
Automatic Evaluations of Cross-Derivatives

Andreas Griewank∗ Lutz Lehmann Hernan Leovey Marat Zilberman†

version of October 9, 2009

Abstract

Cross–derivatives are mixed partial derivatives that are obtained by differentiating at most
once in every coordinate direction. They are a computational tool in combinatorics and high–
dimensional integration. Here we present two methods of computing exact values of all cross–
derivatives at a given point both following the general philosophy of automatic differentiation.
Implementation details are discussed and numerical results given.

1 Introduction and Motivation

With the term cross–derivatives we will refer to those mixed partial derivatives where differentiation
w.r.t. each variable is done at most once. If f :Rn→R is a n times continuously differentiable function,
we can associate with each subset i ⊂ D = {1,2, . . . ,n} of size |i| the cross-derivative fi where the
partial derivatives are w.r.t. the variables x j with index j ∈ i, that is

fi(x) =

(
∏
j∈i

∂

∂x j
f

)
(x) =

∂ k f
∂xi1 . . .∂xik

(x), i = {i1, i2, . . . , ik} .

Just as there are 2n subsets of D, there also are 2n cross–derivatives. The cross–derivative corresponding
to the empty set is the original function, f /0(x) = f (x). Throughout the paper we use the realistic
assumption that f is evaluated by a procedure that can be interpreted as a sequence of elementary
arithmetic operations and intrinsic functions as is customary in automatic, or algorithmic differentiation
[GW08]. If u and w are functions in n variables that appear as intermediate result in the evaluation of
f , then the cross–derivatives of the result of elementary operations g(u,w) or functions h(u) can be
expressed in terms of the cross–derivatives of u and w and the partial derivatives of the functions g
resp. h. For most elementary operations and functions these latter partial derivatives have a structure
that allows a fast implementation.

In Section 2 we develop such a direct implementation with a complexity of O(3n) per elementary
operation. In Section 3 we consider an alternative method based on interpolation of univariate Taylor
polynomials with an overall complexity of O(n22n) per elementary operation. However, as we see in

∗partially supported by the DFG research center ”MATHEON, Mathematics for the key technologies” in Berlin
†IAESTE internship supported by grant of DAAD

1

the numerical results Section 4 the resulting accuracy is less due to cancellation errors. In the remainder
of the introduction we sketch a few applications.

Applications of cross–derivatives are known in the computation of combinatorial numbers in graph
theory and in statistics for the estimation of the effective dimension of functions over high–dimensional
domains leading to efficient integration methods.

1.1 Cross–derivatives applied to Combinatorics

We present here examples which demonstrates the use of evaluation of high order derivatives in the
field of combinatorics. Both examples, the computation of the number of Hamiltonian cycles and the
evaluation of the permanent of a matrix, are #P–complete [GJ79], that is, they are enumeration prob-
lems that have associated decision problems, that are NP–complete. The existence of polynomial time
evaluation algorithms would imply that P=NP. Thus we can expect an exponentially growing runtime
for any algorithm computing this solution. The best available algorithm to compute the permanent has
indeed a complexity of O(n2n) arithmetic operations for (n×n)–matrices [Rys63].

Kubota in [Kub08] presents transformations of both problems to the determination of certain coeffi-
cients of suitably constructed multivariate polynomials. These coefficients are of the maximally mixed
terms of degree n polynomials in n variables. Thus, they are also obtainable as highest order cross–
derivatives. Kubota evaluates them using the transformation

g(t) = f
(

t, t2, t4, . . . , t2n−1
)

to univariate polynomials with degg≤ n2n−1, and obtains the required coefficient as the degree (2n−1)
coefficient of g. Using FFT-based methods for efficient evaluation of g results in operations counts of
O(n2n) times the basic operations count of evaluating f , which is O(n2) for the permanent and O(n3)
for the Hamiltonian cycles. Using our second method to evaluate the full set of cross–derivatives we
arrive at similar complexity that differs only in the power of n.

1.1.1 Hamiltonian cycles

Given a simple directed graph G = (V,E), E ⊂ V ×V , a Hamiltonian cycle is a cycle of edges in E
that visits each vertex in V exactly once (except the initial and final vertex that is visited twice). We
can count the total number of Hamiltonian cycles of graph V by evaluation of cross–derivatives. First,
define an adjacency matrix A to represent the edges of the graph, that is Ai j = 1 if there exists an edge
from the vertex vi to the vertex v j, otherwise Ai j = 0. Then, we define a multivariate diagonal matrix

X(x1,x2, . . . ,xn) = diag(x1,x2, . . . ,xn) =

 x1 0 ... 0
0 x2 0
...
0 0 ... xn


And finally, we construct the multivariate matrix H(x1,x2, . . . ,xn) = (X · A)n. Note that (X · A)k is
nonzero at position (i, j) if there is a directed path from edge vi to edge v j of length k. The monomials
of that entry actually trace that path, if there is a directed path vi = vi1 → vi2 → ··· → vik = v j, then

2

the monomial xi1xi2 . . .xik−1 will be present. In consequence, each Hamiltonian cycle will contribute
a monomial x1x2 . . .xn to each diagonal entry of H = (X ·A)n. Moreover, the number of Hamiltonian
cycles c(G) can be obtained as the coefficient of that monomial, which in turn can be computed as the
highest order cross–derivative of the first diagonal entry by the following equation:

c(G) =
∂H1,1

∂x1∂x2 . . .∂xn
(x1,x2, . . . ,xn)

1.1.2 Computation of the permanent of a matrix

Given a matrix A, its permanent is defined as:

per(A) = ∑
σ∈S n

a1σ(1)a2σ(2) . . .anσ(n)

where σ ∈S n runs over all the permutations of {1,2, . . . ,n}. One way to calculate the permanent is
to define an n–variate polynomial f :

f (x1,x2, . . . ,xn) =
n

∏
i=1

(ai1x1 +ai2x2 + · · ·+ainxn)

and to compute its n–th order cross–derivative:

per(A) =
∂ n f

∂x1∂x2 . . .∂xn
(x1,x2, . . . ,xn)

1.2 High–dimensional Quasi-Monte Carlo integration

Quasi-Monte Carlo methods are deterministic methods for approximating the integral:

I(f) =
∫

Cn
f (xxx)dxxx, xxx = (x1, . . . ,xn)

where Cn = [0,1]n is the unit cube inRn. Such integrals over a high–dimensional cube result frequently
from discretizations of path integrals, especially in mathematical finance, electric power utilities and
statistical physics.

The quasi-Monte Carlo methods are efficient equal–weight quadrature rules for these integrals of the
form

QN,n(f) =
1
N

N−1

∑
i=0

f (zzzi),

where zzz0, . . . ,zzzN−1 are the first N points of a quasi–random (such as a low discrepancy sequence) in
[0,1]n [KS05], for instance a Sobol sequence.

3

1.2.1 Error estimates

Zaremba [Zar68] provides an expression for the error of quasi-Monte Carlo quadrature rules in terms
of integrals over cross–derivatives:

Proposition 1.1 (Zaremba identity) Let f be a Cn function over the unit cube [0,1]n, zzz = (zzzk)k≤N be
a finite sequence of points in the interior of [0,1]n, and define, using the boxes [0,xxx) := [0,x1)×·· ·×
[0,xn)⊂Cn,

disczzz(xxx) :=
1
N

N

∑
k=1

1[0,xxx)(zzzk) − x1 · · ·xn

as the local discrepancy function over [0,1]n. Then the Zaremba identity states:

1
N

N

∑
k=1

f (zzzk)−
∫
[0,1]n

f (xxx)dxxx = ∑
/0 6=u⊂D

(−1)|u|
∫
[0,1]|u|

disczzz(xxxu,1)
∂ |u|

∂xxxu
f (xxxu,1)dxxxu.

Here D = {1, . . . ,n} is the set of coordinates indices, |u| is the cardinality of a subset u⊂ D, by (xxxu,1)
we denote the vector xxx ∈ [0,1]n with all components whose indices are not in u replaced by 1.

This identity results directly from the formula for integration by parts for multidimensional Stieltjes
integrals. Applying the Cauchy–Schwarz or more generally the Hölder inequalities to this decom-
position, various error estimates result. The Koksma–Hlawka [Hla61] inequality applies the Hölder
inequality for the L1 norm to this decomposition to obtain a simple expression for the integration error
through quasi-Monte Carlo quadrature rules. Let f be a function with bounded Hardy and Krause
variation V 1(f) < ∞ over the cube [0,1]n defined by

V 1(f) := ∑
/0 6=u⊂D

V 1
u (f) ; where V 1

u (f) :=
∫
[0,1]|u|

∣∣∣∣∣∂ |u|∂xxxu
f (xxxu,1)

∣∣∣∣∣dxxxu .

Then the Koksma-Hlawka inequality states:∣∣∣∣∣ 1
N

N

∑
i=1

f (zzzi)−
∫
[0,1]n

f (xxx)dxxx

∣∣∣∣∣≤ D?
N(zzz) ·V 1(f)

where
D?

N(zzz) := sup
xxx∈[0,1]n

|disczzz(xxx)| .

1.2.2 Effective dimension and function decomposition

X. Wang and K.T. Fang [WF03] have investigated the concept of effective dimensions in high dimen-
sional integrations, proposing to use this as the real dimension of the problem in some specific sense.
Typically, the definition of effective dimensions is based on an ANOVA (analysis of variance, see
[Sob01]) decomposition of the given function f .

The ANOVA decomposition is a way of decomposing a function into a sum of simpler functions. Let
D = {1, . . . ,n}. For any subset i⊂D, let |i| denote its cardinality and (D− i) be its complementary set

4

in D. Let xxxi = (x j : j ∈ i) be the |i|−dimensional vector containing the coordinates of xxx with indices in
i. Let Ci denote the |i|−dimensional unit cube involving the coordinates in i. Now assume that f is a
square integrable function. Then we can write f as the sum of 2n ANOVA terms:

f (xxx) = ∑
i⊂D

f i(xxx)

where the ANOVA terms f i(xxx) are defined recursively by

f i(xxx) :=
∫

CD−i
f (xxx)dxxxD−i −∑

j(i
f j(xxx)

and f /0 := I(f). The sum of the RHS is over strict subsets j 6= i, and we use the convention
∫

C /0 f (xxx)dxxx /0 :=
f (xxx). The ANOVA terms enjoy the following interesting properties:

1.
∫ 1

0 f i(xxx)dx j = 0 for j ∈ i.

2. The decomposition is orthogonal, in that
∫

Cd f i(xxx) f j(xxx)dxxx = 0 whenever i 6= j.

3. Let σ2 :=
∫

Cd f (xxx)2 dxxx − (I(f))2 be the variance of f , then we have:

σ
2 = ∑

i⊂D
σ

2
i (f), where σ

2
i (f) :=

∫
Cd

f i(xxx)2 dxxx

for |i|> 0 is the variance of f i and σ2
/0 (f) := 0.

Let us assume from now on that f ∈ Cn([0,1]n). If some cross–derivative fi vanishes identically
throughout the domain, the corresponding ANOVA terms f j with j⊃ i do vanish too and the function is
partially separable in the sense of Griewank and Toint [GT81]. Using the size of the cross–derivatives
we can now estimate how close this function is to a partially separable function of low order. To that
end we define effective dimensions of a function in a differentiable sense:

Definition 1.2 Given an 0 < ε < 1, we will say that f is of (VHK,S)−effective dimension k, if

∑
u : |u|≥k

V 1
u (f) ≤ εV 1(f).

and similarly that f is of (VHK,T)−effective dimension k, if there exists i1, . . . , ik such that

∑
/0 6=u⊂{i1,...,ik}

V 1
u ≥ (1− ε)V p(f).

S and T are referred to superposition and truncation dimension respectively, based on the Hardy and
Krause (HK) variation of a function.

Assuming that the function we wish to integrate has low effective dimension k << n, it has a good ap-
proximation by the partial sum of ANOVA-terms depending on k or less variables. Then the integration
over the full cube may be reduced to integration over low–dimensional faces of the cube, incurring only
a small error. In the literature it has usually been assumed that, for the determination of the effective
dimension, the higher order derivatives or at least their order of magnitude can somehow be guessed.
Here we consider two methods for evaluating them by automatic differentiation.

5

2 Direct propagation of cross derivatives

This section provides a description of the direct approach for evaluating cross–derivatives. Given an
evaluation procedure for a function that is a succession of elementary operations and intrinsic functions,
treat the input variables as linear functions and assign cross–derivatives correspondingly. Thereafter the
cross–derivatives are propagated step by step to all intermediate values, and in the end to the function
values.

We now only need to be concerned with the propogation through single steps. For that, note that each
of the intermediate values is a function of the input variables. Given any two arbitrary functions u
and w with their value and all the cross–derivatives, we now have to outline how to propagate cross–
derivatives to the results of simple arithmetic operations such as multiplication u ·w, division u/w etc.
Moreover, we need to propagate cross–derivatives through simple elementary functions such as exp(u),
sin(u),

√
u and other functions from the math.h C–library.

For that purpose, we will suggest a data structure which contains all the cross–derivatives of an arbitrary
function, describe rules for initialization, provide equations for further propagations and demonstrate
the general approach for constructing such rules. We use C as an informal programming language to
specify our algorithms, of course, other implementations are possible.

2.1 Allocation in a cube

Due to the commutativity of partial differentiation, the set of higher order partial derivatives of a given
order is highly symmetric. It is still an open problem to organize those derivatives in a data structure
providing both efficient access to individual derivatives and containing none of the derivatives twice.
However, in the case of the subset of all cross–derivatives, a natural data structure with easy and fast
access exists.

This data structure organizes all the 2n cross–derivatives of a function u in a flat array with 2n en-
tries. We call such data structure an n–dimensional cube. Each entry of that cube contains one
cross–derivative according to the following rule: consider the binary representation of 0 6 k < 2n,
k = ∑ j∈i 2 j−1, it has n bits, i ⊂ {1,2, . . . ,n} – regard each bit as corresponding to one of the indepen-
dent variables; we differentiate with respect to variables x j whose corresponding bits are 1′s, that is
where j ∈ i, and get the k–th entry of the cube. In a geometric interpretation the number k corresponds
to the vertex of the hypercube [0,1]n represented by the same 0–1–pattern, that is ∑ j∈i e j.

With the above binary representation property, we notice that the second half of the cube has the same
internal structure as the first half, but differentiation is done also with respect to the last variable. This
property allows us to create simple recursive functions for evaluating cross–derivatives.

2.2 Arithmetic operations

For a function u we will denote by U its cube. We start with simple initialization operations at a given
point x. For a constant function u(x) = c we would set U[0]=c and all the remaining cube entries are

6

initialized to zero. For a coordinate function resp. input variable u(x) = x j we would initialize its cube
by setting U[0]=x j and U[2 j]=1, the rest of the entries are set to zero.

For addition and substraction operations, v = u±w, the corresponding propagation rule is: V[i]=U[i]±
W[i] for all 0 6 i < 2n. And for scalar multiplication v(x) = cu(x) the propagation rule is: V[i]=c*U[i].
This stems directly from the linearity of differentiation. A special case of addition (substraction) is that
one of the operands is a constant scalar. In this case we do not need to allocate a whole 2n cube for the
scalar then apply the addition propagation, we can just add (substract) this constant from U[0] saving
storage and runtime. One can easily see that the complexity of the above linear operations is O(2n).

For any subset i⊂ {0, . . . ,n−1}, we will denote by vi the cross–derivatives obtained by differentiating
with respect to variables xk, k ∈ i. The generalized Leibniz formula for the multiplication of two
functions v = u ·w then states that:

vi(x) = ∑
j⊆i

uj(x)wi−j(x) .

Assume now that n /∈ i. Then the above convolution sum can be split as

vi∪{n}(x) = ∑
j⊂i

ui−j(x)wj∪{n}(x)+∑
j⊂i

uj∪{n}(x)wi−j(x)

Note that, fixing the same subset i, all three sums have the same structure. They all operate inside
separate halves of cubes. Varying i⊂ {1,2, . . . ,n−1} over the full half–cube results in the reducion of
the multiplication of cubes of n variables to 3 multiplications of cubes of (n−1) variables. This leads
to the following recursive multiplication procedure:

voidvoidvoid crossmult (intintint h, doubledoubledouble*u, doubledoubledouble*w, doubledoubledouble* v) {
ififif (h==1) { v[0] += (u[0]*w[0]); returnreturnreturn; }
h /= 2;
crossmult(h,u,w+h,v+h); crossmult(h,u+h,w,v+h);
crossmult(h,u,w,v);

}

Due to the recursive nature of this procedure, there will be 3n final function calls with h = 1 resulting
in 3n multiplications and the same number of additions.

Another, equivalent version of this function with the same operations count which reduces the number
of recursive calls from 1.5 ·3n to 3n is:

voidvoidvoid crossmult2 (intintint h, doubledoubledouble* u, doubledoubledouble* w, doubledoubledouble* v) {
intintint i; forforfor (i=h/2; i>0; i/=2) {

crossmult2 (i,u,w+i,v+i); crossmult2 (i,u+i,w,v+i); }
v[0]+=u[0]*w[0];

}

In Section 4 we will discuss optimizations of the implementation of the multiplication of cubes by
using a nonrecursive multiplication algorithm for small cubes.

7

The remaining arithmetic operations have operations counts that are expressable by the cost of a mul-
tiplication. Division is dominated by one multiplication, whereas the cost of computing squares and
square roots is one half of the cost of one multiplication.

To perform a division of a cube u by a cube w with result v = u/w, we consider the Leibniz formula
for the equivalent equation u = w · v:

ui(x) = ∑
j⊆i

wi−j(x)vj(x) = w /0vi(x)+∑
j(i

wi−j(x)vj(x)

To extract the highest derivative vi we divide by w /0 and introduce scaled values w̃j = wj/w /0 and ũj =
uj/w /0 for all subsets j⊂ i. Additionally, we set w̃ /0 = 0. After addends rearrangement we get:

vi(x) = ũi(x)−∑
j⊂i

w̃i−j(x)vj(x)

This is a recursive formula for the computation of the coefficients vi. To ensure its correctness, the
computation of coefficients vj needs to be finalized for all j ⊂ i. In devising an algorithm, this means
that of the entire cube, the computation of the first half of v comes first, then it needs to be applied
to the second half, and only then the second half acts on itself. The same applies to the recursive
computation of the convolution product, which necessitates a separate convolution function named
decremental convolution.

voidvoidvoid crossdeconv (intintint h, doubledoubledouble* u, doubledoubledouble* w, doubledoubledouble* v) {
v[0]-=u[0]*w[0];
intintint i; forforfor (i=1; i<h; i*=2) {

crossdeconv (i,u+i,w,v+i); crossdeconv (i,u,w+i,v+i); }
}

voidvoidvoid crossdivide(intintint h, doubledoubledouble* u, doubledoubledouble* w, doubledoubledouble* v) {
intintint i; doubledoubledouble w0=w[0]; w[0] = 0;
forforfor(i=0;i<h;i++) { v[i]=u[i]/w0; w[i] /= w0; }
forforfor(i=1;i<h;i*=2) {

crossdeconv(i,w+i,v,v+i); crossdeconv(i,w,v+i,v+i); }
forforfor(i=1;i<h;i++) { w[i]*=w0; } w[0] = w0;

}

The operation count is the same as in a full multiplication, plus 3 ·2n multiplications for the scaling and
reconstruction of the arrays. The careful consideration of the order of operations allows to use them
also for in–place versions of the arithmetic operations, u*=v can be implemented as crossmult(h,v,u,u)
and u/=v as crossdivide(h,u,v,u).

For the square function, v = u2, the derivative by the last variable is vn = 2uun. Picking some index set
i⊂ {1,2, . . . ,n−1}, this generalizes to:

vi∪{n} = 2∑
j⊆i

ui−j(x)uj∪{n}(x)

So the second half of the resulting cube v is the procuct of the first and second half of the input cube u.
The same argument, now in n−1 variables, applies recursively to the first half of v An implementation
code may be as follows:

8

voidvoidvoid square(intintint h, doubledoubledouble* u, doubledoubledouble* v) {
intintint i; forforfor(i=1;i<h;i++){ v[i] = 0; }
v[0]=u[0]*u[0];
forforfor(i=1;i<h;i*=2) { crossmult (i,u,u+i,v+i); }
forforfor(i=1;i<h;i++) { v[i] *= 2; }

}

The n = log2 h calls to the multiplication function add up to one half the cost of a full multiplication,
since 1+3+ · · ·+3n−1 = 1

2(3n−1). One would obtain the same result using a call to the multiplication
procedure crossmult(h,u,u,v) instead, but this would double the effort.

2.3 Nonlinear intrinsic functions

We now provide methods for propagating cross–derivatives of some intrinsic nonlinear functions. The
main idea is to utilize the defining differential equation and to derive from it relations between the
cross–derivatives of input and result similar to the Leibniz rule in the multiplication case. These rela-
tions will be transformed into executable code mainly using the crossmult() function and thus inherit-
ing its complexity.

The exponential function v = exp(u) has a very simple identity for the first partial derivatives, vk = vuk.
This generalizes for k /∈ i to:

vi∪{k} = ∑
j⊆i

vi−j(x)uj∪{k}(x)

The second half cube of v is thus obtained by multiplying the previously computed first half cube of v
and the second half cube of u.

voidvoidvoid exponent(intintint h, doubledoubledouble* u, doubledoubledouble* v) {
intintint i; forforfor(i=0;i<h;i++) { v[i] = 0.0; }
v[0]= exp(u[0]);
forforfor(i=1;i<h;i*=2) { crossmult (i,v,u+i,v+i); }

}

Again, the n = log2 h calls to the multiplication function add up to one half the cost of a full multipli-
cation.

Both sine and cosine have mutual ODE’s, so we would prefer to use this property and to propagate their
cubes simultaneously. Denote v = sin(u), w = cos(u), then the first partial derivatives obey vk = wuk
and wk =−vuk. The generalized mutual differential equations for k /∈ i are:

vi∪{k} = ∑
j⊆i

wi−j(x)uj∪{k}(x), wi∪{k} =−∑
j⊆i

vi−j(x)uj∪{k}(x) .

Again, transformation to a code is done by means of cross–multiplication:

voidvoidvoid trigon(intintint h, doubledoubledouble* u, doubledoubledouble* sine , doubledoubledouble* cose) {
intintint i; forforfor(i=1;i<h;i++) { sine[i] = cose[i] = 0.0; }
sine [0] = sin(u[0]); cose [0] = cos(u[0]);

9

forforfor(i=1;i<h;i*=2) {
crossmult (i,cose ,u+i,sine+i); crossdeconv (i,sine ,u+i,cose+i); }

}

Note that the hyperbolic sine and cosine can be calculated the same way (only with a different sign
in the 2nd ODE). Also note that the input to the multiplication procedures is well defined (already
computed). The number and type of calls corresponds to the semi-iterative crossmult2() procedure.
Thus the computation of the trigonometric functions has the same complexity as one full multiplication.

2.4 Overall Complexity

While the initialization and linear operations are of O(2n) complexity, most operations for evaluating
cross–derivatives have a complexity similar to the multiplication function crossmult(), which is of
O(3n) complexity, or more specifically requires 3n multiplications, a similar number of additions and
1.5 · 3n−b or, in the crossmult2() version, 3n recursive function calls with an recursion depth of n.
Tests were carried out on a Pentium 3.0 Ghz machine. The observations are that for 18 variables the
computation of one multiplication takes 3.6s, for 19 variables 10.8s and for 20 variables 32.75s (note
that the time indeed triples for each added variable). With 3 ∗ 109 processor cycles per second, this
amounts to about 28 processor cycles per multiplication.

However, the advantage of the direct method can be felt if one can construct an architecture which
carries out the cross-multiplication function as one of its basic operations. Anyway, we present in the
following chapter another method for propagating cross–derivatives which is of O(n2 2n) complexity
and can also be applied to any programmed mathematical function.

3 Computation of cross–derivatives via univariate expansions

Consider the task of computing the highest order cross–derivative f{1,2}(x) = ∂1∂2 f (x) of a bivariate
function f :R2→R using only univariate Taylor expansions. From the polarization of quadratic forms
we know that this is possible using the pair of directions {(1,1), (1,−1)} or the triple {(0,1), (1,0), (1,1)}.
This mixed derivative is obtained as the quadratic term in the Taylor expansion of the linear combina-
tions

1
2 f
(
x+ t(1,1)

)
− 1

2 f
(
x+ t(1,−1)

)
= t ∂2 f (x)+ t2

∂1∂2 f (x)+ . . .

or

f
(
x+ t(1,1)

)
− f
(
x+ t(0,1)

)
− f
(
x+ t(1,0)

)
=− f (x)+ t2

∂1∂2 f (x)+ . . .

As we will proceed to show, the second variant is easy to generalize to the computation of higher order
cross–derivatives (see [GUW00])

fi(x) =
∂ k f

∂xi1 . . .∂xik
(x), i1 < i2 < · · ·< ik .

10

In conclusion, to compute the cross–derivatives in this manner we need an automatic differentiation
tool like ADOL-C or FADBAD/TADIFF that allows to compute Taylor expansions of a given degree
in any direction.

3.1 Propagation of Taylor polynomials

Given a function f : Rn → R, a point x ∈ Rn and a direction v ∈ Rn, the task is to compute the
Taylor polynomial up to some degree d. We assume again, as is typical for the theory of automatic
differentiation, that f is defined as a concatenation of elementary operations, so that the function is at
least piecewise analytical and the Taylor polynomials are well defined almost everywhere. Then it is
sufficient to explore the propagation of Taylor polynomials through such elementary operations (see
[GW08]).

Multiplication is done as truncated polynomial multiplication. Suppose u = ∑
d
k=0 uktk and w = ∑

d
k=0 wktk

are given Taylor polynomials, then v = u∗w = ∑
d
k=0 vktk has the coefficients

vk =
k

∑
`=0

u`wk−`, k = 0,1, . . . ,d .

The direct implementation of this formula leads to a operations count of d(d +1)/2 multiplications and
d(d− 1)/2 additions of coefficients. Since the operations count is dominated by the multiplications,
we only trace their number. For sufficiently high degree d one might also use speed–up tricks such as
Karatsuba or Toom-Cook multiplication.

Division v = u/w may be considered as the solution to u = v∗w, setting ū = u/w0 and w̄ = w/w0−1,
this can be achieved by the formula v = ū− v∗ w̄, that is,

vk =
1

w0

(
uk−

k−1

∑
`=0

v`wk−`

)
= ūk +

k−1

∑
`=0

v`w̄k−`, k = 0,1, . . . ,d .

Thus, division is mainly the multiplication of v and w̄ and has thus the same complexity.

The computation of the square root v =
√

u is again performed via the solution of the defining equation
v2 = u. In a first step, v0 =

√
u0 is computed. Set ū = u/u0−1 and v̄ = v/v0−1, then ū = 2v̄+ v̄2,

v̄2k−1 = 1
2 ū2k−1−

k−1

∑
`=1

v̄`v̄2k−1−`, k = 1,2, . . . ,dd/2e

v̄2k = 1
2

(
ū2k− v̄k

2)− k−1

∑
`=1

v̄`v̄2k−`, k = 1,2, . . . ,bd/2c

vk = v0 v̄k, k = 1,2, . . . ,d .

Exploiting the symmetry, the computation of the square root as well as of the square requires half the
complexity of a Taylor multiplication.

The exponential function y(x) = ex is the solution of the differential equation y′(x) = y(x), so that
v = y(u) = eu also satisfies v̇ = y′(u)u̇ = v∗ u̇ where u̇ = d

dt u = ∑
d
k=1 kuktk−1 etc. are the derivatives by

11

t. This equation yields a recursive formula for the coefficients starting with v0 = eu0 and iterating

kvk =
k−1

∑
`=0

(`u`)vk−1−`,

so that vk =
1
k

k−1

∑
`=0

ū`vk−1−`, k = 1, . . . ,d

with precomputed ūk = kuk. Again the complexity is essentially the one of a Taylor multiplication.

In a similar way one may compute the pair of the cosine and sine functions, since they are solutions
of a system of differential equations of order one. Their simultaneous evaluation takes the form of
two Taylor multiplications, so that their operations count is about d2 multiplications of coefficients.
The Taylor polynomial of an inverse functions essentialy requires the same complexity as the Taylor
polynomial of the function itself. All in all, if the evaluation of some given function requires the
evaluation of L elementary functions and operations, then the computation of the Taylor polynomial of
degree d requires at most Ld2 floating point multiplications or at most 2Ld2 floating point operations.

3.2 Interpolation of all cross–derivatives

Let f :Rn→R be at least n times continuously differentiable. Define for every subset i⊂ {1,2, . . . ,n}
the vector

ei = ∑
m∈i

em .

Those vectors are the vertices of the n–dimensional hypercube {0,1}n. To each vertex ei we may now
associate

• the Taylor polynomial Tei(t) of order n in that direction,

Tei(t) =
n

∑
k=0

tk
∑

α∈Nn:|α|=k, supp(α)⊂i

∂ k f
∂xα

(x) ,

• a partial sum of that Taylor polynomial containing all the terms where the multiindex α has
exactly i as support, suppα = {m : αm > 0}= i:

pi(t) = ∑
α∈Nn: supp(α)=i

t |α|

α!
∂ |α| f
∂xα

(x) =
n

∑
k=0

tk
∑

α∈Nn:|α|=k
supp(α)=i

1
α!

∂ k f
∂xα

(x)+O(tn+1)

• and finally the cross–derivative

fi(x) =
∂ |i| f

∏ j∈i ∂x j
(x) .

These three objects are connected in the following way. The cross–derivative fi(x) is a coefficient in
pi(t). In fact it is the lowest degree coefficient in pi(t). The lowest degree in t is |i|, since supp(α) = i
requires αm ≥ 1 for m ∈ i. This lowest degree is realized by exactly one multiindex α with αm = 1 for

12

m ∈ i and αm = 0 otherwise. This multiindex in turn corresponds to the cross–derivative. As already
said, pi(t) is a partial sum of the Taylor polynomial Ti(t).

For the task at hand we would like to go the opposite direction, start with the Taylor polynomials at
all the vertices of the hypercube, extract the partial sums and from them the cross derivatives. The last
step is just the extraction of a coefficient of known degree. The first step amounts to the solution of a
system of linear equations.

Lemma 3.1 Let the notations and assumptions be as above. Then Tei(t) really is the Taylor polynomial
in direction ei, that is, f (x+ tei) = Tei(t)+O(tn+1) and

Tei(t) = ∑
j⊂i

pj(t) (3.1)

and conversely

pi(t) = ∑
j⊂i

(−1)|i\j|Tej(t) . (3.2)

Proof. The Taylor polynomial of f of degree n in an arbitrary direction v is

Tv(t) =
n

∑
k=0

tk
∑

α∈Nn:|α|=k

∂ k f
∂xα

(x) vα = f (x+ tv)+O(tn+1) .

Specializing to v = ei, the product vα = vα1
1 . . .vαn

n is only nonzero if suppα = {m : αm > 0} ⊂ i. In this
case, vα = (ei)α = 1. If we now sort the multiindices by their support we arrive at the first expression
(3.1), since pj(t) contains exactly those terms where the multiindex has support j⊂ i.

For the second formula, we find for the right hand side that the alternating sum is equal to

∑
j⊂i

(−1)|i\j|Tej(t) = ∑
k⊂j⊂i

(−1)|i\j|pk(t)

= ∑
k⊂i

pk(t) ∑
j⊂(i\k)

(−1)|j| = pi(t) .

The transformation of the sum in the second factor results from replacing j by (i \ j) ⊂ i. Then the
remaining condition k⊂ (i\ j) is equivalent to j⊂ (i\k), which also implies the first condition.

Now if k = i then the only subset is the empty set with an even number of elements, resulting in
a factor of 1. If the difference set (i \ k) contains at least one element, then there is a one–to–one
correspondence of subsets that contain this element and those that do not. Each corresponding pair
results in a pair of −1 and 1 in the sum, which gives a grand total of zero. 2

3.3 Efficient transformation of Taylor polynomials to cross–derivatives

The naive way to compute the cross–derivative terms would just evaluate formula (3.2). This would
require an iteration over all subsets of subsets j⊂ i⊂{1, . . . ,n}. Since each index may occur in i alone,
in i and j or not at all, this gives 3n combinations resulting in 3n−2n operations.

13

However, in the course of those computation, certain subexpressions are evaluated repeatedly. Consider
again the computation of the full polynomial pi(t) for some subset i ⊂ {1, . . . ,n}. Let i1 ∈ i be the
smallest element in i. Then we can separate subsets of i containing i1 from those not containing it.

pi(t) = ∑
i1∈j⊂i

(−1)|i\j|Tej(t)+ ∑
j⊂i\{i1}

(−1)|i\j|Tej(t)

= ∑
j⊂k

(−1)|k\j|Tej∪{i1}
(t)−∑

j⊂k
(−1)|k\j|Tej(t)

with k = i\{i1}. The last term appears in the corresponding decomposition of all pk∪{ j1}(t) where j1
is smaller than the minimal element of k.

This decomposition can be repeated for the next to smallest index and so on. A systematical computa-
tion of these intermediary expressions can be achieved using the identity

p(k)
i (t) =

{
p(k−1)

i (t)− p(k−1)
i\{k} (t) for k ∈ i

p(k−1)
i (t) for k 6∈ i

, k = 1, . . . ,n,

where p(0)
i (t) = Tei(t) and the cross–derivative fi(x) occurs as the degree |i| coefficient of p(n)

i (t) for
all i⊂ {1, . . . ,n}.

For a practical implementation we need to be able to enumerate the 2n subsets of {1,2, . . . ,n}. This
is most readily done by identifying the subsets with the numbers 0,1,2, . . . ,2n− 1 via their binary
representation, for instance as b(i) = ∑k∈i 2k−1. Then if some index k is not contained in i we know
that b(i∪{k}) = b(i)+2k−1. One possible implementation of the alternating sums is thus

intintint dist=1<<n; whilewhilewhile (dist >1){
intintint k=1; dist /=2; whilewhilewhile (k<(1<<n)){

ififif (k mod dist ==0) k+=dist;
p[k+dist]-=p[k]; /* overloaded for polynomial subtraction */
k++; } }

Note that the polynomial operations on p(k)
i (t) may leave out all coefficients of degree smaller than |i|.

In total this results in n iterations over 2n−1 subsets with an average of n/2 modified coefficients, thus
a total of n2 2n−2 subtractions. This cost occurs only once for one evaluation of the cross–derivatives
and is negligible against the complexity of evaluating the Taylor polynomials, provided the evaluation
of the function involves a significant number of elementary functions.

3.4 Cross–derivatives of limited order

Computing the full set of cross-derivatives is only practical for up to 32 or possibly 64 variables,
corresponding to the addressable memory in a computer. However, applications in quasi-Monte Carlo
integration nowadays use several hundreds of variables, but to explore the effective dimension of a
function, are only interested in low order cross–derivatives, with orders in the range from 2 to 5 (see
[SW98, Kuo03]). For these it is sufficient to also compute the Taylor polynomials only to that degree.

14

The challenge now is to enumerate the set {i⊂ {1,2, . . . ,n} : |i| ≤ d} of size

K = 1+
(

n
1

)
+
(

n
2

)
+ · · ·+

(
n
d

)
≈ nd

d!

in such a way that allows fast determination if some number k is contained in a subset i, and what the
index of (i∪ k) resp. (i \ k) is. Provided that such functions exist, the algorithms similar to the full
evaluation can be employed. The complexity of evaluating the cross–derivatives up to order d can then
be given as d2 K ≈ d2nd/d! times the operation count of the evaluated function.

4 Comparison of direct and interpolation approach

4.1 Optimizing the direct multiplication

For the multiplication of small cubes one could generate the multiplication code by hand or use a
direct iteration approach based on the correspondence between the bit pattern of an index in a cube and
the subset of variables involved in the corresponding cross–derivative. We can use bit manipulation
operators to perform set operations such as union and intersection.

voidvoidvoid shortmult (intintint h, doubledoubledouble* u, doubledoubledouble* w, doubledoubledouble* v){
intintint i,j; v[0]+=w[0]*u[0];
forforfor (i=0; i<h; i++) forforfor(j=0; j<i; j++)

ififif (i&j==0) /* disjoint subsets contribute to union */
v[i|j]+=(u[i]*w[j] + u[j]*w[i]);

}

This iteration generates a highly nonordered access pattern to elements of the three cubes. From this
there results a tradeoff between a reduced number of recursive function calls and an increasing number
of cache misses.

Runtime expirements were performed to find the optimal size of a small cube, at which the recursive
multiplication procedure would switch to the non–recursive variant. In the experiments we used differ-
ent sizes of the big input cubes (corresponding to different number of input variables) and for each of
them different sizes for the small cube condition. These experiments are summarized in Figure 1. The
x-axis denotes the number of variables in a small cube, corresponding to an array size of h = 2x. The
y–axis gives a measure for the runtime. To avoid widely differing scales, the runtime was converted
into processor cycles per multiplication, thus the actual runtime is y · 3n/3GHz, with n the number of
variables in a big cube.

As one can see, the graphs for different n match very well. In evaluating the graphs, at first, as the
variables in a small cube grow to 4, we gain considerably in runtime. Then until 15 variables in a
small cube the runtime remains approximately the same. For more than 15 variables the runtime again
increases. As a conclusion, in the implementation for all the other experiments we used a hand–coded
version of the multiplication of small cubes for 4 variables.

15

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 0 5 10 15 20

cy
cl

es
 p

er
 e

le
m

en
ta

ry
 m

ul
tip

lic
at

io
n

variables in small cube

15 variables
16 variables
17 variables
18 variables
19 variables
20 variables
21 variables

Figure 1: Runtimes for different sizes of small
cubes in the direct multiplication

 24

 26

 28

 30

 32

 34

 36

 38

 40

 42

 44

 1 10 100 1000

sc
al

ed
 r

un
tim

e
(p

ro
c.

 c
yc

le
s)

number of simultaneous directions

14 var
15 var
16 var

Figure 2: Stripmining of the calls to
hov_forward()

4.2 Optimizing the Taylor polynomial method

For the implementation of the Taylor arithmetics the ADOL-C automatic differentiation library was
used. This library allows with a call to the hov_forward() procedure to simultaneously evaluate sevaral
univariate Taylor polynomials in different directions. This simultaneous evaluation allows the reuse of
the control flow and intermediate function values. Again, there is a trade–off in that the memory blocks
for the Taylor polynomials of intermediate values increase in size proportional to their number, but the
management of those blocks becomes inefficient with increasing velocity.

This effect can be seen in Figure 2, where a test function with evaluation complexity O(n) was eval-
uated for its cross–derivatives. Thus the expected runtime is proportional to n3 2n. This factor was
used to normalize the graphs for the different numbers of variables, the actual runtime was accordingly
y ·n3 2n/3GHz. The logarithmic x axis contains the number of simultaneous directions, there is a clear
trough from 8 to 16 directions.

4.3 Cross–over

The operation count for the computation of cross–derivatives of a function in n variables increases
roughly proportional to 3n for the direct method and proportional to n2 · 2n for the Taylor polynomial
method. For large dimensions n, the Taylor method will have better runtimes. However, the direct
method uses direct function calls for the elementary operations, whereas the Taylor method via ADOL-
C interprets an internal representation of the operation sequence. Therefore, one has to expect some
factor larger than one in the Taylor method. As can be seen in Figure 3, assuming a moderate factor
between 1 and 2 one read off a cross–over point between n = 10 and n = 16, which is consistent with
the experimental deteminations of cross–over points in Figures 4 and 5. Figure 4 compares runtimes for
the computation of the permanent of randomly generated matrices of different sizes using the algorithm
of the introduction Section 1.

The set of experiments combined in the diagrams of Figure 5 compare the runtimes of both methods

16

100

101

102

103

104

105

106

107

108

109

1010

 2 4 6 8 10 12 14 16 18 20

direct: 3x

Taylor: 1.0*x2*2x

Taylor: 2.0*x2*2x

Figure 3: Theoretical runtime multipliers for
the direct and the Taylor approch to evaluating
cross derivatives

101

102

103

104

105

 10 11 12 13 14 15 16 17 18 19

m
se

c

direct
Taylor

Figure 4: Runtimes for the direct and Taylor
methods for the permanent computation

101

102

103

104

105

 11 12 13 14 15 16 17 18 19

m
se

c

direct
Taylor

101

102

103

104

105

 11 12 13 14 15 16 17 18 19

m
se

c

direct
Taylor

101

102

103

104

105

 11 12 13 14 15 16 17 18 19

m
se

c

direct
Taylor

Figure 5: Runtimes for the direct and Taylor methods for three variants of the integration test function

for a family of test functions from the theory of high–dimensional integration,

f (x) =
n

∏
k=1

hk(x)+ak

1+ak
, where hk(x) =


bk |xk− ck| in test 1
exp(bk |xk− ck|) in test 2
exp(b2

k(xk− ck)2) in test 3

where the constants ak were taken to be ak = 1 for all k; the bk and ck sequences as well as the
coordinates of the evaluation point x were generated randomly in the [−1,1] interval.

In both instances, the direct method performed better for up to 14 variables, and the Taylor polynomial
method from 15 variables on. However, as we will discuss directly below, the extra speed of the Taylor
method resulted in a significant loss in accuracy.

4.4 Numerical Accuracy

In the second method the interpolation of the cross–derivatives from the Taylor polynomials by alter-
nating sums involves the cancellation of unwanted higher order derivatives containing differentiations
w.r.t. some variable in multiplicities higher than one. It may happen that those unwanted derivatives

17

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 8 10 12 14 16 18 20

fr
ac

tio
n

of
 c

oe
ffi

ci
en

ts

number of variables

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

 1e-14

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 8 10 12 14 16 18 20

number of variables

error

Figure 6: Errors while evaluating the third test function using the Taylor method

have values that are orders of magnitudes bigger than the cross–derivatives, leading to rounding errors
that influence the values of the cross–derivatives. That such effects have to be taken into account is
shown in Figure 6, where the left diagram shows the fraction of all 2n cross–derivatives below different
error thresholds ranging from 10−5 to 10−14, and the right diagram shows the error of the highest order
cross–derivative alone. Since the product structure of the function leads to a corresponding product
structure in the cross–derivatives, and this structure is exactly captured by the evaluation via the direct
method, we may assume for this test case that the results of the direct method are exact within the
machine precision. The errors are computed against these values.

5 Summary and conclusion

We have shown how to implement the computation of the full set of cross–derivatives in an automatic
differentiation setting in two different ways, a direct method that propagates a suitable data type con-
taining all cross–derivatives along the chain of elementary operations representing the function, and
a second method propagating much smaller Taylor polynomials along this chain and recombining the
cross–derivatives from Taylor polynomials in as many directions.

We concluded from experiments that the more we go beyond 15 input variables the more the Taylor
polynomial method is faster albait less accurate. This is in line with a theoretical estimate of the runtime
development that puts the cross–over at 10 variables but is sensitive to changes in the multiplicative
constants.

Since the memory requirements of the data types, and also the runtimes grow exponentially, both
approaches are limited in their applicability. Future research has to provide methods, based on the
presented approaches, to evaluate all cross–derivarives up to some order that is small relative to the
number of variables, where the number of variables is in the hundreds or even thousands.

18

6 Appendix

6.1 Implementation of other math.h functions in the direct method

For the computation of the cube of the natural logarithm v = ln(u) of a given cube u, we note the
relation of first order derivatives uvk = uk and generalize it to the higher order case:

∑
j⊆i

ui−j(x)vj∪k(x) = ui∪k(x)

Afterwards we apply the same steps as in the division case (except that here we normalize by uφ):

uφ vi∪k + ∑
i 6=j⊂i

ui−j(x)vj∪k(x) = ui∪k(x)

vi∪k = ũi∪k−∑
j⊆i

ũi−j(x)vj∪k(x)

Note that as in the division case we use already computed part of V’s cube to propagate vi∪k. An
implementation of this is:

voidvoidvoid naturalog(intintint h, doubledoubledouble* u, doubledoubledouble* v) {
intintint i; doubledoubledouble u0=u[0]; u[0] = 0;
v[0]= log(u0); forforfor(i=1;i<h;i++) { v[i]=u[i]/=u0; }
forforfor(i=1;i<h;i*=2) { crossdeconv(i,u,v+i,v+i); }
u[0] = u0; forforfor(i=1;i<h;i++) { u[i] *= u0; }

}

Consider the power function v = uc, where c ∈ R. Differentiating w.r.t one variable yields: vk =
cuc−1uk, after multiplying both sides of the equation by u we get: uvk = cvuk. Generalizing to the
higher order case and using the same steps as in the division and natural logarithm cases, we obtain
following equations:

∑
j⊆i

ui−j(x)vj∪k(x) = c∑
j⊆i

vi−j(x)uj∪k(x)

uφ vi∪k + ∑
i6=j⊂i

ui−j(x)vj∪k(x) = c∑
j⊆i

vi−j(x)uj∪k(x)

vi∪k = c∑
j⊆i

vi−j(x)ũj∪k(x)−∑
j⊆i

ũi−j(x)vj∪k(x)

A code implementing the above equations is:

voidvoidvoid power(intintint h, doubledoubledouble r, doubledoubledouble* u, doubledoubledouble* v) {
intintint i,j; doubledoubledouble u0=u[0]; u[0]=0;
v[0] = pow(u0,r); forforfor(j=1;j<h;j++) { u[j]/=u0; v[j]=0; }
forforfor(i=1;i<h;i*=2) {

crossmult(i,v,u+i,v+i);
forforfor(j=i;j<2*i;j++) { v[j] *= r; }
crossdeconv(i,u,v+i,v+i); }

u[0] = u0; forforfor(i=1;i<h;i++) { u[i]*=u0; }
}

19

The square root function v =
√

u is a special case of the power function with c = 0.5. To obtain
the ODE, We can substitute u1/2 into the ODE of the power function, or derive it from scratch by
differentiating the square root: vvk = 0.5uk. Generalization gives:

∑
j⊆i

vi−j(x)vj∪k(x) = 0.5ui∪k(x)

vφ vi∪k + ∑
i6=j⊂i

vi−j(x)vj∪k(x) = 0.5ui∪k(x)

We normalize the last equation by v2
φ
(= uφ) and denote: ṽj = vj/vφ and ũj = uj/uφ . For the convenience

of the computation we also set ṽφ = 0, and finally we get:

ṽi∪k = 0.5ũi∪k(x)−∑
j⊆i

ṽi−j(x)ṽj∪k(x)

The implementation code is:

voidvoidvoid squaroot(intintint h, doubledoubledouble* u, doubledoubledouble* v) {
intintint i; v[0]=0; forforfor(i=1;i<h;i++) { v[i] = 0.5*u[i]/u[0]; }
forforfor(i=1;i<h;i*=2) { crossdeconv(i,v,v+i,v+i); }
v[0]= sqrt(u[0]); forforfor(i=1;i<h;i++) {v[i]*=v[0];}

}

The general power function is a power function which is of the form v = uw where u and w are both
arbitrary functions. In this case we can try to operate with its ODE, however the ODE is not such simple
to derive the generalized direct version and to implement it by means of crossmult(). Therefore, we
would prefer to regard the general power as a composition of already known functions for which we
have already derived propagation rules.

First, we apply the natural logarithm to both sides of the equation and obtain ln(v) = w · ln(u), now
we can propagate cross–derivatives of ln(u), then propagate cross–derivatives of the multiplication
w · ln(u) and finally of the exponential v = exp(w · ln(u)).

This is demonstrated in the following code:

voidvoidvoid raisepow (intintint h, doubledoubledouble* u, doubledoubledouble* w, doubledoubledouble* v)
{

intintint i; doubledoubledouble *arr1 , *arr2;
arr1 = (doubledoubledouble *) calloc(h,sizeofsizeofsizeof(doubledoubledouble)); // initialized with 0’s
arr2 = (doubledoubledouble *) calloc(h,sizeofsizeofsizeof(doubledoubledouble)); // initialized with 0’s
naturalog (h,u,arr1); crossmult(h,w,arr1 ,arr2);
exponent (h,arr2 ,v);
free (arr1); free (arr2);

}

References

[GJ79] M. R. Garey and D. S. Johnson. Computer and Intractability. A Guide to the Theory of
NP–Completeness. Freeman & Co., New York, 1979.

20

[GT81] Andreas Griewank and Philippe L. Toint. On the unconstrained optimization of partially
separable functions. In M.J.D. Powell, editor, Nonlinear Optimization, pages 301–312.
Academic Press, London, 1981.

[GUW00] Andreas Griewank, Jean Utke, and Andrea Walther. Evaluating higher derivative tensors
by forward propagation of univariate Taylor series. Math. Comput., 69(231):1117–1130,
2000.

[GW08] Andreas Griewank and Andrea Walther. Evaluating Derivatives: Principles and Techniques
of Algorithmic Differentiation. Number 105 in Other Titles in Applied Mathematics. SIAM,
Philadelphia, PA, 2nd edition, 2008.

[Hla61] E. Hlawka. Funktionen von beschränkter variation in der theorie der gleichverteilung. Ann.
Mat. Pura Appl., 54(4):325–333, 1961.

[KS05] Frances Y. Kuo and Ian H. Sloan. Lifting the curse of dimensionality. Notices of the AMS,
52:1320–1329, 2005.

[Kub08] Koichi Kubota. Combinatorial computation with automatic differentiation. In Christian H.
Bischof, H. Martin Bücker, Paul D. Hovland, Uwe Naumann, and Jean Utke, editors, Ad-
vances in Automatic Differentiation, volume 64 of Lecture Notes in Computational Science
and Engineering, pages 315–325. Springer, Berlin, 2008.

[Kuo03] F.Y. Kuo. Component–by–component constructions achieve the optimal rate of conver-
gence for multivariate integration in weighted Korobov and Sobolev spaces. J. Complexity,
19(3):301–320, 2003.

[Rys63] H. J. Ryser. Combinatorial Mathematics. Number 14 in Carus Mathematical Monographs.
Mathematical Association of America, 1963.

[Sob01] Ilya M. Sobol’. Global sensitivity indices for nonlinear mathematical models and their
monte carlo estimates. Math. Comput. Simul., 55(1–3):271–280, 2001.

[SW98] Ian H. Sloan and Henryk Woźniakowski. When are quasi–Monte Carlo algorithms efficient
for high dimensional integrals? J. Complex., 14(1):1–33, 1998.

[WF03] Xiaoqun Wang and Kai-Tai Fang. The effective dimension and quasi–Monte Carlo integra-
tion. J. Complex., 19(2):101–124, 2003.

[Zar68] S. C. Zaremba. Some applications of multidimensional integration by parts. Ann. Polon.
Math., 21:85–96, 1968.

21

	Introduction and Motivation
	Cross--derivatives applied to Combinatorics
	Hamiltonian cycles
	Computation of the permanent of a matrix

	High--dimensional Quasi-Monte Carlo integration
	Error estimates
	Effective dimension and function decomposition

	Direct propagation of cross derivatives
	Allocation in a cube
	Arithmetic operations
	Nonlinear intrinsic functions
	Overall Complexity

	Computation of cross--derivatives via univariate expansions
	Propagation of Taylor polynomials
	Interpolation of all cross--derivatives
	Efficient transformation of Taylor polynomials to cross--derivatives
	Cross--derivatives of limited order

	Comparison of direct and interpolation approach
	Optimizing the direct multiplication
	Optimizing the Taylor polynomial method
	Cross--over
	Numerical Accuracy

	Summary and conclusion
	Appendix
	Implementation of other math.h functions in the direct method

