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Abstract. This paper presents a combined adaptive finite element
method with an iterative algebraic eigenvalue solver for the Laplace
eigenvalue problem of quasi-optimal computational complexity. The
analysis is based on a direct approach for eigenvalue problems and al-
lows the use of higher order conforming finite element spaces with fixed
polynomial degree k > 0. The optimal adaptive finite element eigen-
value solver (AFEMES) involves a proper termination criterion for the
algebraic eigenvalue solver and does not need any coarsening. Numerical
evidence illustrates the optimal computational complexity.
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1. Introduction

The eigenvalue problems for second order elliptic boundary value prob-
lems involve the discretisation error of some adaptive finite element method
as well as the error left from some iterative solver for the algebraic eigen-
value problem. This paper presents the first adaptive finite element eigen-
value solver (AFEMES) of overall quasi-optimal complexity shown in the
pseudocode below.

AFEMES
Input: Coarse triangulation T0, initial guess (µ0, w0),

parameter 0 < θ ≤ 1, 0 < ω.
δ0 := 2

√
ωη0(µ0, w0);

for ` = 0, 1, . . .
while ( δ` >

√
ωη`(µ`, w`) )

δ` := δ`/2;
[µ`, w`] := LAES(T`, µ`, w`, δ`);

end
T`+1 := Refine(T`,Mark(T`, θ, η`(µ`, w`)));
δ`+1 := 2

√
ωη`(µ`, w`); µ`+1 := µ`; w`+1 := w`;

end
Output: Sequence of triangulations T` and

inexact discrete eigenpairs (µ`, w`).
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The adaptive mesh refinement via subroutines Mark and Refine is well-
established in the finite element community [Dör96, BDD04, Ste07, BS08,
CKNS08] while LAES represents any state-of-the-art iterative eigensolver
well-established in the numerical linear algebra community. The pseudocode
gives one possible error balance of the two error sources of quasi-optimal
complexity. The works on convergence [GG09, Sau07, GMZ08, CG08] as
well as on quasi-optimal convergence [DXZ08] of adaptive mesh refinement
for the eigenvalue problem do assume unrealistically the exact knowledge of
algebraic eigenpairs. While a second optimality result for linear symmetric
operator eigenvalue problems [DRSZ08] is based on coarsening. Assuming
a saturation assumption, [Ney02, MM09] present combined adaptive finite
element and linear algebra algorithms.

As a simple model problem for a symmetric, elliptic eigenvalue problem
consider the following eigenvalue problem of the Laplace operator: Seek a
non-trivial eigenpair (λ, u) ∈ R×H1

0 (Ω; R) ∩H2
loc(Ω; R) such that

−∆u = λu in Ω and u = 0 on ∂Ω,(1.1)

for an open bounded Lipschitz domain ∅ 6= Ω ⊂ Rn, n = 2, 3. It is well
known, that problem (1.1) has countable infinite many solutions with posi-
tive eigenvalues

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . .

For simplicity this paper restricts to the case, that the eigenvalue of interest
λ is a simple eigenvalue, hence its algebraic and geometric multiplicity equals
one.

The weak problem seeks for a non-trivial eigenpair (λ, u) ∈ R × V :=
R×H1

0 (Ω; R) with b(u, u) = 1 and

a(u, v) = λb(u, v) for all v ∈ V.

The bilinear forms a(., .) and b(., .) are defined by

a(u, v) :=
∫

Ω
∇u · ∇v dx and b(u, v) :=

∫
Ω
uv dx

and induce the norms |||.||| := |.|H1(Ω) on V and ‖.‖ := ‖.‖L2(Ω) on L2(Ω).
The conforming finite element space of order k ∈ N for the triangulation T`
is defined by

Pk(T`) :=
{
v ∈ H1(Ω) : ∀T ∈ T`, vT is polynomial of degree ≤ k

}
Let V` := Pk(T`) ∩ V denote the finite-dimensional subspace of fixed order
k > 0. The corresponding discrete eigenvalue problem reads: Seek a non-
trivial eigenpair (λ`, u`) ∈ R× V` with b(u`, u`) = 1 and

a(u`, v`) = λb(u`, v`) for all v` ∈ V`.

In this paper the quasi-optimal convergence for the model problem (1.1)
is first shown for exact algebraic eigenvalue solutions without using the inner
node property: Suppose that (λ`, u`) is a discrete eigenpair to the continuous
eigenpair (λ, u). Let u ∈ As, As denotes an approximation space, and (T`)`
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be a sequence of nested regular triangulations. Then (λ`, u`) converges quasi-
optimal,

|||u− u`|||2 + |λ− λ`| . (|T`| − |T0|)−2s.

Throughout this paper, standard notations on Sobolev and Lebesgue spaces
are used. The notation a . b abbreviates the inequality a ≤ Cb with
a constant C > 0 which does not depend on the mesh-size. Finally, |T`|
denotes the cardinality of T`. In contrast to [DXZ08] the proofs are based on
the eigenvalue formulation and not on a relation to its corresponding source
problem. Hence, no additional oscillations arising from the corresponding
source problem have to be treated. In a second step this result is extended
to the case of inexact algebraic eigenvalue solutions: Suppose (λ, u) with
u ∈ As is an exact eigenpair and (λ`, u`) and (λ`+1, u`+1) corresponding
discrete eigenpairs on level ` and ` + 1. Let the iterative approximations
(µ`, w`) on T` and (µ`+1, w`+1) on T`+1 satisfy

|||u`+1 − w`+1|||2 + |λ`+1 − µ`+1| ≤ ωη2
` (µ`, w`),

|||u` − w`|||2 + |λ` − µ`| ≤ ωη2
` (µ`, w`),

for sufficiently small ω > 0. Then, the iterative solutions µ` and w` converge
optimally up to positive constants,

|||u− w`|||2 + |λ− µ`| . (|T`| − |T0|)−2s.

Finally, this result leads to an optimal combined adaptive finite element
and numerical linear algebra algorithm (AFEMES) which does not need
any coarsening or saturation assumption.

The outline of this paper is as follows. Section 2 concerns the basic struc-
ture of the standard adaptive finite element method (AFEM) for eigenvalue
problems. Section 3 presents some algebraic and analytic properties for
the model problem (1.1). The discrete reliability of a residual type error
estimator is shown in Section 4 together with the standard reliability and
efficiency. In Section 5 a contraction property for the quasi-error up to
higher-order terms leads to quasi-optimal convergence for the AFEM under
the usual assumption that the mesh-size is sufficiently small and that the
algebraic sub-problems are solved exactly. Relaxing this last assumption
in Section 6, the results for quasi-optimal convergence are extended to the
case of inexact algebraic eigenvalue solutions. These relaxed results are in
Section 7 combined with an quasi-optimal iterative eigenvalue solver and
thus lead to the combined AFEM and iterative algebraic eigenvalue solver
AFEMES with quasi-optimal computational complexity. The numerical ex-
periments of Section 8 show empirical optimal convergence rates for the case
of exact algebraic eigenvalue solvers and higher-order finite element meth-
ods. An implementation of the proposed optimal AFEMES for linear finite
elements shows numerically quasi-optimal complexity for sufficiently small
bulk parameters.
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2. Adaptive Finite Element Eigenvalue Solver

The adaptive finite element method computes a sequence of discrete sub-
spaces

V0 ( V1 ( V2 ( . . . ( V` ⊂ V
using local refinement of the underlying mesh of the domain Ω. The corre-
sponding sequence of meshes T0, T1, T2, . . . consists of nested regular trian-
gulations. The AFEM consists of the following loop

Solve→ Estimate→ Mark→ Refine.

Solve. Given a mesh T` on level ` the step Solve computes the stiffness ma-
trix A` and the mass matrix B` and solves the finite-dimensional generalised
algebraic eigenvalue problem

A`x` = λ`B`x`

with

u` =
dim(V`)∑
k=1

xkϕk, V` = span{ϕ1, . . . , ϕdim(V`)}.

Practically, these discrete eigenvalue problems are solved inexact using iter-
ative algebraic eigenvalue solvers. In this paper the linear algebraic eigen-
value solver (LAES), used as a ’black box’ iterative solver in the optimal
algorithm AFEMES, is assumed to be any iterative eigenvalue solver of op-
timal complexity. E.g., for any given tolerance ε > 0, the LAES computes
some eigenpair (µ`,m, w`,m) of the generalised algebraic eigenvalue problem
from a close enough initial guess (µ`,0, w`,0) such that

|||u` − w`,m|||2 + |λ` − µ`,m| ≤ ε2

in at most, up to a multiplicative constant,

max
{

1, log(ε−1|||u` − w`,0|||)
}
|T`|

arithmetic operations. For example, the preconditioned inverse iteration
(PINVIT), for computing the smallest eigenpair, is known to be of optimal
complexity, as soon as the preconditioner is close enough to the exact inverse
[KN09].

Estimate. The error in the eigenfunction or eigenvalue of interest is esti-
mated based on the solution (λ`, u`) of the underlying algebraic eigenvalue
problem

η2
` (λ`, u`) :=

∑
T∈T`

η`(λ`, u`;T )2 +
∑
E∈E`

η`(λ`, u`;E)2.

Mark. Based on the refinement indicators, edges and elements are marked
for refinement in a bulk criterion [Dör96] such that M` ⊆ T` ∪ E` is an
(almost) minimal set of marked edges with

θη2
` (λ`, u`) ≤ η2

` (λ`, u`;M`),

η2
` (λ`, u`;M`) :=

∑
T∈M`∩T`

η2
` (λ`, u`;T ) +

∑
E∈M`∩E`

η2
` (λ`, u`;E)
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for a bulk parameter 0 < θ ≤ 1. This is done in a greedy algorithm which
marks edges and elements with larger contributions.

Refine. In this step of the AFEM loop, the mesh is refined locally corre-
sponding to the set M` of marked edges and elements. Once an element is
selected for refinement, all of it’s edges will be refined. In order to preserve
the quality of the mesh, i.e., the maximal angel condition or its equivalents,
additionally edges have to be marked by the closure algorithm before refine-
ment. For each triangle let one edge be the uniquely defined reference edge
E(T ). The closure algorithm computes a superset M` ⊃M` such that{

E(T ) : T ∈ T` with E`(T ) ∩M` 6= ∅ or T ∩M` 6= ∅
}
⊆M`.

In other words, once a edge of a triangle or itself is marked for refinement,
its reference edge E(T ) is among them. A similar refinement algorithm for
n = 3 based on bisection and the concept of reference edges can be found in
[AMP00].

Proposition 2.1 (Boundedness of Closure, [BDD04, Ste08]). Let T`+1 be
a refinement of T`, obtained using the refinement algorithm and closure.
Suppose T0 is the initial coarse triangulation, then it holds

|TL| − |T0| .
L−1∑
`=0

|M`|. �

After the closure algorithm is applied one of the following refinement rules
is applicable, namely no refinement, green refinement, blue left or blue right
refinement and bisec3 refinement depicted in Figure 2.1.

Proposition 2.2 (Overlay, [Ste07, CKNS08]). For the smallest common
refinement Tε ⊕ T` of Tε and T` it holds

|Tε ⊕ T`| − |T`| ≤ |Tε| − |T0|. �

3. Algebraic Properties

This section summarises some known and some new algebraic properties
of the model problem (1.1), such as the relation between the eigenvalue error
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Figure 2.1. Refinement rules: Sub-triangles with corre-
sponding reference edges depicted with a second edge.
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and the error with respect to the norms |||.||| and ‖.‖ [SF73]

|||u− u`|||2 = λ‖u− u`‖2 + λ` − λ.(3.1)

Suppose that (λ, u`) ∈ R × V` and (λ`+m, u`+m) ∈ R × V`+m are discrete
eigenpairs approximating the continuous eigenpair (λ, u) ∈ R × V on the
levels ` and `+m.

Lemma 3.1 (Quasi-orthogonality). Let T`+m be a refinement of the tri-
angulation T` for some level ` such that V` ⊂ V`+m or even in the limit
V`+m = V such that u`+m = u and λ`+m = λ. Then, for e` := u − u` and
e`+m := u− u`+m, the quasi-orthogonality holds

|||u`+m − u`|||2 = |||e`|||2 − |||e`+m|||2 − λ‖e`‖2

+ λ‖e`+m‖2 + λ`+m‖u`+m − u`‖2.

Proof. Since T`+m is a refinement of T`, (3.1) implies

|||u`+m − u`|||2 = λ`+m‖u`+m − u`‖2 + λ` − λ`+m.
Hence,

|||u`+m − u`|||2 = λ`+m‖u`+m − u`‖2 + λ` − λ− (λ`+m − λ)

= |||e`|||2 − |||e`+m|||2 − λ‖e`‖2 + λ‖e`+m‖2

+ λ`+m‖u`+m− u`‖2. �

Let the residual Res` ∈ V ∗ be defined by

Res`(v) := λ`b(u`, v)− a(u`, v) for all v ∈ V.
Notice that V` ⊂ ker(Res`).

Lemma 3.2. Let T`+m be a refinement of T` such that V` ⊂ V`+m ⊆ V ,
then it holds

|||u`+m − u`||| ≤ |||Res`|||V ∗`+m
+

(λ`+m + λ`)
2

‖u`+m − u`‖2

|||u`+m − u`|||
.

Proof. Elementary algebraic manipulations, together with the assumption
that V` ⊂ V`+m, show

|||u`+m − u`|||2 = λ`b(u`, u`+m − u`)− a(u`, u`+m − u`)
+ a(u`+m, u`+m − u`)− λ`b(u`, u`+m − u`)

= Res`(u`+m − u`) + (λ`+m + λ`)(1− b(u`+m, u`))

≤ |||Res`|||V ∗`+m
|||u`+m − u`|||+

(λ`+m + λ`)
2

‖u`+m − u`‖2. �

The remaining part of this section is devoted to show that the second
term on the right hand side in Lemma 3.2 is of higher-order, namely

‖u`+m − u`‖ . ‖h`‖rL∞(Ω)|||u`+m − u`|||.

Here and throughout this paper, h` ∈ P0(T`) is the piecewise constant mesh-
size function with h`|T := diam(T ) for T ∈ T` and 0 < r ≤ 1 depends on
the regularity of the solution of the corresponding boundary value problem.
The first part follows the argumentation as in [SF73] for the case u`+m = u.
The second part exploits regularity of the corresponding boundary value
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problem together with the Aubin-Nitsche technique. Let G`+m` : V`+m → V`
denote the Galerkin projection onto V` such that

a(u`+m −G`+m` u`+m, v`) = 0 for all v` ∈ V`.
Note that the case V = V`+m with Galerkin projection G` : V → V` is
included. Suppose the k-th eigenvalue λ = λk is simple. Let the initial
mesh-size ‖h0‖L∞(Ω) be sufficiently small such that there exist two separation
constants ρ and ρ`+m, which satisfy

λk
λ`,j − λk

≤ ρ for all j 6= k, 1 ≤ j ≤ dim(V`),

λ`+m,k
λ`,j − λ`+m,k

≤ ρ`+m for all j 6= k, 1 ≤ j ≤ dim(V`).

In the case of a multiple eigenvalue λk there still exists such separation
constants for sufficiently small ‖h0‖L∞(Ω).

Lemma 3.3. Let T`+m be a refinement of T` such that V` ⊂ V`+m, then for
the Galerkin projections G`+m` : V`+m → V` and G` : V → V` it holds

‖u`+m − u`‖ ≤ 2(1 + ρ`+m)‖u`+m −G`+m` u`+m‖,
‖u− u`‖ ≤ 2(1 + ρ)‖u−G`u‖.

Proof. Note that for the Galerkin projection it holds

(λ`,j − λ`+m,k)b(G`+m` u`+m,k, u`,j)=λ`+m,kb(u`+m,k −G`+m` u`+m,k, u`,j).

Since u`,1, . . . , u`,N`
, for N` = dimV`, forms an orthogonal basis for V`, the

Galerkin projection of u`+m,k can be written as

G`+m` u`+m,k =
N∑̀
j=1

b(G`+m` u`+m,k, u`,j)u`,j .

Let β := b(G`+m` u`+m,k, u`,k) be the coefficient for j = k in the previ-
ous formula. Because of the orthogonality of the discrete eigenfunctions
u`,1, . . . , u`,N`

, it holds

‖G`+m` u`+m,k − βu`,k‖2 =
N∑̀
j=1
j 6=k

b(G`+m` u`+m,k, u`,j)2

=
N∑̀
j=1
j 6=k

(
λ`+m,k

λ`,j − λ`+m,k

)2

b(u`+m,k −G`+m` u`+m,k, u`,j)2

≤ ρ2
`+m

N∑̀
j=1
j 6=k

b(u`+m,k −G`+m` u`+m,k, u`,j)2

≤ ρ2
`+m‖u`+m,k −G`+m` u`+m,k‖2.

The triangle inequality shows that

‖u`+m,k‖ − ‖u`+m,k − βu`,k‖ ≤ ‖βu`,k‖ ≤ ‖u`+m,k‖+ ‖u`+m,k − βu`,k‖.
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Since the eigenfunctions are normalized to one this implies

|β − 1| ≤ ‖u`+m,k − βu`,k‖.

Hence,

‖u`+m,k − u`,k‖ ≤ ‖u`+m,k − βu`,k‖+ ‖(β − 1)u`,k‖
≤ 2‖u`+m,k − βu`,k‖.

Thus,

‖u`+m,k − u`,k‖ ≤ 2‖u`+m,k −G`+m` u`+m,k‖+ 2‖G`+m` u`+m,k − βu`,k‖

≤ 2(1 + ρ`+m)‖u`+m,k −G`+m` u`+m,k‖.

The second inequality follows analogously since V` ⊂ V . �

Remark 3.4. Lemma 3.3 implies

‖e`+m‖ ≤ 2(1 + ρ)‖u−G`+mu‖
≤ 2(1 + ρ)‖u−G`u‖ ≤ 2(1 + ρ)‖e`‖.

With (3.1) and the min-max principle, it follows

|||e`+m||| . |||e`||| and λ ≤ λ`+m ≤ λ`.

Lemma 3.5. Let T`+m be a refinement of T` such that V` ⊂ V`+m ⊆ V .
Suppose the corresponding boundary value problem to (1.1) is H1+r-regular,
i.e., u`+m ∈ H1+r(Ω) ∩ V . Then it holds

‖u`+m − u`‖ ≤ σ(h`)|||u`+m − u`|||

with

σ(h`) := 2(1 + ρ`+m)Creg‖h`‖rL∞(Ω)‖λu‖H1+r(Ω)

for some 0 < r ≤ 1.

Proof. Since u`+m ∈ H1+r(Ω)∩V , the following convergence estimate holds
for the Galerkin projection G`+m` and any solution z`+m of the corresponding
dual boundary value problem

‖z`+m −G`+m` z`+m‖H1(Ω) ≤ Creg‖h`‖rL∞(Ω)‖λu‖H1+r(Ω)

for some 0 < r ≤ 1 [BS08, Theorem 14.3.3]. Under the assumption, that
the problem is H1+r-regular, the Aubin-Nitzsche duality technique leads to

‖u`+m −G`+m` u`+m‖ ≤ Creg‖h`‖rL∞(Ω)‖λu‖H1+r(Ω)|||u`+m −G`+m` u`+m|||
≤ Creg‖h`‖rL∞(Ω)‖λu‖H1+r(Ω)|||u`+m − u`|||.

Lemma 3.3 finishes the proof for both cases V`+m ⊂ V and V`+m = V . �

Lemma 3.6. Let T`+m be a refinement of T` such that V` ⊂ V`+m ⊆ V . For
sufficiently small initial mesh-size ‖h0‖L∞(Ω) there exists a constant C0 > 0
depending only on T0 such that 1 ≤ κ(h`) < C0 with

|||u`+m − u`||| ≤ κ(h`)|||Res`|||V ∗`+m
and lim

‖h`‖L∞(Ω)→0
κ(h`) = 1.
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Proof. Suppose that ‖h`‖L∞(Ω) is sufficiently small such that

δ` := 2C2
reg‖λu‖2H1+r(Ω)(λ`+m + λ`)(1 + ρ`+m)2‖h`‖2rL∞(Ω) � 1.

Then Lemma 3.2, Lemma 3.3 together with Lemma 3.5 lead to

|||u`+m − u`||| ≤ (1− δ`)−1|||Res`|||V ∗`+m
.

Notice that κ(h`) := (1− δ`)−1 → 1 as the maximal mesh-size tends to zero
and C0 := (1− δ0)−1. �

4. A Posteriori Error Estimator

This section establishes the discrete reliability and recalls the reliabil-
ity and efficiency of the standard residual-based error estimator [DPR03,
DXZ08, GG09, GMZ08]. Let p` := ∇u` denote the discrete gradient and E`
the set of inner edges of T`. For E ∈ E` let T+, T− ∈ T` be the two neigh-
bouring triangles such that E = T+∩T−. The jump of the discrete gradient
p` along an inner edge E ∈ E` in normal direction νE , pointing from T+ to
T−, is defined by [p`] ·νE :=

(
p`|T+ − p`|T−

)
· νE . Then the residual error

estimator is defined by

η2
` (λ`, u`) :=

∑
T∈T`

η`(λ`, u`;T )2 +
∑
E∈E`

η`(λ`, u`;E)2

with n = 2, 3 and

η`(λ`, u`;T )2 := |T |2/n‖λ`u` + div(p`)‖2L2(T ),

η`(λ`, u`;E)2 := |E|1/(n−1)‖[p`]·νE‖2L2(E).

Note that the Scott-Zhang quasi-interpolation operator J : V → V` is a
projection J(v`) = v` for all v` ∈ V`. In addition, it is locally a L2-projection
onto (n-1)-dimensional edges or faces. Therefore each node is assigned any
edge or face which contains it. Edge-basis functions are interpolated on
their edge and element-basis functions are interpolated over the interior of
their element. The element and edge patches ΩT and ΩE are displayed in
Figure 4.1. In the following, the Scott-Zhang quasi-interpolation operator is
restricted to V`+m for a refined triangulation T`+m of T`. If it is possible, each
nodal-basis function is assigned an edge of the boundary or an edge which
is not refined. Thus the homogeneous boundary values are preserved. Let
v` denote the Scott-Zhang interpolant of v`+m in V`. Then for all elements
T ∈ T` and all edges E ∈ E` that are not refined it holds v`+m|T= v`|T
and v`+m|E= v`|E . Since the finite overlay of the patches ΩT and ΩE the
approximation property holds∑
T∈T`

|T |−1/n‖v`+m − v`‖L2(T )+
∑
E∈E`

|E|−1/(2n−2)‖v`+m − v`‖L2(E). |||v`+m|||.

Lemma 4.1 (Discrete Reliability). For sufficiently small ‖h0‖L∞(Ω) let
(λ`, u`) be a discrete eigenpair on level ` and M` ⊆ T` ∪ E` be any set of
edges and elements. Suppose the refinement algorithm of Section 2 computes
the refined mesh T`+m, then it holds

|||Res`|||V ∗`+m
. η`(λ`, u`;M`).
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Figure 4.1. Patches for the Scott-Zhang interpolation operator.

Proof. Let v` denote the Scott-Zhang interpolant of v`+m ∈ V`+m in V`. For
all common elements T ∈ T` ∩ T`+m and all common edges E ∈ E` ∩ E`+m it
holds v`|T = v`+m|T and v`|E = v`+m|E . Hence,

Res`(v`+m) = Res`(v`+m − v`) = λ`b(u`, v`+m − v`)− a(u`, v`+m − v`)

.
∑

T∈T`\T`+m

|T |1/n‖div(p`) + λ`u`‖L2(T )‖|T |−1/n(v`+m − v`)‖L2(T )

+
∑

E∈E`\E`+m

|E|1/(2n−2)‖[p`]·νE‖L2(E)‖|E|−1/(2n−2)(v`+m − v`)‖L2(E)

. η`(λ`, u`;M`)|||v`+m|||.
For sufficiently small ‖h0‖L∞(Ω), Lemma 3.6 finishes the proof. �

Lemma 4.2. For sufficiently small ‖h0‖L∞(Ω) it holds

|||Res`|||V ∗ . η`(λ`, u`) . |||e`|||.

Proof. The first inequality can be proven as Lemma 4.1. For the second
inequality, Durán et al. [DPR03] showed the local lower bound for piecewise
linear finite element functions using the bubble-function technique. In the
case of higher-order finite elements the arguments of the proof remain the
same as in the linear case except that div(p`) can be non-zero. Thus the
local discrete inverse inequality |ωE |1/n‖div(p`)‖L2(ωE) . ‖∇e`‖L2(ωE) has
to be applied additionally. Therefore it holds the local lower bound

|ωE |1/n‖λ`u` + div(p`)‖L2(ωE) + |E|1/(2n−2)‖[p`]·νE‖L2(E)

. ‖∇e`‖L2(ωE) + |ωE |1/n‖λu− λ`u`‖L2(ωE)

for the edge patch ωE := T+ ∪ T−, for T± ∈ T` with E = T+ ∩ T−. The
global version reads

η2
` (λ`, u`) . |||e`|||2 + ‖h`‖2L∞(Ω)‖λu− λ`u`‖

2.

As shown in [CG08], some elementary algebra in the spirit of Lemma 3.1
shows

‖λu− λ`u`‖2 = (λ` − λ)2 + λλ`‖e`‖2.

Equation (3.1) yields (λ` − λ)2 ≤ |||e`|||4 and λλ`‖e`‖2 ≤ λ`|||e`|||2. Since λ` is
bounded by λ0 it holds

η`(λ`, u`) . |||e`|||
even for larger mesh-sizes ‖h`‖L∞(Ω) . 1. �
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Remark 4.3. Lemma 3.6, Lemma 4.1 and Lemma 4.2 show that there exist
two constants 0 < Crel and 0 < Ceff such that

η`(λ`, u`)/Ceff ≤ |||e`||| ≤ Crelη`(λ`, u`),

|||u`+m − u`||| ≤ Crelη`(λ`, u`;M`).

5. Quasi-Optimal Convergence

This section is devoted to the quasi-optimal convergence analysis of the
adaptive eigenvalue computation based on exact solutions of the algebraic
eigenvalue problems. At first the approximation class As is defined and its
properties are described. Lemma 5.2 shows an estimator reduction which is
used in the proof of the contraction property in Lemma 5.3. The contraction
property and the bulk criterion are key arguments in the proof of the quasi-
optimality in Theorem 5.4.

Definition 5.1 (Approximation class). For an initial triangulation T0 and
for s > 0 let the approximation class be defined by

As :=
{
u ∈ H1

0 (Ω) : |u|As := sup
ε>0

ε inf
Tε:|||u−uε|||≤ε

(|Tε| − |T0|)s <∞
}
.

The infimum is taken over all refinements Tε of T0 computed by the refine-
ment algorithm of Section 2 with |||u− uε||| ≤ ε.

Notice that As contains all eigenfunctions that can be approximated
within pre-described tolerance ε > 0, |||u − uε||| ≤ ε, on a triangulation
Tε with |Tε| − |T0| ≤ ε−1/s|u|1/sAs

. For uniform refinement classical a priori
estimates show that for 0 < r ≤ 1, H1+r(Ω) ∩ V ⊂ Ar/n, but the class
obtains much more functions which motivates the use of adaptivity. Due to
[Ste07] an equivalent formulation, similar to that of [CKNS08], reads

As :=
{
u ∈ H1

0 (Ω) : sup
N∈N

N s inf
Tε:|Tε|−|T0|≤N

|||u− uε||| <∞
}
.

In the following the marking strategy of Section 2 is a key argument in
the proofs.

Lemma 5.2. Let (λ`, u`) and (λ`+1, u`+1) be discrete eigenpairs on the levels
` and `+ 1 to the continuous eigenpair (λ, u), then there exist some Λ > 0,
such that, for all levels ` ≥ 0 and 0 < θ ≤ 1, it holds

η`+1(λ`+1, u`+1) ≤
√

(1− θ(1− 2−1/(n−1)))η`(λ`, u`) + Λ|||u`+1 − u`|||.

Proof. As in the proof of [CG08, Lemma 5.3], Young’s inequality, some
discrete inverse inequalities and the bulk criterion of Section 2 lead to

η2
`+1(λ`+1, u`+1) ≤ (1 + δ)(1− θ(1− 2−1/(n−1)))η2

` (λ`, u`)

+ Λ2(1 + 1/δ)|||u`+1 − u`|||2

for any 0 < δ from Young’s inequality, 0 < θ ≤ 1 bulk parameter and 0 < Λ
from application of various discrete inverse inequalities. Thereby the factor
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2−1/(n−1) results from at least one bisection of refined elements or edges.
The choice

δ =
Λ|||u`+1 − u`|||√

(1− θ(1− 2−1/(n−1)))η`(λ`, u`)

proves the assertion. �

Lemma 5.3 (Contraction property). Let (λ`, u`) and (λ`+1, u`+1) be dis-
crete eigenpairs on the levels ` and `+1 approximating the same continuous
eigenpair (λ, u) and let the mesh-size ‖h`‖L∞(Ω) be sufficiently small, then
there exist constants 0 < % < 1 and γ > 0, such that, for all ` = 0, 1, 2, . . .,
it holds

γη2
`+1(λ`+1, u`+1) + |||u− u`+1|||2 ≤ %

(
γη2

` (λ`, u`) + |||u− u`|||2
)
.(5.1)

Proof. The proof of [CG08, Theorem 5.5] shows

γη2
`+1(λ`+1, u`+1) + |||u− u`+1|||2 ≤ %

(
γη2

` (λ`, u`) + |||u− u`|||2
)

+ 9λ`
(
‖u− u`‖2 + ‖u− u`+1‖2

)
.

Remark 3.4 reads

‖e`+1‖2 ≤ 4(1 + ρ)2‖e`‖2,

where ρ depends of the distance of the eigenvalue λ to all others as in
Lemma 3.3. This results in

γη2
`+1(λ`+1, u`+1) + |||u− u`+1|||2 ≤ %

(
γη2

` (λ`, u`) + |||u− u`|||2
)

+ 37(1 + ρ)2λ`‖u− u`‖2.

Lemma 3.5 shows

‖u− u`‖2 . ‖h0‖2rL∞(Ω)η
2
` (λ`, u`).

Hence, for sufficiently small mesh-size ‖h0‖L∞(Ω) � 1, it follows (5.1) with
some constant % < 1. �

Theorem 5.4. Suppose that (λ`, u`) is an exact discrete eigenpair to the
continuous eigenpair (λ, u) with u ∈ As. Then λ` and u` from the AFEM
converge quasi-optimal in the sense that

|||e`|||2 + |λ− λ`| . (|T`| − |T0|)−2s.

Proof. First it is shown that for a setM` of marked edges and elements from
the marking strategy of Section 2, based on the bulk criterion and η`(λ`, u`),
and a bulk parameter θ > 0, it holds

|M`| . |||e`|||−1/s|u|1/sAs
.

Suppose T`+ε is any refinement of T` such that

|||e`+ε||| ≤ ρ|||e`|||

for some 0 < ρ < 1. Suppose that ‖h`‖L∞(Ω) and θ are sufficiently small,

0 < θ ≤ (1− ρ2)
C2

relC
2
eff

− λσ(h`)2,
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where σ(h`) from Lemma 3.5 tends to zero as ‖h`‖L∞(Ω) → 0. Using the
efficiency estimates of Remark 4.3 together with the quasi-orthogonality of
Lemma 3.1 yields

(1− ρ2)η2
` (λ`, u`)/C

2
eff ≤ (1− ρ2)|||e`|||2 ≤ |||e`|||2 − |||e`+ε|||2

= |||u`+ε− u`|||2 + λ‖e`‖2 − λ‖e`+ε‖2 − λ`+ε‖u`+ε− u`‖2.

Let Mε := (T`\T`+ε) ∪ (E`\E`+ε). The combination of Lemma 3.6, together
with Lemma 4.1 and Lemma 3.5 yields

(1− ρ2)η2
` (λ`, u`)/C

2
eff ≤ C2

relη
2
` (λ`, u`;Mε) + λ‖e`‖2

≤ C2
relη

2
` (λ`, u`;Mε) + λσ(h`)2C2

relη
2
` (λ`, u`).

Therefore Mε satisfies the bulk criterion. Since M` is the set with almost
minimal cardinality that fulfils the bulk criterion, it holds

|M`| . |Mε| . |T`+ε| − |T`|.

Let Tε be an optimal mesh with smallest cardinality such that

|||eε||| ≤ ρ|||e`|||.

The definition of the approximation space As shows that

|Tε| − |T0| ≤ ρ−1/s|||e`|||−1/s|u|1/sAs
.

Let T`+ε be the smallest common refinement of Tε and T`. Then the overlay
estimate yields

|M`| . |T`+ε| − |T`| = |Tε ⊕ T`| − |T`| ≤ |Tε| − |T0| . |||e`|||−1/s|u|1/sAs
.

This and the boundedness of closure in Lemma 2.1 yield

|TL| − |T0| .
L−1∑
`=0

|M`| . |u|
1/s
As

L−1∑
`=0

|||e`|||−1/s.

The efficiency estimate of Remark 4.3 yields

γη2
` (λ`, u`) + |||u− u`|||2 ≤

(
1 + γC2

eff

)
|||u− u`|||2.

Thus,

|||u− u`|||−1/s ≤
(
1 + γC2

eff

)1/(2s) (
γη2

` (λ`, u`) + |||u− u`|||2
)−1/(2s)

.

Lemma 5.3 leads to(
γη2

` (λ`, u`) + |||u− u`|||2
)−1 ≤ %

(
γη2

`+1(λ`+1, u`+1) + |||u− u`+1|||2
)−1

.

Exploiting the reliability of the estimator and a geometric series argument
yields that |TL| − |T0| is, up to a multiplicative constant, bounded by

|u|1/sAs

(
1 + γC2

eff

)1/(2s) (
γη2

L(λL, uL) + |||u− uL|||2
)−1/(2s)

L∑
`=1

%`/(2s)

. |u|1/sAs

(
1 + γC2

eff

1 + γ/C2
rel

)1/(2s)

(1− %1/(2s))−1|||u− uL|||−1/s.

Equation (3.1) proves the second statement of Theorem 5.4. �
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6. Quasi-Optimal Convergence for Inexact Algebraic
Solutions

This section contributes to the fact that in practise the underlying alge-
braic eigenvalue problems are solved inexact using iterative algebraic eigen-
value solvers. A relationship between the error estimator in the exact alge-
braic solution and any approximation to it is established in Lemma 6.1. As in
the case of exact algebraic solutions, the contraction property in Lemma 6.2
and local optimality in Lemma 6.3 lead to the global quasi-optimality in
Theorem 6.4.

Lemma 6.1. Let v`, w` ∈ V` be arbitrary, not necessary eigenfunctions,
but normalised with ‖v`‖ = ‖w`‖ = 1 and λ, µ ∈ R+ arbitrary positive real
numbers, then it holds

|η`(λ, v`)− η`(µ,w`)|2 ≤ C
(
|||v` − w`|||2 + |λ− µ|2

)
for a constant 0 < C independent of the mesh size ‖h`‖L∞(Ω).

Proof. Using twice the triangle inequality first for vectors and then for func-
tions yields

|η`(λ, v`)− η`(µ,w`)|2 ≤
∑
T∈T`

|T |2/n‖λv` − µw` + div(∇v` −∇w`)‖2L2(T )

+
∑
E∈E`

|E|1/(n−1)‖[∇v` −∇w`]·νE‖2L2(E).

The local discrete inverse inequality

|T |2/n‖div(∇v`)‖2L2(T ) . ‖∇v`‖
2
L2(T ),

together with the trace inequality

‖v‖2L2(E) . |E|
−1/(n−1)‖v‖2L2(ωE) + |E|1/(n−1)‖∇v‖2L2(ωE),

the Poincaré inequality and the finite overlay of the patches lead to

|η`(λ, v`)−η`(µ,w`)|2

.
∑
T∈T`

|T |2/n‖λv` − µw`‖2L2(T ) + ‖∇v` −∇w`‖2L2(T )

+
∑
E∈E`

‖∇v` −∇w`‖2L2(ωE)

. ‖h`‖2L∞(Ω)‖λv` − µw`‖
2 + |||v` − w`|||2

. (1 + λ2‖h`‖2L∞(Ω))|||v` − w`|||
2 + |λ− µ|2. �

Lemma 6.2 (Contraction property for inexact algebraic solutions). Sup-
pose that (λ`, u`) and (λ`+1, u`+1) are discrete eigenpairs to the continuous
eigenpair (λ, u) on level ` and ` + 1. Let (µ`, w`) and (µ`+1, w`+1) be the
corresponding iterative approximations to the discrete eigenpairs, which sat-
isfy

|||u`+1 − w`+1|||2 + |λ`+1 − µ`+1|2 ≤ ωη2
` (µ`, w`),

|||u` − w`|||2 + |λ` − µ`|2 ≤ ωη2
` (µ`, w`)
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for sufficiently small ω > 0. Then, for sufficiently small mesh size ‖h`‖L∞(Ω),
there exists some 0 < ν < 1, such that the contraction property

γη2
` (µ`+1, w`+1) + |||u− w`+1|||2 ≤ ν

(
γη2

` (µ`, w`) + |||u− w`|||2
)

holds.

Proof. The assumptions and Lemma 6.1 plus Young’s inequality show for
any δ > 0

γη2
` (µ`+1, w`+1) + |||u− w`+1|||2

≤ (1 + δ)
(
γη2

` (λ`+1, u`+1) + |||u− u`+1|||2
)

+ (1 + 1/δ)
(
γ|η`(µ`+1, w`+1)− η`(λ`+1, u`+1)|2 + |||u`+1 − w`+1|||2

)
≤ (1 + δ)

(
γη2

` (λ`+1, u`+1) + |||u− u`+1|||2
)

+ (1 + 1/δ)
(
γC|λ`+1 − µ`+1|2 + (1 + γC)|||u`+1 − w`+1|||2

)
≤ (1 + δ)

(
γη2

` (λ`+1, u`+1) + |||u− u`+1|||2
)

+ (1 + 1/δ)(1 + γC)ωη2
` (µ`, w`).

The contraction property Lemma 5.3 and another Young’s inequality yield

γη2
` (µ`+1, w`+1) + |||u− w`+1|||2 ≤ (1 + δ)%

(
γη2

` (λ`, u`) + |||u− u`|||2
)

+ (1 + 1/δ)(1 + γC)ωη2
` (µ`, w`)

≤ (1 + δ)2%
(
γη2

` (µ`, w`) + |||u− w`|||2
)

+ (1 + (1 + δ)%)(1 + 1/δ)(1 + γC)ωη2
` (µ`, w`).

Any choice of 0 < δ < %−1/2 − 1 results in

0 < ω <
γ − (1 + δ)2%γ

(1 + (1 + δ)%)(1 + 1/δ)(1 + γC)
.

The choice

0 < ν := (1 + δ)2%+ (1 + (1 + δ)%)(1 + 1/δ)(1 + γC)ω/γ < 1

finishes the proof. �

Lemma 6.3. Let (λ, u) be an eigenpair and (λ`, u`) the corresponding dis-
crete eigenpair with iterative approximation (µ`, w`) which satisfies

|||u` − w`|||2 + |λ` − µ`|2 ≤ ωη2
` (µ`, w`)

for a sufficient small ω > 0. Suppose that Mµ`,w`
is the set of marked

edges and elements using the marking strategy of Section 2 based on the
bulk criterion and η`(µ`, w`), then for sufficiently small ‖h`‖L∞(Ω) and bulk
parameter θ > 0 it holds

|Mµ`,w`
| . |||u− w`|||−1/s|u|1/sAs

.

Proof. Let Tε be the smallest partition of T0 such that

|||u− uε||| ≤ ρ|||u− w`|||

for 0 < ρ < 1/2. Thus, the definition of |u|As yields

|Tε| − |T0| ≤ ρ−1/s|||u− w`|||−1/s|u|1/sAs
.



AN AFEMES OF QUASI-OPTIMAL COMPUTATIONAL COMPLEXITY 16

Let T`+ε := T` ⊕ Tε be the smallest common refinement of T` and Tε, then
it holds

|||u− u`+ε||| ≤ ρ|||u− w`||| ≤ ρ|||u− u`|||+ ρ|||u` − w`|||
≤ ρ|||u− u`|||+ ρ

√
ωη`(µ`, w`)

≤
(
2ρ2|||u− u`|||2 + 2ρ2ωη2

` (µ`, w`)
)1/2

.

This estimate proofs the following

(1− 2ρ2)C−2
eff η

2
` (λ`, u`)− 2ρ2ωη2

` (µ`, w`)

≤ (1− 2ρ2)|||u− u`|||2 − 2ρ2ωη2
` (µ`, w`)

≤ |||u− u`|||2 − |||u− u`+ε|||2.

LetMε := (T`\T`+ε)∪(E`\E`+ε), then the quasi-orthogonality of Lemma 3.1
and the discrete reliability of Lemma 4.1 yield

(1− 2ρ2)C−2
eff η

2
` (λ`, u`)− 2ρ2ωη2

` (µ`, w`) ≤ |||u`+ε − u`|||2 + λ‖e`‖2

≤ C2
relη

2
` (λ`, u`;Mε) + λσ(h`)2C2

relη
2
` (λ`, u`),

where σ(h`) from Lemma 3.5 tends to zero as ‖h`‖L∞(Ω) → 0. Thus,

((1− 2ρ2)C−2
eff − λσ(h`)2C2

rel)η(λ`, u`)2

≤ C2
relη

2
` (λ`, u`;Mε) + 2ρ2ωη2

` (µ`, w`).

Lemma 6.1 together with the assumption yields

|η`(λ`, u`)− η`(µ`, w`)|2 ≤ C
(
|||u` − w`|||2 + |λ` − µ`|2

)
≤ Cωη2

` (µ`, w`).

Therefore,

((1− 2ρ2)C−2
eff − λσ(h`)2C2

rel)2
−1η2

` (µ`, w`)

≤ ((1− 2ρ2)C−2
eff − λσ(h`)2C2

rel)η
2
` (λ`, u`)

+ ((1− 2ρ2)C−2
eff − λσ(h`)2C2

rel)Cωη
2
` (µ`, w`)

≤ C2
relη

2
` (λ`, u`;Mε) + 2ρ2ωη2

` (µ`, w`)

+ ((1− 2ρ2)C−2
eff − λσ(h`)2C2

rel)Cωη
2
` (µ`, w`)

≤ 2C2
relη

2
` (µ`, w`;Mε) + 2ρ2ωη2

` (µ`, w`)

+ (2C2
rel + (1− 2ρ2)C−2

eff − λσ(h`)2C2
rel)Cωη

2
` (µ`, w`).

The choice ‖h`‖L∞(Ω) � 1 and 0 < ω � 1 shows 0 < θ ≤ Θ with

Θ :=
((1−2ρ2)C−2

eff −λσ(h`)2C2
rel)(2

−1−Cω)−2(C2
relC+ρ2)ω

2C2
rel

and hence the bulk criterion for the set Mε based on η`(µ`, w`) is satisfied.
Since the set Mµ`,w`

has been chosen with almost minimal cardinality, the
overlay estimate leads to

|Mµ`,w`
| . |Mε| . |T`+ε| − |T`| ≤ |Tε| − |T0| . |||u− w`|||−1/s|u|1/sAs

. �

Theorem 6.4. Suppose that (λ, u) with u ∈ As is an exact eigenpair and
let (λ`, u`) and (λ`+1, u`+1) be the corresponding discrete eigenpairs on level
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` and `+ 1. Let the iterative approximations (µ`, w`) on T` and (µ`+1, w`+1)
on T`+1 satisfy

|||u`+1 − w`+1|||2 + |λ`+1 − µ`+1| ≤ ωη2
` (µ`, w`),

|||u` − w`|||2 + |λ` − µ`| ≤ ωη2
` (µ`, w`)

for sufficiently small ω > 0. Then, up to positive constants, the iterative
solutions µ` and w` converge optimal

|||u− w`|||2 + |λ− µ`| . (|T`| − |T0|)−2s.

Proof. Lemma 6.3 and Proposition 2.1 yield

|TL| − |T0| .
L−1∑
`=0

|Mµ`,w`
| . |u|1/sAs

L−1∑
`=0

|||u− w`|||−1/s.

The efficiency estimate of Remark 4.3 and Lemma 6.1 show

η2
` (µ`, w`) ≤ 2η2

` (λ`, u`) + 2C
(
|||u` − w`|||2 + |λ` − µ`|2

)
≤ 4C2

eff|||u− w`|||2 + (2C + 4C2
eff)
(
|||u` − w`|||2 + |λ` − µ`|2

)
≤ 4C2

eff|||u− w`|||2 + (2C + 4C2
eff)ωη2

` (µ`, w`).

Hence, for 0 < ω < (2C + 4C2
eff)−1, it holds

η`(µ`, w`) . |||u− w`|||.

For the other direction, notice that

|||u− w`||| ≤ |||u− u`|||+ |||u` − w`||| ≤ Crelη`(λ`, u`) +
√
ωη`(µ`, w`),

implies

|||u− w`|||2 ≤ 2C2
relη

2
` (λ`, u`) + 2ωη2

` (µ`, w`)

≤
(
4C2

rel + 4C2
relCω + 2ω

)
η2
` (µ`, w`).

Thus,

|||u− w`|||−1/s .
(
γη2

` (µ`, w`) + |||u− w`|||2
)−1/(2s)

.

Lemma 6.2 leads to(
γη2

` (µ`, w`) + |||u− w`|||2
)−1 ≤ ν

(
γη2

`+1(µ`+1, w`+1) + |||u− w`+1|||2
)−1

.

A geometric series argument yields

|TL| − |T0| . |u|1/sAs

(
γη2

L(µL, wL) + |||u− wL|||2
)−1/(2s)

L∑
`=1

ν`/(2s)

. |u|1/sAs
(1− ν1/(2s))−1|||u− wL|||−1/s.

Since

|λ− µ`| ≤ |λ− λ`|+ |λ` − µ`| ≤ |λ− λ`|+ ωη2
` (µ`, w`)

. |λ− λ`|+ |||u− w`|||2,

Theorem 5.4 proves the second statement of Theorem 6.4. �
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7. Optimal Complexity

In this section the proof of the quasi-optimal computational complexity
of the AFEMES is presented. The proposed algorithm combines the AFEM
with some iterative algebraic eigenvalue solver. In order to prove overall
quasi-optimal complexity the iterative solver needs to have a linear conver-
gence behaviour independently of the size of the discrete problem. In other
words for any ε > 0 the algorithm LAES has to compute an iterative solu-
tion of the algebraic eigenvalue problem (µ`,m, w`,m) from an initial guess
(µ`,0, w`,0) such that

|||u` − w`,m|||2 + |λ` − µ`,m| ≤ ε2

in at most, up to a multiplicative constant,

max
{

1, log(ε−1|||u` − w`,0|||)
}
|T`|

arithmetic operations.

Theorem 7.1. For sufficiently small ‖h0‖L∞(Ω), 0 < θ � 1 and 0 < ω � 1,
the algorithm AFEMES computes from a coarse triangulation T0 and an
initial guess (µ0, w0) a sequence of triangulations (T`)` and corresponding
inexact discrete eigenpairs (µ`, w`) such that

|||u− w`|||2 + |λ− µ`| . η2
` (µ`, w`) . (|T`| − |T0|)−2s

and the computational costs, such as CPU-time and memory requirement
are quasi-optimal.

Proof. First it is shown that the while-loop is terminating after a finite
number of iterations on each level. Remark, that the while-loop is executed
at least once and that in further runs it holds

|||u` − w`|||2 + |λ` − µ`| ≤ δ2
`

because of the previous calls of LAES. Using Lemma 6.1 yields
√
ωη`(µ`, w`) ≥

√
ωη`(λ`, u`)−

√
ω|η`(µ`, w`)− η`(λ`, u`)|

≥
√
ωη`(λ`, u`)−

√
ωC(|||u` − w`|||+ |λ` − µ`|)

≥
√
ωη`(λ`, u`)− δ`

√
ωC.

Therefore the while-loop is at least terminated on the level ` if

δ` ≤
√
ωη`(λ`, u`)
1 +
√
ωC

.

Due to the geometric decrease of δ` this is achieved in finitely many steps
for all levels `. The choice of the initial value for δ` on each level ` and the
fact that after the while-loop terminates δ` ≤

√
ωη`(µ`, w`) shows that the

conditions of Theorem 6.4 are satisfied. Thus the convergence of

|||u− w`|||2 + |λ− µ`| . (|T`| − |T0|)−2s

is quasi-optimal. Moreover the proof of Theorem 6.4 shows

|||u− w`||| . η`(µ`, w`) . |||u− w`|||
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for sufficiently small ω > 0. For the eigenvalue error it holds

|λ− µ`| ≤ |λ− λ`|+ |λ` − µ`|
≤ C2

relη
2
` (λ`, u`) + δ2

`

≤ 2C2
relη

2
` (µ`, w`) + (2C2

relC + 1)δ2
`

≤ (2C2
rel + (2C2

relC + 1)ω)η2
` (µ`, w`).

Hence,

|||u− w`|||2 + |λ− µ`| . η2
` (µ`, w`) . (|T`| − |T0|)−2s.(7.1)

Because of the quasi-optimal convergence and the finitely many number of
iterations of the while-loop, it remains to show that Mark, Refine and LAES
are of linear computational complexity. An optimal algorithm for Mark and
Refine can be found in [Ste07]. In the first execution of the while-loop,
except for the first level for which the costs can be bounded by a constant
separately, before LAES is executed, it holds

|||u` − w`||| = |||u` − w`−1||| ≤ |||u− u`|||+ |||u− w`−1|||.
Lemma 5.3 reads

|||u− u`|||2 ≤ 2%
(
γC2

eff + 1
) (
|||u− w`−1|||2 + |||u`−1 − w`−1|||2

)
.

Thus, (7.1), the termination of the while-loop on the previous level ` − 1
and the initialisation of δ` yield

|||u` − w`||| . η`−1(µ`−1, w`−1) + δ`−1 . η`−1(µ`−1, w`−1) . δ`.

If it is not the first evaluation of the while-loop, then

|||u` − w`||| ≤ 2δ`
because of the previous call of LAES. Thus, before any call of LAES for
` > 0 it holds

|||u` − w`||| . δ`
which shows that LAES can be executed in linear time O(|T`|). �

8. Numerical Experiments

The numerical experiments for n = 2, 3 show quasi-optimal convergence
rates for linear P1 up to fourth order P4 finite elements. The optimal
AFEMES is implemented in Matlab for linear finite elements in 2D, us-
ing a damped version of the iterative eigenvalue solver MINIT [DRSZ08].
The implementation of the AFEM follows the ideas of [ACF99] and in an en-
hanced way of [FPW08]. The higher-order AFEM implementation is based
on the openFFW project [BGG+07]. The 3D mesh refinement is based on
a bisection type strategy [AMP00].

In the following the optimal convergence rates for the AFEM concerning
exact algebraic eigenvalue solvers is shown on one non-convex domain in
2D and on two different domains in 3D, one convex and one non-convex.
The figures display the eigenvalue error and the error estimators in terms of
degrees of freedom dim(V`) = N`. Note that in 2D, N` ≈ h

−1/2
` , and in 3D,

N` ≈ h
−1/3
` . The results of the experiments for the optimal AFEMES are

displayed in terms of eigenvalue error versus computational (CPU) time.
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Figure 8.1. Eigenvalue errors and estimated errors on the
slit domain for uniform meshes.

Example 8.1. Consider the two-dimensional eigenvalue problem: Seek the
smallest non-trivial eigenpair (λ, u) ∈ R×H1(Ω) ∩H2(Ω) such that

−∆u = λu in Ω and u = 0 on ∂Ω

on the slit domain Ω = ((−1, 1) × (−1, 1))\([0, 1] × {0}) with tip at the
origin. An approximation of the smallest eigenvalue with high accuracy is
given by

λ = 8.371329711186254.

In Figure 8.1 it is shown that the error estimator is numerically reliable and
efficient for uniform meshes but these meshes result in suboptimal conver-
gence rates of about O(h1/2) due to the singularity at the origin. In contrast
using adaptive refinement results in experimental optimal convergence rates
of O(h2k), k = 1, . . . , 4, as shown in Figure 8.2. The error estimator is
numerically reliable and efficient also for adaptive meshes.

The optimal AFEMES involves two parameters ω > 0 and 0 < θ ≤ 1
which are supposed to be sufficiently small. Figure 8.3 shows a numerically
strong dependency of the convergence rate on θ. For θ ≤ 0.2, these rates
are numerically optimal, but θ � 1 leads to more iterations of the algebraic
eigenvalue solver and thus to more computational work. Experimentally,
θ = 0.2 seems to be the best choice for this particular example. In contrast,
different values for ω lead almost all to optimal convergence rates as depicted
in Figure 8.4.
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Figure 8.2. Eigenvalue errors and estimated errors on the
slit domain for adaptive meshes.
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Figure 8.4. The optimal AFEMES for different values of
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Example 8.2. Consider the three-dimensional eigenvalue problem to com-
pute the smallest eigenvalue λ and eigenfunction u on Ω = (0, 1)× (0, 1)×
(0, 1) of

−∆u = λu in Ω and u = 0 on ∂Ω.

The exact solution reads

λ = 3π2 and u(x, y, z) =
√

8 sin(πx) sin(πy) sin(πz).

Figure 8.5 shows optimal convergence rates for uniform meshes of O(h2k),
k = 1, . . . , 4. The AFEM with exact algebraic eigenvalue solutions also
results in optimal convergence rates as displayed in Figure 8.6. For uniform
and adaptively refined meshes the error estimator shows numerically to be
reliable and efficient.

Example 8.3. Consider the three-dimensional eigenvalue problem: Seek the
smallest non-trivial eigenpair (λ, u) ∈ R×H1(Ω) ∩H2(Ω) such that

−∆u = λu in Ω and u = 0 on ∂Ω

on the three-dimensional L shaped domain

Ω = ((−1, 1)× (−1, 1)× (−1, 1))\((0, 1)× (0, 1)× (−1, 1)).

An approximation with higher-order P4 finite elements on adaptive refined
meshes with about 2 million degrees of freedom yields the reference value
for the first eigenvalue

λ ≈ 19.509329494514329.
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Figure 8.5. Eigenvalue errors and estimated errors on the
cube for uniform meshes.
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Figure 8.7. Eigenvalue errors and estimated errors on the
three-dimensional L shaped domain for uniform meshes.

In this non-convex three-dimensional example uniform refinement results
in suboptimal convergence rates as shown in Figure 8.7. Figure 8.8 shows
that the AFEM with exact algebraic eigenvalue solver leads to empirically
optimal convergence rates of order O(h2k) for k = 1, 2. Where for k = 3, 4
the convergence rates are smaller than those in the convex case due to the
edge-singularity at the corner. Nevertheless, the AFEM for k = 3, 4 results
in similar or even better convergence rates than isotropic graded meshes
with parameter 1/(2k). Therefore the convergence rates for the adaptive
meshes seem to be quasi-optimal. Both for uniform and adaptively refined
meshes the error estimator shows numerically to be reliable and efficient.
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