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dimension in the thousands are ommon in these appliations. In partiular,onsider the ontinuous linear time-invariant (LTI) system in state-spae form:_x(t) = Ax(t) +Bu(t); t > 0; x(0) = x0;y(t) = Cx(t) +Du(t); t � 0; (1)where A 2 Rn�n is the state matrix, B 2 Rn�m , C 2 Rp�n , D 2 Rp�m ,and x0 2 Rn is the initial state of the system. Here, n is known as the order(or state-spae dimension) of the system and the assoiated transfer funtionmatrix (TFM) is G(s) = C(sI �A)�1B +D. In the model redution problemwe are interested in �nding a redued-order LTI system,_̂x(t) = Âx̂(t) + B̂û(t); t > 0 x̂(0) = x̂0;ŷ(t) = Ĉx̂(t) + D̂û(t); t � 0; (2)of order r, r � n, and assoiated TFM Ĝ(s) = Ĉ(sI � Â)�1B̂ + D̂ whihapproximates G(s). Model redution of disrete-time LTI systems an be for-mulated in an analogous manner. For brevity we will omit most of the detailsonerned with model redution for disrete-time systems in this paper; seealso [8℄.A ontinuous-time LTI system is (-)stable if all its poles are in the left halfplane. SuÆient for this is that A is (-)stable, i.e., the spetrum of A isontained in the open left half plane, denoted as � (A) � C � .There is no general tehnique for model redution that an be onsidered asoptimal in an overall sense sine the system harateristis play a vital role.In this paper we fous on the so-alled state-spae trunation approah [1,33℄.That is, the redued-order model is obtained from trunating a state-spaetransformation (A;B;C;D) ! (TAT�1; TB; CT�1; D), where T 2 Rn�n isnonsingular, T =: hT Tl ; LTl iT , and T�1 =: [Tr; Lr℄, so that with Tl 2 Rr�n ,Tr 2 Rn�r , the redued-order model isÂ = TlATr; B̂ = TlB; Ĉ = CTr; D̂ = D: (3)This orresponds to projeting the dynamis of the system onto an r-dimensionallinear manifold via x̂ = TrTlx.State-spae trunation methods for model redution di�er in the measure-ment of the approximation error and the way they attempt to minimize thiserror. Balaned trunation (BT) methods [32,39,41,44℄, singular perturbationapproximation (SPA) methods [31℄, and optimal Hankel-norm approximation(HNA) methods [19℄ all belong to the family of absolute error methods, whihtry to minimize k�ak = kG � Ĝk for some system norm. For BT and SPAmethods, the error measure is k�ak1 where k : k1 denotes the L1- or H1-2



norm of a stable, rational matrix funtion de�ned bykGk1 = ess sup!2R �max(G({!)): (4)Here { = p�1 and �max(M) is the largest singular value of the matrix M . Inontrast to BT and SPA, whih ompute sub-optimal approximations, HNAmethods �nd the optimal solution of the absolute error minimization problemif the Hankel norm k : kH is used, wherekGkH = maxj=1;:::;n�j;and the �j are the Hankel singular values of the system.Relative error methods attempt to minimize the relative error k�rk1 de�nedimpliitly by G� Ĝ = G�r. Among these, the balaned stohasti trunation(BST) method [17,22,48℄ is partiularly popular. In ontrast to BT and SPA,BST redued-order models approximate the original TFM uniformly over thewhole frequeny range and also provide a good approximation of the phaseproperties [38℄. The latter property is partiularly important in the ontext ofinverse problems [13℄.All state-spae trunation methods mentioned so far an only be applied if thesystem is stable. However, if stabilization of the system is the omputationaltask to solve, the system is obviously unstable. If a stabilization strategy for alarge-sale unstable system is to be designed, but the model is too large to betreated by the stabilization proedure, model redution of the unstable plantmodel an be employed. Unstable systems often our in ontroller redution:ontrollers are often themselves unstable systems and therefore the task ofontroller redution leads to model redution of unstable systems [46℄. Modelredution of unstable systems is usually dealt with by �rst separating thestable and the unstable parts of the system, and then reduing the stable partusing any of the state-spae trunation methods.In general, model redution methods for LTI systems with dense state matri-es have a omputational ost of O(n3) oating-point arithmeti operations(ops) and require storage for O(n2) numbers. While urrent desktop omput-ers provide enough omputational power to redue models of order n in thehundreds using libraries like SLICOT 3 or the Matlab ontrol-related tool-boxes, large-sale appliations learly require the use of advaned omputingtehniques. One approah would be to exploit any speial struture of thegiven system, e.g., sparsity of the state matrix A. Several approahes for thishave been disussed reently, see, e.g., [1,18,23,30℄. These methods are speial-ized for ertain problem lasses and often lak properties like error bounds orpreservation of stability, passivity, or phase information. Though a lot of re-searh is ongoing, these methods annot be used as a blak-box. Therefore, we3 Available from http://www.win.tue.nl/nionet/NIC2/sliot.html.3



will fous here on the parallelization of state-spae trunation methods whihwill allow to redue large problems without going through the tedious proessof developing a speialized ode for the given problem. Note that we not onlyparallelize the underlying omputational steps but often replae them by newmethods that are better suited for parallel omputations!The rest of the paper is strutured as follows. In Setion 2 we review a pro-edure for model redution of unstable systems. Absolute and relative errormethods for model redution of stable systems are desribed, respetively, inSetions 3 and 4. EÆient algorithms for the solution of the major ompu-tational problems arising in state-spae trunation methods are disussed inSetion 5. The integration of these algorithms in a parallel library for modelredution, PLiCMR, is outlined in Setion 6. Finally, the performane on aluster of Intel Pentium II proessors is reported in Setion 7, and some on-luding remarks follow in Setion 8.2 Model Redution of Unstable SystemsUsually, unstable poles annot be negleted when modeling the dynamis ofa system, and therefore should be preserved in the redued-order system insome sense. This is trivially satis�ed using the following approah [40,47℄: �rst,ompute an additive deomposition of the TFM,G(s) = G�(s) +G+(s) (5)suh that G� is stable and G+ is unstable. Then any of the absolute or relativeerror state-spae trunation methods for model redution an be applied toG� in order to obtain a redued-order transfer funtion Ĝ�, and the redued-order system is synthesized by Ĝ(s) = Ĝ�(s) + G+(s). Hene, the unstablepart is preserved in the redued-order system. This is an important property inontroller redution where it is needed to guarantee the stabilization propertyof the ontroller. Of ourse, if the number of unstable poles is dominating,the potential for reduing the model is limited, but in many appliations thenumber of unstable poles is very low ompared to the number of stable poles.We now desribe how the deomposition (5) an be omputed using the matrixsign funtion. A de�nition of this matrix funtion and an iterative algorithmfor its omputation are given in subsetion 5.1.Consider the realization (A;B;C;D) of a ontinuous-time LTI system, andlet sign (A) denote the sign funtion of A. We start by omputing a (rank-revealing) QR fatorizationIn � sign (A) = QRP; R = 264R11 R120 0 3754



where Q 2 Rn�n is orthogonal,R 2 Rn�n is upper triangular, withR11 2 Rk�k ,and P 2 Rn�n is a permutation matrix. Note that the zeros in the last n� krows of R are to be understood as \zero with respet to a given toleranethreshold". Then the �rst k olumns ofQ span the stable A-invariant subspae.Thus, ~A := QTAQ = 264A11 A120 A22 375 ; (6)where � (A11) = � (A) \ C � , and � (A22) = � (A) \ C + .In a seond step, we ompute a matrix V 2 Rn�n suh thatÂ := V �1 ~AV = 264 Ik �Y0 In�k 375 264A11 00 A22 375 264 Ik Y0 In�k 375 ; (7)where Y 2 Rk�n�k satis�es the Sylvester equationA11Y � Y A22 + A12 = 0: (8)As � (A11) \ � (A22) = ;, equation (8) has a unique solution [27℄. Sylvesterequations with stritly stable/unstable oeÆient matries an be solved usingthe iterative algorithm desribed in subsetion 5.2.The desired additive deomposition of G(s) = C(sI � A)�1B + D is �nallyobtained by performing the state-spae transformation(Â; B̂; Ĉ; D̂) := (V �1QTAQV; V �1QTB;CQV;D)= 0B�264A11 00 A22 375 ; 264B1B2 375 ; [ C1 C2℄; D1CA ;where Â, B̂, and Ĉ are partitioned onformally with the partitioning in (6){(7), so thatG(s) = C(sI � A)�1B +D = Ĉ(sI � Â)�1B̂ + D̂= nĈ1(sIk � A11)�1B1 +Do+ nC2(sIn�k � A22)�1B2o=:G�(s) +G+(s);where G�(s) is a stable TFM and G+(s) is a unstable TFM.3 Absolute Error Methods for Stable SystemsAbsolute error methods are strongly related to the ontrollability GramianWand the observability GramianWo of the system. In the ontinuous-time ase,5



the Gramians are given by the solutions of two oupled Lyapunov equationsAW +WAT +BBT = 0; ATWo +WoA+ CTC = 0: (9)(In the disrete-time ase, the Gramians are the solutions of two oupledanalogous Stein equations.) As A is assumed to be stable, the GramiansW andWo are positive semide�nite, and therefore there exist fatorizationsW = STSand Wo = RTR. Matries S and R are often alled the Cholesky fators of theGramians (even if they are not Cholesky fators in a strit sense).Note that the eÆient algorithms for the solution of the oupled Lyapunovin (9) briey reviewed in subsetion 5.3 do not ompute square Choleskyfators, but full-rank fators of W, Wo.Consider now the singular value deomposition (SVD)SRT = U�V T [U1 U2℄ 264�1 00 �2 375 264V T1V T2 375 ; (10)where the matries are partitioned at a given dimension r suh that �1 =diag (�1; : : : ; �r), �2 = diag (�r+1; : : : ; �n), �j � 0 for all j, and �r > �r+1.Here, �1; : : : ; �n are known as the Hankel singular values of the system. If�r > �r+1 = 0, then r is the state-spae dimension of a minimal realization ofthe system.It should be emphasized that, though mathematially equivalent, our methodsfor solving (9) and (10) signi�antly di�er from standard methods used inthe Matlab toolboxes or SLICOT [47℄. As we are using full-rank fatorsrather than Cholesky fators, the solution of (9) is usually muh more eÆientif the Gramians have low (numerial) rank|whih is typially the ase inmany large-sale models. The e�et is even more drasti when looking at (10):instead of a ost of O(n3) when using Cholesky fators, this new approahleads to an O(n � no � n) ost where n, no, the olumn dimensions of the fullrank fators, often satisfy n; no � n; see [7℄.3.1 Balaned trunationThe so-alled square-root (SR) BT algorithms [29,41℄ determine the redued-order model in (3) using the projetion matriesTl = ��1=21 V T1 R and Tr = STU1��1=21 : (11)In ase �1 > 0 and �2 = 0, this redued-order model is a minimal balanedrealization of the TFM G(s).If the original system is highly unbalaned (and hene, the state-spae trans-formation matrix T is ill-onditioned), the balaning-free square-root (BFSR)6



BT algorithms often provide more aurate redued-order models in the pres-ene of rounding errors [44℄. These algorithms di�er in the proedure to obtainTl and Tr from the SVD fatorization of SRT and in that the redued-ordermodel is not balaned.The absolute error of a realization of order r omputed by the SR or BFSRBT algorithms satis�es the upper bound [19℄k�ak1 = kG� Ĝk1 � 2 nXj=r+1�j: (12)This allows an adaptive hoie of the size of the redued-order model if a givenupper bound for the error is to be satis�ed.3.2 Singular perturbation approximationLet the tuple ( ~A; ~B; ~C;D) denote a minimal realization of the system om-puted using either the SR or BFSR BT algorithms, and partition~A = 264A11 A12A21 A22 375 ; ~B = 264B1B2 375 ; ~C = [ C1 C2℄;aording to the desired size r of the redued-order model, i.e., A11 2 Rr�r ,B1 2 Rr�m , and C1 2 Rp�r . Then the SPA redued-order model is obtainedby applying the following formulaeÂ := A11 � A12(I � A22)�1A21; B̂ := B1 � A12(I � A22)�1B2;Ĉ := C1 � C2(I � A22)�1A21; D̂ := D � C2(I � A22)�1B2; (13)where  = 0 for ontinuous-time systems ( = 1 for disrete-time systems)[31,43,44℄.The realizations omputed using the SR or BFSR SPA algorithms also satisfythe absolute error bound in (12).3.3 Hankel-norm approximationUsing the Hankel norm of a stable rational TFM, kGkH, it is possible to om-pute an approximation minimizing k�akH for a given order r of the redued-order system [19℄. Here we only desribe the basi omputational steps of theHNA method in order to show whih omputational kernels (matrix produts,QR fatorizations, et.) are needed to implement the HNA method. Furtherdetails are given in [1,19,33,49℄.In the �rst step, a balaned minimal realization of G is omputed using, e.g.,the SR BT algorithm desribed in subsetion 3.1.7



Next, a TFM ~G(s) = ~C(sI � ~A)�1 ~B + ~D is omputed as follows: �rst, theorder r of the redued-order model is hosen suh that the Hankel singularvalues of G satisfy�1 � �2 � : : : � �r > �r+1 = : : : = �r+k > �r+k+1 � : : : � �n; k � 1:By applying the appropriate permutations, the balaned transformation of Gis re-ordered suh that the Gramians beome diag ���; �r+1Ik�. The resultingbalaned realization given by ( �A; �B; �C; �D) is partitioned onformally with thepartitioning of the Gramians, i.e.,�A = 264A11 A12A21 A22 375 ; �B = 264B1B2 375 ; �C = [ C1 C2℄;where A11 2 Rn�k�n�k ; B1 2 Rn�k�m , and C1 2 Rp�n�k . Then the followingformulae de�ne a realization of ~G:~A = ��1 ��2r+1AT11 + ��A11 �� + �r+1CT1 UBT1 � ; ~B = ��1(��B1 � �r+1CT1 U);~C = C1 ��� �r+1UBT1 ; ~D = D + �r+1U:Here, U := (CT2 )yB2, where M y denotes the pseudoinverse of M [21℄, and� := ��2��2r+1In�k. Now, following the proedure desribed in subsetion 2, wean ompute an additive deomposition of ~G suh that ~G(s) = Ĝ(s) + ~G+(s)where Ĝ is stable and ~G+ is antistable. Then Ĝ is an optimal r-th orderHankel-norm approximation of G.The absolute error for a realization of order r omputed using the HNAmethodsatis�es [19℄ k�akH = kG� ĜkH = �r+1: (14)This allows again an adaptive hoie of r. Note that the TFM Ĝ omputedusing the HNA method also satis�es the H1-norm bound (12).4 Relative Error Methods for Stable SystemsWe assume here that 0 < p � m, rank (D) = p, whih implies that G(s) mustnot be stritly proper. For stritly proper systems, the method an be appliedintroduing an �-regularization by adding an arti�ial matrix D = [�Ip 0℄ [20℄.BST is a model redution method based on trunating a balaned stohastirealization. Suh a realization is obtained as follows; see [22℄ for details. De�ne�(s) = G(s)GT (�s), and letW be a square minimum phase right spetral fa-tor of �, satisfying �(s) = W T (�s)W (s). As D has full row rank, E := DDT8



is positive de�nite, and a minimal state-spae realization (AW ; BW ; CW ; DW )of W is given byAW := A;BW := BDT +WCT ; CW := E� 12 (C �BTWXW ); DW := E 12 ;where W = STS is the ontrollability Gramian de�ned in (9), while XW isthe observability Gramian of W (s) obtained as the stabilizing solution of thealgebrai Riati equation (ARE)F TX +XF +XBWE�1BTWX + CTE�1C = 0; (15)with F := A�BWE�1C. Here, XW is symmetri positive (semi-)de�nite andthus admits a deomposition XW = RTR. In SR BST a transformation Tyielding projetion matries Tl; Tr as in the BT method is obtained from thedominant left and right singular subspaes of SRT suh that the transformedsystem ( ~A; ~B; ~C; ~D) = (T�1AT; T�1B;CT;D) is stohastially balaned. Thatis, the ontrollability Gramian ~W satis�es~W := T�1WT�T = diag (�1; : : : ; �n) = T TXWT =: ~XW ; (16)where 1 = �1 � �2 � : : : � �n � 0. A BST redued-order model is thenobtained by trunating the realization ( ~A; ~B; ~C; ~D) to order r where �r ��r+1; This BSR satis�es the following relative error bound�r+1 � k�rk1 � nYj=r+1 1 + �j1� �j � 1; (17)where G�r = G� Ĝ. From that we obtainkG� Ĝk1kGk1 � nYj=r+1 1 + �j1� �j � 1: (18)Our algorithms di�er in several ways from the ones onsidered in [38,48℄,though they are mathematially equivalent. Spei�ally, the Lyapunov equa-tion forW is solved using a sign funtion iteration desribed in subsetion 5.3,from whih we obtain a full-rank fatorizationW = STS. The same approahis used to ompute a full-rank fator R of XW from a stabilizing approxima-tion ~XW to XW using the tehnique desribed in [46℄: let D = hD̂T 0iU be anLQ deomposition of D. Note that D̂ 2 Rp�p is a square, nonsingular matrixas D has full row rank. Now setHW := D̂�TC; B̂W := BW D̂�1; Ĉ := (HW � B̂TWX):Then the ARE (15) is equivalent to ATX+XA+ĈT Ĉ = 0: Using a omputedapproximation ~XW of XW to form Ĉ, the Cholesky or full-rank fator R of9



XW an be omputed diretly from the Lyapunov equationA(RTR) + (RTR)A + ĈT Ĉ = 0:The approximation ~XW is obtained by solving (15) using Newton's methodwith exat line searh as desribed in subsetion 5.4 (see also [3℄). The Lya-punov equation for R is solved using the sign funtion iteration from subse-tion 5.3.5 Solving Linear and Quadrati Matrix EquationsThe �rst step in all model redution tehniques disussed so far involves thenumerial solution of linear and quadrati matrix equations, namely Sylvester,Lyapunov and Stein equations as well as AREs. In this setion we will reviewhow these equations an be solved by iterative methods that are partiularlyattrative for parallelization.5.1 The matrix sign funtionConsider a matrix Z 2 Rn�n with no eigenvalues on the imaginary axis andlet Z = S hJ�0 0J+ iS�1 be its Jordan deomposition. Here, the Jordan bloksin J� 2 Rk�k and J+ 2 R(n�k)�(n�k) ontain, respetively, the stable andunstable parts of � (Z). The matrix sign funtion of Z is de�ned as sign (Z) :=S h�Ik0 0In�k iS�1. Note that sign (Z) is unique and independent of the order ofthe eigenvalues in the Jordan deomposition of Z. Many other de�nitions ofthe sign funtion an be given; see [25℄ for an overview.Applying Newton's root-�nding iteration to Z2 = In, where the starting pointis hosen as Z, we obtain the Newton iteration for the matrix sign funtion:Z0  Z; Zj+1  12(Zj + Z�1j ); j = 0; 1; 2; : : : : (19)Under the given assumptions, the sequene fZjg1j=0 onverges to sign (Z) =limj!1Zj [37℄ with an ultimately quadrati onvergene rate. As the initialonvergene may be slow, the use of aeleration tehniques is reommended;e.g., determinantal saling [14℄ is given byZj  jZj; j = j det (Zj)j� 1n :Note that the determinant det (Zj) is a by-produt of the omputations re-quired to implement (19).EÆient parallelization of the matrix sign funtion has been reported, e.g.,in [2,24℄. 10



5.2 Solution of Sylvester equationsConsider a Sylvester equation of the formAX +XB + C = 0; (20)with A 2 Rm�m and B 2 Rn�n stable matries, and C 2 Rm�n . This equa-tion an be solved using a sign funtion-based iterative proedure, derived byRoberts [37℄, whih an be formulated as followsA0  A; Aj+1  12 �Aj + A�1j � ;B0  B; Bj+1  12 �Bj +B�1j � ;C0  C; Cj+1  12 �Cj + A�1j CjB�1j � ; j = 0; 1; 2; : : : : (21)It follows that limj!1Aj = �Im, limj!1Bj = �In, and X = 12 limj!1Cj:For an eÆient implementation of this iteration on modern omputer arhi-tetures and numerial experiments reporting eÆieny and auray, see [6℄.5.3 Solution of Lyapunov and Stein equationsExploiting that the Lyapunov equation ATX +XA+Q = 0; with A 2 Rn�nstable and Q 2 Rn�n symmetri positive semide�nite, is a speial ase of theSylvester equation (20), the iteration (21) boils down toA0  A; Aj+1  12 �Aj + A�1j � ;Q0  Q; Qj+1  12 �Qj + A�Tj QjA�1j � ; j = 0; 1; 2; : : : ; (22)so that limj!1Aj = � In and X = 12 limj!1Qj.In [5,28℄ this iteration was modi�ed to obtain the Cholesky fator rather thanthe solution itself of a Lyapunov equation of the formATX +XA+ LTL = 0;where A 2 Rn�n is stable and L 2 Rm�n . The modi�ed iteration an beformulated as follows:A0  A; Aj+1  12 �Aj + A�1j � ;L0  L; Lj+1  1p2 264 LjLjA�1j 375 ; j = 0; 1; 2; : : : : (23)As in the appliations onsidered here the Cholesky fators are often of low(numerial) rank, we an save some workspae and arithmeti work by a ol-11



umn ompression of the iterates Lj. That is, in eah step we ompute a rank-revealing QR deomposition of the matrix Lj+1 using the QR deompositionwith olumn pivoting [21℄. We then obtain limj!1Lj = L̂, with L̂L̂T = X;i.e., the iterates onverge to the full-rank fators of the solution. Note that inall the absolute error methods disussed here, we need to solve both Lyapunovequations (9). We an ouple the two iterations so that only one of the twosequenes fAjg1j=0 needs to be omputed and the ost is further redued; see,e.g., [7℄ for details.In partiular, in model redution m; p � n and the numerial rank of theCholesky fators S, R of the system Gramians is also usually muh smallerthan n. Therefore, working with the full-rank fators quite often saves a largeamount of workspae and omputational ost. Details of the method andthe implementation of BT model redution using these fators instead of theCholesky fators an be found in [7℄.The same tehniques desribed here an also be employed for the solution ofthe Stein equation arising in disrete-time systems if the sign funtion iterationis replaed by the squared Smith iteration; see [11℄ for details.5.4 The Newton method for the AREIn [26℄ Kleinman shows that, under suitable onditions, Newton's methodapplied to the lassial ARE, as it appears in optimal ontrol, onverges tothe desired stabilizing solution of the ARE.All the onvergene results for Newton's method applied to the lassial AREan be derived in a similar way for the ase onsidered here; see [3,45℄. Inpartiular, we use these results to formulate Newton's method for an ARE ofthe form R (X) := F TX +XF +XPX +Q = 0; (24)with F 2 Rn�n stable and P;Q 2 Rn�n symmetri positive semide�nite. Thisan then be applied to (15) withF := A� BWE�1C; P := BWE�1BTW ; Q := CTE�1C: (25)The Newton iteration for (24), starting from some initial stabilizing symmetriguess X0, an be formulated as follows:Fj  F + PXj;Xj+1  Xj +Nj; j = 0; 1; 2; : : : ;where Nj satis�es the Lyapunov equation F Tj Nj +NjFj +R (Xj) = 0:In our implementation, we employ the sign funtion-based method (22) tosolve the Lyapunov equations in eah step of the Newton iteration [9℄.12



Although Newton's method for the ARE (24) onverges ultimately quadrat-ially from any starting guess X0 suh that F + PX0 is stable, the initialonvergene may be slow. Even worse, sometimes the X1 is an enormous leapaway from X0 and the exat solution, and the sequene fXjg1j=0 only on-verges slowly afterwards. Therefore, in pratie, we use a variant of Newton'smethod whih inludes an exat line searh tehnique in order to aelerateonvergene in the early stages of the iteration. This tehnique was proposedfor (24) in [3℄.Here we apply the suggested modi�ed Newton's method to (15) using (25). AsA � BWE�1C is stable [22,48℄, we an start Newton's iteration with X0 = 0suh that the problem of �nding a stabilizing starting guess is irumventedin this ase.For further details on the exat line searh and the parallelization of Newton'smethod, see [4℄.6 A Parallel Library for Model RedutionThe numerial algorithms that we have desribed in the previous setions areall omposed of basi matrix omputations suh as solving linear systems,matrix produts, and QR fatorizations (with and without olumn pivoting).EÆient implementations of these operations are available in parallel linear al-gebra libraries for distributed memory omputers like PLAPACK and SaLA-PACK [12,42℄. The use of these libraries enhanes the reliability and improvesportability of the model redution routines. The performane will depend onthe eÆienies of the underlying serial and parallel omputational linear alge-bra libraries and the ommuniation routines.Using the kernels in SaLAPACK, we have implemented a library for modelredution of LTI systems, PLiCMR 4 , in Fortran 77. The library ontains afew driver routines for model redution and several omputational routinesfor the solution of related equations in ontrol. The funtionality and nam-ing onvention of the parallel routines losely follow analogous routines fromSLICOT. As part of PLiCMR, three parallel driver routines are provided forabsolute error model redution, one parallel driver routine for relative errormodel redution, and an expert driver routine apable of performing any ofthe previous funtions on stable and unstable systems:{ pab09ax: SR and BFSR BT algorithms.{ pab09bx: SR and BFSR SPA algorithms.{ pab09x: HNA algorithm.{ pab09hx: SR and BFSR BST algorithms.{ pab09mr: Model redution of stable/unstable systems employing any ofthe four previous methods.Table 1 shows a list of the omputational routines inluded in PLiCMR.4 Available from http://spine.at.uji.es/~plimr.html.13



Purpose RoutineSpetral division pmb05rdContinuous-time Disrete-timeARE solver pdgernz {Sylvester solver psb04md {Lyapunov solver pdgelne {Coupled Lyapunov/Stein solver psb03od psb03oddTable 1Computational routines in PLiCMR.6.1 Implementation detailsThe eÆieny of our model redution routines strongly depends on the eÆ-ieny of two numerial kernels: the QR fatorization with olumn pivoting,employed in iteration (23) for the oupled Lyapunov equations in (9), and thematrix inversion routines neessary, e.g., in the Newton iteration for the ma-trix sign funtion and related iterations for Sylvester and Lyapunov equations.Highly eÆient parallel routines are adopted for both omputations in our li-brary. First, we employ a BLAS-3 version of the QR fatorization with olumnpivoting [36℄ whih outperforms the traditional BLAS-2 implementation bothin serial and parallel arhitetures. This new version has been inluded in LA-PACK (version 3.0) as routine DGEQP3. We have developed a SaLAPACK-likeparallel implementation of the routine. Seondly, we propose to use an inver-sion proedure based on Gauss-Jordan elimination. This approah presentsa better balane of the omputational load for parallel distributed-memoryarhitetures, see [35℄.The numerial rank of a matrix is estimated in our routines by using the QRfatorization with olumn pivoting and an inremental estimator. Setting atolerane threshold for the numerial rank is a deliate problem, speially ifthe matrix has no large gap in its singular value distribution. As a generalsolution, in order to determine the numerial rank of a square matrix of ordern, we set the rank tolerane threshold, �rank, to �rank = 10 � pn � "; where "is the mahine preision. We found this threshold to serve our purposes inpratie.Most of the omputational routines in the library are based on iterative meth-ods with quadrati onvergene, e.g., the Newton iteration is used to solveAREs, the iteration (19) for omputing the matrix sign funtion is also an im-plementation of Newton's method, et. In all these ases we use an iterationtolerane threshold, �iter, de�ned as �iter = 10 �n �p": Table 2 lists the spei�onvergene riteria employed by the omputational routines. As all the iter-ative algorithms in the library present an ultimately quadrati onvergene,one the orresponding threshold is satis�ed two more iterations are arried14



out to guarantee the maximum attainable auray.pmb05rd kZj+1 � Zjk < �iter � kZjkContinuous-time Disrete-timepdgernz kR (Xj) kF < �iter � kXjkF { {psb04md kAj + InkF < �iter � kAjkF and { {{ kBj � InkF < �iter � kBjkFpdgelne kAj + InkF < �iter � kAjkF { {psb03od kAj + InkF < �iter � kAjkF psb03odd kAjkF < �iter � kAkFTable 2Convergene riteria for the iterations in the omputational routines. The Frobe-nious norm was employed in all ases.In SaLAPACK [12℄ the omputations are performed by a logial grid of np =pr�p proesses whih are mapped onto the physial proessors, depending onthe available number of these. All data matries are partitioned into mb� nbbloks, and these bloks are then distributed among the proesses in olumn-major order. Our urrent implementations of the routines for model redutionin PLiCMR require all data matries passed as arguments to the driver andomputational routines of the libraries to start at entry (1,1) whih has to bestored by proess (0,0).7 Experimental ResultsAll the experiments presented in this setion were performed on a luster of32 nodes using ieee double-preision oating-point arithmeti (" � 2:2204�10�16). Eah node onsists of an Intel Pentium-II proessor at 300 MHz with128 MBytes of RAM. We employ a BLAS library, speially tuned for thePentium-II proessor, that ahieves around 180 Mops (millions of ops perseond) for the matrix produt (routine DGEMM). The nodes are onneted viaa Myrinet multistage network; the ommuniation library BLACS is basedon an implementation of the MPI ommuniation library speially developedand tuned for this network. The performane of the interonnetion networkwas measured by a simple loop-bak message transfer resulting in a latenyof 33 �se. and a bandwidth of 200 Mbit/se. We made use of the LAPACK,PBLAS, and SaLAPACK libraries whenever possible.We ompare the auray and performane of the parallel routines in PLiCMRand the orresponding serial routines in SLICOT:{ ab09ad: SR and BFSR BT algorithms.{ ab09bd: SR and BFSR SPA algorithms.{ ab09d: HNA algorithm.{ ab09hd: SR and BFSR BST algorithms.15



As we did not �nd any signi�ant di�erene between the SR and BFSR algo-rithms, in the experiments we only report results for the latter.7.1 Auray of the redued-order modelsWe evaluate the numerial performane of our model redution using eightmoderate-sale examples oming from very di�erent appliation areas rangingfrom meteorology over servomehanism design to strutural mehanis. For adetailed desription of the appliations, see [15℄ and the referenes therein.Table 3 shows the parameters of the systems used in the evaluation. In orderto �x the order of the redued-order system automatially, the SLICOT andPLiCMR routines selet r so that �r > max(�1; n � " � �1) > �r+1; where �1is a user-spei�ed tolerane threshold. In our ase, we set �1 = � � �1, wherethe value � is adjusted for eah partiular ase as shown in the table. TheSPA and HNA methods also employ a seond tolerane threshold equal tomax(�2; n � " � �1) in order to determine a minimal realization of the system.In our experiments we set �2 = 0.Example n m p �1 � rEady 598 1 1 9:93e+2 1:0e�3 9CDplayer 120 2 2 1:17e+6 1:0e�8 42FOM 1006 1 1 5:00e+1 1:0e�3 10PDE 84 1 1 5:34e+0 1:0e�3 2Heat- 200 1 1 3:25e�2 1:0e�3 4ISS 270 3 3 5:79e�2 1:0e�3 36Build 48 1 1 2:50e�3 1:0e�3 30Beam 348 1 1 2:38e+3 1:0e�3 12Table 3Parameters of the examples employed in the numerial evaluation of the parallelmodel redution routines.Table 4 shows the absolute error, k�ak1 = kG � Ĝk1, of the redued-ordersystems omputed with the absolute error model redution routines and thetheoretial bound (12) for the di�erent examples. We used the funtion linormin order to ompute the H1 norms of the errors using Matlab (exept in theFOM example, where we had to use gridding on the frequeny response plot).This funtion is based on the SLICOT subroutine ab13dd whih omputesthe L1-norm of a ontinuous- or disrete LTI system. Note that the Mat-lab funtion normhinf from the Robust Control Toolbox [16℄ was not able toompute any of the error norms in the CD player example orretly. The er-ror bound was obtained from the Hankel singular values provided in the data�les from [15℄. The table shows that the models omputed by SLICOT and16



the parallel routines are equally good approximations to the original system.Mostly, both models satisfy the theoretial absolute error bound. Only in onease (SPA applied to \Heat-") the error bound is slightly missed. This an bedue to rounding errors whih an e�et omputation of the bound, the abso-lute error norm, or the redued-order models. A detailed investigation of thisdisrepany between theory and pratie is needed here. Further experimentalresults are reported in [10℄.Example Bound ab09ad pab09ax ab09bd pab09bx ab09d pab09xin (12)Eady 1:1e+0 4:6e�1 4:6e�1 4:1e�1 4:1e�1 2:6e�1 2:6e�1CDplayer 2:4e�1 2:0e�2 2:0e�2 2:2e�2 2:2e�2 6:5e�2 3:6e�2FOM 1:0e�1 1:0e�1 1:0e�1 1:0e�1 1:0e�1 3:6e�2 3:6e�2PDE 1:0e�2 4:6e�3 4:6e�3 7:4e�3 7:4e�3 3:8e�3 3:8e�3Heat- 3:4e�5 2:6e�5 2:6e�5 4:9e�5 4:9e�5 2:9e�5 2:9e�5ISS 1:8e�3 1:1e�4 1:1e�4 1:1e�4 1:1e�4 1:5e�4 1:5e�4Build 2:7e�5 4:9e�6 4:9e�6 4:8e�6 4:8e�6 6:7e�6 6:7e�6Beam 1:2e+1 2:4e+0 2:4e+0 1:7e+0 1:7e+0 1:7e+0 1:7e+0Table 4Absolute error k�ak1 of the redued-order models omputed for the examplesemployed in the numerial evaluation of the absolute error model redution routines.Table 5 shows the relative error kG�Ĝk1=kGk1 of the redued-order systemsomputed with the serial and the parallel BST routines and the theoretialbound (18) for the di�erent examples. In those ases where a regularizationis neessary we used D = [ Ip 0 ℄. (Again the H1 norm in the FOM exampleould not be omputed using funtion linorm and gridding had to be used.)7.2 Parallel performane of the omputational routinesWe �rst report the performane of the major omputational routines in PLiC-MR. Spei�ally, we report results for a single iteration of the ARE solver,the spetral division routine based on the sign funtion, and the linear matrixequation solvers. The Newton method for the ARE requires the solution ofa Lyapunov equation at eah iteration step. We �x the number of iterationsfor this LME solver to 10. This value is determined from our experiene whenevaluating the olletion of benhmark examples in [10℄.As in pratie m; p � n, in the experiments in this subsetion we employsystems with n=10 = m = p and random entries in U[0; 1℄. The systems aregenerated with n=1:1 stable and 0:1n=1:1 unstable poles in an attempt tomimi a real ase. The dimensions of the numerial problems to be solved17



Example Bound ab09hd pab09hxin (18)Eady 4:0e�3 1:1e�3 1:1e�3CDplayer 7:2e�2 7:4e�5 3:2e�5FOM 2:1e�2 | 6:2e�3PDE 1:6e�3 5:5e�4 5:5e�4Heat- 3:4e�5 2:6e�5 2:6e�5ISS 1:8e�3 9:6e�5 9:6e�5Build 2:7e�5 4:9e�6 4:9e�6Beam 9:1e+1 4:8e�1 2:1e�1Table 5Relative error kG � Ĝk1=kGk1 of the redued-order models omputed for theexamples employed in the numerial evaluation of the relative error model redutionroutines. (The entry with a dash denotes a problem that ould not be solved dueto memory restritions.)are therefore those that would arise when model redution is applied to suhsystems; e.g., spetral division via the matrix sign funtion is applied on asquare matrix of order n; the Sylvester equation involves square oeÆientmatries A and B of order n=1:1 and 0:1n=1:1, respetively; one additivedeomposition is performed, all other linear and quadrati matrix solvers workon problems of dimension given by n=1:1, m=1:1, and p=1:1.Our �rst experiment reports the exeution time of a single iteration of theomputational routines on a system of order n = 880; see Figure 1. Thisis about the largest size we ould evaluate on a single node of our lusteronsidering the number of data matries involved, the amount of workspaeneessary for omputations, and the redued size of the RAM per node. Theexeution of a parallel algorithm on a single node is likely to require a highertime than that of a serial implementation of the algorithm (implemented using,e.g., LAPACK and BLAS); however, at least for suh large sale problems, weexpet this overhead to be negligible ompared to the overall exeution time.The �gure shows reasonable speed-ups when a redued number of proessorsis employed. Thus, e.g., when np = 4, speed-ups of 2.63, 2.04, and 2.61 areobtained for routines pdgernz, pmb05rd, and pdgelne, respetively. In allases, the eÆieny dereases as np gets larger (as the system dimension is�xed, the problem size per node is redued) so that using more than a fewproessors does not ahieve a signi�ant redution in the exeution time forsuh a small problem. In our test, when np = 10, speed-ups of only 3.88, 2.93,4.17 are obtained by routines pdgernz, pmb05rd and pdgelne, respetively.We next evaluate the performane of a single iteration of the omputationalroutines when the problem size per node is onstant. For that purpose, we �x18
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Fig. 1. Exeution time of a single iteration of the omputational routines.the order of the system to n=pnp = 880, and we report the Mops per nodein Figure 2.The �gure demonstrates the salability of our parallel kernels, as there is only aminor derease in the performane of the algorithms when np is inreased whilethe problem dimension per node remains �xed. As the major omputations inour driver routines are performed in these routines, we an also onlude thesalability of the model redution parallel algorithms.7.3 Parallel performane of the driver routinesIn this subsetion we evaluate the performane of the driver routines for modelredution using �ve large-sale examples. Three of these examples orrespondto ontinuous-time systems, while the remaining two are disrete-time models.In the experiments we only report results for the BT and BST methods. Theperformanes of the SPA and HNA methods were losely similar to those ofthe BT method.Example 1: This ontinuous LTI system omes from a �nite element dis-retization of a mathematial model for optimal ooling of steel pro�les. Theproess is modeled by a boundary ontrol problem for a linearized 2-dimensionalheat equation. The system has 6 inputs and outputs. Di�erent meshes are em-ployed resulting in realizations of order n = 821, 1357, 3113, and 5177. As19
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Fig. 2. Mop rate of a single iteration of the omputational routines.there is no signi�ant gap in the Hankel singular values of the system, weompute in this experiment redued-order systems of �xed order r = 40.Example 2: (see [34℄): This model omes from the simulation of a atalytitubular reator used in a gPROMS training ourse. A gas phase reation(oxidation of o-xylene to phthali anhydride) takes plae inside the reatorwhih is paked with atalyst partiles. The reator is ooled externally. Themathematial model onsists of a boundary ontrol problem for a system ofoupled partial di�erential equations inluding onservation laws for mass andenergy. A ontinuous LTI system is obtained from a semi-disretization of thePDE system. The order of the system is n = 1171, and the numbers of inputsand outputs are m = 6 and p = 4, respetively. A redued-order system withr=9 states is omputed in this example.Example 3: (see [34℄): The model in the previous example is here disretizedusing zero-order hold with sampling time �t = 0:1 se. suh that xk = x(k�t),k = 0; 1; 2; : : :. Again, a redued system of order r=9 is obtained for thisexample.Example 4: (see [15℄): The heat equation in this ase is an example of asemidisretized point ontrol problem for a paraboli PDE. The given equationmodels the heat di�usion in a 1-dimensional thin rod with a single heat soure.The equation is parameterized by a salar � that we set to � = 0:01. Thespatial domain is disretized in segments of length h = 1N+1 and entereddi�erenes are used to approximate the di�usion operator. A heat soure is20



assumed to be loated at 1/3 of the length and the temperature is measuredat 2/3 of the length.This example, of order n = N and with a single input and a single output(m = p = 1), an be saled to obtain very large systems. We thus employthis ase to report results for a problem of dimensions that are lose to themaximum that an be solved in a single proessor, n = 800, and a muh largerproblem, of order n = 3000. A redued system of order r = 10 was omputedin both ases.Example 5: (see [15℄): The same equation in the last example is used here.This time, however, a full disretization of the ontrol problem for the heatequation is obtained using the Crank{Niholson sheme. This results in a dis-rete LTI system. In this ase, the Hankel singular values deay slightly slowerthan in the ontinuous ase, leading to a higher dimension of the redued-ordersystem if the same approximation error is to be ahieved. We again omputein this ase redued systems of order r = 10 for models with n = 800 andn = 3000 states.Table 6 reports the exeution time of the serial and the parallel BT andBST model redution routines. The exeution times of the BST approah areup to 20 times of those of the BT method. This is easily explained by itsmuh higher omputational ost (an ARE needs to be solved in BST). Notiethat our driver routines are not a diret parallelization of the serial SLICOTroutines, but employ numerial solvers for the LME and the AREs whih aredi�erent from those used in the serial odes. Therefore, onluding the degreeof parallelism of the driver routines from the results in the table is misdireted.Our driver routines are intended to help a ontrol engineer to redue large-sale models and/or obtain the redued-order models in a shorter period oftime. Both goals are ahieved in PLiCMR: The order of the largest model thatould be redued using SLICOT serial routines ab09ad and ab09hd was in thehundreds. Using the parallel routines pab09ax and pab09hx in PLiCMR weould redue models of order around 5000 and 3000, respetively. The use ofthe parallel algorithms redued the exeution times of the serial routines in allases. The redution however is quite di�erent depending on the ase. Thus,exeution times are obtained for the parallel algorithms that range from 7.51%to 60% of those of the orresponding serial algorithms. Notie here that weare interested here in reduing the exeution time as muh as possible, notobtaining the best possible speed-up (whih would surely be higher had weemployed a smaller number of proessors in this experiment!).8 ConlusionsOver the last years we have developed the library PLiCMR for model redutionof large-sale LTI systems on parallel arhitetures. Using the kernels in thislibrary, eÆient model redution of systems with thousands of states is possible21



Example r ab09ad pab09ax (np) ab09hd pab09hx (np)(n;m; p)Ex. 1 (821; 6; 6) 40 227 79 (16) 1819 1060 (16)Ex. 1 (1357; 6; 6) 40 { 203 (16) { 1053 (16)Ex. 1 (3113; 6; 6) 40 { 701 (25) { 14730 (25)Ex. 1 (5177; 6; 6) 40 { 2314 (32) { {Ex. 2 (1171; 6; 4) 9 678 144 (16) { 1819 (16)Ex. 3 (1171; 6; 4) 9 218 98 (16) { 1050 (16)Ex. 4 (800; 1; 1) 10 218 65 (16) 1713 331 (16)Ex. 4 (3000; 1; 1) 10 { 679 (25) { 6310 (25)Ex. 5 (800; 1; 1) 10 400 30 (16) 1959 331 (16)Ex. 5 (3000; 1; 1) 10 { 370 (25) { 6266 (25)Table 6Exeution time (in se.) of the model redution routines in SLICOT and PLiCMR.(Entries with a dash denote problems that ould not be solved due to memoryrestritions.)on a luster of moderate dimensions. Iterative algorithms are employed for thesolution of the major numerial problems that arise in the model redutionmethods resulting in highly parallel algorithms with oarse granularity.A olletion of benhmark examples shows the numerial auray and theparallel performane of our approah on a luster of Intel Pentium II proes-sors.AknowledgmentWe thank Jens Saak for providing the data sets used in Example 1 of Subse-tion 7.3.Referenes[1℄ A.C. Antoulas. Letures on the Approximation of Large-Sale DynamialSystems. SIAM Publiations, Philadelphia, PA, to appear.[2℄ Z. Bai, J. Demmel, J. Dongarra, A. Petitet, H. Robinson, and K. Stanley.The spetral deomposition of nonsymmetri matries on distributed memoryparallel omputers. SIAM J. Si. Comput., 18:1446{1461, 1997.[3℄ P. Benner. Numerial solution of speial algebrai Riati equations via an exatline searh method. In Pro. European Control Conf. ECC 97 (CD-ROM),Paper 786. BELWARE Information Tehnology, Waterloo, Belgium, 1997.22
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