
LUR’E EQUATIONS AND EVEN MATRIX PENCILS

TIMO REIS∗

Abstract. In this work we consider the so-called Lur’e matrix equations that arise e.g. in model
reduction and linear-quadratic infinite time horizon optimal control. We characterize the set of
solutions in terms of deflating subspaces of even matrix pencils. In particular, it is shown that there
exist solutions which are extremal in terms of definiteness. It is shown how these special solutions
can be constructed deflating subspaces of even matrix pencils.
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1. Introduction. For given matrices A, Q ∈ Cn,n with Q = Q∗ and B, C ∈
Cn,m, R ∈ Cm,m, we consider Lur’e equations

A∗X + XA + Q = K∗K,

XB + C = K∗L,

R = L∗L,

(1.1)

that have to be solved for (X, K, L) ∈ Cn,n × Cp,n × Cp,m with X = X∗ and p as
small as possible. Equations of type (1.1) were first introduced by A.I. Lur’e [26]
in 1951 (see [5] for an historical overview) and play a fundamental role in systems
theory, e.g. since properties like dissipativity of linear systems can be characterized
via their solvability [1, 3, 4, 37]. This type of equations moreover appears in the
infinite time horizon linear-quadratic optimal control problem [10, 11, 12, 38, 39] as
well as in balancing-related model reduction [9, 20, 27, 28, 29]. In the case where R is
invertible, the matrices K and L can be eliminated by obtaining the algebraic Riccati
equation

A∗X + XA− (XB + C)R−1(XB + C)∗ + Q = 0. (1.2)

It is well-known [25, 39] that solvability criteria and the construction of solutions can
be constructed via consideration of certain eigenspaces of the Hamiltonian matrix

AH =
[

A−BR−1C −BR−1B∗

C∗R−1C−Q −(A−BR−1C)∗

]
. (1.3)

Simple arithmetical considerations lead to the fact that X ∈ Cn,n solves (1.2) if
and only if im[ In , X ]∗ is an invariant subspace of AH . A well-known sufficient
(but not necessary) criterion for the solvability of (1.2) is the absence of eigenvalues
of AH on the imaginary axis. Numerical and theoretical difficulties appear in the
characterization of solvability of (1.2) when AH has eigenvalues on the imaginary
axis. Roughly speaking, this corresponds to the case where (1.2) is “on the border to
unsolvability”.
Another essential difficulty in the analysis of (1.1) is the possible non-invertibility of
R. In this case, neither the algebraic Riccati equation nor the Hamiltonian matrix
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AH can be formulated. Instead utilizing AH , one may consider the matrix pencil

sE − A =

 0 −sI + A B
sI + A∗ Q C

B∗ C∗ R

 (1.4)

and characterize the solvability of (1.1) via deflating subspaces of (1.4), i.e., a gener-
alization of the concept of invariant subspaces to matrix pencils[18]. Note that in the
case where R is invertible, simple row and column transformations to sE −A lead to
sI −AH . However, the non-invertibility of R causes some additional problems, since
then we are at least in one of the following situations:

(i) The pencil sE − A has eigenvalues at infinity (see Section 2 for a definition).
(ii) The pencil sE − A is singular, i.e. det(sE − A) = 0 for all s ∈ C.

Besides presenting equivalent solvability criteria for Lur’e equations, the main contri-
bution of this work is the characterization of the set of solutions of (1.1) in terms of
deflating subspaces of (1.4).
Let us briefly give an overview about the present state of research in the field of
Lur’e equations. One of the first works dealing with this problem are [36, 37]. Under
the assumption that (A, B) is controllable, i.e., rank[ sI − A , B ] = n for all s ∈ C,
the solvability of the Lur’e equations is shown to be equivalent to the positive semi-
definiteness of the so-called spectral density function

Φ(iω) =
[
(iωI −A)−1B

Im

]∗ [
Q C
C∗ R

] [
(iωI −A)−1B

Im

]
(1.5)

for all ω ∈ R.
The works [23, 35] give an iterative technique for the elimination of variables corre-
sponding to ker R. After a finite number of steps this leads to a Riccati equation.
This also gives an equivalent solvability criterion that is obtained by the feasibility of
this iteration.
In [24, 34], the matrix R is slightly perturbed by εIm for some ε > 0. Then by us-
ing the invertibility of R + εI, the corresponding perturbed Lur’e equations are now
equivalent to a Riccati equation. It is shown that certain corresponding solutions Xε

then converge to a solution of (1.1).
The matrix pencil approach to the solution of Lur’e equations is considered in [5, 6,
7, 13, 14, 15, 16, 17, 19, 21, 22]. The works [21, 22] give a complete characterization
of the eigenstructure of so-called extended Hamiltonian matrix pencils, that can be
obtained by simple row and column transformations to the matrix pencil in (1.4).
The connection is highlighted to equations of the form

A∗X + XA + Q = F ∗RF,

XB + C = F ∗R,
(1.6)

that have to be solved for (X, F ) ∈ Cn,n × Cm,n. This type can be considered as a
special case of (1.1), since every Lur’e equation that has a solution (X, K,L) with
im L ⊂ im K can be expressed by a system of type (1.6). However, this is by far not
fulfilled by every Lur’e equation.
The works [15, 16, 17, 19] consider the case where the matrix[

Q C
C∗ R

]
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is positive semi-definite and its rank equals to m, the matrix pencil (1.4) is regular and
the pair (A, B) is controllable. It is shown that under these assumptions, a particular
solution can be constructed via the consideration of certain deflating subspaces of
a matrix pencil closely related to (1.4).
Our approach to Lur’e equations is mostly related to [5, 6, 7, 14, 13]. In particular, the
works [5, 6, 7] consider the relation between deflating subspaces of associated matrix
pencils and the solutions of a slight generalization of (1.1) and some a posteriori
conditions on deflating subspaces are given such that a solution of the Lur’e equations
can be constructed from these. We aim to give a priori conditions on the deflating
subspaces such that they lead to a solution of (1.1).

The works [14, 13] consider the closely related problem of spectral factorization,
that is, the construction of a rational function Ψ : iR → Cp,m such that the spectral
density function fulfills Φ(iω) = Ψ∗(iω)Ψ∗(iω). As a byproduct, [13] gives equivalent
criteria for the solvability of (1.1) under some weak controllability conditions of (A, B).
The construction of solutions from the pencil (1.4) consists of an iterative elimination
of the “critical” deflating subspaces. The work [14] considers spectral factorization
on the basis of minimal descriptor realizations Φ(iω) = B∗(iωE − A)−1B + R for
some square matrix pencil sE− A fulfilling E = −E∗ and A∗ = A. Characterizations
for the positive semi-definiteness of the spectral density function in terms of the
eigenstructure of the pencil [

sE− A B
B∗ R

]
(1.7)

Though this work is not directly dealing with equations of the form (1.1), we can also
gainfully use its techniques for the analysis of Lur’e equations.

Finally we remark that for the case of positive definite R, the work [30] shows
that, under some slight extra conditions on the controllability of (A, B), there exist
some particular solutions X− and X+ of (1.2) which are, in terms of definiteness,
below (resp. above) all Hermitian X solving the algebraic Riccati inequality, i.e., the
expression on the left hand side of (1.2) is positive semi-definite. It is furthermore
shown that there, in terms of definiteness, the set of solutions is between two extremal
solutions. The extremal solutions are shown to express optimal energies of certain
linear-quadratic optimal control problems on the real half axis [36]. If the Hamiltonian
matrix AH has no eigenvalues on the imaginary axis, it is known from [25, 30] that
these solutions correspond to the eigenspaces belonging to the eigenvalues in the
positive (resp. negative) complex half-plane. We also generalize these facts to Lur’e
equations.
We finally remark that the pencil (1.4) has the special property being even, that is
E is skew-Hermitian and A is Hermitian. Matrix pencils of this type are intensively
considered in [31, 32, 33], where especially the eigenstructure is analyzed and even
canonical forms of Jordan-type are introduced.
The paper is organized as follows. Section 2 introduces the notation and contains
some required control and matrix theoretic background, in particular a normal form
for even matrix pencils is introduced. In Section 3 we collect some criteria being
equivalent to the solvability of Lur’e equations. The solutions set of Lur’e equations
is characterized in Section 4 by means of deflating subspaces of the associated even
matrix pencil. Section 5 deals with the existence and characterization of extremal
solutions.
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2. Control and Matrix Theoretic Preliminaries. Throughout the paper
real and complex numbers are denoted by R and C, the open left and right half-
planes by C− and C+, respectively. The symbol i stands for the imaginary unit and
iR denotes the imaginary axis. By Re(z), Im(z), z we denote the real part, imaginary
part and, respectively, the conjugate transpose of z ∈ C. Natural numbers excluding
and including 0 are denoted by N and N0, respectively. The spaces of n×m complex
matrices are denoted by Cn,m, and the set of invertible and complex n × n matrices
by Gln(C). The matrices AT and A∗ denote, respectively, the transpose and the
conjugate transpose of A ∈ Cn,m, and A−T = (A−1)T , A−∗ = (A−1)∗. We denote by
rank(A) the rank, by im A the image, by kerA the kernel, by σ(A) the spectrum of
a matrix A. For Hermitian matrices P,Q ∈ Cn,n, we write P > Q (P ≥ Q) if P −Q
is positive (semi-)definite. For a Hermitian matrix P ∈ Cn,n the inertia, i.e., triple
consisting of the numbers of positive, negative and zero eigenvalues are denoted by
In(P ) ∈ N3

0.
For a rational matrix-valued function Φ : C\D → Cn,m, where D ⊂ C is the finite set
of poles, we define the normal rank by normalrankΦ = maxs∈C\D rank Φ(s).
With Ai ∈ Cni,mi with mi, ni ∈ N0 for i = 1, . . . , k, we denote the block diagonal
matrix by diag(A1, . . . , Ak). In particular, we set diag(A1, 00,m2) = [ A1 , 0n1,m2 ].
An identity matrix of order n is denoted by In or simply by I. The zero n×m (n×n)
matrix is denoted by 0n,m (resp. 0n) or simply by 0. Moreover, for k ∈ N we introduce
the following special matrices Jk, Mk, Nk ∈ Rk,k, Kk, Lk ∈ Rk−1,k with

Jk =

 1

. .
.

1

 , Kk =

0 1
. . .

. . .

0 1

 , Lk =

1 0
. . .

. . .

1 0

 ,

Mk =


1 0

. .
.

. .
.

1 . .
.

0

 , Nk =


0 1

. . .
. . .

. . . 1
0

 .

Definition 2.1. Let sE −A be a matrix pencil with E,A ∈ Rm,n. Then sE −A
is called regular if m = n and normalrank(sE −A) = n.

A pencil sE −A is called even if E = −E∗ and A = A∗.

Many properties of a matrix pencil can be characterized in terms of the Weierstraß
canonical form (WCF).

Type Size Cj(s) Parameters

W1 kj × kj (s− λ)Ikj
−Nkj

kj ∈ N, λ ∈ C

W2 kj × kj sNkj
− Ikj

kj ∈ N

W3 (kj − 1)× kj sKkj − Lkj kj ∈ N

W4 kj × (kj − 1) sKT
kj
− LT

kj
kj ∈ N

Table 2.1
Block types in Weierstraß canonical form
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Theorem 2.2. [18] For a matrix pencil sE − A with E,A ∈ Cn,m, there exist
matrices Ul ∈ Gln(C), Ur ∈ Glm(C), such that

Ul(sE −A)Ur = diag(C1(s), . . . , Ck(s)), (2.1)

where each of the pencils Cj(s) is of one of the types presented in Table 2.1.
The numbers λ appearing in the blocks of type W1 are called the (generalized) eigen-
values of sE−A. Blocks of type W2 are said to be corresponding to infinite eigenvalues.

It is shown in [18] that the WCF is unique up to permutation of the indices i = 1, . . . , k.
Since each block of type W3 (W4) leads to an additional column (resp. row) rank de-
ficiency of 1, the regularity of a pencil is equivalent the absence of blocks of type W3
and W4 in its WCF.
In the following, we review a special modification of the WCF from [32] for even
matrix pencils, the even Weierstraß canonical form (EWCF). This form is achieved
by a congruence transform of sE − A and therefore preserves the evenness. Note
that, intrinsically, in [32] pencils sE − A with Hermitian E,A were considered. The
corresponding result for even pencils simply follows by a replacement of E with iE.
In [31, 33], a further canonical form for the eigendecomposition of real even matrix
pencils is introduced that is also preserving realness. Note that this form can be
employed to derive real versions of the results in this paper.

Type Size Dj(s) Parameters

E1 2kj × 2kj

[
0kj ,kj (λ−s)Ikj−Nkj

(λ+s)Ikj
−NT

kj
0kj ,kj

]
kj ∈ N, λ ∈ C+

E2 kj × kj εj((−is− µ)Jkj + Mkj )
kj ∈ N, µ ∈ R,
εj ∈ {−1, 1}

E3 kj × kj εj(isMkj + Jkj )
kj ∈ N,
εj ∈ {−1, 1}

E4
(2kj−1)×
(2kj−1)

[
0kj−1,kj−1 −sKkj

+ Lkj

sKT
kj

+ LT
kj

0kj ,kj

]
kj ∈ N

Table 2.2
Block types in even Weierstraß canonical form

Theorem 2.3. [32] For an even matrix pencil sE − A with E,A ∈ Cn,n, there
exists a matrix U ∈ Gln(C) such that

U∗(sE −A)U = diag(D1(s), . . . ,Dk(s)), (2.2)

where each of the pencils Dj(s) is of one of the types presented in Table 2.2.
The numbers εj in the blocks of type E2 and E3 are called the block signatures.
The appearance of block of type E1 shows that generalized eigenvalues λ /∈ iR occur
in pairs (λ,−λ). The blocks of type E2 and E3 respectively correspond to the purely
imaginary and infinite eigenvalues. The additional sign parameter is contained which
is basically due to the fact that for a fixed λ ∈ iR the congruence transformation with
U preserves the inertia of the Hermitian matrix λE −A. Blocks of type E4 consist of
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a combination of blocks that are equivalent to those of type W3 and W4.
We now classify the inertia of the matrices Di(iω) in dependence of the corresponding
parameters and ω ∈ R.

Proposition 2.4. [14]
a) If Di is of type E1, then for all ω ∈ R holds

In(Dj(iω)) = [ kj , 0 , kj ].

b) If Di is of type E2 and kj is even, then

In(Dj(iω)) =

{
[ kj/2 , 0 , kj/2 ], if µ 6= ω,

[ kj/2−1 , 1 , kj/2−1 ] + In(εj), if µ = ω.

c) If Di is of type E2 and kj is odd, then

In(Dj(iω)) =

{
[ (kj−1)/2 , 0 , (kj−1)/2 ] + In(εj(ω−µ)), if µ 6= ω,

[ (kj−1)/2 , 1 , (kj−1)/2 ], if µ = ω.

d) If Di is of type E3 and kj is even, then for all ω ∈ R holds

In(Dj(iω)) = [ kj/2 , 0 , kj/2 ].

e) If Di is of type E3 and kj is odd, then for all ω ∈ R holds

In(Dj(iω)) = [ (kj−1)/2 , 0 , (kj−1)/2 ] + In(εj).

f) If Di is of type E4, then for all ω ∈ R holds

In(Dj(iω)) = [ kj , 1 , kj ].

Definition 2.5. A subspace V ⊂ CN is called (right) deflating subspace for the
pencil sE −A with E,A ∈ CM,N if for a matrix V ∈ CN,k with full column rank and
im V = V, there exists an l ≤ k and matrices W ∈ CM,l, Ẽ, Ã ∈ Cl,k with

EV = WẼ, AV = WÃ. (2.3)

Equivalently, equation (2.3) can be formulated as

(sE −A)V = W (sẼ − Ã), (2.4)

where s has to be treated as a formal variable.
Definition 2.6. Let the matrices

E =

 0 In 0
−In 0 0
0 0 0m

 , P =
[
0n In 0n,m

]
∈ Rn,2n+m

be given. Then a subspace V ⊂ C2n+m is called
– generalized isotropic if x∗Ey = 0 for all x, y ∈ V,
– generalized Lagrangian if L is generalized isotropic with dimV = n + m,
– generalized disconjugate if dim(PL) = n.
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Note that a subspace V is generalized Lagrangian if and only if it is a maximal gener-
alized isotropic space that is, V is generalized isotropic and every proper superspace
VL ⊃ V is not generalized isotropic. It can be further shown that a generalized
Lagrangian subspace V fulfills dim EV = n.

Definition 2.7. Let a pair (A, B) with A ∈ Cn,n, B ∈ Cn,m be given. Then
(i) λ ∈ C is called an uncontrollable mode of (A, B), if rank[ sI−A , B ] < n;
(ii) (A, B) is called controllable if it does not have an uncontrollable mode;
(iii) (A, B) is called sign controllable if all uncontrollable modes λ, µ ∈ C satisfy

λ + µ 6= 0;
(iv) (A, B) is called stabilizable if all uncontrollable modes have negative real part;
(v) (A, B) is called anti-stabilizable if all uncontrollable modes have positive real

part.

3. Solvability of Lur’e equations. We collect some known solvability criteria.
As in [13], most of the results in this work require that either the pair (A, B) is
controllable or the the pair (A, B) is sign-controllable together with the regularity of
the even pencil sE − A. Observing that for all ω ∈ R with iω /∈ σ(A) holds

U∗(iω)(iωE − A)U(iω) =

 0 −iωI + A 0
iωI + A Q 0

0 0 Φ(iω)


with U(iω) =

I 0 (iωI + A∗)−1(Q(−iωI + A)−1B − C)
0 I −(−iωI + A)−1B
0 0 Im

 ,

(3.1)

a comparison of the normal ranks of the blocks of the EWCF of sE − A leads to the
fact that the quantity m − normalrank Φ is to the number of blocks of type E4. in
particular, the pencil sE − A is regular if and only if normalrankΦ = m.

In the following result, we collect several statements equivalent to the solvability
of Lur’e equations.

Theorem 3.1. Let the Lur’e equations (1.1) with associated even matrix pencil
sE −A as in (1.4) and spectral density function Φ as in (1.5) be given. Assume that
at least one of the claims

(i) the pair (A, B) is sign-controllable and the pencil sE − A as in (1.4) is regular;
(ii) the pair (A, B) is controllable;

holds true. Then the following statements are equivalent:
1. There exists a solution (X, K,L) of the Lur’e equations.
2. There exists some Hermitian Y ∈ Cn,n with[

A∗Y + Y A + Q Y B + C
B∗Y + C∗ R

]
≥ 0. (3.2)

3. For all ω ∈ R with iω /∈ σ(A) holds Φ(iω) ≥ 0;
4. In the EWCF of sE − A, all blocks of type E2 have positive signature and

even size, and all blocks of type E3 have negative sign and odd size.
5. In the EWCF of sE − A, all blocks of type E2 have even size, and all blocks

of type E3 have negative sign and odd size.
In particular, solutions of the Lur’e equations fulfill (X, K,L) ∈ Cn,n × Cn,p × Cm,p

with p = normalrankΦ.
For the proof, we need the following two auxiliary results.
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Lemma 3.2. [13] Let the Lur’e equations (1.1) be given with associated even
matrix pencil sE − A as in (1.4) and let spectral density function Φ as in (1.5). Let
Tx ∈ Gln(C), Tu ∈ Glm(C), F ∈ Cm,n and

AF = T−1
x (A + BF )Tx, BF = T−1

x BTu,

CF = T ∗x CTu + T ∗x F ∗RTu, QF = T ∗x (Q + CF + F ∗C∗ + F ∗RF )Tx,

RF = T ∗uRTu.

(3.3)

Then the Lur’e equations

A∗
F XF + XF AF + QF = K∗

F KF ,

XBF + CF = K∗
F LF ,

RF = L∗F LF

(3.4)

with associated even matrix pencil sEF − AF and spectral density function ΦF (iω)
have the following properties:
a) For

UF =

T−∗x 0 0
0 Tx 0
0 FTx Tu

 , (3.5)

holds sEF −AF = U∗
F (sE − A)UF .

b) For

ΘF (iω) = I + F (iωI −AF )−1BTu (3.6)

holds ΦF (iω) = Θ∗
F (iω)Φ(iω)ΘF (iω).

c) (X, K,L) solves (1.1) if and only if (XF , KF , LF ) = (T ∗x XTx, (K+LF ∗)Tx, LTu)
solves (3.4).

Lemma 3.3. [14] Let an even matrix pencil sE −A be given. Then the following
two statements are equivalent.
1. In the EWCF, all blocks of type E2 have even size and positive sign, and all blocks

of type E3 have odd size and negative sign.
2. There exist n, c, d ∈ N and a function a : R → N which is zero except for a finite

set of values of ω, such that In(iE) = [ n , d + c , n ] and for all ω ∈ R holds
In(iωE −A) = [n + c− a(ω) , d + a(ω) , n ].

In the case where the above statements are fulfilled, a(ω) corresponds to the blocks of
type E2 with ω = µ, c is the number of blocks of type E3 and d is the number of blocks
of type E4.

Now we show Theorem 3.1.
Proof. The equivalence between 1., 2. and 3. as well as p = normalrankΦ is shown

in [13].
3.⇒4. First assume that A has no eigenvalues on the imaginary axis. Then the

spectral density function Φ is defined and positive semi-definite on the whole
imaginary axis. Defining d = normalrankΦ, the rationality of Φ implies that
there exists some function a : R → N that is zero except for a finite set of
values and rank Φ(iω) = d − a(ω). Defining c = m − d and applying the
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particular congruence transformation (3.1) to sE −A, the preservation of in-
ertia yields that sE − A fulfills the statement b) of Lemma 3.3 which then
implies 4.. It remains to include the case where A has imaginary eigenvalues.
Sign-controllability of (A, B) in particular implies the absence of uncontrol-
lable modes on the imaginary axis. Hence there exists some F ∈ Cm,n such
that AF = A+BF fulfills σ(AF )∩ iR = ∅[39]. Further, for Tx = In, Tu = Im,
defining the matrices BF , CF , QF and RF as in (3.3) and considering the
Lur’e equations (3.4), Lemma 3.2 implies that ΦF (iω) = Θ∗

F (iω)Φ(iω)ΘF (iω)
and iωEF −AF = U∗

F (iωE −A)UF with UF and ΘF (iω) as in (3.5) and (3.6).
The preservation of inertia now implies that we are in the situation of the
first part of the proof and the desired result can be directly concluded.

4.⇒5. This statement is trivial.
5.⇒3. Let Θ1 = iR ∩ σ(A) and define Θ2 as the set of generalized eigenvalues of

sE − A on the imaginary axis. Consider ω ∈ R such that iω /∈ Θ1 ∪ Θ2.
Consider the EWCF of and sE − A let d3, d4 be the number of of blocks
of type E3 and E4, respectively. Writing Dj(s) = sEj − Aj for accordant
matrices Ej , Aj , a comparison of the rank deficiency of E with those of the
matrices Ej : j = 1, . . . , k, we get that m = d3 + d4. Proposition 2.4 then
implies that In(iE−A) = [ n+d3 , d4 , n ]. Relation (3.1) and the preservation
of inertia then implies Φ(iω) ≥ 0 with rankΦ(iω) = d3. Now the continuity of
Φ on iR\Θ2 and the the finiteness of both Θ1 and Θ2 implies that Φ(iω) ≥ 0
for all ω ∈ R\Θ2.

The definiteness relation (3.2) belongs to the type of linear matrix inequalities (LMIs)
[8] that often arises in stability analysis of linear systems. The non-emptiness of the
solution set of an LMI is called feasibility. It can be seen that a Hermitian matrix X
is a part of a solution of the Lur’e equations (1.1) if it solves the LMI (3.2) with the
additional property that the rank of the matrix on the left hand side of the LMI (3.2)
equals to p.

The equivalence between 4. and 5. consequences that blocks of type E2 automat-
ically have positive sign, if 5. is fulfilled. An analogous assertion for blocks of type E3
does unfortunately not hold true. For instance, consider the 1× 1 matrices A = −1,
B = −C = R = 1 and Q = 0.

Note that sign-controllability of (A, B) together with Φ(iω) ≥ 0 for all ω ∈ R is in
general not sufficient for the solvability of the Lur’e equations (1.1). A counterexample
can be found in [13]. It is however shown in [13] that the feasibility of the LMI together
with sign-controllability of (A, B) implies the solvability of Lur’e equations.

In [14], the assertions 4.-6. were considered for the pencil (1.7) that corresponds
to a minimal descriptor realization of Φ. We employed the same technique of inertia
comparison for the proof of our more general result.

4. Construction of Solutions via Deflating Subspaces. In this part we
present solvability criteria and a parametrization of the solution set of Lur’e equations
in terms of deflating subspaces of the associated even matrix pencil.

Theorem 4.1. Let the associated even matrix pencil sE −A as in (1.4) be given
and let the spectral density function as in (1.5) satisfy Φ(iω) ≥ 0 for all ω ∈ R with
iω /∈ σ(A). Moreover, let p = normalrankΦ. Then the following two statements are
equivalent:
1. For the Hermitian X ∈ Cn,n there exist K ∈ Cp,n, L ∈ Cp,m such that (X, K,L)

is a solution of (1.1).
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2. There exist Vµ, Vx ∈ Cn,n+m, Vu ∈ Cm,n+m, Wµ, Wx ∈ Cn,n+p, Wu ∈ Cm,n+p and
Ẽ, Ã ∈ Cn+p,n+m such that

– X = VµV −
x for some arbitrary right inverse V −

x of Vx;
– V = im[V T

µ , V T
x , V T

u ]T is generalized Lagrangian and disconjugate;
– For V = [V T

µ , V T
x , V T

u ]T and W = [WT
µ , WT

x , WT
u ]T holds

(sE − A)V = W (sẼ − Ã). (4.1)

Lemma 4.2. Let the associated even matrix pencil sE − A as in (1.4) be given
and let the spectral density function as in (1.5) satisfy Φ(iω) ≥ 0 for all ω ∈ R with
iω /∈ σ(A). Let p = normalrankΦ and assume that the Hermitian matrix X ∈ Cn,n

fulfills

rank
[
A∗X + XA + Q C + XB

C∗ + B∗X R

]
= p. (4.2)

Then there exist K ∈ Cp,n, L ∈ Cp,m such that (X, K,L) is a solution of the Lur’e
equations (1.1).

Proof. Let ω ∈ R such that iω /∈ σ(A) and rank Φ(iω) = p. Then we have

Φ(iω) =
[
(iωI −A)−1B

Im

]∗ [
Q C
C∗ R

] [
(iωI −A)−1B

Im

]
=

[
(iωI −A)−1B

Im

]∗ [
A∗X + XA + Q C + XB

C∗ + B∗X R

] [
(iωI −A)−1B

Im

]
−B∗(−iωI −A∗)−1(A∗X + XA)(iωI −A)−1B

−B∗(−iωI −A∗)−1XB −B∗X(iωI −A)−1B.

Due to

−B∗(−iωI −A∗)−1(A∗X + XA)(iωI −A)−1B

=B∗(−iωI −A∗)−1((−iωI −A∗)X + X(iωI −A))(iωI −A)−1B

=B∗X(iωI −A)−1B + B∗(−iωI −A∗)−1XB,

the above expression for Φ(iω) reduces to

Φ(iω) =
[
(iωI −A)−1B

Im

]∗ [
A∗X+XA+Q C+XB

C∗+B∗X R

] [
(iωI −A)−1B

Im

]
. (4.3)

Now assume that X is not a part of a solution of the Lur’e equations, i.e., there exist
pP , pN ∈ N with pP + pN = p and pN > 0 such that[

A∗X + XA + Q C + XB
C∗ + B∗X R

]
=

[
M∗

11 M∗
21

M∗
12 M∗

22

] [
IpP

0
0 −IpN

] [
M11 M12

M21 M22

]
for some matrices M11 ∈ CpP ,n, M12 ∈ CpP ,m, M21 ∈ CpN ,n, M22 ∈ CpN ,m. Define
the functions G1(iω) = M11(iωI−A)−1B +M12, G2(iω) = M21(iωI−A)−1B +M22.
Then we have

Φ(iω) = G∗
1(iω)G1(iω)−G∗

2(iω)G2(iω).
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Then Theorem 3.1 implies G∗
1(iω)G1(iω)−G∗

2(iω)G2(iω) which is only fulfilled when
imG∗

2(iω) ⊂ imG∗
1(iω). Hence, we can estimate

p = rankΦ(iω) ≤ rankG2(iω) ≤ pP < p,

which is a contradiction.

Proof of Theorem 4.1. The implication 1. ⇒ 2. follows from 0 −sI + A B
sI + A∗ Q C

B∗ C∗ R

 X 0
In 0
0 Im

 =

 In 0
−X K∗

0 L∗

 [
−sI + A B

K L

]
. (4.4)

Now we show that 2. implies 1.: Since V = im[ V T
µ , V T

x , V T
u ]T is generalized La-

grangian and disconjugate, there exists some T ∈ Gln+m(C) and a Hermitian matrix
X ∈ Cn,n such that V1

V2

V3

 T =

X 0
In 0
0 Im

 .

Since, by construction, X = VµV −
x for some arbitrary right inverse V −

x of Vx, it is
sufficient to show that X is indeed a part of a solution of (1.1).
Define [ sẼ1 − Ã1 , sẼ2 − Ã2 ] = (sẼ − Ã)T where Ẽ1, Ã1 ∈ Cn,n, Ẽ2, Ã2 ∈ Cn,m.
Then (4.1) implies −sI + A B

Q + AT X + sX C
BT X + CT R

 =

Wµ

Wx

Wu

 [
sẼ1 + Ã1 sẼ2 + Ã2

]
.

Then we have WµẼ2 = 0, WxẼ2 = 0, WuẼ2 = 0 and thus −sI + A B
Q + AT X + sX C

BT X + CT R

 =

Wµ

Wx

Wu

 [
sẼ1 + Ã1 Ã2

]
.

Due to −I = WµẼ1, we have rank Wµ = n and thus, exists some W ∈ Gln+m(C) such
that WµW = [ In , 0n,p ]. Defining[

sẼ11 + Ã11 Ã12

sẼ21 + Ã21 Ã22

]
= W−1

[
sẼ1 + Ã1 Ã2

]
and [ Wx1 , Wx2 ] = WxW , [ Wu1 , Wu2 ] = WuW , we now have −sI + A B

Q + AT X + sX C
BT X + CT R

 =

 In 0
Wx1 Wx2

Wu1 Wu2

 [
sẼ11 + Ã11 Ã12

sẼ21 + Ã21 Ã22

]
.

A comparison of coefficients yields Ẽ11 = −I, Ã11 = A, Ã12 = B and Wu1 = Wu2Ẽ21,
X = −Wx1 +Wx2Ẽ21. Thus, for A21 = Ã21+Ẽ21Ã11 ∈ Cp,n and A22 = Ã22+Ẽ21B ∈
Cp,m we get  −sI + A B

Q + AT X + sX C
BT X + CT R

 =

 In 0
−X Wx2

0 Wu2

 [
−sI + A B

A21 A22

]
.
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This especially leads to[
AT X + XA + Q CT + BT X

XB + C R

]
=

[
Wx2

Wu2

] [
A21 A22

]
,

i.e., the rank of the matrix on the left hand side is bounded from above by p. We can
now infer from Lemma 4.2 that X is a part of a solution of the Lur’e equations.
In the remaining part of this section we further characterize the deflating subspaces
with the properties as stated in Theorem 4.1.
First we classify the generalized Lagrangian deflating subspaces of sE −A in terms of
the EWCF.

Theorem 4.3. Let the associated even matrix pencil sE −A as in (1.4) be given.
For blocks Dj(s), j = 1, . . . , k as presented in Table 2.2, let (2.2) be the EWCF of
sE − A. Further assume that all blocks of type E2 have even and all blocks of type
E3 have odd size. Consider the partitioning U = [U1 , . . . , Uk ] according to the block
structure of the EWCF. Then a matrix V ∈ C2n+m,n+m has a generalized Lagrangian
image and satisfies (4.1) for some W ∈ C2n+m,n+p, Ẽ, Ã ∈ Cn+p,n+m if

V =
[
V1 . . . Vk

]
for Vj = UjZj , (4.5)

where

Zj =


either [ Ikj

, 0kj
]T or [ 0kj

, Ikj
]T , if Dj is of type E1,

[ Ikj/2 , 0kj/2 ]T , if Dj is of type E2,
[ I(kj−1)/2 , 0(kj+1)/2 ]T , if Dj is of type E3,
[ Ikj

, 0kj+1 ]T , if Dj is of type E4.

Proof. First we show that im V with the matrix V as in (4.5) is indeed generalized
Lagrangian. Comparing the rank of E with the ranks of the matrices Ej in the blocks
Dj(s) = sEj −Aj , we can conclude that m equals to the number of blocks of type E3
and E4, we can conclude that rankV = n + m. Furthermore, by the definition of the
EWCF, we have

sV ∗
l EVj − V ∗

l AVj =

{
Dj(s), if l = j,
0 if l 6= j,

and thus

V ∗EV =
k∑

j=0

Z∗
j V ∗

j EVjZj .

The construction of Zj for each block type moreover leads to Z∗
j V ∗

j EVjZj = 0 for
j = 1, . . . , k, i.e., imV is generalized Lagrangian. The fact that im V is a deflating
subspace follows from the equation

(sE − A)V = (T−∗Z`) · diag(Z∗
1D1(s)Z1, . . . , Z

∗
kDk(s)Zk),

where Z` = diag(Z`,1, . . . , Z`,k) ∈ Cn+m,p with

Z`,j =


[ Ikj

, Ikj
]T − Zj , if Dj is of type E1,

[ 0kj/2 , Ikj/2 ]T , if Dj is of type E2,
[ 0(kj−1)/2 , I(kj+1)/2 ]T , if Dj is of type E3,
[ 0kj+1 , Ikj

]T , if Dj is of type E4.
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Theorem 4.3 shows how a generalized Lagrangian deflating subspace can be con-
structed from the transformation leading to EWCF. For a generalization of the equa-
tions (1.1), the work [6] gives equivalent criteria on the matrices A, B, C, Q and
R such that all generalized Lagrangian deflating subspaces of some associated even
matrix pencil are disconjugate. This is called a set of complete solutions and leads to
conditions which, for the case that we treat in this work, correspond to controllability
of (A, B).

Under the assumption that the LMI (3.2) is feasible, we now give additional
a priori criteria on a generalized Lagrangian deflating subspace, in particular on the
choice of the matrices Zj corresponding to the blocks of type E1, such that generalized
disconjugacy is guaranteed as well. The proof needs a couple of technical lemmas and
is left to the appendix to preserve clarity.

Theorem 4.4. Let the Lur’e equations (1.1) with associated even matrix pencil
sE −A as in (1.4) be given and assume that the LMI (3.2) is feasible. Moreover, let a
generalized Lagrangian space im V with V ∈ C2n+m,n+m be given such that (4.1) holds
true for some W ∈ C2n+m,n+p, Ẽ, Ã ∈ Cn+p,n+m. Furthermore, assume that for all
generalized eigenvalues λ of the pencil sẼ−Ã, the number −λ is not an uncontrollable
mode of (A, B). Then im V is generalized disconjugate.

By Theorem 4.3, there is a certain freedom in the construction of the generalized
Lagrangian deflating subspace, namely by either choosing the “first half” or the “sec-
ond half” of the space corresponding to blocks of type E1. By Theorem 4.4, we get
that - in order to also guarantee generalized disconjugacy - we have to incorporate the
first kj columns if λ is an uncontrollable mode and the last kj columns if −λ is an un-
controllable mode. This criterion therefore implicitly contains sign-controllability of
(A, B). In particular, for the case of solvable Lur’e equations, we have that a general-
ized Lagrangian subspace is automatically generalized disconjugate if the pair (A, B)
is controllable.

While the correspondence between generalized Lagrangian deflating subspaces of
the associated even matrix pencil sE − A requires the positive semi-definiteness of
the spectral density function, Theorem 4.4 on the other hand assumes the feasibity
of the LMI (3.2) for the criterion lsufficient for generalized disconjugacy. Note that,
because of the relation (4.3), the feasibility of (3.2) is a slightly stronger condition
than Φ(iω) ≥ 0 for all ω ∈ R.

5. Extremal Solutions. It is known for the case were (A, B) is controllable that
the solution set of the Lur’e equations has a certain structure, namely there exists a
maximal solution (X+, K+, L+) and a minimal solution (X−, K−, L−) [2, 36]. That
is, for all Hermitian solutions Y of the LMI (3.2) holds

X− ≤ Y ≤ X+. (5.1)

For the case of invertible R, it was shown in [30] that (anti-)stabilizability is sufficient
to the existence of a maximal (resp. minimal) solution. This solution is uniquely
determined by

σ(A−BR−1(B∗X + C)) ⊂ C− ∪ iR, (5.2)

(resp. σ(A−BR−1(B∗X + C)) ⊂ C+ ∪ iR). (5.3)
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and is therefore called (anti-)stabilizing solution [25, 30]. We now aim to derive
accordant results for Lur’e equations.

Roughly speaking, Theorem 4.3 and Theorem 4.4 consequence that the construc-
tion of solutions of the Lur’e equations via delating subspaces basically features a
freedom in the choice of the deflating subspaces corresponding to the non-imaginary
generalized eigenvalues. We show that the particular choice of the deflating sub-
spaces corresponding to the generalized eigenvalues in C− (C+) leads to the maximal
(minimal) solution. The following two results are shown in the appendix.

Theorem 5.1. Let the Lur’e equations (1.1) be given with associated even matrix
pencil sE −A as is (1.4) be given. Assume that the LMI (3.2) is feasible and the pair
(A, B) is stabilizable. Let V ∈ C2n+m,m such that im V is generalized Lagrangian and
disconjugate and there exists some W ∈ C2n+p,m such that (4.1) holds true for some
Ẽ, Ã ∈ Cn+p,n+m with the property that all generalized eigenvalues of sẼ−Ã have non-
positive real part. Consider a partition V = [V T

µ , V T
x , V T

u ]T with Vµ, Vx ∈ Cn,2n+m

and let X+ = VµV −
x for some right inverse V −

x of Vx. Then for all Hermitian Y ∈ C+

solving the LMI (3.2) holds

Y ≤ X+.

In regard of (4.4), a solution (X, K,L) is maximal if and only if all generalized
eigenvalues of the pencil [

−sI + A B
K L

]
(5.4)

have non-positive real part. Note that for invertible R, this is equivalent to (5.2).
The construction of the deflating subspace leading to the maximal solution can

be also performed via the help of the EWCF (2.2). If the accordantly partitioned
matrix U = [ U1 , . . . , Uk ] ∈ Gl2n+m is the transformation leading to EWCF, then
V = [V T

µ , V T
x , V T

u ]T ∈ C2n+m,n+m fulfills X+ = VµV −
x if (4.5) holds true for

Zj =


[ Ikj

, 0kj
]T , if Dj is of type E1,

[ Ikj/2 , 0kj/2 ]T , if Dj is of type E2,
[ I(kj−1)/2 , 0(kj+1)/2 ]T , if Dj is of type E3,
[ Ikj

, 0kj+1 ]T , if Dj is of type E4.

Note that imV is indeed generalized Lagrangian by Theorem 4.3. Taking into account
that (A, B) is assumed to be stabilizable, i.e., all uncontrollable modes have negative
real part, the generalized disconjugacy of im V follows by an application of Theorem
4.4 (which will be shown in the appendix).

Theorem 5.2. Let the Lur’e equations (1.1) be given with associated even matrix
pencil sE −A as is (1.4) be given. Assume that the LMI (3.2) is feasible and the pair
(A, B) is anti-stabilizable. Let V ∈ C2n+m,m such that im V is generalized Lagrangian
and disconjugate and there exists some W ∈ C2n+p,m such that (4.1) holds true for
some Ẽ, Ã ∈ Cn+p,n+m with the property that all generalized eigenvalues of sẼ − Ã
have non-negative real part. Consider a partition V = [V T

µ , V T
x , V T

u ]T with Vµ, Vx ∈
Cn,2n+m and let X+ = VµV −

x for some right inverse V −
x of Vx. Then for all Hermitian

Y ∈ C+ solving the LMI (3.2) holds

Y ≥ X+.
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Analogous to the argumentations below Theorem 5.1, the minimality of a solution
(X, K,L) can be characterized via the non-negativity of the generalized eigenvalues
of the pencil (5.4). Furthermore, the anti-stabilizability of (A, B) and the results of
Theorem 4.3 and Theorem 4.4 lead to the fact that the deflating subspace leading to
the minimal solution can be constructed with (4.5) for

Zj =


[ 0kj , Ikj ]T , if Dj is of type E1,
[ Ikj/2 , 0kj/2 ]T , if Dj is of type E2,
[ I(kj−1)/2 , 0(kj+1)/2 ]T , if Dj is of type E3,
[ Ikj

, 0kj+1 ]T , if Dj is of type E4.

6. Conclusion. In this work we have studied Lur’e matrix equations. Under
the assumption of either controllability or regularity of the associated even matrix
pencil together with sign-controllability, equivalent criteria for the solvability of Lur’e
equations are given in terms of the solvability of a linear matrix equation, the positive
semi-definiteness of the spectral density function and the eigenstructure of a certain
associated even matrix pencil. This associated even matrix pencil was utilized to
describe the solution set. It is shown that solutions of Lur’e equations correspond to
generalized Lagrangian and disconjugate deflating subspaces of the associated even
matrix pencil. These particular deflating subspaces were further characterized in
terms of the even Kronecker form. It is moreover shown that there exist solutions
which are extremal in terms of definiteness. The corresponding deflating subspaces
were particularly analyzed.

Appendix A. Some Auxiliary Results. In this section we show some technical
lemmas needed to the proofs of Theorems 4.4, 5.1 and 5.2. Note that none of these
lemmas require results that are presented in this paper earlier than Theorem 4.1 and
we therefore do not have any mathematical redundancies.

Lemma A.1. Let the Lur’e equations (1.1) be given with associated even matrix
pencil sE − A as in (1.4). For the Hermitian matrix Y ∈ Cn,n, define BY := B,
CY := C + Y B∗, QY := Q + A∗Y + Y A, RY := R and corresponding Lur’e equations

A∗
Y XY + XY AY + QY = K∗

Y KY ,

XY BY + CY = K∗
Y LY ,

RY = L∗Y LY .

(A.1)

The even matrix pencil associated to (A.1) then satisfies

sEY −AY = U∗
Y (sE − A)UY . (A.2)

for

UY =

In Y 0
0 In 0
0 0 Im

 , (A.3)

Furthermore, there is a one-to-one correspondence between the solutions (X, K,L) of
(1.1) and those of via the relation (XY , KY , LY ) = (X − Y,K, L).
In particular holds that Y solves the LMI (3.2) if and only if[

QY CY

C∗
Y RY

]
≥ 0. (A.4)
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Proof. The correspondence between the associated even matrix pencils and the
solutions follow by simple calculations. The result for (A.4) is a direct consequence
of the definition of QY , CY and RY .

Lemma A.2. Let Lur’e equations (1.1) be given with associated even matrix pencil
sE − A as in (1.4). Further assume that[

Q C
C∗ R

]
≥ 0 (A.5)

holds true. Let a generalized isotropic space im V for a full column rank matrix V ∈
C2n+m,k be given such that there exist W ∈ C2n+m,l and Ẽ, Ã ∈ Cl,k with

(sE − A)V = W (sẼ − Ã).

Consider a row partition

V = [Vµ , V T
x , V T

u ]T

with Vµ, Vx ∈ Cn,k, Vu ∈ Cm,k. Then Vµ = 0 if one of the following conditions hold
true:
a) (A, B) has no uncontrollable modes on the imaginary axis and the KCF of sẼ− Ã

does not contain blocks of type W4. Moreover, all generalized eigenvalues of sẼ−Ã
are purely imaginary.

b) The KCF of sẼ − Ã only contains blocks of type W2 and W3.
Proof. In the following, denote vectors v1, . . . , vl ∈ C2n+m with partition vi =

[ µT
1 , xT

i , uT
i ]T for µi, xi ∈ Cn, ui ∈ Cm. Further, assume that span{v1, . . . , vl}

is generalized isotropic. From the fact that, without loss of generality, it can be
assumed that sẼ − Ã is in WCF, it can be seen that the above result is equivalent to
the following assertions:
a) (A, B) has no uncontrollable modes on the imaginary axis and for some ω ∈ R

holds

iωEv1 = Av1, E(iωv2 + v1) = Av2, . . . , E(iωvl + vl−1) = Avl, (A.6)

then µ1 = . . . = µl = 0.
b) If either

Ev1 = 0, Ev2 = Av1, . . . , Evl = Avl−1 (A.7)

or

Ev1 = 0, Ev2 = Av1, . . . , Evl = Avl−1, Avl = 0, (A.8)

then µ1 = . . . = µl = 0.
Now we inductively show these assertions.
a) Let (A.6) hold true. From iωEv1 = Av1, we get (A− iωI)x1 + Bu1

(A∗ + iωI)µ1 + Qx1 + Cu1

B∗µ1 + C∗x1 + Ru1

 =

0
0
0

 .
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A multiplication from the left with [−µ∗1 , x∗1 , u∗1 ] yields[
x1

u1

]∗ [
Q C
C∗ R

] [
x1

u1

]
+ 2i(ω Re(x∗1µ1) + Im(u∗1Bµ1) + Im(x∗1A

∗µ1)) = 0.

We can conclude from a comparison of real parts that the first summand vanishes.
Condition (A.5) then implies that Qx1 + Cu1 = 0 and C∗x1 + Ru1 = 0. Hence,
we have (A∗ + iωI)µ1 = 0 and B∗µ1 = 0. This is a contradiction to the absence
of uncontrollable imaginary modes.
Now assume that µ1 = . . . = µi−1 = 0 and (A− iωI)xi + Bui

(A∗ + iωI)µi + Qxi + Cui

B∗µi + C∗xi + Rui

 =

−xi−1

µi−1

0

 =

−xi−1

0
0

 , x∗i−1µi = 0.

Again multiplying the first equation from the left with [−µ∗i , x∗i , u∗i ], we obtain[
xi

ui

]∗ [
Q C
C∗ R

] [
xi

ui

]
+ 2iω(Re(x∗i µi) + Im(u∗i Bµi) + Im(x∗i A

∗µi)) = 0.

and, by the same argumentation as before, we get µi = 0.

b) Let (A.6) hold true. From Ev1 = 0 we trivially get µ1 = 0. Now assume that
µ1 = . . . = µi−1 = 0. Then Avi−1 = Evi gives xi

−µi

0

 =

 Axi−1 + Bui−1

A∗µi−1 + Qxi−1 + Cui−1

B∗µi−1 + C∗xi−1 + Rui−1

 =

 Axi−1 + Bui−1

Qxi−1 + Cui−1

C∗xi−1 + Rui−1

 , x∗i−1µi = 0.

and thus, a multiplication from the left with [ 01,n , x∗i−1 , u∗1 ] yields[
xi−1

ui−1

]∗ [
Q C
C∗ R

] [
xi−1

ui−1

]
= 0.

Condition (A.5) then in particular implies Qxi−1 + Cuu−1 = 0 and thus µi = 0.
The case for (A.8) can be shown with the same technique as in the proof of b) and
are therefore omitted.

Lemma A.3. Let Lur’e equations be given and assume that (A.5) holds true
and (A, B) has no uncontrollable modes on the imaginary axis. For the associated
even matrix pencil sE − A as in (1.4), let a generalized isotropic space im V with
V ∈ C2n+m,k be given such that for some W ∈ C2n+m,l, and Ẽ, Ã ∈ Cl,k holds
(sE −A)V = W (sẼ − Ã), where sẼ − Ã is a pencil whose WCF only contains blocks
of types W1, W2 and W3. Consider a partition

V = [V T
µ , V T

x , V T
u ]T .

Then the following holds true:
a) If all generalized eigenvalues of sẼ−Ã have non-positive real part, then V ∗

µ Vx ≥ 0.
b) If all generalized eigenvalues of sẼ−Ã have non-negative real part, then V ∗

µ Vx ≤ 0.
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Proof. Since the proofs of assertions a) and b) only differ at some few places, we
show a) while displaying the differences in the argumentations for b) in parentheses.
Without loss of generality, assume that sẼ − Ã is in WCF with the particular block
ordering

W (sE −A)T = diag(C1(s), . . . , Cl(s), Cl+1(s) . . . , Ck(s)),

where the blocks C1(s), . . . , Cl(s) correspond to the eigenvalues with negative (pos-
itive) real part and Cl+1(s), . . . , Ck(s) are the blocks of type W1 corresponding to
the imaginary generalized eigenvalues and types W2 and W3. Consider an accordant
partition

V =

Vµc Vµ0

Vxc Vx0

Vuc Vu0

 , sẼ − Ã =

[
sẼc − Ãc 0

0 sẼ0 − Ã0

]
.

From Lemma A.2, we obtain V10 = 0 and thus V ∗
µ Vx = V ∗

µcVxc. Since sẼc − Ãc is in
WCF and it only contains blocks of size W1 corresponding to generalized eigenvalues
with negative (positive) real part, we have Ẽc = I and σ(Ãc) ⊂ C− (σ(Ãc) ⊂ C+).
The first block column of (sE − A)V = W (sẼ − Ã) is then equivalent to−Vxc

Vµc

0

 Ãc =

 AVxc + BVuc

A∗Vµc + QVxc + CVuc

B∗Vµc + C∗Vxc + RVuc

 .

A multiplication from the left with [−V ∗
µc , V ∗

xc , V ∗
uc ] yields

2V ∗
µcVxcÃc =

[
Vcc

Vuc

]∗ [
Q C
C∗ R

] [
Vxc

Vuc

]
+ V ∗

xcA
∗Vµc − V ∗

µcAVxc + V ∗
ucB

∗Vµc − V ∗
µcBVuc.

and thus

(V ∗
µcVxc)Ãc + Ã∗

c(V
∗
µcVxc) =

1
2

[
Vxc

Vuc

]∗ [
Q C
C∗ R

] [
Vxc

Vuc

]
≥ 0.

This is a Lyapunov equation for the Hermitian matrix V ∗
µcVxc. By the standard

results for Lyapunov matrix equations [39], the facts that σ(Ãc) ⊂ C− (σ(Ãc) ⊂ C+)
and the right hand side is positive semi-definite, we can deduce V ∗

µ Vx = V ∗
µcVxc ≤ 0

(V ∗
µ Vx = V ∗

µcVxc ≥ 0).
Lemma A.4. Let the Lur’e eqautions be given with associated even matrix pencil

sE − A as in (1.4) and assume that (A.5) holds true. Then there exist Tx ∈ Gln(C),
F ∈ Cn,m and Tu ∈ Glm(C) such that

T ∗x (Q + CF + F ∗C∗ + F ∗RF )Tx =
[

0n1 0n1,n2

0n2,n1 Q22

]
,

T ∗uRTu =
[

0m1 0m1,m2

0m2,m1 R22

]
,

T−1
x (A + BF )Tx =

[
N A12

0n2,n1 A22

]
,

T−1
x BTu =

[
E B12

0m2,m1 B22

]
,

T ∗x CTu + T ∗x F ∗RTu =
[
0m1,n1 0m1,n1

0m2,n1 C22

]
(A.9)
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for

N = diag(Nk1 , . . . , Nkl
), E = diag(e(k1)

k1
, . . . , e

(kl)
kl

), where e
(j)
j = [ 0 , . . . , 0 , 1 ] ∈ Cj,1

and some matrices Q22, R22, A12, A22 of suitable dimensions. In particular, Tx, Tu

and F can be chosen that the pencil

sE22 −A22 =

 0 −sI −A22 B22

sI −A∗
22 Q22 C22

B∗
22 C∗

22 R22

 (A.10)

is regular.
Proof. Consider the EWCF (2.1), partition the transformation T = [T1 , . . . , Tk ]

and assume that D1 is a block of type W4. From Lemma A.2, we know that for
Z1 = [ Ik1 , 0k1,k1−1 ], the matrix V1 = T1Z1 has the form

V1 = T1Z1 = [ 0T
n,k1

, Vx , Vu ]T

for some Vx ∈ Cn,k1 , Vu ∈ Cm,k3 . In particular, there exists a full column rank matrix
W1 ∈ C2n+m,k1−1 such that (sE −A)V1 = W1(−sKk1 + Lk1) holds true. The relation
Kk1 = [ Ik1 , 0k1,1 ] implies that Vx = [ Vxl , 0n,1 ] for some matrix Vxl ∈ Cn,k1−1

with full column rank. Consider an accordant partition of Vu = [ Vul , Vur ] with
Vul ∈ Cm,k1−1, Vur ∈ Cn,1. Since V1 has full column rank, we obtain Vur 6= 0. Now
define Tx = [ Vxl , Vxc ], Tu = [ Vur , Vuc ] for some Vxc ∈ Cn−k1 , Vuc ∈ Cn−k1 such
that Tx ∈ Gln(C), Tu ∈ Gln(C) and let F = [Vul , 0m,n−k1 ] T−1

x . Partition

T ∗x (Q + CF + F ∗C∗ + F ∗RF )Tx =
[
Q11 Q12

Q∗
12 Q22

]
T ∗uRTu =

[
R11 R12

R∗
12 R22

]
T−1

x (A + BF )Tx =
[
A11 A12

A21 A22

]
T−1

x BTu =
[
B11 B12

B21 B22

]
,

First we show that

A21 = 0, B21 = 0, Q11 = 0, Q12 = 0,

C11 = 0, C21 = 0, C12 = 0,

R11 = 0, R12 = 0, A11 = Nk1 , B21 = e
(k1)
k1

.

(A.11)

Consider the associated even matrix pencil
0 0 −sI + A11 A12 B11 B12

0 0 A21 −sI + A22 B21 B22

sI + A∗
11 A∗

21 Q11 Q12 C11 C12

A∗
12 sI + A∗

22 Q∗
12 Q22 C21 C22

B∗
11 A∗

21 C∗
11 C∗

21 R11 R12

B∗
12 B∗

22 C∗
12 C∗

22 R∗
12 R22

 .

Since, by Lemma 3.2, we have sEF −AF = U∗
F (sE −A)UF for UF ∈ Gl2n+m(C) as in

(3.5), and, furthermore, (sE −A)V1 = W1(−sKk1 + Lk1), the construction of UF and
the matrices Tx, Tu and F leads to the fact for v(λ) = [λ , . . . , λk1−1 ] holds that[

0n v(λ) 01,n−k1 λk1 01,m−1

]T ∈ ker(λEF −AF ) for all λ ∈ C.
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This implies that for all λ ∈ C, we have

(−λI + A11)v(λ) + λk1B11 = 0, A21v(λ) + λk1B21 = 0,

Q11v(λ) + λk1C11 = 0, Q∗
12v(λ) + λk1C21 = 0,

C∗
11v(λ) + λk1R11 = 0, C∗

12v(λ) + λk1R∗
12 = 0

and therefore the relations (A.11) have to hold true. Since the pencil sE22−A22 as in
(A.10) is constructed from a deflation of a block of type E4 from sE −A, their generic
rank deficiencies satisfy

2n2 + m2 − normalrank(sE22 −A22)
= 2n + m− normalrank(sE − A)− 1 = m−p−1.

Now a m−p−1-times repetition of the above deflation leads to the desired result.
Lemma A.5. Let the Lur’e equation (1.1) be given and assume that the associated

even matrix pencil sE − A as in (1.4) is regular, (A, B) does not have uncontrollable
modes on the imaginary axis and (A.5) holds true. Let V = [ V T

µ , V T
x , V T

u ]T ∈
C2n+m,k is a matrix with full column rank such for some W ∈ C2n+m,k and Ẽ, Ã ∈
Ck,k holds (sE−A)V = W (sẼ−Ã). Further assume that im V is generalized isotropic
and for all generalized eigenvalues λ of the pencil sẼ − Ã, the number −λ is not an
uncontrollable mode of (A, B). Then ker Vx ⊂ ker Vµ.

Proof. Since the pencil sE −A is regular, this also holds true for sẼ− Ã. Thus its
WCF only contains blocks of type W1 and W2. Assuming without loss of generality
that λÊ + Â is already in WCF, we obtain

EV Ã = AV Ẽ. (A.12)

The claim (A.5) implies that the spectral density function is pointwise positive semi-
definite. From the regularity of sE − A, we further get normalrank Φ = m.

Hence there exists some α ∈ R such that iαI−A, iαẼ− Ã and Φ(iα) are regular.
Let x ∈ Cn such that Vx(iαẼ − Ã)x = 0. Relation (A.12) implies

0 = VxÃx + AVxẼx + BVuẼx, (A.13)

0 = −VµÂx + A∗VµẼx + QVxẼx + CVuẼx, (A.14)

0 = B∗VµẼx + C∗VxẼx + RVuẼx. (A.15)

A multiplication of (A.14) from the left with x∗Ẽ∗V ∗
x yields

0 = x∗Ẽ∗V ∗
x VµÃx + x∗Ẽ∗V ∗

x QVxẼx + x∗Ẽ∗V ∗
x A∗VµẼx + x∗Ẽ∗V ∗

x CVuẼx

= x∗Ẽ∗V ∗
µ VxÃx + x∗Ẽ∗V ∗

x QXxẼx + x∗Ẽ∗V ∗
x A∗VµẼx + x∗Ẽ∗V ∗

x CW3Ẽx

= iαx∗Ẽ∗V ∗
µ VxẼx + x∗Ẽ∗V ∗

x QVxẼx + x∗Ẽ∗V ∗
x A∗VµẼx + x∗Ẽ∗V ∗

x CVuẼx

= x∗Ẽ∗V ∗
x QVxẼx + x∗Ẽ∗V ∗

x (iαI + A∗)VµẼx + x∗Ẽ∗V ∗
x CVuẼx.

We obtain from (A.13) and iαVxẼx = VxÃx that VxẼx = (iαI −A)−1BVuẼx. Then
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we have

0 =x∗Ẽ∗V ∗
x QVxẼx + x∗Ẽ∗V ∗

x (iαI + A∗)VµẼx + x∗Ẽ∗V ∗
x CVuẼx

= x∗Ẽ∗V ∗
u B∗(−iαI −A)−1Q(iαI −A)−1BVuẼx

+ x∗Ẽ∗V ∗
u B∗(−iαI −A∗)−1(iαI + A∗)VµẼx + x∗Ẽ∗VuB∗(−iαI + A∗)−1CVuẼx

= − x∗Ẽ∗V ∗
u B∗(iαI + A)−1Q(iαI −A)−1BVuẼx

− x∗Ẽ∗V ∗
u B∗VµẼx + x∗Ẽ∗V ∗

u B∗(−iαI + A∗)−1CVuẼx.

Plugging the relation B∗VµẼx = −C∗VxẼx − RVuẼx from (A.15) into the above
equation, we obtain x∗Ẽ∗V ∗

u Φ(iα)VuẼx = 0. Since Φ(iα) has full rank, we can infer
that VuẼx = 0 holds true. Then (A.14) reads

0 = −VxÃx + AVxẼx = −(iαI −A)VxẼx.

The invertibility of iαI − A now leads to VxẼx = 0 and thus also VxÃx = 0. Hence,
we have that for all λ ∈ C that Vx(λẼ − Ã)x = 0. Hence, the space given by V0 =
{x ∈ Ck : (iαẼ − Ã)x ∈ ker Vx} is a deflating subspace of sẼ − Ã. Thus there exists
some square regular pencil λÊ − Â and some full column rank matrices V0, W0 with
im V0 = V0 holds (sẼ− Ã)V0 = W0(sÊ− Â). Together with (sE −A)V = W (sẼ− Ã),
we have that

(sE − A)V V0 = WW0(sÊ − Â).

On the other hand, by definition of V0 holds 0 = Vx(sẼ − Ã)V0. Assuming without
loss of generality that sÊ − Â is in KCF, this implies VxV0 = 0. Altogether, this
means that the space im V V0 ⊂ V is a deflating subspace of sE − A and, due to
VxV0 = 0, the matrix V V0 has the form V V0 = [ V T

0µ , 0 , V T
0u ]T . A column partition

V0µ = [ V0µ,1 , V0µ,2 ],, V0u = [ V0u,1 , V0u,2 ] with V0µ,1 ∈ Cn,l1 and V0µ,2 ∈ Cn,l2 ,
V0u,1 ∈ Cm,l1 , V0µ,2 ∈ Cm,l2 leads to

E

V0µ,1

0
V0u,1

 Âf = A

V0µ,1

0
V0u,1

 , (A.16)

E

V0µ,2

0
V0u,2

 = A

V0µ,2

0
V0u,2

 N̂ . (A.17)

Again employing the argumentation as at the beginning of this proof, we obtain that
V0u1 = 0 and V0u1N̂ = 0. Then (A.16) implies −V0µ,1Âf = A∗V0µ,1 and B∗V0µ,1 = 0.
Assume that vf is an eigenvector of Âf , i.e., Âfvf = λvf . Then for v = V0µ,1vf holds
A∗v = −λv and B∗v = 0. However, means that im V contains a generalized eigenvec-
tors corresponding to the eigenvalue λ with the property that −λ is an uncontrollable
mode of (A, B). This is a controdiction to the assumption.
Now we show the same statement for the matrices V0µ,2, V0u,2. From V0u1N̂ = 0 and
(A.17), we obtain V0µ,2 = A∗V0µ,2N̂ and B∗V0µ,2 = 0. In particular, we have

V0µ,2 = A∗V0µ,2N̂ = · · · = (A∗)l2V0µ,2N̂
l2 = 0.
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Appendix B. Proof of Theorem 4.4.
Lemma B.1. Theorem 4.4 holds true under the additional assumption (A.5).
Proof. According to Lemma A.4, there exist Tx ∈ Gln(C), Tu ∈ Glm(C) and

F ∈ Cm,n such that (A.9) holds true and the pencil sE22−A22 as in (A.10) is regular.
Since, according to Lemma 3.2, the pencil

sEF −AF =


0 0 −sI + N A12 E B12

0 0 0 −sI + A22 0 B22

sI + N∗ 0 0 0 0 0
A∗

12 sI + A∗
22 0 Q22 0 C22

E∗ 0 0 0 0 0
B∗

12 B∗
22 0 C∗

22 0 R22


satisfies U∗

F (sE − A)UF = sEF − AF for UF as in (3.5), we have that VF = T−1
F V ,

WF = T−∗F W fulfill (sEF −AF )VF = WF (sÊ− Â). Without loss of generality, assume
that the pencil on the right hand side has the form

sÊ − Â = diag(sÊr − Âr, sÊ0 − Â0),

where sÊr − Âr is regular and sÊ0 − Â0 is WCF only containing blocks of type W3.
Then a suitable column partitioning VF = [VFr , VF0 ], WF = [WFr , WF0 ] leads

to (sEF − AF )VFr = WFr(sÊr − Âr) and (sEF − AF )VF0 = WF0(sÊ0 − Â0). In
particular, by construction of sEF − AF and the regularity of sE22 − A22, we have
im VF0 = im0n,1 × Cn1 × im 0n2,1 × Cm1 × im 0m2,1 and thus we can assume that

VF0 =
[
0n1,n1 0n1,n2 In1 0n1,n2 0n1,m1 0n1,m2

0m1,n1 0m1,n2 0m1,n1 0m1,n2 Im1 0m1,m2

]T

.

The regularity of sE22 −A22 moreover implies that an accordantly partitioned

VFr = [V T
µ1 , V T

µ2 , V T
x1 , V T

x2 , V T
u1 , V T

u2 , ]T ∈ C2n+m,n1

satisfies Vµ1 = 0 and, further, its submatrix

VFr2 = [V T
µ2 , V T

x2 , V T
u2 , ]T ∈ C2n1+m1,n1

fulfills (sE22 − A22)VFr2 = WFr2(sIk − Â) for some suitable WFr2. We get from
Lemma A.5 that ker Vx2 ⊂ ker Vµ2. This implies that for

VF = [VFr , VFW3 ] =


0 0 0

Vµ2 0 0
Vx1 In1 0
Vx2 0 0
Vu1 0 Im1

Vu2 0 0


holds

ker
[
Vx1 In1 0
Vx2 0 0

]
⊂ ker Vx2×Cn1 ×Cm1 ⊂ ker Vµ2×Cn1 ×Cm1 = ker

[
0 0 0

Vµ2 0 0

]
.



LUR’E EQUATIONS 23

On the other hand, due to VF = T−1
F V , we have

T−1
x Vx =

[
Vx1 In1 0
Vx2 0 0

]
, Vµ = T ∗x

[
0 0 0

Vµ2 0 0

]
and thus

ker Vx = ker
[
Vx1 In1 0
Vx2 0 0

]
⊂ ker

[
0 0 0

Vµ2 0 0

]
= ker Vµ.

This in particular means that the matrix Vµx = [ V T
µ , V T

x ]T ∈ C2n,n+m fulfills
ker Vµx = kerVx and thus rankVµx = rank Vx. On the other hand, since im V is
generalized Lagrangian, we have rank Vµx = n. Thus, the rank of Vx has to be n.

Proof of Theorem 4.4. Partition V = [Vµ , Vx , Vu ] for some Vµ, Vx ∈ Cn,n+m,
Vu ∈ Cm,n+m and let the Hermitian matrix Y ∈ Cn,n be a solution of the LMI (3.2).
Consider the Lur’e equations (A.1) with associated even pencil sEY −AY . By Lemma
A.1, we know that

(sEY −AY )VY = (T ∗Y W )(sẼ − Ã)

with TY as in (A.3) and VY = [ (Vµ − Y Vx)T , V T
x , V T

u ]T and, moreover, (A.4) holds
true. Lemma B.1 now implies that rank Vx = n.

Appendix C. Proof of Theorem 5.1 and Theorem 5.2. Due to a total
analogy, we show the results for Theorem 5.1 and Theorem 5.2 at once. Note that
the respective assertions for the minimal solutions are located in the parentheses.

Proof of Theorem 5.1 (and Theorem 5.2). Let the Hermitian matrix Y ∈ Cn,n be
a solution of the LMI (3.2). Consider the Lur’e equations (A.1). By Lemma A.1, we
know that the solutions of (1.1) and (A.1) are related by

(XY , KY , LY ) = (X − Y,K, L).

Let V = [ V T
µ , V T

x , V T
u ]T with Vµ, Vx ∈ Cn,n+m, Vu ∈ Cm,n+m be a generalized

Lagrangian and disconjugate deflating subspace such that for some W ∈ C2n+m,p

and an n + p× n + m pencil sẼ − Ã whose generalized eigenvalues have non-positive
(non-negative) real part holds (sE −A)V = W (sẼ− Ã). Lemma A.1 implies that the
even pencil sEY −AY associated to the Lur’e equations (A.1) fulfills

(sEY −AY )VY = (T ∗Y W )(sẼ − Ã)

with TY as in (A.3) and VY = [ (Vµ − Y Vx)T , V T
x , V T

u ]T . Since (A.4) is fulfilled, we
can apply statement a) (b)) of Lemma A.3 to the Lur’e equations (A.1) in order to
obtain that

0 ≤ V ∗
x (Vµ − Y Vx) = V ∗

x Vµ − V ∗
x Y Vx, (0 ≤ V ∗

x (Vµ − Y Vx) = V ∗
x Vµ − V ∗

x Y Vx).

A multiplication from the left with (V −
x )∗ and from the right with V −

x the yields

0 ≤ (V −
x )∗V ∗

x VµV −
x − (V −

x )∗V ∗
x Y VxV −

x = X+ − Y.

(≥)
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