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Abstract. Stochastic programming problems appear as mathematical
models for optimization problems under stochastic uncertainty. Most
computational approaches for solving such models are based on approx-
imating the underlying probability distribution by a probability mea-
sure with finite support. Since the computational complexity for solving
stochastic programs gets worse when increasing the number of atoms (or
scenarios), it is sometimes necessary to reduce their number. Techniques
for scenario reduction often require fast heuristics for solving combinato-
rial subproblems. Available techniques are reviewed and open problems
are discussed.

1 Introduction

Many stochastic programming problems may be reformulated in the form

min
{

E(f0(x, ξ)) =
∫

Rs

f0(x, ξ)P (dξ) : x ∈ X
}
, (1)

where X denotes a closed subset of Rm, the function f0 maps from Rm × Rs
to the extended real numbers R = R ∪ {−∞,+∞}, E denotes expectation with
respect to P and P is a probability distribution on Rs.

For example, models of the form (1) appear as follows in economic applica-
tions. Let ξ = {ξt}Tt=1 denote a discrete-time stochastic process of d-dimensional
random vectors ξt at each t ∈ {1, . . . , T} and assume that decisions xt have to
be made such that the total costs appearing in an economic process are minimal.
Such an optimization model may often be formulated as

min
{

E
( T∑
t=1

ft(xt, ξt)
)

: xt ∈ Xt,

t−1∑
τ=0

Atτ (ξt)xt−τ = ht(ξt), t = 1, . . . , T
}
. (2)

Typically, the sets Xt are polyhedral, but they may also contain integrality con-
ditions. In addition, the decision vector (x1, . . . , xT ) has to satisfy a dynamic
constraint (i.e. xt depends on the former decisions) and certain balancing condi-
tions. The matrices Atτ (ξt), τ = 0, . . . , t− 1, (e.g. containing technical parame-
ters) and the right-hand sides ht(ξt) (e.g. demands) are (partially) random. The
functions ft describe the costs at time t and may also be (partially) random (e.g.
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due to uncertain market prices). The objective in (2) consists in minimizing the
expected total costs.

The time t = 1 represents the present, hence, we assume that ξ1 is determin-
istic and require that the decision x1 is deterministic, too. The latter condition is
modeled by the constraint x1 = E(x1). Then we may reformulate the stochastic
program (2) as optimization model

min
{
f1(x1.ξ1) + E

(
Φ(x1, ξ̂)

)
: x1 = E(x1), x1 ∈ X1, A10x1 = h1(ξ1)

}
(3)

for the decision x1 at time t = 1. With ξ̂ denoting ξ̂ := (ξ2, . . . , ξT ) the uncertain
future input process the function Φ is defined by

Φ(x1, ξ̂) := inf
{

E
( T∑
t=2

ft(xt, ξt)
)

: xt ∈ Xt,

t−1∑
τ=0

Atτxt−τ = ht(ξt), t = 2, . . . , T
}
.

(4)
A solution of (3) minimizes the first period costs and also the minimal ex-
pected future costs. It is called first-stage solution while a (stochastic) solution
(x2, . . . , xT ) of (4) is a second-stage solution. Consequently, the model (3) is
named two-stage stochastic program. We note that any first-stage solution de-
pends on the probability distribution of the stochastic process ξ.

An often more realistic condition is to require that the decision xt at time t
depends only on the available information (ξ1, . . . , ξt) and that the information
flow evolves over time. This requirement is modeled by the constraints

xt = E(xt|ξ1, ξ2, . . . , ξt) (t = 1, . . . , T ) (5)

which has to be incorporated into the constraint set of (2) and (4), respectively.
The expression E(· |ξ1, ξ2, . . . , ξt) on the right-hand side of (5) is the conditional
expectation with respect to the random vector (ξ1, ξ2, . . . , ξt) (and is assumed
to be well defined). The constraints (5) are often called nonanticipativity con-
straints and (2) including (5) is a multi-stage stochastic program. We note that
the constraint for t = 1 in (5) coincides with the former condition x1 = E(x1) in
(2).

If we set x = x1 and

X := {x ∈ X1 : x = E(x), A10x = h1(ξ1)}

f0(x, ξ) :=
{
f1(x, ξ1) + Φ(x, ξ̂) , if x ∈ X and Φ(x, ξ̂) is finite

+∞ , else

the optimization model (2) is of the form (1). Suitable assumptions on ξ together
with duality arguments often imply Φ(x, ξ̂) > −∞. In that case, finiteness of
Φ(x, ξ̂) is guaranteed if a feasible decision (x2, . . . , xT ) exists for given x1.

Most of the approaches for solving (1) numerically are based on replacing
the probability distribution P by a discrete distribution with finite support
{ξ1, . . . , ξN}, where the atom or scenario ξi appears with probability pi > 0,
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i = 1, . . . , N , and it holds
∑N
i=1 pi = 1. The approximate stochastic program

associated to (1) then is of the form

min
{ N∑
i=1

pif0(x, ξi) : x ∈ X
}
. (6)

In Section 2 we discuss how the discrete distribution should approximate the
original probability distribution P . It turns out that properties of the integrand
f0(x, · ) as function of ξ together with properties of P characterize the kind of
approximation needed in stochastic programming. When looking at (3), (4) we
recall that evaluations of f0 at a pair (x, ξ) may be expensive. This leads us
to one of the main numerical challenges in stochastic programming: A good
approximation of P requires a large N , but solving (6) in a reasonable running
time prefers a small(er) N .

Hence, when solving applied stochastic programming models, one might start
with a large(r) N , but running time requirements might force a (much) smaller
number n of scenarios. Should ξn+1, . . . , ξN just be thrown away ? In this pa-
per, we argue that one should take advantage of the information contained in
{ξ1, . . . , ξN} and look for a better approximation of P based on n scenarios out
of {ξ1, . . . , ξN} by scenario reduction. The concept of scenario reduction and
recent results in this area are reviewed in Section 3.

In this paper, we restrict our attention to two-stage stochastic programs.
We take a look at the underlying theory, review available algorithms for linear
and mixed-integer two-stage stochastic programs, and point out which heuris-
tic algorithms are important in this context and where we see possibilities for
improvements.

Multi-stage models and the tree structure of scenarios (due to the constraint
(5)) require a (slightly) different theoretical basis and will not be considered in
this paper, although scenario reduction techniques may be very helpful in this
respect (see [8, 9]). Instead we refer to the literature, e.g., [2, 3, 13, 14, 15, 16, 18,
19, 25], to our recent work [8, 9] and to excellent sources of material on theory
and applications of stochastic programs in [24, 26].

2 Stability and distances of probability distributions

Solving stochastic programs computationally requires to replace the original
probability distribution P by a probability measure Q having a finite number
of scenarios and associated probabilities. Of course, Q has to be determined in
such a way that infima and solutions of (1) do not change much if P is replaced
by Q. In the following, we use the notations

v(P ) := inf
{∫

Rs

f0(x, ξ)P (dξ) : x ∈ X
}

S(P ) :=
{
x ∈ X :

∫
Rs

f0(x, ξ)P (dξ) = v(P )
}
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for the infimum and solution set, respectively, of (1) with respect to P . If the
set X is compact, the following estimates are valid

|v(P )− v(Q)| ≤ sup
x∈X

∣∣∣ ∫
Rs

f0(x, ξ)(P −Q)(dξ)
∣∣∣ (7)

sup
y∈S(Q)

d(y, S(P )) ≤ ψ−1
P

(
sup
x∈X

∣∣∣ ∫
Rs

f0(x, ξ)(P −Q)(dξ)
∣∣∣). (8)

In (8) d(y, S(P )) denotes the distance of y ∈ S(Q) to S(P ). The mapping ψ−1
P

denotes the inverse of the growth function ψP of the objective in a neighborhood
of the solution set S(P ), i.e.,

ψP (t) := inf
{∫

Rs

f0(x, ξ)P (dξ)− v(P ) : d(x, S(P )) ≥ t, x ∈ X
}
.

The growth function ψP is monotonically increasing on [0,+∞) and it holds
ψP (0) = 0. The estimates (7) and (8) elucidate that the distance

d(P,Q) := sup
x∈X

∣∣∣ ∫
Rs

f0(x, ξ)P (dξ)−
∫

Rs

f0(x, ξ)Q(dξ)
∣∣∣ (9)

of the two probability distributions P and Q becomes important. But, this dis-
tance is difficult to evaluate numerically since the function f0 is often very in-
volved (e.g. an infimum function of an optimization model as in the example in
Section 1).

However, in several important model instances of functions f0 it is possible
to derive estimates of d(P,Q) by other distances of probability distributions that
are easier to evaluate. We mention the following possibilities:

(1) The first one is the classical Koksma-Hlawka inequality (see [17, Section
2.2] and [5]) if the functions f0(x, · ) are of bounded variation in the sense
of Hardy and Krause (uniformly with respect to x ∈ X) on the support
[0, 1]s of both probability distributions P and Q. The relevant distance of
probability measures is the so-called ∗-discrepancy and is defined in (14).

(2) A second idea is to determine a set F of functions from a closed subset Ξ of
Rs containing the support of both probability distributions P and Q to R
such that Cf0(x, · ) ∈ F for some constant C > 0 not depending on x. Then
it holds

d(P,Q) ≤ 1
C
dF (P,Q)

dF (P,Q) := sup
f∈F

∣∣∣ ∫
Ξ

f(ξ)P (dξ)−
∫
Ξ

f(ξ)Q(dξ)
∣∣∣.

Of course, the set F should be selected such that the distance dF (P,Q) is
easier to evaluate than d(P,Q).

For two-stage stochastic programs that are (i) linear or (ii) mixed-integer
linear the following sets F of functions are relevant (cf. [21, 23, 22]):
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(i) Fr(Ξ) = {f : Ξ → R : f(ξ)− f(ξ̃) ≤ cr(ξ, ξ̃), ∀ξ, ξ̃ ∈ Ξ},
(ii) Fr,B(Ξ) = {f1lB : f ∈ Fr(Ξ), |f(ξ)| ≤ max{1, |ξ|r}, ∀ξ ∈ Ξ, B ∈ B},

where r ∈ N, B denotes a set of polyhedral subsets of Ξ, | · | is a norm on Rs
and 1lB is the characteristic function of the set B, i.e., 1lB(ξ) = 1 for ξ ∈ B and
1lB(ξ) = 0 for ξ ∈ Ξ \B. Furthermore, the function cr is defined by

cr(ξ, ξ̃) := max{1, |ξ|r−1, |ξ̃|r−1}|ξ − ξ̃| (ξ, ξ̃ ∈ Ξ).

We note that the choice of r and of B depends on the structure of the stochastic
program.

While the second stage infima are locally Lipschitz continuous as functions of
ξ in case of linear two-stage models and belong to Fr(Ξ) for some r ∈ N, they are
discontinuous on boundaries of certain polyhedral sets for mixed-integer linear
models. Hence, the set Fr,B(Ξ) is relevant in the latter case.

An important special case of the class B is the set Brect of all rectangular
sets in Rs, i.e.

Brect = {I1 × · · · × Is : ∅ 6= Ij is a closed interval in R, j = 1, . . . , s} , (10)

which is relevant for the stability of pure integer second stage models.
In case (i) so-called Fortet-Mourier metrics of order r

ζr(P,Q) = sup
f∈Fr(Ξ)

∣∣∣∣∫
Ξ

f(ξ)P (dξ)−
∫
Ξ

f(ξ)Q(dξ)
∣∣∣∣ (11)

appear as special instances of dF , and in case (ii) the metrics

ζr,B(P,Q) = sup
f∈Fr(Ξ),B∈B

∣∣∣ ∫
B

f(ξ)P (dξ)−
∫
B

f(ξ)Q(dξ)
∣∣∣. (12)

Since a sequence of probability measures on Rs converges with respect to
ζr,B if and only if it converges with respect to ζr and with respect to the B-
discrepancy

αB(P,Q) := sup
B∈B
|P (B)−Q(B)|,

respectively (cf. [12]), one may consider the ‘mixed’ distance

dλ(P,Q) = λαB(P,Q) + (1− λ) ζr(P,Q) (13)

for some λ ∈ (0, 1] instead of the more complicated metric ζr,B. Two specific dis-
crepancies are of interest in this paper. The first one is the rectangular discrep-
ancy αBrect which is needed in Section 3.2. The second one is the ∗-discrepancy

α∗(P,Q) = sup
x∈[0,1]s

|P ([0, x))−Q([0, x))|, (14)

where P and Q are probability measures on [0, 1]s and [0, x) = ×si=1[0, xi). As
is known from [11] discrepancies are (much) more difficult to handle in scenario
reduction compared to Fortet-Mourier metrics (see also Section 3).
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If both P and Q are discrete probability distributions (with finite support),
the Fortet-Mourier distance ζr(P,Q) may be computed as optimal value of cer-
tain linear programs (see also [7]). We show in Section 3.2 that the distance
dλ(P,Q) may be computed as well by linear programming (see also [10, 12]).

If the set Ξ is compact the Fortet-Mourier metric ζr admits a dual represen-
tation as Monge-Kantorovich transportation functional. In particular, it holds
for all probability measures on Ξ with finite rth moment (see [20, Section 4.1]):

ζr(P,Q) := inf
{∫

Ξ×Ξ
ĉr(ξ, ξ̃)η(dξ, dξ̃) : η ∈M(P,Q)

}
, (15)

where M(P,Q) denotes the set of all probability measures η on Ξ × Ξ whose
marginal distributions on Ξ are just P and Q, respectively. Furthermore, the
function ĉr is the reduced cost function associated with the cost cr and is defined
by

ĉr(ξ, ξ̃) := inf
{ n+1∑
j=1

cr(zj−1, zj) : z0 = ξ, zn+1 = ξ̃, zj ∈ Ξ, n ∈ N
}
. (16)

The function ĉr is a metric on Ξ and it holds ĉr ≤ cr (cf. [20, Chapter 4.1.3]).

3 Optimal scenario reduction

Let P be a probability distribution on Rs with finite support consisting of N
scenarios ξi and their probabilities pi, i ∈ I := {1, . . . , N}. The basic idea of
optimal scenario reduction consists in determining a probability distribution
Qn which is the best approximation of P with respect to a given distance d of
probability measures and whose support consists of a subset of {ξ1, . . . , ξN} with
n < N elements. This means

d(P,Qn)= inf{d(P,Q) :Q(Rs) = 1, supp(Q) ⊂ supp(P ), |supp(Q)| = n}. (17)

An equivalent formulation of (17) may be obtained as follows: Let QJ denote a
probability measure on Rs with supp(QJ) = {ξi : i ∈ {1, . . . , N} \ J} for some
index set J ⊂ {1, . . . , N} and let qi, i ∈ {1, . . . , N} \ J , be the probability of
scenario indexed by i. Then the minimization problem

min
{
d(P,QJ) : J ⊂ I, |J | = N − n, qi ≥ 0, i ∈ I \ J,

∑
i∈I\J

qi = 1
}

(18)

determines some index set J∗ and q∗i ∈ [0, 1] such that the probability measure
with scenarios ξi and probabilities q∗i for i ∈ {1, . . . , N} \ J∗ solves (17). The
second formulation (18) of the optimal scenario reduction problem has the ad-
vantage to provide a decomposition into an inner and an outer minimization
problem, namely,

min
J

{
inf
q

{
d(P,QJ) : qi ≥ 0, i ∈ I \ J,

∑
i∈I\J

qi = 1
}

: J ⊂ I, |J | = N − n
}
. (19)
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As suggested in [4] the distance d has to be selected such that the stochastic
program (1) behaves stable with respect to d (cf. Section 2).

3.1 Two-stage stochastic linear programs

Here, the distance d is just the Fortet-Mourier metric ζr for some r ∈ N which
depends on the structure of the underlying stochastic programming model. For
a discussion of the choice of r it is referred to [21, 23].

Since the distance ζr(P,QJ) has a dual representation as mass transportation
problem for any index set J (see (15)), the inner minimization problem in (19)
can be solved explicitly. Namely, it holds

DJ := min
{
ζr(P,QJ) : qi ≥ 0, i 6∈ J,

∑
i6∈J

qi = 1
}

=
∑
j∈J

pj min
i 6∈J

ĉr(ξi, ξj), (20)

where the reduced costs ĉr have the simplified representation

ĉr(ξi, ξj) := min
{ n−1∑
k=1

cr(ξlk , ξlk+1) : n ∈ N, lk ∈ I, l1 = i, ln = j
}

(21)

as shortest path problem compared with the general form (16). The optimal
probabilities q∗i , i 6∈ J , are given by the redistribution rule

q∗i = pi +
∑
j∈J

i(j)=i

pj and i(j) ∈ arg min
i 6∈J

ĉr(ξi, ξj), i /∈ J, (22)

The redistribution rule consists in adding the probability of a deleted scenario
j ∈ J to the probability of a scenario that is nearest to ξj with respect to the
distance ĉr on supp(P ).

The outer minimization problem is of the form

min
{
DJ =

∑
j∈J

pj min
i∈I\J

ĉr(ξi, ξj) : J ⊂ I, |J | = N − n
}

(23)

and represents a combinatorial optimization problem of n-median type. It is
NP-hard and suggests to use heuristic or approximation algorithms. We also
refer to [1] where a branch-and-cut-and-algorithm is developed and tested on
large scale instances.

In our earlier work [6, 7] we proposed two simple heuristic algorithms: the
forward (selection) and the backward (reduction) heuristic. To give a short de-
scription of the two algorithms, let

cij := ĉr(ξi, ξj) (i, j = 1, . . . , N).

The basic idea of the forward algorithm originates from the simple structure of
(23) for the special case n = 1. It is of the form

min
u∈{1,...,N}

N∑
j=1
j 6=u

pjcuj .
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If the minimum is attained at u∗, the index set J = {1, . . . , N}\{u∗} solves (23).
The scenario ξu

∗
is taken as the first element of supp(Q). Then the separable

structure of DJ is exploited to determine the second element of supp(Q) while
the first element is fixed. The process is continued until n elements of supp(Q)
are selected.

Forward algorithm for scenario reduction

Step 0: J [0] := {1, . . . , N}.
Step k: uk ∈ arg min

u∈J [k−1]

∑
j∈J [k−1]\{u}

pj min
i 6∈J [k−1]\{u}

cij ,

J [k] := J [k−1] \ {uk} .
Step n+1: Redistribution with J := J [n] via (22).

Fig. 1. Illustration of selecting the first, second and third scenario out of N = 5

The idea of the backward algorithm is based on the second special case of (23)
for n = N − 1. It is of the form

min
l∈{1,...,N}

pl min
i6=l

cil.

If the minimum is attained at l∗, the index set J = {l∗} solves (23) in case
n = N − 1. After fixing the remaining index set I \ {l∗} a second scenario is
reduced etc. The process is continued until N − n scenarios are reduced.

Backward algorithm of scenario reduction

Step 0: J [0] := ∅ .
Step k: lk ∈ arg min

l 6∈J [k−1]

∑
j∈J [k−1]∪{l}

pj min
i 6∈J [k−1]∪{l}

cij ,

J [k] := J [k−1] ∪ {lk} .
Step N-n+1: Redistribution with J := J [N−n] via (22).

It is shown in [6] that both heuristics are polynomial time algorithms and that
the forward heuristics is recommendable at least if n ≤ N

4 .
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Fig. 2. Illustration of the original scenario set with N = 5 and of reducing the first
and the second scenario.
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Fig. 3. Left: N = 729 equally distributed scenarios in form of a regular ternary tree.
Right: Reduced scenario set with n = 20 and line width proportional to scenario
probabilities obtained by the forward heuristic with r = 2.

3.2 Two-stage stochastic mixed-integer programs

The relevant probability metric is now ζr,B, where r ∈ N and B is a set of poly-
hedral subsets of a (polyhedral) set Ξ that contains the support of P . It was
mentioned in Section 2 that both r and B depend on the structure of the partic-
ular stochastic program. Since the complexity of scenario reduction algorithms
increase if the sets in B get more involved, we follow here [12] and consider only
the set Brect (see (10)) and the distance

dλ(P,Q) := λαBrect(P,Q) + (1− λ)ζr(P,Q) (24)

for some λ ∈ (0, 1].
As in Section 3.1 we are interested in computing

DJ := min
{
dλ(P,QJ) : qi ≥ 0, i /∈ J,

∑
i/∈J

qi = 1
}
. (25)

In the following, we show that DJ can be computed as optimal value of a linear
program (but a closed formula forDJ as in Section 3.1 is not available in general).
To this end, we assume without loss of generality that J = {n+ 1, . . . , N}, i.e.,
supp(QJ) = {ξ1, . . . , ξn} for some 1 ≤ n < N , consider the system of index sets

IBrect := {I(B) := {i ∈ {1, . . . , N} : ξi ∈ B} : B ∈ Brect}
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and obtain the following representation of the rectangular discrepancy

αBrect(P,QJ)= sup
B∈Brect

|P (B)−QJ(B)| = max
I∈IBrect

∣∣∣∑
i∈I

pi −
∑

j∈I∩{1,...,n}

qj

∣∣∣ (26)

=min
{
tα

∣∣∣∣−∑j∈I∩{1,...,n} qj ≤ tα −
∑
i∈I pi, I ∈ IBrect∑

j∈I∩{1,...,n} qj ≤ tα +
∑
i∈I pi, I ∈ IBrect

}
(27)

Since the set IBrect may be too large to solve the linear program (27) numerically,
we consider the system of reduced index sets

I∗Brect
:= {I(B) ∩ {1, . . . , n} : B ∈ Brect}

and the quantities

γI
∗

:= max
{∑
i∈I

pi : I ∈ IBrect , I ∩ {1, . . . , n} = I∗
}

γI∗ := min
{∑
i∈I

pi : I ∈ IBrect , I ∩ {1, . . . , n} = I∗
}

for every I∗ ∈ I∗Brect
. Since any such index set I∗ corresponds to some left-hand

side of the inequalities in (27), γI
∗

and γI∗ correspond to the smallest right-hand
sides in (27). Hence, the rectangular discrepancy may be rewritten as

αBrect(P,QJ) = min
{
tα

∣∣∣∣−∑j∈I∗ qj ≤ tα − γI
∗
, I∗ ∈ I∗Brect∑

j∈I∗ qj ≤ tα + γI∗ , I
∗ ∈ I∗Brect

}
. (28)

Since the number of elements of I∗Brect
is at most 2n (compared to 2N in IBrect),

passing from (27) to (28) indeed drastically reduces the maximum number of
inequalities and may make the linear program (28) numerically tractable.

Due to (15) the Fortet-Mourier distance ζr(P,QJ) allows the representation
as linear program

ζr(P,QJ) = inf


N∑
i=1

n∑
j=1

ηij ĉr(ξi, ξj)

∣∣∣∣∣∣ ηij ≥ 0,
∑N
i=1 ηi,j = qj , j = 1, . . . , n∑n
j=1 ηi,j = pi, i = 1, . . . , N


where the reduced cost function ĉr is given by (21).

Hence, extending the representation (28) of αBrect we obtain the following
linear program for determining DJ and the probabilities qj , j = 1, . . . , n, of the
discrete reduced distribution QJ ,

DJ = min


λ tα + (1− λ)tζ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

tα, tζ ≥ 0, qj ≥ 0,
∑n
j=1 qj = 1,

ηij ≥ 0, i = 1, . . . , N, j = 1, . . . , n,

tζ ≥
∑N
i=1

∑n
j=1 ĉr(ξ

i, ξj)ηij ,∑n
j=1 ηij = pi, i = 1, . . . , N,∑N
i=1 ηij = qj , j = 1, . . . , n,

−
∑
j∈I∗ qj ≤ tα − γI

∗
, I∗ ∈ I∗Brect∑

j∈I∗ qj ≤ tα + γI∗ , I
∗ ∈ I∗Brect


(29)
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While the linear program (29) can be solved efficiently by available software,
determining the index set I∗Brect

and the coefficients γI
∗
, γI∗ is more intricate.

It is shown in [10, Section 3] that the parameters I∗Brect
and γI

∗
, γI∗ can be

determined by studying the set R of supporting rectangles. A rectangle B in
Brect is called supporting if each of its facets contains an element of {ξ1, . . . , ξn}
in its relative interior (see also Fig. 4). Based on R the following representations

Fig. 4. Non-supporting rectangle (left) and supporting rectangle (right). The dots rep-
resent the remaining scenarios ξ1, . . . , ξn for s = 2.

are valid according to [10, Prop. 1 and 2]:

I∗Brect
=
⋃
B∈R

{
I∗ ⊆ {1, . . . , n} : ∪j∈I∗{ξj} = {ξ1, . . . , ξn} ∩ intB

}
γI
∗

= max
{
P (intB) : B ∈ R ∪j∈I∗ {ξj} = {ξ1, . . . , ξn} ∩ intB

}
γI∗ =

∑
i∈I

pi where I :=
{
i ∈ {1, . . . , N} : min

j∈I∗
ξjl ≤ ξ

i
l ≤ max

j∈I∗
ξjl , l = 1, . . . , s

}
for every I∗ ∈ I∗Brect

. Here, intB denotes the interior of the set B.
An algorithm is developed in [12] that constructs recursively l-dimensional

supporting rectangles for l = 1, . . . , s. Computational experiments show that its
running time grows linearly with N , but depends on n and s via the expression(
n+ 1

2

)s
. Hence, while N may be large, only moderately sized values of n given

s seem to be realistic.
Since an algorithm for computing DJ is now available, we finally look at

determining a scenario index set J ⊂ I = {1, . . . , N} with cardinality |J | = N−n
such that DJ is minimal, i.e., at solving the combinatorial optimization problem

min{DJ : J ⊂ I, |J | = N − n} (30)

which is known as n-median problem and as NP-hard. One possibility is to
reformulate (30) as mixed-integer linear program and to solve it by standard
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software. Since, however, approximate solutions of (30) are sufficient, heuristic
algorithms like forward selection are of interest, where uk is determined in its
kth step such that it solves the minimization problem

min
{
DJ [k−1]\{u}

∣∣ u ∈ J [k−1]
}
,

where J [0] = {1, . . . , N}, J [k] := J [k−1] \ {uk} (k = 1, . . . , n) and J [n] :=
{1, . . . , N} \ {u1, . . . , un} serves as approximate solution to (30). Recalling that
the complexity of evaluating DJ [k−1]\{u} for some u ∈ J [k−1] is proportional to

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 5. N = 1 000 samples ξi from the uniform distribution on [0, 1]2 and n = 25
points ξuk , k = 1, . . . , n, obtained via the first 25 elements zk, k = 1, . . . , n, of the
Halton sequence (in the bases 2 and 3) (see [17, p. 29]). The probabilities qk of ξuk ,
k = 1, . . . , n, are computed for the distance dλ with λ = 1 (gray balls) and λ = 0.9
(black circles) by solving (29). The diameters of the circles are proportional to the
probabilities qk, k = 1, . . . , 25.

(
k + 1

2

)s
shows that even the forward selection algorithm is expensive.

Hence, heuristics for solving (30) become important that require only a
low number of DJ evaluations. For example, if P is a probability distribu-
tion on [0, 1]s with independent marginal distributions Pj , j = 1, . . . , s, such
a heuristic can be based on Quasi-Monte Carlo methods (cf. [17]). The latter
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provide sequences of equidistributed points in [0, 1]s that approximate the uni-
form distribution on the unit cube [0, 1]s. Now, let n Quasi-Monte Carlo points
zk = (zk1 , . . . , z

k
s ) ∈ [0, 1]s, k = 1, . . . , n, be given. Then we determine

yk :=
(
F−1

1 (zk1 ), . . . , F−1
s (zks )

)
(k = 1, . . . , n),

where Fj is the (one-dimensional) distribution function of Pj , i.e.,

Fj(z) = Pj((−∞, z]) =
N∑

i=1, ξi
j≤z

pi (z ∈ R)

and F−1
j (t) := inf{z ∈ R : Fj(z) ≥ t} (t ∈ [0, 1]) its inverse (j = 1, . . . , s).

Finally, we determine uk as solution of

min
u∈J [k−1]

|ξu − yk|

and set again J [k] := J [k−1] \ {uk} for k = 1, . . . , n, where J [0] = {1, . . . , N}.
Figure 5 illustrates the results of such a Quasi-Monte Carlo based heuristic and
Figure 6 shows the discrepancy αBrect for different n and the running times of
the Quasi-Monte Carlo based heuristic.

0 10 20 30 40 50

0.2

0.4

0.6

0.8

200

400

600

discrepancy time

Fig. 6. Distance αBrect between P (with N = 1000) and equidistributed QMC-points
(dashed), QMC-points, whose probabilities are adjusted according to (29) (bold), and
running times of the QMC-based heuristic (in seconds).
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