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Abstract. A posteriori error estimators for non-symmetric eigen-
value model problems are discussed in [Heuveline and Rannacher,
A posteriori error control for finite element approximations of ellip-
tic eigenvalue problems, 2001] in the context of the dual-weighted
residual method (DWR). This paper directly analyses the vari-
ational formulation rather than the non-linear ansatz of Becker
and Rannacher for some convection-diffusion model problem and
presents error estimators for the eigenvalue error based on averag-
ing techniques. In the case of linear P1 finite elements and globally
constant coefficients, the error estimates of the residual and averag-
ing error estimators are refined. Moreover, several postprocessing
techniques attached to the DWR paradigm plus two new dual-
weighted error estimators are compared in numerical experiments.
The first new estimator utilises an auxiliary Raviart-Thomas mixed
finite element method and the second exploits an averaging tech-
nique in combination with ideas of DWR.
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1. Introduction

The convection-diffusion model problem for a non-symmetric, elliptic
eigenvalue problem reads: Seek an eigenpair (λ, u) ∈ C × H1

0 (Ω; C) ∩
H2
loc(Ω; C) with

−∆u+ β · ∇u = λu in Ω and u = 0 on ∂Ω.

Suppose that β ∈ H(div; R2) is divergence free,
∫

Ω
v div(β) dx = 0 for

all v ∈ V := H1
0 (Ω; C) on the bounded Lipschitz domain Ω ⊆ R2.

The weak problem considers the two complex Hilbert spaces V :=
H1

0 (Ω; C) with seminorm |||.||| = |.|H1(Ω;C), which is a norm on V , and
H :=L2(Ω; C) with norm ‖.‖L2(Ω;C). Seek an eigenpair (λ, u) ∈ C × V
with ‖u‖ = 1 such that

a(u, v) = λb(u, v) for all v ∈ V.
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The bilinear form a(., .) is elliptic and continuous in V and the bilinear
form b(., .) is continuous, symmetric and positive definite, and hence
induces a norm ‖.‖ := b(., .)1/2 on H. For the above model problem,

‖.‖ = ‖.‖L2(Ω;C) and the bilinear forms (where (.) denotes complex
conjugation) are given by

a(u, v) =

∫
Ω

(∇u · ∇v + (β · ∇u)v) dx and b(u, v) =

∫
Ω

uv dx.

Since β is assumed to be divergence free, an integration by parts yields∫
Ω

(β · ∇v)v dx = −
∫

Ω

(β · ∇v)v dx.

Hence, for all v ∈ V , it holds

|||v|||2 = Re a(v, v).

Thus, the ellipticity constant (which is one) of the bilinear form a(., .)
is independent of β.

The analysis of the non-symmetric eigenvalue problem requires the
dual eigenvalue problem: Seek a (dual) eigenpair (λ∗, u∗) ∈ C×V with
‖u∗‖ = 1 such that

a(v, u∗) = λ∗b(v, u∗) for all v ∈ V.

Since the embedding of V in H is continuous and compact,

V
c
↪→ H,

the spectral theory for compact operators [Kat80, OB91] is applicable.
The Riesz-Schauder Theorem shows that the primal and dual spectra
consist of countable finite or infinite many eigenvalues with no finite
accumulation point. In particular the algebraic multiplicities are finite.
In the following, suppose that all eigenvalues are simple in the sense
that their algebraic multiplicity and hence their geometric multiplicity
is one.

The primal λj and dual λ∗j eigenvalues are connected by

λj = λ∗j for j = 1, 2, 3, . . .

The dual bilinear form a∗(u∗, .) := a(., u∗) reads in the model prob-
lem

a∗(u∗, v) = a(v, u∗) =

∫
Ω

(∇v · ∇u∗ + (β · ∇v)u∗) dx.

An integration by parts leads to

a∗(u∗, v) =

∫
Ω

(∇u∗ · ∇v − (β · ∇u∗)v) dx for all v ∈ V.
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Given any finite-dimensional subspace V` ⊂ V , the discrete problems
reads: Seek primal and dual (discrete) eigenpairs (λ`, u`) and (λ∗` , u

∗
`)

with ‖u`‖ = 1 = ‖u∗`‖ such that

a(u`, v`) = λ`b(u`, v`) for all v` ∈ V`;
a(v`, u

∗
`) = λ∗`b(v`, u

∗
`) for all v` ∈ V`.

The primal and dual discrete eigenvalues are connected by

λ`,j = λ∗`,j for all j = 1, . . . , dim(V`).

Suppose T` is a regular triangulation in R2, e.g., each T ∈ T` is a
closed triangle, Ω =

⋃
T∈T`

T , for any two distinct triangles T1, T2 ∈ T`,
T1 ∩ T2 is either empty or a common vertex or a common side and the
minimal angle of every triangle is uniformly bounded from below. The
conforming finite element space of order k ∈ N for the triangulation T`
is defined by

Pk(T`) :=
{
v ∈ H1(Ω; C) : ∀T ∈ T`, vT is polynomial of degree ≤ k

}
Throughout this paper, let V` := P1(T`)∩V and h` ∈ P0(T`) such that
h`|T := diam(T ) for all T ∈ T`. Moreover, a . b denotes an estimate
a ≤ Cb with some generic constant C > 0, which is independent of the
mesh-size ‖h`‖L∞(Ω).

The abstract a priori theory yields the following upper bounds in
terms of the maximal mesh-size ‖h`‖L∞(Ω),

|λ− λ`| . ‖h`‖s1+s2
L∞(Ω),

|||u− u`||| . ‖h`‖s1L∞(Ω),

|||u∗ − u∗` ||| . ‖h`‖
s2
L∞(Ω),

where 0 < s1 ≤ 1 and 0 < s2 ≤ 1 depend on the regularity of the
primal and dual eigenfunctions [OB91, Chapter 10.3].

A posteriori error estimators for symmetric eigenvalue problems (in-
cluded for β ≡ 0) can be found in [Ver96, Lar00, DPR03, MSZ06]. The
convergence of the adaptive finite element method (AFEM) for the
symmetric case is considered in [Sau07, CG08, GMZ08, GG09]. The
only known paper on the non-symmetric eigenvalue problem seems to
be [HR01]. It is the aim of this paper to review the results of Heuveline
and Rannacher in direct approach rather than in the non-linear setting
of the DWR paradigm after [BR98, HR01, BR03]. These results are
also applicable to the averaging techniques as for the symmetric eigen-
value problem in [MSZ06]. At least for a global constant convection
coefficient and linear finite elements on triangles, those estimators are
refined as in [CG08].

The numerical experiments indicate that the efficiency indices for
the residual-type error estimators depend strongly on the convection
coefficient β. Therefore for convection-dominated eigenvalue problems,
dual-weighted error estimators are employed. This work compares two
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different ways of calculating the dual-weighted residual (DWR) error
estimators from [BR98, HR01, BR03] together with two new dual-
weighted error estimators. The first new estimator is based on the
Raviart-Thomas mixed finite element method (MFEM) of first-order
and the second one on averaging techniques and some calculation of
the weights. Hence they are named by dual-weighted mixed (DWM)
and dual-weighted averaging (DWA) estimator.

The outline of the remaining parts of this paper is a follows. In
Section 2 an optimal error estimate for the eigenvalue error is de-
rived. Therefore, the basic algebraic properties and identities of the
non-symmetric eigenvalue problem are revised. In contrast to [HR01],
the direct variational formulation is used, rather then the more general
non-linear framework of Becker and Rannacher [BR98, BR03] in the
DWR paradigm. The weak regularity assumptions and the suboptimal
L2 error estimate of [HR01] prove the L2 contribution to the resid-
ual identity of higher-order. Section 3 summarises some old and some
new results on several a posteriori error estimators, namely the resid-
ual, the averaging, the reduced residual and averaging estimators. The
dual-weighted error estimators, namely the two DWR, the DWM and
the DWA error estimators, are presented in Section 4. Section 5 com-
pares the error estimators in numerical benchmarks on three different
domains and with various convection coefficients.

This paper employs standard notation on Lebesgue and Sobolev
spaces and norms.

2. Algebraic properties

This section concerns the primal and dual residual and the estimation
of the eigenvalue error and the energy error in the primal and dual
eigenfunctions.

For the primal and dual discrete eigenpairs (λ`, u`) and (λ∗` , u
∗
`), the

residuals are defined

Res` := a(u`, ·)− λ`b(u`, ·) ∈ V ∗;
Res∗` := a(·, u∗`)− λ

∗
`b(·, u∗`) ∈ V ∗.

It is the goal of this section to derive the following optimal error
estimate for the eigenvalues

|λ− λ`| . |||Res`|||2∗ + |||Res∗` |||2∗.(2.1)

The authors of this paper expect that this estimate was known to the
authors of [HR01] as well. They speculated that the main critics on this
estimate is the lack of locality aimed at DWR. However, the authors
believe that (2.1) is sharp. The starting point of the analysis of (2.1)
is a connection between the eigenvalue error and the primal and dual
residuals. The combination of a suboptimal L2 error estimate from
[HR01] with a suboptimal error estimate for the eigenvalue error leads
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to an optimal error estimate for the energy error. An application of
this estimate to the primal-dual error residual identity, stated below,
will then yield the optimal estimate for the eigenvalue error.

Lemma 2.1 (Primal-Dual Error Residual Identity). Suppose (λ`, u`)
is an approximation to the primal eigenpair (λ, u) and (λ∗` , u

∗
`) is an

approximation to the corresponding dual eigenpair (λ∗, u∗) and set e` :=
u− u` and e∗` := u∗ − u∗` . Then it holds

(λ− λ`)
(
b(u, u∗) + b(u`, u

∗
`)− b(e`, e∗`)

)
= Res`(e

∗
`) + Res∗`(e`).

Proof. Direct algebraic manipulations and the definition of the residu-
als plus λ = λ∗, λ` = λ∗` lead to

a(u`, u
∗ − u∗`)− λ`b(u`, u∗ − u∗`) + a(u− u`, u∗`)− λ∗`b(u− u`, u

∗
`)

= a(u`, u
∗)− λ`b(u`, u∗) + a(u, u∗`)− λ∗`b(u, u

∗
`)

= (λ∗ − λ`)b(u`, u∗) + (λ− λ∗`)b(u, u
∗
`)

= (λ− λ`)(b(u, u∗) + b(u`, u
∗
`)− b(e`, e∗`)). �

Lemma 2.2. Suppose that the maximal mesh-size ‖h`‖L∞(Ω) tends to
zero as `→∞, then

lim
`→∞

b(e`, e
∗
`) = 0 and lim

`→∞
b(u`, u

∗
`) = b(u, u∗).

Proof. The convergence of |||e`||| and |||e∗` ||| implies the convergence of
‖e`‖ and ‖e∗`‖ to zero as ` → ∞ because of the compact embedding.
Hence the assertions follow from |b(e`, e∗`)| ≤ ‖e`‖‖e∗`‖ and

|b(u, u∗)− b(u`, u∗`)| = |b(u− u`, u∗) + b(u`, u
∗ − u∗`)| ≤ ‖e`‖‖e∗`‖.�

Remark 2.1. Since all eigenvalues converge as ‖h`‖L∞(Ω) → 0, λ` is, as
λ, a simple eigenvalue for sufficiently small ‖h`‖L∞(Ω). The condition
number 1/|yH` x`| of the discrete eigenvalue λ` is defined for right and
left eigenvectors x` and y` of the algebraic eigenvalue problems

A`x` = λ`x` and yH` A` = λ∗`y
H
` .

It is shown in [GV96] that yH` x` 6= 0 for simple eigenvalues. Therefore
it holds b(u`, u

∗
`) 6= 0. In addition |yH` x`| � 1 implies that A` is close

to a matrix with a multiple eigenvalue λ`. Hence it is reasonable to
assume b(u, u∗) 6= 0. Furthermore, 1/|b(u, u∗)| is the condition of the
continuous eigenvalue λ and

|b(u, u∗) + b(u`, u
∗
`)− b(e`, e∗`)| −→ 2|b(u, u∗)|

as ‖h`‖L∞(Ω) → 0.

Suppose b(u, u∗) 6= 0 and let the maximal mesh-size ‖h`‖L∞(Ω) of the
triangulation T` be sufficiently small, i.e.

max{|||e`|||, |||e∗` |||, ‖e`‖, ‖e∗`‖, |λ− λ`|, 2|b(u, u∗)− b(u`, u∗`)|}
< min{1, |b(u, u∗)|},

(2.2)
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then |b(u, u∗)|/2 < |b(u, u∗) + b(u`, u
∗
`)− b(e`, e∗`)| < 3 and it holds

|λ− λ`| ≈ |Res`(e
∗
`) + Res∗`(e`)|.

This implies the suboptimal eigenvalue error estimate

|λ− λ`| . |||Res`|||∗ + |||Res∗` |||∗.(2.3)

In addition, the suboptimal L2 error estimates

‖e`‖ . |||Res`|||∗ + |λ− λ`| and ‖e∗`‖ . |||Res∗` |||∗ + |λ− λ`|(2.4)

from Heuveline and Rannacher [HR01, (70)-(71)] are used in the proof
of the following lemma.

Remark 2.2. The proof of the suboptimal L2 error estimate in [HR01]
is based on the weak regularity assumption of the eigenvalue λ with
the eigenspace E(λ), that aλ(., .) = a(., .) − λb(., .) is regular on the
quotient space V/E(λ), namely

|||w||| ≤ Cλ sup
v∈V/E(λ)

aλ(v, w)

|||v|||
for all w ∈ V/E(λ).

The weak stability constant Cλ depends on the distance of λ to all
other distinct eigenvalues and does not depend on the mesh-size.

Lemma 2.3 (Energy Estimate). Suppose b(u, u∗) 6= 0, the maximal
mesh-size ‖h`‖L∞(Ω) is sufficiently small according to (2.2) and (λ`, u`)
is an approximation to the primal eigenpair (λ, u) and (λ∗` , u

∗
`) is an

approximation to the corresponding dual eigenpair (λ∗, u∗) and set e` :=
u− u` as well as e∗` := u∗ − u∗` . Then it holds

|||e`|||+ |||e∗` ||| . |||Res`|||∗ + |||Res∗` |||∗.

Proof. Observe that

a(e`, e`) = λ+ λ` − λb(u, u`)− a(u`, u)

= (λ+ λ`)(1− Re b(u, u`)) + i (λ` − λ)Im b(u, u`)

+ λ`b(u`, u)− a(u`, u)

= (λ+ λ`)(1− Re b(u, u`)) + i (λ` − λ)Im b(u− u`, u`)
+ λ`b(u`, u)− a(u`, u).

The last inequality follows from 0 = Im‖u`‖2. Since

2Re b(u, u`) = ‖u‖2 + ‖u`‖2 − ‖e`‖2 = 2− ‖e`‖2,

this implies

|||e`|||2 = Re a(e`, e`) ≤ |Res`(e`)|+ |λ− λ`|‖e`‖+
|λ+ λ`|

2
‖e`‖2.

The suboptimal estimates (2.3) and (2.4) imply

|λ− λ`|+ ‖e`‖ . |||Res`|||∗ + |||Res∗` |||∗.
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Since ‖.‖ . |||.|||, the aforementioned inequalities yield

|||e`||| . |||Res`|||∗ + |||Res∗` |||∗.

Similarly it follows

|||e∗` ||| . |||Res`|||∗ + |||Res∗` |||∗. �

Theorem 2.4 (Eigenvalue Error Estimate). Suppose b(u, u∗) 6= 0, the
maximal mesh-size ‖h`‖L∞(Ω) is sufficiently small such that (2.2) holds
and let (λ`, u`) be an approximation to (λ, u) and (λ∗` , u

∗
`) an approxi-

mation to the corresponding dual eigenpair (λ∗, u∗), then it holds

|λ− λ`| . |||Res`|||2∗ + |||Res∗` |||2∗.

Proof. The aforementioned Lemma 2.3 and the Cauchy-Schwarz in-
equality lead to

|λ− λ`| . |Res`(e
∗
`)|+ |Res∗`(e`)| . |||Res`|||2∗ + |||Res∗` |||2∗. �

3. A Posteriori Error Estimates

This section is devoted to the residual error estimator from [HR01],
the averaging technique of [Car03], plus a refinement (similar as in
[CG08]) for globally constant coefficients. These error estimators in-
volve constants, which depend strongly on the size of the convection
coefficient. Throughout this section it is assumed that the conditions
of Theorem 2.4 are satisfied and that (λ`, u`) is an approximation to
the primal eigenpair (λ, u) and (λ∗` , u

∗
`) is an approximation to the dual

eigenpair (λ∗, u∗).
Given a regular triangulation T`, define E` as the set of inner edges

and N` as the set of inner nodes. Let hT := diam(T ) for T ∈ T` and
hE := diam(E) for E ∈ E`. For a P1 finite element solution u` ∈ V`
on the triangulation T` let p` := ∇u` denote the discrete piecewise
constant gradient. It’s jump in normal direction νE along an inner
edge ∂T+ ∩ ∂T− = E ∈ E`, for T+, T− ∈ T`, is denoted by

[p`]·νE = p`|T+ ·νE − p`|T− ·νE.

Lemma 3.1. It holds

|||Res`|||2∗ . η2
` :=

∑
T∈T`

h2
T‖β ·p` − λ`u`‖2

L2(T ) +
∑
E⊂T

hE‖[p`]·νE‖2
L2(E),

|||Res∗` |||2∗ . η∗
2

` :=
∑
T∈T`

h2
T‖−β ·p∗` − λ∗`u∗`‖

2
L2(T ) +

∑
E⊂T

hE‖[p∗` ]·νE‖
2
L2(E).
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Proof. Let v` denote the Scott-Zhang interpolation of v onto V`, then
it holds

Res`(v) = Res`(v − v`) = a(u`, v − v`)− λ`b(u`, v − v`)

=
∑
T∈T`

∫
T

p` ·∇(v − v`) + β ·p`(v − v`)dx− λ`
∫
T

u`(v − v`)dx

=
∑
T∈T`

∫
T

(β ·p` − λ`u`)(v − v`)dx+
∑
E∈E`

∫
E

[p`]·νE(v − v`)ds.

The approximation property of the interpolation operator∑
T∈T`

‖h−1
T (v − v`)‖2

L2(T ) +
∑
E∈E`

‖h−1/2
E (v − v`)‖2

L2(E) . |||v|||2

and the Cauchy-Schwarz inequality yield

Res`(v) ≤
∑
T∈T

hT‖β ·p` − λ`u`‖L2(T )‖h−1
T (v − v`)‖L2(T )

+
∑
E∈E

h
1/2
E ‖[p`]·νE‖L2(E)‖h−1/2

E (v − v`)‖L2(E)

. η`|||v|||.

The same arguments lead to the assertion for |||Res∗` |||. �

The averaging technique concerns averaging operators A : V d
` →

S1(T`)d := V d
` ∩ C(Ω)d with the model example

A(p`) :=
∑
z∈N`

1

|ωz|

(∫
ωz

p` dx

)
ϕz.

Here and throughout this paper, ϕz denotes the nodal basis function
for an inner node z ∈ N`. Alternative averaging operators from [Car03]
could be employed as well.

Lemma 3.2. For

µ` := ‖h`(−div(A(p`)) + β ·p` − λ`u`)‖L2(Ω) + ‖A(p`)− p`‖L2(Ω),

µ∗` := ‖h`(−div(A(p∗`))−β ·p∗` − λ∗`u∗`)‖L2(Ω) + ‖A(p∗`)− p∗`‖L2(Ω)

it holds

|||Res`|||∗ . µ` and |||Res∗` |||∗ . µ∗` .

Proof. As in the previous lemma, let v` denote the Scott-Zhang inter-
polation of v onto V`, since A(p`) is globally continuous the divergence
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theorem can be applied. This yields

Res`(v) = Res`(v − v`) = a(u`, v − v`)− λ`b(u`, v − v`)

=

∫
Ω

(p` − A(p`))∇(v − v`)dx−
∫

Ω

div(A(p`))(v − v`)dx

+

∫
Ω

(β · p` − λ`u`)(v − v`)dx.

Hölder’s inequality leads to

Res`(v) ≤
∑
T∈T`

hT‖−div(A(p`)) + β ·p` − λ`u`‖L2(T )‖h−1
T (v − v`)‖L2(T )

+
∑
T∈T`

‖p` − A(p`)‖L2(T )‖∇(v − v`)‖L2(T ).

Using the stability and the afore mentioned approximation property∑
T∈T`

‖∇v`‖2
L2(T ) . |||v|||2 and

∑
T∈T`

‖h−1
T (v − v`)‖2

L2(T ) . |||v|||2,

together with the Cauchy-Schwarz inequality yield

Res`(v) . µ`|||v|||.

In the same way the assertion |||Res∗` ||| . µ∗ is satisfied. �

Similar to the case of symmetric eigenvalue problems accordingly to
[CG08] these two error estimators can be improved by using the H1

stability of the L2 projection [Car04]. The stability and approximation
properties are proven for triangular elements under the assumptions
that d = 2 and that the triangulation is refined using the red-green-
blue algorithm. The enhancing is only possible assuming a globally
constant convection coefficient β.

Lemma 3.3. Suppose that the convection coefficient β is globally con-
stant, then for linear P1-FE on triangles (d=2) it holds

|||Res`|||2∗ . η2
`,reduced :=

∑
E∈E`

hE
∥∥ [p`]·νE

∥∥2

L2(E)
,

|||Res∗` |||2∗ . η∗2`,reduced :=
∑
E∈E`

hE
∥∥ [p∗`]·νE∥∥2

L2(E)
.
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Proof. Let v` be the L2 projection of v in V` which is H1 stable by the
assumptions. Then it holds

Res`(v) = Res`(v − v`) = a(u`, v − v`)− λ`b(u`, v − v`) = a(u`, v − v`)

=

∫
Ω

p` ·∇(v − v`)dx+

∫
Ω

(β ·p`)(v − v`)dx

=

∫
Ω

p` ·∇(v − v`)dx+

∫
Ω

(β ·p` − β ·A(p`))(v − v`)dx

=
∑
E∈E`

∫
E

[p`]·νE(v − v`) ds+
∑
T∈T`

∫
T

(β ·p` − β ·A(p`))(v − v`)dx.

Hölder’s inequality and the approximation property of the L2 projec-
tion ∑

T∈T`

‖h−1
T (v − v`)‖2

L2(T ) +
∑
E∈E`

‖h−1/2
E (v − v`)‖2

L2(E) . |||v|||2.

lead to

Res`(v) . η`|||v|||+ ‖β‖L∞(Ω;C)

(∑
T∈T`

h2
T‖p` − A(p`)‖2

L2(Ω)

)1/2

|||v|||.

Because of the well known fact that the averaging estimator is equiva-
lent to the edge-residual estimator [Ver96], it holds

|||Res`||| . (1 + ‖h`‖L∞(Ω)‖β‖L∞(Ω;C))η`.

Using the same argumentation results in

|||Res∗` |||∗ . (1 + ‖h`‖L∞(Ω)‖β‖L∞(Ω;C))η
∗
` . �

Again assuming a globally constant convection coefficient β, the av-
eraging error estimator can be improved for linear finite elements, by
showing that a second volumetric part is not needed. This will be
proven using the H1 stability of the L2 projection.

Lemma 3.4. Suppose that the convection coefficient β is globally con-
stant, then for linear P1-FE on triangles (d=2) it holds

|||Res`|||∗ . µ`,reduced := ‖A(p`)− p`‖L2(Ω),

|||Res∗` |||∗ . µ`,reduced := ‖A(p∗`)− p∗`‖L2(Ω).

Proof. Let v` be the L2 projection of v in V` which is H1 stable by
the assumptions. Since A(p`) is globally continuous, the divergence
theorem is globally applicable. Notice that for the finite dimensional
subspace V` there holds the local discrete inverse inequality

‖hTdiv(v`)‖L2(T ) ≤ Cinv‖v`‖L2(T ).

Together with the approximation property∑
T∈T`

‖h−1
T (v − v`)‖2

L2(T ) . |||v|||2
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it follows

−
∫

Ω

A(p`)∇(v − v`) dx =

∫
Ω

(v − v`)div(A(p`)) dx

=
∑
T

∫
T

hTdiv(A(p`))h
−1
T (v − v`) dx

≤ Cinv
∑
T

‖A(p`)− p`‖L2(T )‖h−1
T (v − v`)‖L2(T )

. ‖A(p`)− p`‖L2(Ω)|||v|||.
From this and the stability of the L2 projection∑

T∈T`

‖∇v`‖2
L2(T ) . |||v|||2,

it is concluded

Res`(v) = Res`(v − v`) = a(u`, v − v`)− λ`b(u`, v − v`) = a(u`, v − v`)

=

∫
Ω

(p` − A(p`))∇(v − v`)dx+

∫
Ω

A(p`)∇(v − v`)dx

+

∫
Ω

(β ·p` − β ·A(p`))(v − v`)dx

. (1 + ‖h`‖L∞(Ω)‖β‖L∞(Ω;C))µ`|||v|||.
Using the same argumentation results in

|||Res∗` |||∗ . (1 + ‖h`‖L∞(Ω)‖β‖L∞(Ω;C))µ
∗
` . �

4. Dual-Weighted a Posteriori Error Estimates

After four different residual or averaging based error estimators have
been derived, dual-weighted error estimators will be concerned. The
main drawback of the residual or averaging error estimators is that
their proofs use stability and approximation properties which involve
constants that depend strongly on the size of the convection coefficient
β. The dual-weighted error estimators in general avoid any inequal-
ity with unknown constants. Thus they are robust with respect to
strong convection which is also confirmed by the numerical examples
in Section 5.

Throughout this section it is assumed that b(u, u∗) 6= 0, the maximal
mesh-size ‖h`‖L∞(Ω) is sufficiently small such that (2.2) holds, (λ`, u`)
is an approximation to the primal eigenpair (λ, u), (λ∗` , u

∗
`) is an ap-

proximation to the corresponding dual eigenpair (λ∗, u∗), e` := u − u`
and e∗` := u∗ − u∗` .

The dual-weighted error estimators are based on the inequality

|λ− λ`| . |Res`(e
∗
`) + Res∗`(e`)|,

which follows directly from Lemma 2.1 and Lemma 2.2 for sufficiently
small mesh sizes. Observe that the constant in this inequality tends
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to 1/(2|b(u, u∗)|) as ‖h`‖L∞(Ω) → 0. One question that arises from the
computation of Res`(e

∗
`) or Res∗`(e`) is the calculation of the unknown

errors e` and e∗` . The rather heuristic approach of [BR03] states that
it is numerically reliable and efficient to approximate these quantities
which occur only in the weights. The idea is that one does not need
to approximate the weights with higher accuracy than the size of the
residual terms. In practice the unknown primal and dual solutions u, u∗

are replaced by solutions of a higher-order method or by higher-order
interpolation. In Section 5 a higher-order interpolation ansatz is de-
scribed which leads to numerically reliable and efficient dual-weighted
error estimators.

In the following, four different dual-weighted error estimators are
presented. The first one is derived from the classical dual-weighted
residual (DWR) ansatz as in [HR01] or [BR03], the second follows a
modern approach of dealing with the weights as described in [BR03].
Afterwards a new (DWM) error estimator for the eigenvalue error which
utilises a non standard finite element solution of a mixed auxiliary
problem in the Raviart-Thomas space of order zero is derived. This is
followed by a new (DWA) error estimator in the spirit of [BR03] using
the averaging technique instead of residuals.

To begin with, the classical DWR error estimator is stated.

Lemma 4.1. Let the eigenfunctions u, u∗ ∈ H2(Ω) ∩H3(T`) and

ηT := ‖β ·p` − λ`u`‖L2(T ) + h
−1/2
T ‖[p`]·νE‖L2(∂T ),

η∗T := ‖−β ·p∗` − λ∗`u∗`‖L2(T ) + h
−1/2
T ‖[p∗` ]·νE‖L2(∂T ).

(4.1)

Then it holds

|λ− λ`| . η`,DWR1 :=
∑
T∈T`

h
3/2
T ηT

(
‖[p∗` ]·νE‖L2(

⋃
EΩT

) + h.o.t.
)

+
∑
T∈T`

h
3/2
T η∗T

(
‖[p`]·νE‖L2(

⋃
EΩT

)) + h.o.t.
)

for higher-order terms (h.o.t.) and suitable fixed subsets ΩT ⊆ Ω which
contain T ∈ T`, and with skeleton

⋃
EΩT

.

Proof. Suppose u ∈ H2(Ω), integration by parts and Hölder’s inequal-
ity show

Res`(v) =
∑
T∈T`

∫
T

p` ·∇(v − v`) + (β ·p` − λ`u`)(v − v`)dx

≤
∑
T∈T`

h
−1/2
T ‖[p`]·νE‖L2(∂T )h

1/2
T ‖v − v`‖L2(∂T )

+ ‖β ·p` − λ`u`‖L2(T )‖v − v`‖L2(T )

≤
∑
T∈T`

ηTωT .
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Therein, ηT is defined in (4.1) and

ωT := ‖v − v`‖L2(T ) + h
1/2
T ‖v − v`‖L2(∂T ).

Let v` = I`v ∈ V` be the nodal interpolant of v. The interpolation
estimate

‖v − I`v‖2
L2(T ) + hT‖v − I`v‖2

L2(∂T ) . h4
T‖D2v‖2

L2(T )

leads to

Res`(v) .
∑
T∈T`

h2
TηT‖D2v‖L2(T ).

In [HR01] D2v is locally approximated on each quadrilateral Q ∈ Q` by
D2v`|Q using finite differences. While this is a appropriate ansatz for
quadrilateral meshes, for general triangular meshes this is not suited.
In [Car05a] it is shown, v ∈ H3(T`) implies

‖D2v‖L2(T ) ≤ c1h
−1/2
T ‖[∇v`]·νE‖L2(

⋃
EΩT

)) + c2‖∇(v − v`)‖1/2

L2(ΩT ).

The constant c1 depends on the shape of elements and c2 on ‖v‖H3(ΩT ).
The second term on the right hand side is of higher-order. This leads
to the estimate

|Res`(e
∗
`)| .

∑
T∈T`

h
3/2
T ηT

(
‖[p∗` ]·νE‖L2(

⋃
EΩT

) + h.o.t.
)
.

In the same way it is shown that

|Res∗`(e`)| .
∑
T∈T`

h
3/2
T η∗T

(
‖[p`]·νE‖L2(

⋃
EΩT

) + h.o.t.
)
. �

Remark 4.1. From the theory in [Car05a] it remains open to choose the
fixed size of the patches ΩT containing T ∈ T`. However, the numerical
examples of Section 5 suggest, that, surprisingly, ΩT = T and thus⋃
EΩT

= ∂T might be sufficient.

The drawback of this classical approach is that the constant in the
interpolation estimate depends on the size of the convection coefficient.
Therefore the nowadays common approach is to stop even further in
the estimates. The modern dual-weighted residual (DWR) estimate
accordingly to [BR03] reads as follows. Observe that these error esti-
mators involve the unknown exact primal and dual errors e` and e∗` . In
the numerical examples of Section 5, these errors have to be approxi-
mated.

Lemma 4.2. For the unknown exact errors e` and e∗` let

η :=
∑
T∈T`

∫
T

(β ·p` − λ`u`)e∗`dx+
∑
E∈E`

∫
E

([p`]·νE)e∗`ds,

η∗ :=
∑
T∈T`

∫
T

(−β ·p∗` − λ∗`u∗`)e`dx+
∑
E∈E`

∫
E

([p∗` ]·νE)e`ds.
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Then it holds

|λ− λ`| . η`,DWR2 := |η + η∗|.

Proof. Integration by parts leads to

Res`(e
∗
`) = a(u`, u

∗ − u∗`)− λ`b(u`, u∗ − u∗`)

=
∑
T∈T`

∫
T

(β ·p` − λ`u`)(u∗ − u∗`)dx+
∑
E∈E`

∫
E

[p`]·νE(u∗ − u∗`)ds,

respectively,

Res∗`(e`) = a(u− u`, u∗`)− λ∗`b(u− u`, u
∗
`)

=
∑
T∈T`

∫
T

(−β ·p∗` − λ∗`u∗`)(u− u`)dx+
∑
E∈E`

∫
E

[p∗` ]·νE(u− u`)ds.�

The local refinement indicators |ηT + η∗T | are defined as

ηT :=

∫
T

(β ·p` − λ`u`)e∗`dx+
∑
E∈∂T

∫
E

([p`]·νE)e∗`ds,

η∗T :=

∫
T

(−β ·p∗` − λ∗`u∗`)e`dx+
∑
E∈∂T

∫
E

([p∗` ]·νE)e`ds.

They are only necessary to determine the set of marked edges for re-
finement.

Utilising the non standard Raviart-Thomas solution of an auxiliary
problem leads to a new approach of dual-weighted error estimators.

Lemma 4.3. Let qM ∈ RT0(T`) and q∗M ∈ RT0(T`) be the mixed solu-
tions of the equilibrium conditions

−div(qM) + β · qM = f` in Ω,

−div(q∗M)− β · q∗M = f ∗` in Ω

with right-hand sides f`, f
∗
` ∈ P0(T`) given by f`|T := h−2

T

∫
T
λ`u` and

f ∗`|T := h−2
T

∫
T
λ∗`u

∗
` for T ∈ T`. Then for the unknown exact errors e`

and e∗` it holds

|λ− λ`| . η`,DWM := |
∫

Ω

(p` − qM)∇e∗`dx+

∫
Ω

(p∗` − q∗M)∇e`dx

+

∫
Ω

β · (p` − qM)e∗`dx−
∫

Ω

β · (p∗` − q∗M)e`dx|

+ h.o.t.

with the higher-order term

h.o.t. := |
∫

Ω

(f` − λ`u`)e∗`dx+

∫
Ω

(f ∗` − λ∗`u∗`)e`dx|.
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Proof. By the definition of the auxiliary problem for qM and integration
by parts it holds

Res`(e
∗
`) =

∫
Ω

p`∇e∗`dx+

∫
Ω

(β ·p` − λ`u`)e∗`dx

=

∫
Ω

(p` − qM)∇e∗`dx+

∫
Ω

β · (p` − qM)e∗`dx+

∫
Ω

(f` − λ`u`)e∗`dx.

Using the same argumentation leads to

Res∗`(e`) =

∫
Ω

p∗`∇e`dx+

∫
Ω

(−β ·p∗` − λ∗`u∗`)e`dx

=

∫
Ω

(p∗` − q∗M)∇e`dx−
∫

Ω

β · (p∗` − q∗M)e`dx+

∫
Ω

(f ∗` − λ∗`u∗`)e`dx.�

Remark 4.2. Approximating ∇u and ∇u∗ by A(p`) and A(p∗`), using
the averaging technique of Section 3, leads to the error estimator

|λ− λ`| . |
∫

Ω

(p` − qM)∇(A(p∗`)− p∗`)dx+

∫
Ω

(p∗` − q∗M)(A(p`)− p`)dx

+

∫
Ω

β · (p` − qM)e∗`dx−
∫

Ω

β · (p∗` − q∗M)e`dx|

and the local refinement indicators

ηT := |
∫
T

(p` − qM)∇(A(p∗`)− p∗`)dx+

∫
T

(p∗` − q∗M)(A(p`)− p`)dx

+

∫
T

β · (p` − qM)e∗`dx−
∫
T

β · (p∗` − q∗M)e`dx|.

The second new error estimator makes use of the ideas of the modern
DWR paradigm. The new aspect proposed here is not to use integration
by parts to obtain a residual term but to involve an average term and
do integration by parts only on that.

Lemma 4.4. For the unknown exact errors e` and e∗` let

µ :=

∫
Ω

(p` − A(p`))∇e∗`dx+

∫
Ω

(−div(A(p`)) + β ·p` − λ`u`)e∗`dx,

µ∗ :=

∫
Ω

(p∗` − A(p∗`))∇e`dx+

∫
Ω

(−div(A(p∗`))− β ·p∗` − λ∗`u∗`)e`dx,

then it holds

|λ− λ`| . µ`,DWA := |µ+ µ∗|.

Proof. Adding and subtracting an averaging term and using integration
by parts on one of them yields

Res`(e
∗
`) = a(u`, u

∗ − u∗`)− λ`b(u`, u∗ − u∗`)

=

∫
Ω

(p` − A(p`))∇e∗`dx+

∫
Ω

(−div(A(p`)) + β ·p` − λ`u`)e∗`dx.
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Figure 5.1. Interpolation points for the patch ωz to the
node z ∈ N`.

Analogously it holds

Res∗`(e`) = a(u− u`, u∗`)− λ∗`b(u− u`, u
∗
`)

=

∫
Ω

(p∗` − A(p∗`))∇e`dx+

∫
Ω

(−div(A(p∗`))− β ·p∗` − λ∗`u∗`)e`dx.�

Here, the local refinement indicators read |µT + µ∗T | with

µT :=

∫
T

(p` − A(p`))∇e∗`dx+

∫
T

(−div(A(p`)) + β ·p` − λ`u`)e∗`dx,

µ∗T :=

∫
T

(p∗` − A(p∗`))∇e`dx+

∫
T

(−div(A(p∗`))− β ·p∗` − λ∗`u∗`)e`dx.

5. Numerical Experiments

This section is denoted to the numerical experiments. Besides the
numerical evidence of reliability and efficiency the stability of the dif-
ferent error estimators for problems with strong convection terms are
of special interest.

Since for the dual-weighted error estimators the weight-terms e` and
e∗` involve the unknown solutions u and u∗ these have to be approxi-
mated. In the following experiments those functions are approximated
by averaging A(u`) ∈ P2(T`) of u` ∈ P1(T`) and A(u∗`) ∈ P2(T`) of
u∗` ∈ P1(T`) on the mesh T`. This is done by nodal-patch wise least
square global quadratic polynomial fitting, [ZZ92]. The interpolation
points are the midpoints of all edges belonging to the nodal-patch as
depicted in Figure 5.1. Evaluating the computed quadratic polynomial
for the patch ωz in the node z ∈ N` gives one coefficient for the basis
function belonging to z. After all nodal coefficients have been inter-
polated, the coefficients for the edge basis functions are computed as
arithmetic mean of two neighbouring node-values.

The experiments use the adaptive finite element method (AFEM).
It generates a sequence of meshes T0, T1, . . . , T`, T`+1, . . . and associated
discrete subspaces

V0 ( V1 ( . . . ( V` ( V`+1 ( . . . ( V



A POSTERIORI ERROR ESTIMATORS FOR NON-SYMMETRIC EVPS 17

with discrete primal and dual eigenpairs (λ`, u`), (λ∗` , u
∗
`). A typical

loop from V` to V`+1 consists of the steps

SOLVE→ ESTIMATE→ MARK→ REFINE.

The implementation of the step SOLVE in the programming language
MATLAB in the spirit of [ACF99] is given in Figure 5.2.

The step ESTIMATE involves an appropriate a posteriori error esti-
mator. In the numerical examples below the following error estimators
are compared.

η` =
∑
T∈T

h2
T‖β ·p` − λ`u`‖2

L2(T ) +
∑
E⊂T

hE‖[p`]·νE‖2
L2(E)

+
∑
T∈T

h2
T‖−β ·p∗` − λ∗`u∗`‖

2
L2(T ) +

∑
E⊂T

hE‖[p∗` ]·νE‖
2
L2(E),

µ` =
∑
T∈T

h2
T‖−div(A(p`)) + β ·p` − λ`u`‖2

L2(T )+‖A(p`)− p`‖2
L2(T )

+
∑
T∈T

h2
T‖−div(A(p∗`))− β ·p∗` − λ∗`u∗`‖

2
L2(T )+‖A(p∗`)− p∗`‖

2
L2(T ),

η`,reduced =
∑
E∈E`

hE
∥∥ [p`]·νE

∥∥2

L2(E)
+
∑
E∈E`

hE
∥∥ [p∗`]·νE∥∥2

L2(E)
,

µ`,reduced =
∑
T∈T`

‖A(p`)− p`‖2
L2(T ) +

∑
T∈T`

‖A(p∗`)− p∗`‖
2
L2(T ),

η`,DWR1 =
∑
T∈T`

h
3/2
T

(
‖β ·p` − λ`u`‖2

L2(T )

+ h−1
T ‖[p`]·νE‖

2
L2(∂T )

)1/2

‖[p∗` ]·νE‖L2(∂T )

+
∑
T∈T`

h
3/2
T

(
‖−β ·p∗` − λ∗`u∗`‖

2
L2(T )

+ h−1
T ‖[p

∗
` ]·νE‖2

L2(∂T )

)1/2

‖[p`]·νE‖L2(∂T ),

η`,DWR2 = |
∑
T∈T`

∫
T

(β ·p` − λ`u`)(A(u∗`)− u∗`)dx

+
∑
E∈E

∫
E

([p`]·νE)(A(u∗`)− u∗`)ds

+
∑
T∈T`

∫
T

(−β ·p∗` − λ∗`u∗`)(A(u`)− u`)dx

+
∑
E∈E

∫
E

([p∗` ]·νE)(A(u`)− u`)ds|,
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EWP.m
function [x,lambda] = EWP(coordinates,elements,dirichlet,k,beta)

A = sparse(size(coordinates,1),size(coordinates,1));

B = sparse(size(coordinates,1),size(coordinates,1));

x = zeros(size(coordinates,1),1);

for j = 1:size(elements,1)

A(elements(j,:),elements(j,:)) = A(elements(j,:),elements(j,:))+...

stima(coordinates(elements(j,:),:),beta);

B(elements(j,:),elements(j,:)) = B(elements(j,:),elements(j,:))+...

det([ones(1,3);coordinates(elements(j,:),:)’])*(ones(3)+eye(3))/24;

end

freeNodes = setdiff(1:size(coordinates,1),unique(dirichlet));

[V,D] = eigs(A(freeNodes,freeNodes),B(freeNodes,freeNodes),k,’sm’);

x(freeNodes) = V(:,1);lambda = D(1,1);

function stima=stima(vertices,b)

P = [ones(1,3);vertices’];

Q = P\[zeros(1,2);eye(2)];

stima = det(P)*(Q*Q’+ Q*beta*ones(1,3)/3)/2;

Figure 5.2. 17 Lines of Matlab for solving a non-
symmetric eigenvalue problem.

η`,DWM = |
∫

Ω

(p` − qM)∇(A(p∗`)− p∗`)dx+

∫
Ω

(p∗` − q∗M)(A(p`)− p`)dx

+

∫
Ω

β · (p` − qM)(A(u∗`)− u∗`)dx−
∫

Ω

β · (p∗` − q∗M)(A(u`)− u`)dx|,

µ`,DWA = |
∫

Ω

(p` − A(p`))(A(p∗`)− p∗`)dx

+

∫
Ω

(−div(A(p`)) + β ·p` − λ`u`)(A(u∗`)− u∗`)dx

+

∫
Ω

(p∗` − A(p∗`))(A(p`)− p`)dx

+

∫
Ω

(−div(A(p∗`))− β ·p∗` − λ∗`u∗`)(A(u`)− u`)dx|.

In [BE03] an alternative way of computing the estimator ηDWR2 based
on nodal values is presented. The analysis of this error estimator makes
use of a special interpolation operator for quadrilateral meshes. This
interpolation operator considers the nodal values as values for a higher-
order P2 basis on a coarser grid. Because of the use of the special prop-
erties of the interpolation operator this estimator can not be applied
to the more general structured triangular meshes used in this paper.

In order to compare the different non-weighted and dual-weighted er-
ror estimators, the efficiency indices of all estimators for different con-
vection parameters β are compared based on three different sequences
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of meshes. The first sequence consists on uniform (red) refined meshes,
the second sequence consists on perturbed adaptive meshes generated
by the altered AFEM given in Algorithm 5.1, c.f. [CB02]. For the
mesh-adaptivity the residual estimator η` is chosen. In addition the
nodes of the mesh are perturbed in order to avoid super-convergence
phenomena due to mesh symmetries. Third, all error estimators are
compared on sequences of adaptive meshes which are created by the
corresponding error estimators during the AFEM loop.

Algorithm 5.1. Input: Coarse mesh T0.
SOLVE: Solve the discrete eigenvalue problem on the mesh T` in order
to obtain a primal discrete eigenpair (λ`, u`) and a corresponding dual
discrete eigenpair (λ∗` , u

∗
`).

ESTIMATE: Calculate all error estimators based on the primal and
dual discrete eigenpairs (λ`, u`) and (λ∗` , u

∗
`), but only the refinement

indicators of the residual error estimator η`.
MARK: Mark all edges of triangles accordingly to the local refinement
indicators of the residual estimator η` with a bulk criterion. Let M`

be the smallest possible set of triangles, such that
1

2

∑
T∈T`

ηT,` ≤
∑
T∈M`

ηT,`.

REFINE: Refine the mesh using the red-green-blue algorithm [Car04]
and perturb the resulting mesh T`+1 as follows. Each new node z ∈
N`+1\N` is a midpoint of an edge Ez ∈ E`, therefore perturb each node
z along the edge Ez at random around the midpoint within the range of
hE/5. Afterwards perturb all inner nodes z ∈ N`+1 at random within
a ball with radius rz = (5 · 2`+1)−1. Set ` = ` + 1 and continue with
SOLVE.
Output: Perturbed adaptive mesh T` and computed discrete primal
and dual discrete eigenpairs (λ`, u`) and (λ`, u`), as well as values for
all error estimators on each level `.

In order to fix an eigenvalue λ0 of interest for all numerical experi-
ments, notice that for the model problem there exists an real eigenvalue
λ0 such that for all distinct eigenvalues λj it holds

λ0 ≤ Reλj j = 1, 2, . . .

For this eigenvalue there exists a corresponding eigenfunction u0 such
that u0 > 0 in Ω. The eigenvalue λ0 is simple, [Eva00, Section 6.5].

The numerical examples are done for three different domains. The
first one is a convex domain, the unit square, while the other two have
re-entrant corners, namely the L shaped and slit domain. In general the
numerical experiments show that the efficiency indices for some dual-
weighted error estimators are near the expected value 1/(2|b(u, u∗)|)
while the ones of the non-weighted error estimators result in higher in-
dices. Moreover the numerical examples verify the theoretical findings
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Figure 5.3. Primal discrete solution for β = (3, 0)T on
adaptively refined meshes generated by η` on the unit
square with about 500 nodes.

that for the non-weighted error estimators the increase of the convec-
tion coefficient results in an increase of the efficiency index which is not
preferred. In addition, this change seems to be growing not propor-
tional to the change of the coefficient which is even worse. Therefore,
for convection dominated problems, it is necessary to consider error
estimators which are independent of the size of the convection coeffi-
cient. The numerical experiments indicate that the efficiency index of
the η`,DWR2, the η`,DWM and the µ`,DWA error estimators are relatively
independent of the convection term.

In the numerical examples the convection parameter is chosen out of
β ∈ {(1, 0)T , (2, 0)T , (3, 0)T}. In order to calculate any eigenvalue error
|λ − λ`|, the exact eigenvalue, which strongly depends on the chosen
convection parameter β ∈ R2, is thereby replaced by a approximation
λ̃ with high accuracy. The values for λ̃ and 2|b(u, u∗)|, the asymptotic
constant involved in Lemma 2.1, are obtained by Aitken extrapolation
of the sequences (λ`)` and (2|b(u`, u∗`)|)` on uniform meshes.

5.1. Unit Square. As first example consider the non-symmetric eigen-
value problem

−∆u+ β · ∇u = λu in Ω and u = 0 on ∂Ω

on the unit square Ω = [0, 1] × [0, 1]. The discrete primal and dual
solutions are displayed in Figures 5.3 and 5.4.
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Figure 5.4. Dual discrete solution for β = (3, 0)T on
adaptively refined meshes generated by η` on the unit
square with about 500 nodes.
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Figure 5.5. Perturbed mesh, with about 1262 nodes,
generated by Algorithm 5.1 with β = (3, 0)T for the unit
square.
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Because the domain is convex, uniform refinement results in opti-
mal convergence rates. However using different sequences of adaptive
meshes verifies whether all error estimators are reliable and efficient.
Concerning the experiments on uniform meshes, as shown in Figures
5.6 and 5.7, all error estimators indicate reliability and efficiency due
to the fact, that the efficiency indices stabilise towards a stationary
value. It is remarkable that the averaging error estimator µ` and it’s
reduced error estimator µ`,reduced seem to be asymptotically identical,
which shows that the additional volumetric part is of higher-order as
proven. Moreover it can be seen that the efficiency indices of the non-
weighted error estimators grow depending on the convection coefficient
β. On the other hand the dual-weighted error estimator η`,DWR2 and
the new proposed estimators η`,DWM and µ`,DWA are rather independent
of the norm of the convection coefficient. In general the dual-weighted
error estimators, except the estimator η`,DWR1, have efficiency indices
close to 2|b(u, u∗)| which is considered as exact. The different values for
2|b(u, u∗)| are indicated by the shorter horizontal lines. The residual
error estimator η` and η`,reduced show large indices which is not desirable
in practical applications.

For the sequence of perturbed adaptive meshes of Algorithm 5.1 the
behaviour of the error estimators is similar to the previous case. In Fig-
ure 5.5 one mesh of the sequence with 1262 nodes is pictured. In con-
trast to uniform meshes, the averaging error estimators µ` and µ`,reduced

are not asymptotic identical, which is shown in Figure 5.8. This is due
to the loss of super-convergence phenomena on unstructured meshes.
The dual-weighted error estimators show to be less dependent on the
convection coefficient as displayed in Figure 5.9. Among those the
µ`,DWA error estimator seems to be nearly independent of any change
in the convection coefficient. Again the non-weighted error estimators
strongly depend on the norm of β and show large indices.

For sequences of meshes generated by the AFEM using the cor-
responding refinement indicators, the efficiency indices for the non-
weighted error estimators are displayed in Figure 5.10 and those of the
dual-weighted error estimators in Figure 5.11. In comparison to the
results for perturbed meshes the indices for β = (3, 0)T are less sta-
ble, which indicates some super-convergence or instability phenomena,
since the symmetry is destroyed in the case of perturbed meshes. Be-
sides that, all error estimators show numerically optimal convergence
rates of O(h2). Again the efficiency indices of the non-weighted error
estimators are highly depended on changes of the convection coefficient,
while the one of the dual-weighted error estimators are less influenced
by that. The new proposed µ`,DWA error estimator seems to be numer-
ically independent of any change of β.
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Figure 5.6. Efficiency indices for the non-weighted es-
timators η`, η`,reduced, µ`, µ`,reduced, with convection co-
efficients β = (1, 0)T , β = (2, 0)T and β = (3, 0)T for
uniform meshes on the unit square.

The corresponding eigenvalue errors in Figure 5.12 show optimal con-
vergence rates for uniform and adaptive meshes. However the eigen-
value error is of different size as shown in Figure 5.13 with β = (10, 0)T .
Here the proposed µ`,DWA error estimator performs better than the
η`,DWR2 which produces comparable good efficiency indices. The small-
est error, even below the one for uniform meshes, shows the η`,DWR1,
but this estimator does not result in small efficiency indices. There-
fore for convection dominated problems the DWA results in the best
combination of small error and accurate efficiency indices.

5.2. L shape. As second example consider the non-symmetric eigen-
value problem

−∆u+ β · ∇u = λu in Ω and u = 0 on ∂Ω

on the L shaped domain Ω = ([−1, 1]× [−1, 1])\([0, 1]× [0,−1]). The
primal and dual solutions for adaptive meshes generated by the AFEM,
based on the residual error estimator η`, are shown in Figures 5.14 and
5.15.

In contrast to the previous example, adaptive refinement is necessary
to obtain numerically optimal convergence rates close to O(h2), which
is due to the singularity of the first eigenfunction at the re-entrant
corner. In Figure 5.17 it is shown that uniform refinement results in
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Figure 5.7. Efficiency indices for the dual-weighted es-
timators η`,DWR1, η`,DWR2, η`,DWM and µ`,DWA with con-
vection coefficients β = (1, 0)T , β = (2, 0)T and β =
(3, 0)T for uniform meshes on the unit square.
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Figure 5.8. Efficiency indices for the non-weighted es-
timators η`, η`,reduced, µ`, µ`,reduced, with convection co-
efficients β = (1, 0)T , β = (2, 0)T and β = (3, 0)T for
a sequence of perturbed meshes generated by Algorithm
5.1 on the unit square.
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Figure 5.9. Efficiency indices for the dual-weighted es-
timators η`,DWR1, η`,DWR2, η`,DWM and µ`,DWA with con-
vection coefficients β = (1, 0)T , β = (2, 0)T and β =
(3, 0)T for a sequence of perturbed meshes generated by
Algorithm 5.1 on the unit square.
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Figure 5.10. Efficiency indices for the non-weighted es-
timators η`, η`,reduced, µ`, µ`,reduced, with convection coef-
ficients β = (1, 0)T , β = (2, 0)T and β = (3, 0)T for
sequences of meshes generated by the corresponding re-
finement indicators on the unit square.
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Figure 5.11. Efficiency indices for the dual-weighted
estimators η`,DWR1, η`,DWR2, η`,DWM and µ`,DWA with
convection coefficients β = (1, 0)T , β = (2, 0)T and
β = (3, 0)T for sequences of meshes generated by the
corresponding refinement indicators on the unit square.
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Figure 5.12. Eigenvalue errors with β = (3, 0)T for
a uniform mesh and adaptive meshes generated by η`,
η`,reduced, µ`, µ`,reduced, η`,DWR1, η`,DWR2, η`,DWM and
µ`,DWA on the unit square.
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Figure 5.13. Eigenvalue errors with β = (10, 0)T for
a uniform mesh and adaptive meshes generated by η`,
η`,reduced, µ`, µ`,reduced, η`,DWR1, η`,DWR2, η`,DWM and
µ`,DWA on the unit square.
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Figure 5.14. Primal discrete solution for β = (3, 0)T

on adaptively refined meshes generated by η` on the L
shaped domain with about 500 nodes.
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Figure 5.15. Dual discrete solution for β = (3, 0)T

on adaptively refined meshes generated by η` on the L
shaped domain with about 500 nodes.
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Figure 5.16. Perturbed mesh, with 1314 nodes, gener-
ated by Algorithm 5.1 with β = (3, 0)T for the L shaped
domain.
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Figure 5.17. Eigenvalue errors with β = (3, 0)T for
a uniform mesh and adaptive meshes generated by η`,
η`,reduced, µ`, µ`,reduced, η`,DWR1, η`,DWR2, η`,DWM and
µ`,DWA on the L shaped domain.

poorer convergence rate of about O(h4/3), while all adaptive meshes
result in numerically optimal convergence rates.

The experiments for uniform meshes in Figure 5.18 indicate that
the non-weighted error estimators are asymptotically independent of
β. This phenomenon is due to the suboptimal convergence for uni-
form meshes and cannot be applied to adaptive meshes. Figure 5.19
shows that for uniform meshes the η`,DWR2 error estimator is not re-
liable, because the efficiency index does not stabilise but decreases
monotonously. This is due to the fact, that the weights are approxi-
mated with averaging techniques which seems to be not sufficient at
the re-entrant corner due to the loss of regularity. Therefore it is re-
markable that the new proposed µ`,DWA error estimator is nevertheless
numerically reliable. This indicates that for the µ`,DWA estimator the
accuracy of the weights is less important than for the η`,DWR2 estimator.

As in the previous example the error estimators are all reliable and
efficient on perturbed adaptive meshes produced by Algorithm 5.1 and
result in optimal convergence rates. A perturbed adaptive mesh for the
L shaped domain with 1314 nodes is shown in Figure 5.16. Figure 5.20
shows stronger dependence of the efficiency indices of the non-weighted
error estimators on β than the dual-weighted error estimators, as shown
in Figure 5.21. As before the dual-weighted error estimators η`,DWR2,
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Figure 5.18. Efficiency indices for the non-weighted es-
timators η`, η`,reduced, µ`, µ`,reduced, with convection coef-
ficients β = (1, 0)T , β = (2, 0)T and β = (3, 0)T for
uniform meshes on the L shaped domain.

η`,DWM and µ`,DWA produce independent of β efficiency indices close to
the expected values indicated by the horizontal lines.

In the case of adaptive meshes, all error estimators result in op-
timal convergence rates as shown in Figure 5.17. Figures 5.22 and
5.23 indicate that the dual-weighted error estimators are in general
less dependent on the convection coefficient β. In contrast to the pre-
vious examples the efficiency indices of the µ`,DWA estimator is closer
to 2|b(u, u∗)| than the η`,DWR2. One interesting observation is that dif-
ferent error estimators lead to different structured meshes as shown in
Figure 5.24.

5.3. Slit. As last example consider the non-symmetric eigenvalue prob-
lem

−∆u+ β · ∇u = λu in Ω and u = 0 on ∂Ω

on the slit domain Ω = ([−1, 1] × [−1, 1])\([0, 1] × {0}). The primal
and dual eigenfunctions on adaptive meshes are shown in Figures 5.25
and 5.26. As in the previous example adaptive refinement results in
optimal convergence rates O(h2), whereas uniform refinement results
in convergence of only O(h), due to the corner singularity, which is
shown in Figure 5.28.

As in the previous example, Figure 5.30 shows that for uniform
meshes the η`,DWR2 error estimator is not reliable due to the loss of
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Figure 5.19. Efficiency indices for the dual-weighted
estimators η`,DWR1, η`,DWR2, η`,DWM and µ`,DWA with
convection coefficients β = (1, 0)T , β = (2, 0)T and
β = (3, 0)T for uniform meshes on the L shaped domain.
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Figure 5.20. Efficiency indices for the non-weighted es-
timators η`, η`,reduced, µ`, µ`,reduced, with convection coef-
ficients β = (1, 0)T , β = (2, 0)T and β = (3, 0)T for a
sequence of perturbed meshes generated by Algorithm
5.1 on the L shaped domain.
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Figure 5.21. Efficiency indices for the dual-weighted
estimators η`,DWR1, η`,DWR2, η`,DWM and µ`,DWA with
convection coefficients β = (1, 0)T , β = (2, 0)T and
β = (3, 0)T for a sequence of perturbed meshes gener-
ated by Algorithm 5.1 on the L shaped domain.
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Figure 5.22. Efficiency indices for the non-weighted es-
timators η`, η`,reduced, µ`, µ`,reduced, with convection coef-
ficients β = (1, 0)T , β = (2, 0)T and β = (3, 0)T for
sequences of meshes generated by the corresponding re-
finement indicators on the L shaped domain.
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Figure 5.23. Efficiency indices for the dual-weighted
estimators η`,DWR1, η`,DWR2, η`,DWM and µ`,DWA with
convection coefficients β = (1, 0)T , β = (2, 0)T and
β = (3, 0)T for sequences of meshes generated by the
corresponding refinement indicators on the L shaped do-
main.

regularity. Again the new proposed µ`,DWA error estimator shows to be
numerically reliable.

All error estimators are reliable and efficient on perturbed adaptive
meshes produced by Algorithm 5.1 and result in optimal convergence
rates. A perturbed adaptive mesh for the slit domain with 1465 nodes
is shown in Figure 5.27. Figures 5.31 and 5.32 show that the efficiency
indices of the non-weighted error estimators depend on β while those
of the dual-weighted error estimators do not. As for the other exper-
iments the dual-weighted error estimators η`,DWR2, η`,DWM and µ`,DWA

produce independent of β efficiency indices close to the expected values
indicated by the horizontal lines.

Figures 5.33 and 5.34 indicate that for adaptive meshes the dual-
weighted error estimators are less dependent on the convection coeffi-
cient β than the non-weighted. Again the efficiency indices of η`,DWR2

and µ`,DWA are very close to 2|b(u, u∗)|. The different structured adap-
tive meshes for the different error estimators are shown in Figure 5.35.
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Figure 5.24. Meshes with β = (3, 0)T generated by
the estimators (from left to right and top to bottom)
η`, η`,reduced, µ`, µ`,reduced, η`,DWR1, η`,DWR2, η`,DWM and
µ`,DWA on the L shaped domain with about 1000 up to
1500 nodes.
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Figure 5.25. Primal discrete solution for β = (3, 0)T

on adaptively refined meshes generated by η` on the slit
domain with about 500 nodes.
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Figure 5.26. Dual discrete solution for β = (3, 0)T on
adaptively refined meshes generated by η` on the slit do-
main with about 500 nodes.
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Figure 5.27. Perturbed mesh, with 1465 nodes, gener-
ated by Algorithm 5.1 with β = (3, 0)T for the slit do-
main.
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Figure 5.28. Eigenvalue errors with β = (3, 0)T for
a uniform mesh and adaptive meshes generated by η`,
η`,reduced, µ`, µ`,reduced, η`,DWR1, η`,DWR2, η`,DWM and
µ`,DWA on the slit domain.
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Figure 5.29. Efficiency indices for the non-weighted es-
timators η`, η`,reduced, µ`, µ`,reduced, with convection coef-
ficients β = (1, 0)T , β = (2, 0)T and β = (3, 0)T for
uniform meshes on the slit domain.
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Figure 5.30. Efficiency indices for the dual-weighted
estimators η`,DWR1, η`,DWR2, η`,DWM and µ`,DWA with
convection coefficients β = (1, 0)T , β = (2, 0)T and
β = (3, 0)T for uniform meshes on the slit domain.
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Figure 5.31. Efficiency indices for the non-weighted es-
timators η`, η`,reduced, µ`, µ`,reduced, with convection coef-
ficients β = (1, 0)T , β = (2, 0)T and β = (3, 0)T for a
sequence of perturbed meshes generated by Algorithm
5.1 on the slit domain.
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Figure 5.32. Efficiency indices for the dual-weighted
estimators η`,DWR1, η`,DWR2, η`,DWM and µ`,DWA with
convection coefficients β = (1, 0)T , β = (2, 0)T and
β = (3, 0)T for a sequence of perturbed meshes gener-
ated by Algorithm 5.1 on the slit domain.
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Figure 5.33. Efficiency indices for the non-weighted es-
timators η`, η`,reduced, µ`, µ`,reduced, with convection coef-
ficients β = (1, 0)T , β = (2, 0)T and β = (3, 0)T for
sequences of meshes generated by the corresponding re-
finement indicators on the slit domain.
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Figure 5.34. Efficiency indices for the dual-weighted
estimators η`,DWR1, η`,DWR2, η`,DWM and µ`,DWA with
convection coefficients β = (1, 0)T , β = (2, 0)T and
β = (3, 0)T for sequences of meshes generated by the
corresponding refinement indicators on the slit domain.
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Figure 5.35. Meshes with β = (3, 0)T generated by
the estimators (from left to right and top to bottom)
η`, η`,reduced, µ`, µ`,reduced, η`,DWR1, η`,DWR2, η`,DWM and
µ`,DWA on the slit domain with about 1000 up to 1500
nodes.
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