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Abstract

Stability-based methods for scenario generation in stochastic programming are re-
viewed. In particular, we briefly discuss Monte Carlo sampling, Quasi-Monte Carlo
methods, quadrature rules based on sparse grids and optimal quantization. In addi-
tion, we provide some convergence results based on recent developments in multivari-
ate integration. The method of optimal scenario reduction and techniques for scenario
trees generation are also reviewed.

Many stochastic programming models may be rewritten into the form

min
{

∫

Ξ
f0(x, ξ)P (dξ) : x ∈ X,

∫

Ξ
fk(x, ξ)P (dξ) ≤ 0, k = 1, ..., K

}

, (1)

where X is a closed subset of R
m, Ξ a closed subset of R

d, the functions fk map from R
m×Ξ

to the extended real numbers R for k = 0, ..., K, and P is a probability distribution on Ξ.
The set X is used to describe all constraints not depending on P , and the set Ξ to contain
the support of P . The integrands fk are assumed to be lower semicontinuous jointly in
(x, ξ) implying that all integrals in (1) are well defined (although possibly infinite).

Classical examples are linear two-stage stochastic programs and optimization models
with probabilistic constraints. Linear two-stage models (see Section 1.5.2.1) appear for
K := 0 and f0 having the representation

f0(x, ξ) := 〈c(ξ), x〉 + inf{〈q(ξ), y〉 : W (ξ)y = h(ξ) − T (ξ)x, y ≥ 0} (2)

by means of the infimum of a second stage linear program where some of the coefficients
are affine functions of the d-dimensional random vector ξ and the variable x is the first
stage decision. Models with probabilistic constraints appear, for example, for K = 1,
f0(x, ξ) = 〈c, x〉 and

f1(x, ξ) = p − 1l{ξ∈Ξ:T (ξ)x≥h(ξ)}(ξ),

where 1lB denotes the characteristic function of a set B in R
d and p ∈ (0, 1) is a probability

level (see also Section 1.5.6.1).
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1 Approximation

Stability results for (1) with respect to approximations Q of the original probability distri-
bution P (see [30] for a survey) state that infimal values v(P ) and v(Q) and solution sets
S(P ) and S(Q) of the stochastic programs (1) with distributions P and Q, respectively,
get close if the (uniform) distance of P and Q

dF (P, Q) = sup
f∈F

∣

∣

∣

∫

Ξ
f(ξ)P (dξ) −

∫

Ξ
f(ξ)Q(dξ)

∣

∣

∣
(3)

with F = {fk(x, ·) : x ∈ X, k = 0, . . . , K} gets small, the set X is compact, the objective
function x 7→

∫

Ξ f0(x, ξ)P (dξ) is Lipschitz continuous on X and a metric regularity condi-
tion for the constraint set is satisfied. The latter two conditions are only needed if K ≥ 1.
As we have seen before, typical integrands f in stochastic programs are nondifferentiable
or even discontinuous. (For simplicity we assume here that all integrals in (1) are finite
for every x ∈ X and for the probability distribution P and its approximations Q.)

The most important way to approximate P consists in utilizing discrete probability
measures Qn having finite support

supp(Qn) = {ξ1, . . . , ξn} ⊂ Ξ

for some n ∈ N. The elements of supp(Qn) are often called scenarios. When replacing P

by Qn in (1) the (multivariate) integrals in (1) reduce to weighted sums and one obtains

min
{

n
∑

i=1

qif0(x, ξi) : x ∈ X,

n
∑

i=1

qifk(x, ξi) ≤ 0, k = 1, ..., K
}

, (4)

where qi = Qn({ξi}) > 0 is the probability that scenario ξi occurs (i = 1, . . . , n). Clearly,
we have

∑n
i=1 qi = 1. The structure of the approximate stochastic programming problem

(4) is very close to a standard (linear, nonlinear, integer) optimization model. The only
remaining difficulty consists in the need of many evaluations of the functions fk at the
pairs (x, ξi), i = 1, . . . , n, if the number n of scenarios gets large. But, large n are
often unavoidable when recalling numerical integration even in dimension d = 1 and all
the more for large d as in many applied stochastic programming models, in production,
energy, transportation and finance. According to our stability considerations the number
n, the scenarios ξi ∈ Ξ and their probabilities qi for i = 1, . . . , n should be selected such
that for given ε > 0 the (absolute) error satisfies

e(Qn) := sup
f∈F

∣

∣

∣

∫

Ξ
f(ξ)P (dξ) −

n
∑

i=1

qif(ξi)
∣

∣

∣
≤ ε (5)
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with F defined earlier. Another and more feasible condition consists in utilizing the
relative error such that given ε ∈ [0, 1) we look for a probability measure Qn such that

e(Qn) ≤ εe(Q̄1), (6)

where the measure Q̄1 consists of only one distinguished scenario ξ̄ with probability one.
A more advanced requirement consists in looking for Qn with the smallest number n =
nmin(ε, Qn) ∈ N of scenarios such that (6) holds. Sometimes even Q0 = 0 is considered in
the literature (e.g. [34]) and, thus, the criterion (6) is of the form

e(Qn) ≤ ε sup
f∈F

∣

∣

∣

∫

Ξ
f(ξ)P (dξ)

∣

∣

∣
. (7)

The behavior of e(Qn) with respect to n ∈ N and of nmin(ε, Qn) with respect to ε is of
considerable interest. In both cases the dependence on the dimension d of P is crucial,
too.

It is not surprising that the behavior of the two quantities depends heavily on the set
F of integrands as well as on the probability distribution P . Since the set F in its present
form is not very convenient to handle, it might be an alternative to enlarge F in (5), (6)
or (7). But, one has to be careful in this process as is shown next.

If F is the unit ball in the Banach space Lip(Rd) of Lipschitz continuous functions on
Ξ = R

d and if qi = 1
n
, i = 1, . . . , n, the best possible convergence rate is

e(Qn) = Cn− 1
d (8)

for some constant C depending only on P under the weak assumptions that P is not
singular with respect to the Lebesgue measure on R

d and that the moment
∫

Rd ‖ξ‖1+δP (dξ)
is finite for some δ > 0 (cf. [7, Theorem 6.2]).

The rate (8) suggests that the unit ball in Lip(Rd) is too large and one should look
for function classes F satisfying more restrictive conditions. One possibility is offered by
the classical Koksma-Hlawka inequality [21, 6]. It states for an integrand f on Ξ = [0, 1]d

that is of bounded variation V (f) in the sense of Hardy and Krause that the estimate

∣

∣

∣

∫

Ξ
f(ξ)dξ −

n
∑

i=1

qif(ξi)
∣

∣

∣
≤ V (f)α∗(λd, Qn), (9)

holds with qi = 1
n
, i = 1, . . . , n and with the so-called star-discrepancy α∗ defined by

α∗(P, Q) = sup
ξ∈ [0,1]d

|P ([0, ξ)) − Q([0, ξ))|,
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where [0, ξ) = ×d
i=1[0, ξi). For problem (1) with K = 0 and Ξ = [0, 1]d the Koksma-Hlawka

inequality (9) leads to the estimate

e(Qn) ≤ sup
f∈F

V (f)α∗(P, Qn) = sup
x∈X

V (f0(x, · ))α∗(P, Qn)

If P = λd is the uniform distribution on Ξ = [0, 1]d and qi = 1
n
, i = 1, . . . , n, it is known

(cf. [21, Chapter 3.1]) that there exist sequences (ξi)i∈N with

α∗(P, Qn) = O(n−1(log n)d). (10)

Hence, compared with (8), a much better convergence rate for e(Qn) can be obtained
under stronger assumptions on F . Initiated by the pioneering work [34] the convergence
rate is further improved if the set F is bounded in the weighted tensor product space

W
(1,...,1)
2 ([0, 1]d) =

d
⊗

i=1

W 1
2 ([0, 1]), (11)

where W 1
2 ([0, 1]) is the Sobolev space of absolutely continuous real functions whose first

derivatives belong to L2([0, 1]). The space (11) contains all real functions f on [0, 1]d,

for which all mixed partial derivatives ∂|u|

∂ξu
f(ξu, 1) exist for almost every ξu ∈ [0, 1]|u| and

u ⊆ D = {1, . . . , d} and for which the weighted norm

‖f‖d,γ =
(

∑

u⊆D

∏

j∈u

γ−1
j

∫

[0,1]|u|

∣

∣

∣

∂|u|

∂ξu
f(ξu, 1)

∣

∣

∣

2
dξu

)
1
2

is finite. Here, we denote by |u| the cardinality of u ⊆ D, and by ξu ∈ [0, 1]|u| the vector
containing the components of ξ ∈ [0, 1]d whose indices are in u. The weights (γj) are
positive and monotonically decreasing with γ1 = 1 =

∏

j∈∅ γ−1
j .

By utilizing the weighted Koksma-Hlawka inequality

∣

∣

∣

∫

Ξ
f(ξ)dξ −

1

n

n
∑

i=1

f(ξi)
∣

∣

∣
≤ discγ((ξi))‖f‖d,γ

with disc(ξ) =
∏d

j=1 ξj − n−1
∑

ξi∈ [0,ξ) i and the weighted L2-star-discrepancy

discγ((ξi)) =
(

∑

∅6=u⊆D

∏

j∈u

γj

∫

[0,1]|u|

disc2(ξu, 1)dξu

)
1
2

instead of α∗(λd, Qn) in (9), it became possible in [34, 14] to prove the existence of a
sequence (ξi)i∈N such that for any δ > 0 the estimate

e(Qn) ≤ C(δ)n−1+δ (12)
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holds, where C(δ) is independent of n and d if the weights (γj) satisfy the condition

supd

∑d
j=1 γj < ∞. While the results in [34, 14] were nonconstructive, it is reported in

[19] that certain shifted lattice rules attain the optimal order (12) of convergence.

2 Scenario generation techniques

We briefly discuss here four different scenario generation techniques for stochastic pro-
grams without nonanticipativity constraints:

(1) Monte Carlo simulation methods,

(2) Quasi-Monte Carlo methods,

(3) Quadrature rules using sparse grids,

(4) Optimal quantization (or discretization) of probability measures.

2.1 Monte Carlo simulation methods

Monte Carlo methods are based on drawing independent identically distributed (iid) Ξ-
valued random samples ξ1(·), . . . , ξn(·), . . . (defined on some probability space (Ω,A, P))
from an underlying probability distribution P (on Ξ) and on using the law of large numbers
to obtain

lim
n→∞

1

n

n
∑

i=1

f(ξi(ω)) =

∫

Ξ
f(ξ)P (dξ) P-almost surely

for every real continuous and bounded function f on Ξ. Practically, iid samples are
approximately obtained by pseudo random number generators as uniform samples in [0, 1]d

and later transformed to more general sets and distributions. This technique may be
applied, for example, to certain time series models (calibrated to the available statistical
data) or to the statistical data directly. For details we refer to Section 1.5.4.1.

2.2 Quasi-Monte Carlo methods

The basic idea of Quasi-Monte Carlo (QMC) methods is to replace random samples in
Monte Carlo methods by deterministic points that are uniformly distributed in [0, 1]d. One
possibility for defining the latter property for a sequence (ξi)i∈N is to require that

lim
n→∞

1

n

n
∑

i=1

f(ξi) =

∫

[0,1]d
f(ξ)d(ξ) (13)

holds for all real continuous functions f on [0, 1]d. Basic references for QMC methods are
[21, 20]. With P = λd (the d-dimensional Lebesgue measure) and Q = Qn denoting the
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probability measure with support supp (Qn) = {ξ1, . . . , ξn} and with identical probabilities
1
n

for all atoms, the estimate (9) highlights the importance of the star-discrepancy of the
point set {ξ1, . . . , ξn}

disc∗(ξ1, . . . , ξn) := α∗(λd, Qn)

in this respect. Hence, one should look for low discrepancy sequences, i.e., sequences (ξi)i∈N

such that disc∗(ξ1, . . . , ξn) is low for all n. Such sequences have the property

1

2
n−1 ≤ disc∗(ξ1, . . . , ξn) = O(n−1(log n)d).

In particular, we refer to the sequences discussed in [20, Sect. 5.4] and [26], namely, Faure,
Sobol and Niederreiter sequences. The latter are special cases of so-called (t, d)-sequences
which in turn are based on (t, m, d)-nets [21, Chapter 4]. The latter (t, m, d)-nets and
lattices [21, Chapter 5], [20, Sect. 5.3] represent (finite) low discrepancy point sets and
are, presently, the most important sources for QMC methods.

If G : [0, 1]d → Ξ, Ξ ⊆ R
d, is almost everywhere continuous, then (13) means that the

sequence (Qn) converges weakly to λd and the continuous mapping theorem [1, Chapter 5]
implies that the sequence (QnG−1) converges weakly to λdG−1. This fact allows to apply
QMC methods to many situations in stochastic programming.

2.3 Quadrature rules using sparse grids

Again we consider first the unit cube [0, 1]d in R
d. Let nested sets of grids in [0, 1] be given

Ξi = {ξi
1, . . . , ξ

i
mi

} ⊂ Ξi+1 ⊂ [0, 1] (i ∈ N),

for example, the dyadic grid Ξi = { j
2i : j = 0, 1, . . . , 2i}. Then the point set suggested by

Smolyak [35]

H(q, d) :=
⋃

Pd
j=1 ij=q

Ξi1 × · · · × Ξid (14)

is called a sparse grid in [0, 1]d and points in H(q, d) are also called hyperbolic cross points.
In case of dyadic grids in [0, 1] H(q, d) consists of all d-dimensional dyadic grids with
product of mesh size given by 1

2q (see also [22]).
The corresponding tensor product quadrature rules for q ≥ d on [0, 1]d with respect to

the Lebesgue measure λd are of the form

I(q, d) =
∑

q−d+1≤|i|≤q

(−1)q−|i|

(

d − 1
q − |i|

) mi1
∑

j1=1

· · ·

mid
∑

jd=1

f(ξi1
j1

, . . . , ξ
id
jd

)
d

∏

l=1

a
il
jl
, (15)

where |i| =
∑d

j=1 ij and the coefficients ai
j (j = 1, . . . , mi, i = 1, . . . , d) are weights of

one-dimensional quadrature rules. Even if the one-dimensional weights are positive, some
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of the weights in (15) are negative. Hence, an interpretation as scenario-based (discrete)
probability measure is no longer possible. We note that the results in [23] (as extension
of [34], see Sect. 1) apply to such tensor product quadrature rules.

2.4 Optimal quantization of probability measures

Let D be a metric distance of probability measures on R
d, e.g., the Fortet-Mourier metric

ζr of order r (to be used in the next section), the minimal Lr-metric ℓr used in [7] or
some other metric (see [29]) such that the underlying stochastic program behaves stable
with respect to D. Furthermore, let P be a given probability distribution on R

d. We
are looking for a discrete probability measure Qn with support supp(Qn) = {ξ1, . . . , ξn},
Qn({ξi}) = pi, i = 1, . . . , n, such that it is the best approximation to P in the sense

D(P, Qn) = min{D(P, Q) : |supp(Q)| = n, Q(Rd) = 1}. (16)

In many cases, the distance D(P, Q) may be reformulated as a real function Φ defined on
[0, 1]n ×R

dn. It attains its global minimum subject to the standard simplex constraint for
the first n variables at (p1, . . . , pn; ξ1, . . . , ξn). Unfortunately, the function Φ is nonconvex
and often nondifferentiable, hence, minimizing it is not an easy task.

We refer to [27, 15] and [24] for developing algorithmic procedures for minimizing
Φ globally, e.g. stochastic gradient algorithms, stochastic approximation methods and
stochastic branch-and-bound techniques.

The methodology of optimal quantization may be extended to multi-stage stochastic
programs by incorporating constraints describing the tree structure (see e.g. [15, 27]).

3 Scenario reduction

Let P be a probability measure on R
d having N scenarios ξi with probabilities pi, i =

1, . . . , N . We consider P as approximation of the original probability distribution of a
stochastic program that has to be solved computationally. Due to running time require-
ments N might be too large and we have to look for an approximation Qn of P whose
support consists of only n < N scenarios out of {ξ1, . . . , ξN}. Then two questions arise: (i)
Which of the N scenarios should be deleted and (ii) which probabilities should be assigned
to the n remaining scenarios ?

In the following we review the stability-based approach for (optimal) scenario reduction
developed in the papers [4, 8, 9]. It is based on considering the distance dF (P, Qn) (see
(3) in Section 1) and in determining Qn as best approximation of P with respect to dF
among all probability measures whose supports consist of n scenarios out of {ξ1, . . . , ξN}.
An equivalent formulation of this best approximation problem is as follows:
Let QJ denote a probability measure on R

d with supp(QJ) = {ξi : i ∈ I \ J} for some
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index set J ⊂ I := {1, . . . , N} and let qi be the probability of the scenario indexed by i

for every i ∈ I \ J . Then the minimization problem

min
{

dF (P, QJ) : J ⊂ I, |J | = N − n, qi ≥ 0, i ∈ I \ J,
∑

i∈I\J

qi = 1
}

(17)

determines some index set Jn and weights q̄i ∈ [0, 1] such that the probability measure
Qn := QJn

with scenarios ξi and probabilities q̄i for i ∈ I\Jn solves the best approximation
problem. The formulation (17) of optimal scenario reduction leads immediately to a
decomposition into an inner and an outer minimization problem, namely,

min
J

{

inf
q

{

dF (P, QJ) : qi ≥ 0, i ∈ I \ J,
∑

i∈I\J

qi = 1
}

: J ⊂ I, |J | = N − n
}

. (18)

In particular, the approach becomes powerful if solutions and the infimum DJ(F , P ) of
the inner problem may be determined explicitly for any index set ∅ 6= J ⊂ I. In that case,
the optimal redistribution of the N probabilities pi, i ∈ I, to the n scenarios indexed by
I \ J is known and it remains to solve the outer (combinatorial) optimization problem

min{DJ(F , P ) : J ⊂ I, |J | = N − n} (19)

at least approximately. Problem (19) is known as n-median problem and as NP-hard.
Unfortunately, for many function classes F it is impossible to determine DJ(F , P ) as

well as the optimal redistribution explicitly. In particular, this is true for models with
probabilistic constraints and for two-stage mixed-integer stochastic programs in which
case (rectangular, polyhedral) discrepancies appear as distances dF (cf. [12, 13]). For
discrepancies, however, the inner problem may be solved by linear programming [12]. For
two-stage linear stochastic programs the integrands f0(x, · ) in (2) are often proportional
to certain elements of

Fr(Ξ) = {f : Ξ → R : |f(ξ) − f(ξ̃)| ≤ cr(ξ, ξ̃),∀ξ, ξ̃ ∈ Ξ}

for some r ∈ N and with the (cost) function cr defined by

cr(ξ, ξ̃) := max{1, ‖ξ‖r−1, ‖ξ̃‖r−1}‖ξ − ξ̃‖ (ξ, ξ̃ ∈ Ξ)

(see [30, 31]). The corresponding distance ζr := dFr
is known as Fortet-Mourier metric of

order r. In the latter case the inner problem is explicitly solvable and it holds

DJ(Fr, P ) =
∑

j∈J

pj min
i6∈J

ĉr(ξ
i, ξj) (20)

q̄i = pi +
∑

j∈J

i(j)=i

pj and i(j) ∈ arg min
i6∈J

ĉr(ξ
i, ξj), i ∈ I \ J, (21)
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i.e., the redistribution rule consists in adding the probability of a deleted scenario indexed
by j ∈ J to the probability of a remaining scenario that is nearest to ξj with respect to
the distance ĉr on supp (P ). The so-called reduced cost ĉr has the representation

ĉr(ξ
i, ξj) := min

{

ℓ−1
∑

k=1

cr(ξ
ik , ξik+1) : ℓ ∈ N, ik ∈ I, k = 1, . . . , ℓ, i1 = i, iℓ = j

}

.

Two simple heuristic algorithms for solving (19) are proposed in [8, 9]: the forward (se-
lection) and the backward (reduction) heuristic. To give an idea of the heuristics we give
a short description of the forward algorithm. Its basic idea originates from the simple
structure of (19) with (20) for the special case n = 1. It is of the form

min
u∈{1,...,N}

N
∑

j=1
j 6=u

pj ĉr(ξ
u, ξj).

If the minimum is attained at u∗, the index set J = {1, . . . , N} \ {u∗} solves (19) for

Figure 1: Illustration of selecting the first, second and third scenario out of N = 5

n = 1. The scenario ξu∗
is taken as the first element of supp(Q). Then the separable

structure of DJ is exploited to determine the second element of supp(Q) while the first
element is fixed. The process is continued until n elements of supp(Q) are selected.

Forward algorithm for scenario reduction

Step 0: J [0] := {1, . . . , N}.

Step k: uk ∈ arg min
u∈J [k−1]

∑

j∈J [k−1]\{u}

pj min
i6∈J [k−1]\{u}

ĉr(ξ
i, ξj),

J [k] := J [k−1] \ {uk} .

Step n+1: Redistribution with J := J [n] via (21).

Similarly, the idea of the backward algorithm is based on the second special case of (19)
with (20) for n = N − 1.
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4 Scenario trees for multistage stochastic programs

The special feature of multistage stochastic programs (see Section 1.5.3.1) consists in
imposing information constraints on the decisions. The information flow is modeled by a
filtration of σ-fields At, t = 1, . . . , T , which is associated to the stochastic input process ξ =
(ξt)

T
t=1 defined on a probability space (Ω,A, P). Typically, it is required that the σ-field At

is generated by the random vector (ξ1, . . . , ξt). Then the information or nonanticipativity
constraint means measurability of the decisions xt with respect to At for every t = 1, . . . , T .
Mostly, t = 1 refers to the present. Thus, ξ1 is deterministic and A1 = {∅, Ω}.

Clearly, any scenario-based approximation of the underlying probability distribution P

of ξ has to reflect the growth of the σ-fields. Hence, the scenarios need to be tree-structured.
In general, there are two ways to generate scenario trees, namely, (i) a tree-structure is
prescribed and scenarios are generated via conditional distributions for increasing t starting
with a root at t = 1, or (ii) in a first step a number of scenarios is generated for the whole
horizon t = 1, . . . , T based on the distribution P and according to some method reported
in Sect. 2. Secondly, a tree structure is generated successively by bundling scenarios.

Several specific techniques for generating scenario trees are known from the literature.
We refer to the survey [3] and the more recent papers [2], [10, 11], [17, 18], [16], [27, 15, 28],
[24], [25], [33]. Most of them are discussed in the introduction of [10].

Finally, we review an application of scenario reduction techniques (see Sect. 3) to
generate scenario tree. We consider an original (non-structured) scenario set {ξ1, . . . , ξN}
satisfying the root condition ξi

1 = ξ∗1 , i = 1, . . . , N , and the parameter sets {1, . . . , t} for
increasing t and start at t = 2 with the reduction of the original scenario set restricted to
t = 2. This leads to (say) k2 remaining scenarios and certain clusters Ck

2 of scenarios for
k = 2, . . . , k2 that are associated to one of the remaining scenarios via the next neighbor
property. In general, we obtain (disjoint) partitions or clusters

Ct := {C1
t , . . . , Ckt

t } , (kt ∈ N)

of the index set I = {1, . . . , N} for every t = 2, . . . , T . The following forward algorithm
leads to a scenario tree process ξtr whose structure may be controlled by certain tolerances
εt, t = 2, . . . , T .

Algorithm: Forward scenario tree generation

Step 1: Initialization

Set C1 = {I}, k1 = 1 and t := 2.

Step 2: Cluster computation

Let Ct−1 = {C1
t−1, . . . , C

kt−1

t−1 }. Perform scenario reduction w.r.t. the Fortet-Mourier metric
ζr for every scenario subset {ξi

t}i∈Ck
t−1

separately for every k ∈ {1, . . . , kt−1} and only with

respect to the tth component. Define index sets Jk
t and Ik

t of deleted and remaining
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scenarios and mappings ikt : Jk
t → Ik

t such that

ikt (j) ∈ arg min
i∈Ik

t

ĉr(ξ
i
t, ξ

j
t ) , (j ∈ Jk

t ),

according to the rule (21). Define the partition Ct and the mapping αt : I → I by

Ct :=
{

α−1
t (i)

∣

∣ i ∈ Ik
t , k = 1, . . . , kt−1

}

and αt(j) =

{

ikt (j), j ∈ Jk
t ,

j, else.
(22)

Ct is a refinement of the partition Ct−1. If t < T perform the cluster computation for
t = t + 1 and goto Step 2.

Step 3: Tree generation

According to the partition CT and the mapping αT (see (22)) the scenario tree process ξtr

is defined such that its kth scenario is

ξk
tr =

(

ξ∗1 , ξ
α2(i)
2 , . . . , ξ

αt(i)
t , . . . , ξ

αT (i)
T

)

for some i ∈ Ck
T

with probability qk :=
∑

i∈Ck
T

pi for every k = 1, . . . , kT . The error at step t is given by

errt :=

kt−1
∑

k=1

∑

j∈Jk
t

pj min
i∈Ik

t

ĉr(ξ
i
t, ξ

j
t ).

Hence, the generation procedure may be controlled by the condition errt ≤ εt for every
t = 2, . . . , T . We refer to [10] for further information and some computational experience.
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[23] Novak, E.; Woźniakowski, H.: Intractability results for integration and discrepancy, Journal
of Complexity 17 (2001), 388-441.

[24] Pagès, G.; Pham, H.; Printems, J.: Optimal quantization methods and applications to numer-
ical problems in finance, in Handbook of Computational and Numerical Methods in Finance
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