 ∈ Cn×n

which leaves the vectors w1, . . . , wg invariant in (Ia ⊕ S̃−1)w.

With A + B also A + B − λ̂In is in Brunovsky form and the list of its diagonal
elements is given by (0, . . . , 0, µg+1, . . . , µν). Let M denote the matrix that is obtained

from (A + B − λ̂I) − λI by subtracting the first column from the columns n1 + 1,
n1 + n2 + 1,. . . , n1 + n2 + · · ·+ nν−1 + 1. Note that the column n1 + · · ·+ ni + 1 then
becomes zero except for λ in the first entry, for −λ in the (n1 + · · ·+ ni + 1)-st entry if
i = 1, 2, . . . , g − 1, and for µi − λ in the (n1 + · · ·+ ni + 1)-st entry if i = g, . . . , ν − 1.
Then clearly pλ̂(λ) = det M . If ν > g, then partition M as

M =



w1,1 − λ zT λ 0 . . . 0
w̃ T 0 0 . . . 0

wν,1 0 µν − λ 1 0

wν,2 0 0 µν − λ
. . . 0

...
...

...
. . .

. . . 1
wν,nν 0 0 . . . 0 µν − λ


,

where T ∈ C(n−nν−1)×(n−nν−1), n = n1 + . . . + nν , is an upper triangular matrix whose
first a − 1 diagonal elements are equal to −λ. Thus, applying Laplace expansion
successively, we obtain that

det M = λaq̃(λ) + (µν − λ)nν det

[
w1,1 − λ zT

w̃ T

]
(2.17)

for some polynomial q̃(λ). Indeed, for nν = 1 this is obvious and for nν > 1 we obtain

det M = (−1)n−1wν,nν · 1 · . . . · 1︸ ︷︷ ︸
nν times

·(−1)n−nν−1λ det T + (µν − λ) det Mn−1

= λaq̆(λ) + (µν − λ) det Mn−1,
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where q̆(λ) is some polynomial and Mn−1 is the principal (n− 1)× (n− 1) submatrix
of M . Note that Mn−1 has the same structure as M just with nν replaced with nν−1.
The claim then follows by induction. By further induction, we then obtain from (2.17)
that

det M = λaq(λ) +

(
ν∏

i=g+1

(µi − λ)ni

)
det Ma, (2.18)

where Ma is the principal a×a submatrix of M . It remains to compute the determinant
of Ma. To this end, partition Ma as

Ma =



w1,1 − λ ẑT λ 0 . . . 0

ŵ T̂ 0 0 . . . 0
wg,1 0 −λ 1 0

wg,2 0 0 −λ
. . . 0

...
...

...
. . .

. . . 1
wg,ng 0 0 . . . 0 −λ


,

Applying the cofactor expansion of det Ma by the first column, and using det T̂ =
(−λ)a−ng−1, we obtain that

det Ma

= (−1)a−1wg,ng(−1)a−ng−1λ det T̂ + (−λ)(−1)a−2wg,ng−1(−1)a−ng−1λ det T̂

+ · · ·+ (−λ)ng−1(−1)a−ngwg,1(−1)a−ng−1λ det T̂ + (−λ)ng det

[
w1,1 − λ ẑT

ŵ T̂

]
= (−1)a−1

(
ng∑

k=1

wg,kλ
a−k

)
+ (−λ)ng det

[
w1,1 − λ ẑT

ŵ T̂

]
.

By induction, we finally obtain

det Ma = (−λ)a + (−1)a−1

g∑
i=1

ni∑
k=1

wi,kλ
a−k,

where the extra term (−λ)a appears due to the fact that the first entry of the first
column of Ma is not w1,1, but w1,1 − λ.

In the next section, we will need explicit formulas for some of the coefficients of the
characteristic polynomial of A + B with A, B as in Theorem 2.10. We establish those
in the following corollary which follows immediately from Theorem 2.10. For the ease
of future reference, we group together Jordan blocks of the same size in the Jordan
canonical form of A and repeat part of Theorem 2.10.

Corollary 2.11 Let

A =

(
`1⊕

j=1

Jn1(λ̂)

)
⊕ · · · ⊕

(
`m⊕
j=1

Jnm(λ̂)

)
⊕ Ã ∈ Cn×n, (2.19)
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where n1 > · · · > nm and σ(Ã) ⊆ C \ {λ̂}. Moreover, let a = `1n1 + · · ·+ `mnm denote

the algebraic multiplicity of λ̂ and let B = uvT , where u ∈ Cn,

v =


v(1)

...
v(m)

ṽ

 , v(i) =

 v(i,1)

...
v(i,`i)

 , v(i,j) ∈ Cni , j = 1, . . . , `i, i = 1, . . . ,m.

Assume that the first component of each vector v(i,j), j = 1, . . . , `i, i = 1, . . . ,m is
nonzero. Then the following statements hold:

(1) The matrix S :=

(
`1⊕

j=1

Toep(v(1,j)⊕ · · · ⊕
`m⊕
j=1

Toep(v(m,j)

)−1

⊕ In−a exists and sat-

isfies

S−1AS = A, S−1BS = w

eT
1,n1

, . . . , eT
1,n1︸ ︷︷ ︸

`1 times

, . . . , eT
1,nm

, . . . , eT
1,nm︸ ︷︷ ︸

`m times

, zT


where w = S−1u and for some appropriate vector z ∈ Cn−a.

(2) The matrix S−1(A + B)S has at least `1 + · · ·+ `m − 1 Jordan chains associated

with λ̂ given as follows:

a) `1 − 1 Jordan chains of length at least n1:

e1 − en1+1, . . . , en1 − e2n1 ;
...

. . .
...

e1 − e(`1−1)n1+1, . . . , en1 − e`1n1 ;

(2.20)

b) `i Jordan chains of length at least ni for i = 2, . . . ,m:

e1 − e`1n1+···+`i−1ni−1+1, . . . , eni
− e`1n1+···+`i−1ni−1+ni

;
e1 − e`1n1+···+`i−1ni−1+ni+1, . . . , eni

− e`1n1+···+`i−1ni−1+2ni
;

...
. . .

...
e1 − e`1n1+···+`i−1ni−1+(`i−1)ni+1, . . . , eni

− e`1n1+···+`i−1ni−1+`ini
;

(2.21)

(3) Partition w = S−1u as

w =


w(1)

...
w(m)

w̃

 , w(i) =

 w(i,1)

...
w(i,`i)

 , w(i,j) =

 w
(i,j)
1
...

w
(i,j)
ni

 ∈ Cni ,
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and let λ1, . . . , λq be the pairwise distinct eigenvalues of A different from λ̂ having

the algebraic multiplicities r1, . . . , rq, respectively. Set µi = λi− λ̂, i = 1, 2, . . . , q.

Then the characteristic polynomial pλ̂ of A + B − λ̂I has the form

pλ̂(λ) = cnλ
n + · · ·+ ca−n1+1λ

a−n1+1 + ca−n1λ
a−n1 ,

where

ca−n1 = (−1)a

(
q∏

i=1

µri
i

)(
`1∑

j=1

w(1,j)
n1

)
; (2.22)

and

ca−n1+1 = −

 q∑
ν=1

rνµ
rν−1
ν

q∏
i=1
i6=ν

µri
i

( `1∑
j=1

w(1,j)
n1

)
+

(
q∏

i=1

µri
i

)(
`1∑

j=1

w
(1,j)
n1−1

)
,

(2.23)
if n1 − 1 > n2 or, if n1 − 1 = n2, then

ca−n1+1 = −

 q∑
ν=1

rνµ
rν−1
ν

q∏
i=1
i6=ν

µri
i

( `1∑
j=1

w(1,j)
n1

)

+

(
q∏

i=1

µri
i

)(
`1∑

j=1

w
(1,j)
n1−1 +

`2∑
j=1

w(2,j)
n2

)
. (2.24)

Proof. The parts (1) and (2) follow immediately from Theorem 2.10. Moreover, the
characteristic polynomial of A + B is given by

p0(λ) = (−λ)aq(λ) +

(
q∏

i=1

(µi − λ)ri

)
·

(
(−λ)a + (−1)a−1

m∑
i=1

`i∑
j=1

ni∑
k=1

w
(i,j)
k λa−k

)
,

where q(λ) is some polynomial. The lowest possible power of λ associated with a
nonzero coefficient in p0(λ) is clearly a− n1 and the corresponding coefficient ca−n1 is

ca−n1 = (−1)a

(
q∏

i=1

µri
i

)(
`1∑

j=1

w(1,j)
n1

)

while the coefficient ca−n1+1 of λa−n1+1 in p0(λ) is as in (2.23) or (2.24) depending on
whether n1 − 1 > n2 or n1 − 1 = n2.
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2.5 Extension of Jordan chains

In this section, we discuss the extension of some Jordan chains of a matrix in Brunovsky
form. This will be needed to prove our main results. However, it is not always possible
to extend a given set of Jordan chains to a set of Jordan chains that forms a basis as
we will illustrate in the following example.

Example 2.12 Consider the rank one perturbation of A = J2(0)⊕J2(0)⊕J1(0) given
by

Ã =


a 1 a 0 a
b 0 b 0 b
c 0 c 1 c

−b 0 −b 0 −b
d 0 d 0 d

 , b, d 6= 0

which is obviously in Brunovsky form. By Theorem 2.8 we know that Ã has at least
two Jordan chains associated with 0 of lengths at least 2 and 1, given by

e1 − e3, e2 − e4, and e1 − e5, (2.25)

respectively. Let us check whether the first chain can be extended to a Jordan chain
of length three. For this, we would have to show that e2 − e4 is in the range of Ã.
However, the linear system

0
1
0

−1
0

 =


a 1 a 0 a
b 0 b 0 b
c 0 c 1 c

−b 0 −b 0 −b
d 0 d 0 d




x1

x2

x3

x4

x5

 =


x2 + a(x1 + x3 + x5)

b(x1 + x3 + x5)
x4 + c(x1 + x3 + x5)
−b(x1 + x3 + x5)
d(x1 + x3 + x5)


with unknowns x1, . . . , x5 does not have a solution, because d 6= 0, so the chain e1 −
e3, e2 − e4 cannot be extended to a Jordan chains of length 3. Nevertheless, it can
be shown that Ã does have a Jordan chain of length at least 3 associated with the
eigenvalue zero. To this end, consider the vectors

1
0

−1
0
0

 ,


α
1
0

−1
−α


that form a Jordan chain of Ã associated with 0 of length 2. We now show that this
chain can be extended for a particular choice of α. Indeed, for α = −d/b the linear
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system 
α
1
0

−1
−α

 =


a 1 a 0 a
b 0 b 0 b
c 0 c 1 c

−b 0 −b 0 −b
d 0 d 0 d




x1

x2

x3

x4

x5

 =


x2 + a(x1 + x3 + x5)

b(x1 + x3 + x5)
x4 + c(x1 + x3 + x5)
−b(x1 + x3 + x5)
d(x1 + x3 + x5)


has x1 = 1/b, x2 = −d/b− a/b, x3 = 0, x4 = −c/b, x5 = 0 as a solution.

Note that the Jordan chain that could be extended in Example 2.12 can be consid-
ered as a “linear combination” of the two Jordan chains in (2.25). We will need similar
constructions later in this paper and therefore, we introduce the following “sum” of
Jordan chains.

Definition 2.13 Let A ∈ Cn×n and let X = (x1, . . . , xp) and Y = (y1, . . . , yq) be two

Jordan chains of A associated with the same eigenvalue λ̂ of (possibly different) lengths p
and q. Then the sum X+Y of X and Y is defined to be the chain Z = (z1, . . . , zmax(p,q)),
where

zj =

{
xj if p ≥ q
yj if p < q

, j = 1, . . . , |p− q|

and

zj =

{
xj + yj−p+q if p ≥ q
yj + xj−p+q if p < q

, j = |p− q|+ 1, . . . , max(p, q).

To illustrate this construction, consider e.g., X = (x1, x2, x3, x4) and Y = (y1, y2) then
X + Y = (x1, x2, x3 + y1, x4 + y2).

It is straightforward to check that the sum Z = X + Y of two Jordan chains
associated with an eigenvalue λ̂ is again a Jordan chain associated with λ̂ of the given
matrix A, but it should be noted that this sum is not commutative.

With these preliminary results, we have now set the stage to derive the desired
perturbation theorems for structured matrices under generic rank one perturbations in
the following sections.

3 Generic structured rank one perturbations for

general classes of matrices with symmetries

In this section we state and prove general theorems concerning generic structured rank
one perturbations. Although we focus on symmetry structures with respect to bilinear
forms in this paper, the theorems cover a much wider class of structured matrices
including matrices that are structured with respect to sesquilinear forms. To this end
in the next two theorems, we will use the notation ? to denote either the transpose T

or the conjugate transpose ∗.
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Theorem 3.1 Let A ∈ Fn×n and let T, H ∈ Fn×n be invertible such that

T−1AT =

(
`1⊕

j=1

Jn1(λ̂)

)
⊕

(
`2⊕

j=1

Jn2(λ̂)

)
⊕ · · · ⊕

(
`m⊕
j=1

Jnm(λ̂)

)
⊕ Ã, (3.1)

T?HT =

(
`1⊕

j=1

H(1,j)

)
⊕H(2) ⊕ · · · ⊕H(m) ⊕ H̃, (3.2)

where λ̂ ∈ F and the decompositions (3.1) and (3.2) have the following properties:

(1) n1 > n2 > · · · > nm;

(2) H(j) ∈ F`jnj×`jnj , j = 2, . . . ,m and the matrices

H(1,j) =


0 . . . 0 h

(1,j)
1,n1

... . .
.

h
(1,j)
2,n1−1 h

(1,j)
2,n1

0 . .
.

. .
. ...

h
(1,j)
n1,1 h

(1,j)
n1,2 . . . h

(1,j)
n1,n1

 , j = 1, 2, . . . , `1;

are anti-triangular (necessarily invertible);

(3) H̃, Ã ∈ F(n−a)×(n−a), where a =
m∑

j=1

`jnj and σ(Ã) ⊆ C \ {λ̂}.

If B ∈ Fn×n is a rank one matrix of the form B = uu?H, then generically (with
respect to the components of u if ? = T , and with respect to the real and imaginary
parts of the components of u if ? = ∗) A + B has the Jordan canonical form(

`1−1⊕
j=1

Jn1(λ̂)

)
⊕

(
`2⊕

j=1

Jn2(λ̂)

)
⊕ · · · ⊕

(
`m⊕
j=1

Jnm(λ̂)

)
⊕ J̃ ,

where J̃ contains all the Jordan blocks of A + B associated with eigenvalues different
from λ̂.

Proof. Without loss of generality, let A, H be in the forms (3.1) and (3.2) already.
In view of Theorem 2.10 it is sufficient to show that the algebraic multiplicity of the
eigenvalue λ̂ of A + B is a− n1 generically. Let

u =


u(1)

...
u(m)

ũ

 , u(i) =

 u(i,1)

...
u(i,`i)

 , u(i,j) =

 u
(i,j)
1
...

u
(i,j)
ni

 ∈ Fni , ũ ∈ Fn−a,
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and

v = H?u =


v(1)

...
v(m)

ṽ

 , v(i) =

 v(i,1)

...
v(i,`i)

 , v(i,j) =

 v
(i,j)
1
...

v
(i,j)
ni

 ∈ Fni , ṽ ∈ Fn−a.

Generically (in the sense of the theorem), we have v
(i,j)
1 6= 0, because H is invertible.

In particular, we have

v
(1,j)
1 =

 h
(1,j)
n1,1u

(1,j)
n1 if ? = T ,

h
(1,j)
n1,1u

(1,j)
n1 if ? = ∗.

(3.3)

So by Theorem 2.10 we can compute S−1 = Ŝ ⊕ In−a, where

Ŝ =

`1⊕
j=1

Toep (v(1,j))⊕ · · · ⊕
`m⊕
j=1

Toep (v(m,j)) ∈ Fa×a, if ? = T,

Ŝ =

`1⊕
j=1

Toep (v(1,j))⊕ · · · ⊕
`m⊕
j=1

Toep (v(m,j)) ∈ Ca×a, if ? = ∗ .

Thus, we obtain that
S−1(A + B)S = S−1(A + uv?)S

is in partial Brunovsky form (2.14) with respect to λ̂ and

w := S−1u =


w(1)

...
w(m)

w̃

 , w(i) =

 w(i,1)

...
w(i,`i)

 , w(i,j) =

 w
(i,j)
1
...

w
(i,j)
ni

 ∈ Fni , w̃ ∈ Fn−a,

where

w(1,j)
n1

= (v
(1,j)
1 )?u(1,j)

n1
=

 h
(1,j)
n1,1

(
u

(1,j)
n1

)2

if ? = T ,

h
(1,j)
n1,1 |u

(1,j)
n1 |2 if ? = ∗.

By Corollary 2.11, and taking into account formula (2.12), the characteristic polynomial

of A + B − λ̂I is given by

pλ̂(λ) =
n∑

i=a−n1

ciλ
i,

where

ca−n1 = M

`1∑
j=1

w(1,j)
n1

=


`1∑

j=1

h
(1,j)
n1,1

(
u

(1,j)
n1

)2

if ? = T ,

`1∑
j=1

h
(1,j)
n1,1 |(u

(1,j)
n1 |2 if ? = ∗;
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here M 6= 0 is a constant independent of B. Clearly, ca−n1 is generically (in the sense
stated in the theorem) nonzero and hence the algebraic multiplicity of the eigenvalue

λ̂ of A + B is a − n1. Together with Corollary 2.11, we obtain that the only possible
Jordan canonical form for A + B is given by

`1−1⊕
j=1

Jn1(λ̂)⊕
`2⊕

j=1

Jn2(λ̂)⊕ · · · ⊕
`m⊕
j=1

Jnm(λ̂)⊕ J̃ ,

where J̃ contains all the Jordan blocks associated with eigenvalues of A + B different
from λ̂.

Theorem 3.2 Let A ∈ Fn×n and let T, H ∈ Fn×n be invertible matrices such that

T−1AT = Â⊕ Ă⊕ Ã, T?HT =

[
0 Ia

Ĥ 0

]
⊕ H̃, (3.4)

where the decomposition (3.4) has the following properties:

(a)

Â =

(
`1⊕

j=1

Jn1(λ̂)

)
⊕ · · · ⊕

(
`m⊕
j=1

Jnm(λ̂)

)
,

where n1 > n2 > · · · > nm and λ̂ ∈ F;

(b) a =
∑m

j=1 `jnj and Ĥ, Ă ∈ Fa×a, H̃ ∈ F(n−2a)×(n−2a);

(c) σ(Ă), σ(Ã) ⊆ C \ {λ̂}.

If B ∈ Fn×n is a rank one perturbation of the form B = uu?H, u ∈ Fn, then generically
(with respect to the components of u if ? = T , and with respect to the real and imaginary
parts of the components of u if ? = ∗) A + B has the Jordan canonical form(

`1−1⊕
j=1

Jn1(λ̂)

)
⊕

(
`2⊕

j=1

Jn2(λ̂)

)
⊕ · · · ⊕

(
`m⊕
j=1

Jnm(λ̂)

)
⊕ J̃ ,

where J contains all the Jordan blocks of A + B associated with eigenvalues different
from λ̂.

Note that Ĥ, H̃ are necessarily invertible.
Proof. As in the proof of Theorem 3.1, we may assume that A and H are in the
forms (3.4). Partition

u =

 û
ŭ
ũ

 , û =

 û(1)

...
û(m)

 , û(i) =

 û(i,1)

...
û(i,`i)

 , û(i,j) =

 û
(i,j)
1
...

û
(i,j)
ni

 ∈ Fni ,
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and

ŭ =

 ŭ(1)

...
ŭ(m)

 , ŭ(i) =

 ŭ(i,1)

...
ŭ(i,`i)

 , ŭ(i,j) =

 ŭ
(i,j)
1
...

ŭ
(i,j)
ni

 ∈ Fni .

Observe that the vector v = H?u has the form

v =

 ŭ

Ĥû

H̃ũ

 .

Generically (in the sense of the theorem), we can now form the matrix S = Ŝ ⊕ In−a,
where

Ŝ−1 =

(
`1⊕

j=1

Toep (ŭ(1,j))

)
⊕ · · · ⊕

(
`m⊕
j=1

Toep (ŭ(m,j))

)
if ? = T,

Ŝ−1 =

(
`1⊕

j=1

Toep (ŭ(1,j))

)
⊕ · · · ⊕

(
`m⊕
j=1

Toep (ŭ(m,j))

)
if ? = ∗.

Then S−1(A + B)S = S−1(A + uv?)S is in partial Brunovsky form (2.14) as in Theo-
rem 2.10. Next, consider the vector

w := S−1u =

 ŵ
w̆
w̃

 , ŵ =

 ŵ(1)

...
ŵ(m)

 , ŵ(i) =

 ŵ(i,1)

...
ŵ(i,`i)

 , ŵ(i,j) =

 ŵ
(i,j)
1
...

ŵ
(i,j)
ni

 ∈ Fni .

Then we obtain
ŵ(i,j)

ni
= (ŭ

(i,j)
1 )?û(i,j)

ni
.

By Corollary 2.11, the characteristic polynomial pλ̂ of A + B − λ̂I has the form

pλ̂(λ) = cnλ
n + · · ·+ ca−n1+1λ

a−n1+1 + ca−n1λ
a−n1 ,

where

ca−n1 = M ·

(
`1∑

j=1

ŵ(1,j)
n1

)
= M

(
`1∑

j=1

(ŭ
(1,j)
1 )?T û(1,j)

n1

)
;

M 6= 0 is a constant independent of B. Clearly, ca−n1 is generically (in the sense
indicated in the statement of Theorem 3.2) nonzero and thus ã = a− n1 is generically

the algebraic multiplicity of the eigenvalue λ̂ of A + B. Together with Corollary 2.11,
it follows that the only possible Jordan canonical forms for A + B are(

`1−1⊕
j=1

Jn1(λ̂)

)
⊕

(
`2⊕

j=1

Jn2(λ̂)

)
⊕ · · · ⊕

(
`m⊕
j=1

Jnm(λ̂)

)
⊕ J̃ ,
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where J̃ contains all the Jordan blocks associated with eigenvalues different from λ̂.

Note that the scenario in Theorems 3.1 and 3.2 corresponds exactly to the scenario
under arbitrary unstructured rank one perturbations; cf. Theorem 2.3.

The two theorems apply to the cases of symmetric complex matrix H and H-
symmetric matrices (see Theorem 2.6) discussed in Section 5, and also to the case of
H-selfadjoint matrices that will be discussed in a forthcoming paper. Finally, they
apply to the case where J is skew-symmetric, and A is J-Hamiltonian and invertible
(case (iii) in Theorem 2.7). Thus, for J-Hamiltonian matrices it remains to study the
case of the eigenvalue zero. This will be done in the next section.

4 Generic structured rank one perturbations for

complex Hamiltonian matrices

In this section we state and prove one of the main results of the paper concerning
perturbations of complex Hamiltonian matrices. According to Theorem 2.7, if λ 6= 0
is an eigenvalue of a complex J-Hamiltonian matrix A, then so is −λ (with the same
partial multiplicities), and for every odd k, the number of Jordan blocks in the Jordan
form of A of size k corresponding to the zero eigenvalue is even.

As Theorem 4.2 shows, in the case the largest partial multiplicity of the zero eigen-
value is odd, the generic behavior of the Jordan structure of the perturbed matrix
contrasts sharply with the unstructured situation (Theorem 2.3). To motivate the
main result, consider an example first:

Example 4.1 Consider the matrix

Z(w) =

[
J2m+1(0) 0

0 J2m+1(0)

]
+ wwT

[
0 Σ2m+1

−Σ2m+1 0

]
∈ C(4m+2)×(4m+2).

We will show that generically (with respect to the components of w ∈ C2m+1) Z(w)
has the Jordan from of type J2m+2(0)⊕ k1 ⊕ k2 ⊕ · · · ⊕ k2m, where the kj’s are distinct
nonzero complex numbers.

A standard transformation allows us to consider the matrix

M := M(u, v) :=

[
J2m+1(0) 0

0 −J2m+1(0)
T

]
+

[
u
v

] [
−vT uT

]
instead of Z(w), where we have put w =

[
u
v

]
, u, v ∈ C2m+1. Indeed, it is easy to see

that the matrix

A :=

[
J2m+1(0) 0

0 −J2m+1(0)
T

]
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is J-Hamiltonian (see (1.1)), and that the canonical form of the pair (A, J) is the same

as the canonical form of
(
Z(0),

[
0 Σ2m+1

−Σ2m+1 0

])
. We shall denote the entries of u and

v by u1, . . . , u2m+1 and v1, . . . , v2m+1, respectively. Clearly, M is singular for all u and
v. It is easy to see that for some choice of u and v the rank of M is equal to 4m + 1,
and therefore there exists a generic (with respect to the entries of u and v) set Ω such
that for every (u, v) ∈ Ω the rank of M is equal to 4m + 1.

Next, we introduce the (2m + 1)× (2m + 1) matrix Υ:

Υ = Σm+1Rm+1 = 1⊕ (−1)⊕ 1⊕ (−1)⊕ · · · ⊕ (−1)⊕ 1.

It is useful to note that J2m+1 := J2m+1(0) and Υ anti-commute:

ΥJ2m+1 = −J2m+1Υ.

Our first observation is that the vector

x1 =

[
J 2m

2m+1u
(−J 2m

2m+1)
T v

]
∈ Ker M.

Indeed, Ax1 = 0, and
[
−vT uT

]
x1 = 0 as well. Now define for j = 2, . . . , 2m + 1

the vectors

xj = (−1)j+1

[
ΥJ 2m+1−j

2m+1 u

(J 2m+1−j
2m+1 )T Υv

]
.

Note that for all j we have
[
−vT uT

]
xj = 0, and so

Mxj = Axj = (−1)j+1

[
J2m+1ΥJ 2m+1−j

2m+1 u

−(J 2m+2−j
2m+1 )T Υv

]
= (−1)j

[
ΥJ 2m+2−j

2m+1 u

(J 2m+2−j
2m+1 )T Υv

]
= xj−1.

Thus we see that x1, . . . , x2m+1 is a Jordan chain of M corresponding to zero.
Next, note that

x2m+1 =

[
Υu
Υv

]
.

We now define for some complex numbers a and b, still to be determined, the vector

x2m+2 = ae1 + be4m+2 +

[
−(I + Υ)J T

2m+1u
(I + Υ)J2m+1v

]
.

Then

Ax2m+2 = A

[
−(I + Υ)J T

2m+1u
(I + Υ)J2m+1v

]
=

[
−J2m+1(I + Υ)J T

2m+1u
−J T

2m+1(I + Υ)J2m+1v

]
=

[
−(I −Υ)J2m+1J T

2m+1u
−(I −Υ)J T

2m+1J2m+1v

]
=

[
−(I −Υ)u
−(I −Υ)v

]
= x2m+1 −

[
u
v

]
.
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So

Mx2m+2 =

(
x2m+1 −

[
u
v

])
+

[
u
v

] [
−vT uT

]
x2m+2

= x2m+1 +

[
u
v

]
(
[
−vT uT

]
x2m+2 − 1).

If we can choose a and b so that[
−vT uT

]
x2m+2 = −av1 + bu2m+1 + 2uT (I + Υ)J2m+1v = 1,

then we have constructed a Jordan chain of length 2m + 2 for M corresponding to the
eigenvalue zero. But it is easily seen that a and b can be chosen as desired, whenever
not both u2m+1 = 0 and v1 = 0. So, generically this can be done.

The next step is to see that generically the Jordan block with eigenvalue zero of M
has size 2m + 2. Here we make essential use of the fact that we already know that the
rank of M generically is 4m+1, and hence there can be at most one Jordan block with
eigenvalue zero in the Jordan normal form of M . Then for any Jordan chain it must
be possible to extend it to a Jordan chain of length equal to the algebraic multiplicity
(this follows, for example, from general results on marked invariant subspaces in [8]).
So, it suffices to show that the Jordan chain we have constructed cannot be extended

further. For this, observe that vectors

[
z
y

]
in the range of M are such that

[
z2m+1

y1

]
is a multiple of

[
u2m+1

v1

]
. So, in order for x2m+2 to be in the range of M it is necessary

and sufficient that

[
−u2m

v2

]
is a multiple of

[
u2m+1

v1

]
. Obviously, generically this will

not be the case.
Next, we show that generically all nonzero eigenvalues are simple eigenvalues. The

characteristic polynomial of M is, by what we have shown, generically of the form

x2m+2(x2m + x2m−2a2m−2 + . . . + x2a2 + a0)

(we also use that M is J-Hamiltonian matrix, and so its characteristic polynomial is a
polynomial in x2), and generically, a0 6= 0.

Now we find particular vectors u0 and v0 such that for the characteristic polynomial
of M(u0, v0) we have a2 = a4 = . . . = a2k−2 = 0. Indeed, take u0, v0 with zero entries,
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except for (u0)2k, (u0)2k+1, (v0)1, (v0)2. Then

det

(
A− xI +

[
u0

v0

] [
−vT

0 uT
0

])
=

= det

{
(A− xI)

(
I + (A− xI)−1

[
u0

v0

] [
−vT

0 uT
0

])}
=

= det (A− xI) det

(
I + (A− xI)−1

[
u0

v0

] [
−vT

0 uT
0

])
=

= det (A− xI)

(
1 +

[
−vT

0 uT
0

]
(A− xI)−1

[
u0

v0

])
=

= x4m+2

(
1 +

[
−vT

0 uT
0

]
(A− xI)−1

[
u0

v0

])
=

= x4m+2(1− vT (J2m+1 − xI)−1u0 − uT
0 (J T

2m+1 + xI)−1v0).

Now take u0 and v0 as above, so v0 having only the first two entries nonzero and u0

having only the last two entries nonzero. Then it is clear that we are interested in the
2× 2 block in the right upper corner of (J2m+1 − x)−1, and the 2× 2 block in the left
lower corner of (J T

2m+1 + x)−1. It is easily computed that

−vT
0 (J2m+1 − xI)−1u0 =

(v0)1(u0)2m + (v0)2(u0)2m+1

x2m
+

(v0)2(u0)2m

x2m−1
+

(v0)1(u0)2m+1

x2m+1
,

−uT
0 (J T

2m+1 + xI)−1v0 =
(v0)1(u0)2m + (v0)2(u0)2m+1

x2m
− (v0)2(u0)2m

x2m−1
− (v0)1(u0)2m+1

x2m+1
.

Because the terms with odd powers cancel, the characteristic polynomial of M(u0, v0)
is given by

det
(
M(u0, v0)− xI

)
= x2m+2

(
x2m + 2

(
(v0)1(u0)2m + (v0)2(u0)2m+1

))
,

and so for such a perturbation the nonzero eigenvalues are all simple.
Now, there is an open neighborhood U of the pair (u0, v0) such that for all matrices

M(u, v) with (u, v) ∈ U all nonzero eigenvalues are simple. Choosing (u, v) ∈ U so that
also the multiplicity of zero of M(u, v) is equal to 2m+2, we have found an open set of
vectors w with the property that Z(w) has the Jordan form of the required type. But
then the set of all vectors w for which Z(w) has the Jordan form of the required type is
generic; to see that use the Sylvester resultant matrix of the characteristic polynomial
of Z(w) and of its derivative, as it was done in the proof of Lemma 2.5.

The next theorem shows that the situation of Example 4.1 is typical for the case of
odd largest partial multiplicity corresponding to the zero eigenvalue. We assume in the
next theorem that A has zero as an eigenvalue; if A is invertible, then all statements
concerning the zero eigenvalue should be considered as void.
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Theorem 4.2 Let J ∈ Cn×n be skew-symmetric and invertible, let A ∈ Cn×n be J-
Hamiltonian, with pairwise distinct eigenvalues λ1, λ2, · · · , λp, λp+1 = 0 and let B be a
rank one perturbation of the form B = uuT J ∈ Cn×n.

For every λj, j = 1, 2, . . . , p + 1, let n1,j > n2,j > . . . > nmj ,j be the sizes of
Jordan blocks in the Jordan form of A associated with the eigenvalue λj, and let there
be exactly `k,j Jordan blocks of size nk,j associated with λj in the Jordan form of A, for
k = 1, 2, . . . ,mj.

(1) If n1,p+1 is even (in particular, if A is invertible), then generically with respect to
the components of u, the matrix A + B has the Jordan canonical form

p+1⊕
j=1

`1,j−1⊕
s=1

Jn1,j
(λj)

⊕

 `2,j⊕
s=1

Jn2,j
(λj)

⊕ · · · ⊕

`mj,j⊕
s=1

Jnmj,j
(λj)

⊕ J̃ ,

where J̃ contains all the Jordan blocks of A + B associated with eigenvalues
different from any of λ1, . . . , λp+1.

(2) If n1,p+1 is odd (in this case `1,p+1 is even), then generically with respect to the
components of u, the matrix A + B has the Jordan canonical form

p⊕
j=1

`1,j−1⊕
s=1

Jn1,j
(λj)

⊕

 `2,j⊕
s=1

Jn2,j
(λj)

⊕ · · · ⊕

`mj,j⊕
s=1

Jnmj,j
(λj)


⊕

(
`1,p+1−2⊕

s=1

Jn1,p+1(0)

)
⊕

(
`2,p+1⊕
s=1

Jn2,p+1(0)

)
⊕ · · · ⊕

`mp+1,p+1⊕
s=1

Jnmp+1,p+1(0)


⊕ Jn1,p+1+1(0)⊕ J̃ , (4.1)

where J̃ contains all the Jordan blocks of A + B associated with eigenvalues
different from any of λ1, . . . , λp+1.

(3) In either case (1) or (2), generically the part J̃ has simple eigenvalues.

Proof. If (1) holds, then it follows from Theorem 2.7 that we can apply Theorem 3.1
or Theorem 3.2, and we immediately obtain the desired result; here we also use the
easily verifiable fact that the intersection of finitely many generic sets is again generic.

Consider the case (2). In this case, generically the part of the Jordan form of
A + B that involves nonzero eigenvalues has again the form as given in (2), in view of
Theorems 2.7, 3.1, and 3.2. It remains to prove that generically the part of the Jordan
form of A + B corresponding to the zero eigenvalue has the form

Jn1+1(0)⊕

(
`1−2⊕
s=1

Jn1(0)

)
⊕

(
`2⊕

s=1

Jn2(0)

)
⊕ · · · ⊕

(
`m⊕
s=1

Jnm(0)

)
⊕ Ĵ . (4.2)
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Here, we let m = mp+1; nk = nk,p+1 for k = 1, 2, . . . ,m; and `k = `k,p+1 for k =

1, 2, . . . ,m, and Ĵ contains all the Jordan blocks of A + B associated with nonzero
eigenvalues.

To this end, we may assume without loss of generality that A and J are in the form
(2.10), where we assume in addition that the diagonal blocks of A and J have been
permuted in such a way that the blocks associated with the eigenvalue 0 appear first
and that they are ordered with decreasing sizes. Thus, we assume that A and J have
the forms

A =

(
`1⊕

s=1

Jn1(0)

)
⊕ · · · ⊕

(
`m⊕
s=1

Jnm(0)

)
⊕ Ã, (4.3)

where σ(Ã) ⊆ C \ {0} and

J =

`1/2⊕
s=1

[
0 Σn1

−Σn1 0

]
⊕ J2 ⊕ · · · ⊕ Jm ⊕ J̃ . (4.4)

Then the algebraic and geometric multiplicity a and g of the eigenvalue 0 of A are given
by

a =
m∑

s=1

`sns, g =
m∑

s=1

`s,

respectively. The corresponding J-Hamiltonian rank one perturbation B has the form
B = uvT = uuT J , where we partition

u =


u(1)

...
u(m)

ũ

 , u(i) =

 u(i,1)

...
u(i,`i)

 , u(i,s) =

 u
(i,s)
1
...

u
(i,s)
ni

 ∈ Cni ,

for s = 1, . . . , `i; i = 1, . . . ,m. Thus, ũ ∈ Cn−a. We will now show in two steps
that generically A + B has the Jordan canonical form (4.2). By Corollary 2.11 we
know that A + B has `1 − 1 Jordan chains of length n1 and `j Jordan chains of length
nj, j = 2, . . . ,m associated with the eigenvalue 0. In the first step, we will show
that generically there exists a Jordan chain of length n1 + 1. In the second step, we
will show that the algebraic multiplicity of the eigenvalue zero of A + B generically is
ã = (

∑m
s=1 `sns)−n1 + 1 = a−n1 + 1. Both steps together obviously imply that (4.2)

represents the only possible Jordan canonical forms for A + B.

Step 1: Existence of a Jordan chain of length n1 + 1.
Generically, the hypothesis of Corollary 2.11 is satisfied (i.e., specific entries of

vectors are nonzero), so generically the matrix S as in Corollary 2.11 exists so that
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S−1(A + B)S is in partial Brunovsky form. We first investigate the structure of the
vector vT = uT J . From (4.4), we obtain that v has the form

v = (uT J)T = −Ju =


v(1)

...
v(m)

ṽ

 , v(i) =

 v(i,1)

...
v(i,`i)

 , v(i,s) =

 v
(i,s)
1
...

v
(i,s)
ni

 ∈ Cni ,

(4.5)
for s = 1, . . . , `i and i = 1, . . . ,m, where

v(1,2s−1) = −Σn1u
(1,2s) =


−u

(1,2s)
n1

u
(1,2s)
n1−1

∓
...

−u
(1,2s)
1

 , v(1,2s) = Σn1u
(1,2s−1) =


u

(1,2s−1)
n1

−u
(1,2s−1)
n1−1

±
...

u
(1,2s−1)
1


for s = 1, . . . , `1/2. Thus, S−1 takes the form

S−1 =

(
`1⊕

s=1

Toep (v(1,s))

)
⊕ · · · ⊕

(
`m⊕
s=1

Toep (v(m,s))

)
⊕ In−a,

and it follows that

S−1BS = w(eT
1,n1

, . . . , eT
1,n1︸ ︷︷ ︸

`1 times

, . . . , eT
1,nm

, . . . , eT
1,nm︸ ︷︷ ︸

`m times

, zT ) (4.6)

for some z ∈ Cn−a. Thus,

w = S−1u =


w(1)

...
w(m)

w̃

 , w(i) =

 w(i,1)

...
w(i,`i)

 , w(i,s) =

 w
(i,s)
1
...

w
(i,s)
ni

 ∈ Cni , (4.7)

for s = 1, . . . , `i and i = 1, . . . ,m, where

w(1,2s−1)
n1

= −u(1,2s)
n1

u(1,2s−1)
n1

, w(1,2s)
n1

= u(1,2s−1)
n1

u(1,2s)
n1

= −w(1,2s−1)
n1

(4.8)

and, provided that n1 > 1,

w
(1,2s−1)
n1−1 = u

(1,2s)
n1−1 u(1,2s−1)

n1
− u(1,2s)

n1
u

(1,2s−1)
n1−1 , (4.9)

w
(1,2s)
n1−1 = −u(1,2s)

n1
u

(1,2s−1)
n1−1 + u

(1,2s)
n1−1 u(1,2s−1)

n1
= w

(1,2s−1)
n1−1 , (4.10)

for s = 1, . . . , `1/2. Consider the following Jordan chains associated with the eigenvalue
0 of S−1(A + B)S denoted by Ci,s:

length n1 : C1,s : e2(s−1)n1+1 − e(2s−1)n1+1, . . . , e(2s−1)n1 − e2sn1 , s = 1, . . . , `1
2

length ni : Ci,s : −e1 + eΣi−1
k=1`knk+(s−1)ni+1, . . . ,−eni

+ eΣi−1
k=1`knk+sni

, s = 1, . . . , `i,
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where i = 2, . . . ,m. Observe that Ci,s, i 6= 1, are just the Jordan chains from Corol-
lary 2.11 multiplied by −1 while the chains C1,s are linear combinations of the Jordan
chains from Corollary 2.11. Namely, in the notation of (2.13), and numbering the
chains in (2.13) first, second, etc., from the top to the bottom, we see that the chains
C1,1, . . . , C1,`1/2 are the first chain, the negative of the second chain plus the third chain,
. . ., the negative of the (`1 − 2)th chain plus the (`1 − 1)th chain, respectively. Now
consider the Jordan chain

C :=

`1/2∑
s=1

α1,sC1,s

+
m∑

i=2

`i∑
s=1

αi,sCi,s

of length n1 (see Definition 2.13), and let y denote the n1-th (and thus last) vector of this
chain. We next show that the Jordan chain C can be extended by a vector y to a Jordan
chain of length n1 +1 associated with the eigenvalue 0, for some particular choice of the
parameters αi,s (depending on u) such that generically at least one of α1,1, . . . α1,`1/2 is
nonzero. To see this, we have to show that y is in the range of S−1(A + B)S. First,
partition

y =


y(1)

...
y(m)

ỹ

 , y(i) =

 y(i,1)

...
y(i,`i)

 , y(i,s) =

 y
(i,s)
1
...

y
(i,s)
ni

 ∈ Cni ,

for s = 1, . . . , `i; i = 1, . . . ,m. Then by the definition of y, we have ỹ = 0 ∈ Cn−a,

y(1,2s−1)
n1

= α1,s, y(1,2s)
n1

= −α1,s, s = 1, . . . , `1/2,

y(i,s)
ni

= αi,s, s = 1, . . . , `i; i = 2, . . . ,m.

We have to solve the linear system

S−1(A + B)Sx = y. (4.11)

Partitioning

x =


x(1)

...
x(m)

x̃

 , x(i) =

 x(i,1)

...
x(i,`i)

 , x(i,s) =

 x
(i,s)
1
...

x
(i,s)
ni

 ∈ Cni ,
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and making the ansatz x̃ = 0, then equation (4.11) becomes (we here use (4.6, (4.7))):

w
(i,s)
k

(
m∑

ν=1

`ν∑
µ=1

x
(ν,µ)
1

)
+ x

(i,s)
k+1 = y

(i,s)
k , k=1,..., ni−1; s=1,..., `i; i=1,..., m, (4.12)

w(i,s)
ni

(
m∑

ν=1

`ν∑
µ=1

x
(ν,µ)
1

)
= αi,s, s=1,..., `i; i=2,..., m, (4.13)

w(1,2s−1)
n1

(
m∑

ν=1

`ν∑
µ=1

x
(ν,µ)
1

)
= α1,s, s=1,..., `1/2, (4.14)

w(1,2s)
n1

(
m∑

ν=1

`ν∑
µ=1

x
(ν,µ)
1

)
=−α1,s, s=1,..., `1/2. (4.15)

Set x
(1,1)
1 = 1 and x

(ν,µ)
1 = 0, for µ = 1, . . . , `ν ; ν = 1, . . . ,m; (ν, µ) 6= (1, 1), as well

as αi,s = w
(i,s)
ni for s = 1, . . . , `i; i = 2, . . . ,m and α1,s = w

(1,2s−1)
n1 for s = 1, . . . , `1/2.

Then (4.13) and (4.14) are satisfied and so is (4.15), because by (4.8) we have

w(1,2s)
n1

= u(1,2s)
n1

u(1,2s−1)
n1

= −w(1,2s−1)
n1

= −α1,s, s = 1, . . . , `1/2.

Finally, (4.12) can be solved by choosing x
(i,s)
k+1 = y

(i,s)
k − w

(i,s)
k for k = 1, . . . , ni − 1;

s = 1, . . . , `i; i = 1, . . . ,m.

Step 2: We show that the algebraic multiplicity of the eigenvalue 0 of A + B gener-
ically is ã = (

∑m
s=1 `sns)− n1 + 1 = a− n1 + 1.

Let µ1, . . . , µq denote the pairwise distinct nonzero eigenvalues of A and let r1, . . . , rq

be their algebraic multiplicities. By Corollary 2.11, the lowest possible power of λ
associated with a nonzero coefficient in p0(λ) is a−n1 and the corresponding coefficient
ca−n1 is

ca−n1 = (−1)a

(
q∏

i=1

µri
i

)(
`1∑

s=1

w(1,s)
n1

)
= 0,

because of (4.8). If n1 = 1 then ã = a and there is nothing to show as the algebraic
multiplicity of the eigenvalue zero cannot increase when a generic perturbation is ap-
plied. Otherwise, we distinguish the cases n2 < n1− 1 and n2 = n1− 1. If n2 < n1− 1,
then by Corollary 2.11 the coefficient ca−n1+1 of λa−n1+1 in p0(λ) is

ca−n1+1 = −

 q∑
ν=1

rνµ
rν−1
ν

q∏
i=1
i6=ν

µri
i


(

`1∑
s=1

w(1,s)
n1

)
︸ ︷︷ ︸
= 0 using (4.8)

+

(
q∏

i=1

µri
i

)(
`1∑

s=1

w
(1,s)
n1−1

)

using (4.10)
=

(
q∏

i=1

µri
i

)`1/2∑
s=1

2(u
(1,2s)
n1−1 u(1,2s−1)

n1
− u(1,2s)

n1
u

(1,2s−1)
n1−1 )
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which generically is nonzero. If, on the other hand, n2 = n1−1, then again by Corollary
2.11 the coefficient ca−n1+1 of λa−n1+1 in p0(λ) is

ca−n1+1 =

(
q∏

i=1

µri
i

)(
`1∑

s=1

w
(1,s)
n1−1 +

`2∑
s=1

w(2,s)
n2

)
.

Since n1 > 1 is odd, n2 ≥ 2 is even and the block J2 in (4.4) takes the form

J2 = Σn2 ⊕ · · · ⊕ Σn2 .

Hence, for the component v2 in (4.5) we obtain that

v(2,s) = −Σn2u
(2,s) =


−u

(2,s)
n2

u
(2,s)
n2−1

∓
...

u
(2,s)
1

 , s = 1, . . . , `2

and thus
w(2,s)

n2
= −u(2,s)

n2
v

(2,s)
1 = −(u(2,s)

n2
)2,

which gives

ca−n1+1 =

(
q∏

i=1

µri
i

)`1/2∑
s=1

2(u
(1,2s)
n1−1 u(1,2s−1)

n1
− u(1,2s)

n1
u

(1,2s−1)
n1−1 )−

`2∑
s=1

(u(2,s)
n2

)2

 .

Again, this is nonzero generically. In all cases, we have shown that zero is a root of
p0(λ) with multiplicity a − n1 + 1. Thus, the algebraic multiplicity of the eigenvalue
zero of A + B is a− n1 + 1. Together with Step 1, we obtain that (4.2) generically are
the only possible Jordan canonical forms of A + B.

Finally, we prove part (3) by following the arguments of the proof of part (b) of
Theorem 2.3, and using Examples 4.3–4.5 and Lemma 4.6 (instead of Lemma 2.5 that
was used the proof of Theorem 2.3) presented in the remainder of the section.

Example 4.3 Let

Z(2)(α) = J2m(0) + (αe2m)(αeT
2m)Σ2m ∈ C2m×2m, α ∈ C \ {0}.

Analogously to Example 2.4, we have χ(Z(2)(α)) = x2m +α2, in particular, Z(2)(α) has
2m distinct nonzero eigenvalues.

Example 4.4 Comsider the (4m + 2)× (4m + 2) matrix

Z(3)(α, w) =

[
J2m+1(0) 0

0 J2m+1(0)

]
+ (αw)(αwT )

[
0 Σ2m+1

−Σ2m+1 0

]
,
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where α ∈ C\{0}. It follows from Example 4.1 that there exist a nonzero vector w and
ε > 0 with the property that the matrix Z(3)(α, w) has the Jordan form J2m+2(0)⊕K,
where K is a diagonal invertible matrix with distinct diagonal entries, for every α in
the punctured disc 0 < |α| < ε.

Example 4.5 Let

Z(4)(λ, α) =

[
Jm(λ) 0

0 −Jm(λ)T

]
+ (αu)(αu)T

[
0 Im

−Im 0

]
∈ C2m×2m,

λ ∈ C \ {0}, α ∈ C \ {0}.

Let

u =

[
em

e1

]
.

We shall prove that there exists ε > 0 which depends only on λ and on m, such that
for all α with 0 < |α| < ε, the matrix Z(4)(λ, α) has 2m distinct eigenvalues and none
of them is equal to ±λ.

Using the Laplace theorem for determinants with respect to the first m rows of
det (xI − Z(4)(λ, α)), and omitting terms that are obviously zeros, we easily compute

χ(Z(4)(λ, α)) = ((x− λ)m + α2)((x + λ)m + (−1)mα2) + (−1)m+1α4 =

(x− λ)m(x + λ)m + α2(x + λ)m + (−1)mα2(x− λ)m.

Clearly, ±λ are not zeros of χ(Z(4)(λ, α) because λ 6= 0, α 6= 0. Assuming that
χ(Z(4)(λ, α)) and ∂

∂x
χ(Z(4)(λ, α)) have a common root x0, we have the equalities

(x0 − λ)m(x0 + λ)m + β(x0 + λ)m + (−1)mβ(x0 − λ)m = 0, (4.16)

(x0 − λ)m−1(x0 + λ)m + (x0 − λ)m(x0 + λ)m−1 + β(x0 + λ)m−1 + (−1)mβ(x0 − λ)m−1,
(4.17)

where β = α2. Multiplying (4.17) by x0−λ and using (4.16) yields after simple algebra

(x0 − λ)m+1 = 2βλ.

Analogously (x0 +λ)m+1 = (−1)m+12βλ is obtained. These equalities are contradictory
if |α| is sufficiently small.

Using Examples 4.3, 4.4, and 4.5, and the already proved parts (1) and (2) of
Theorem 4.2, the following lemma is proved in the same way as Lemma 2.5. We omit
the details of proof.

Lemma 4.6 Let Ω′ be the (open) generic set of vectors u ∈ Cn for which (1) or (2) of
Theorem 4.2 holds. Then there is ε > 0 and an open dense (in the ball {u ∈ Cn : ‖u‖ <
ε}) set Ω′′ ⊆ Ω′ such that for every u ∈ Ω′′, ‖u‖ < ε, the Jordan form of A + uuT J is
of the type described in items (1) - (3) of Theorem 4.2.
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We conclude that in case (1) of Theorem 4.2 generically all Jordan blocks associated
with eigenvalues λ1, . . . , λp+1 remain unchanged except for one block of the largest size
for every eigenvalue λj which disappears (leading to eigenvalues different from λj). In
the case (2), the generic behavior of Jordan blocks of nonzero eigenvalues is the same
as in the case (1), whereas all Jordan blocks associated with the zero eigenvalue remain
unchanged except for two of the largest size ones of which one of them disappears
(leading to nonzero eigenvalues), while the other one increases its size by one.

5 Generic structured rank one perturbations for

complex H-symmetric matrices

Our next result concerns perturbations of H-symmetric matrices. According to The-
orem 2.6, every (complex) matrix is similar to an H-symmetric matrix, for any fixed
symmetric invertible matrix H.

Theorem 5.1 Let H ∈ Cn×n be symmetric and invertible, A ∈ Cn×n be H-symmetric,
with distinct eigenvalues λ1, λ2, · · · , λp and having the Jordan canonical form

p⊕
j=1

 `1,j⊕
s=1

Jn1,j
(λj)

⊕

 `2,j⊕
s=1

Jn2,j
(λj)

⊕ · · · ⊕

`mj,j⊕
s=1

Jnmj,j
(λj)


where n1,j > n2,j > . . . > nmj ,j, j = 1, . . . p. Let B ∈ Cn×n be a rank one perturbation
of the form B = uuT H, u ∈ Cn. Then:

(1) generically (with respect to the components of u), the matrix A+B has the Jordan
canonical form

p⊕
j=1

`1,j−1⊕
s=1

Jn1,j
(λj)

⊕

 `2,j⊕
s=1

Jn2,j
(λj)

⊕ · · · ⊕

`mj,j⊕
s=1

Jnmj,j
(λj)

⊕ J̃ ,

where J̃ contains all the Jordan blocks of A + B associated with eigenvalues
different from any of λ1, . . . , λp;

(2) generically, all eigenvalues of A + B different from any of λ1, . . . , λp, are simple.

Proof. Part (1) follows immediately from Theorem 2.6 and Theorem 3.1.
Part (2) is proved completely analogously to the proofs of part (b) of Theorem 2.3

and part (3) of Theorem 4.2 by using the following lemma which is based on Example
2.4. We omit details.

Lemma 5.2 Let Ω′ be the open generic set of vectors u ∈ Cn for which (1) of Theorem
5.1 holds. Then there is ε > 0 and an open dense (in the ball {u ∈ Cn : ‖u‖ < ε}) set
Ω′′ ⊆ Ω′ such that for every u ∈ Ω′′, ‖u‖ < ε, the Jordan form of A + uuT H is of the
type described in items (1) and (2) of Theorem 5.1.
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6 Conclusion

We have presented several results on Jordan structures of matrices under structured
and unstructured rank one perturbations in a general context, and studied the per-
turbation analysis for the Jordan structures of complex J-Hamiltonian and complex
H-symmetric under structured rank one perturbations. We have shown that as in the
case of unstructured perturbations, generically only (one of) the largest Jordan blocks
is destroyed. However in the structured case, there is a particular situation, where the
effect of generic structured perturbation differs from the effect of generic unstructured
perturbations. If the largest Jordan blocks associated with the eigenvalue zero of a
complex Hamiltonian matrix have odd size, then this Jordan block occurs multiple
times. As a result of the perturbation, one of the largest Jordan blocks is destroyed,
but one obtains an increase of the size of one of the other blocks of largest size.

In subsequent papers, this perturbation analysis will be extended to the case of
H-selfadjoint and real H-symmetric matrices under real perturbations.
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[30] C. Schröder and T. Stykel. Passivation of LTI systems. Technical Report 368,
DFG Research Center Matheon, Technische Universität Berlin, Straße des 17.
Juni 136, 10623 Berlin, Germany, 2007.

[31] G.W. Stewart and J.-G. Sun. Matrix Perturbation Theory. Academic Press, New
York, 1990.

[32] R. C. Thompson. Pencils of complex and real symmetric and skew matrices. Linear
Algebra Appl., 147:323–371, 1991.

[33] K. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control. Prentice-Hall,
Upper Saddle River, NJ, 1995.

39


