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tWe dis
uss a parallel library of eÆ
ient algorithms for model redu
tion of large-s
ale systems with state-spa
e dimension up to O(104). We survey the numeri
alalgorithms underlying the implementation of the 
hosen model redu
tion methods.The approa
h 
onsidered here is based on state-spa
e trun
ation of the systemmatri
es and in
ludes absolute and relative error methods for both stable and un-stable systems. In 
ontrast to serial implementations of these methods, we employNewton-type iterative algorithms for the solution of the major 
omputational tasks.Experimental results report the numeri
al a

ura
y and the parallel performan
e ofour approa
h on a 
luster of Intel Pentium II pro
essors.Key words: Model redu
tion, state-spa
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 Ri
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tionModel redu
tion of large-s
ale systems arises, among others, in 
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uitsimulation and VLSI design; see, e.g., [1,15℄. LTI systems with state-spa
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dimension in the thousands are 
ommon in these appli
ations. In parti
ular,
onsider the 
ontinuous linear time-invariant (LTI) system in state-spa
e form:_x(t) = Ax(t) +Bu(t); t > 0; x(0) = x0;y(t) = Cx(t) +Du(t); t � 0; (1)where A 2 Rn�n is the state matrix, B 2 Rn�m , C 2 Rp�n , D 2 Rp�m ,and x0 2 Rn is the initial state of the system. Here, n is known as the order(or state-spa
e dimension) of the system and the asso
iated transfer fun
tionmatrix (TFM) is G(s) = C(sI �A)�1B +D. In the model redu
tion problemwe are interested in �nding a redu
ed-order LTI system,_̂x(t) = Âx̂(t) + B̂û(t); t > 0 x̂(0) = x̂0;ŷ(t) = Ĉx̂(t) + D̂û(t); t � 0; (2)of order r, r � n, and asso
iated TFM Ĝ(s) = Ĉ(sI � Â)�1B̂ + D̂ whi
happroximates G(s). Model redu
tion of dis
rete-time LTI systems 
an be for-mulated in an analogous manner. For brevity we will omit most of the details
on
erned with model redu
tion for dis
rete-time systems in this paper; seealso [8℄.A 
ontinuous-time LTI system is (
-)stable if all its poles are in the left halfplane. SuÆ
ient for this is that A is (
-)stable, i.e., the spe
trum of A is
ontained in the open left half plane, denoted as � (A) � C � .There is no general te
hnique for model redu
tion that 
an be 
onsidered asoptimal in an overall sense sin
e the system 
hara
teristi
s play a vital role.In this paper we fo
us on the so-
alled state-spa
e trun
ation approa
h [1,33℄.That is, the redu
ed-order model is obtained from trun
ating a state-spa
etransformation (A;B;C;D) ! (TAT�1; TB; CT�1; D), where T 2 Rn�n isnonsingular, T =: hT Tl ; LTl iT , and T�1 =: [Tr; Lr℄, so that with Tl 2 Rr�n ,Tr 2 Rn�r , the redu
ed-order model isÂ = TlATr; B̂ = TlB; Ĉ = CTr; D̂ = D: (3)This 
orresponds to proje
ting the dynami
s of the system onto an r-dimensionallinear manifold via x̂ = TrTlx.State-spa
e trun
ation methods for model redu
tion di�er in the measure-ment of the approximation error and the way they attempt to minimize thiserror. Balan
ed trun
ation (BT) methods [32,39,41,44℄, singular perturbationapproximation (SPA) methods [31℄, and optimal Hankel-norm approximation(HNA) methods [19℄ all belong to the family of absolute error methods, whi
htry to minimize k�ak = kG � Ĝk for some system norm. For BT and SPAmethods, the error measure is k�ak1 where k : k1 denotes the L1- or H1-2



norm of a stable, rational matrix fun
tion de�ned bykGk1 = ess sup!2R �max(G({!)): (4)Here { = p�1 and �max(M) is the largest singular value of the matrix M . In
ontrast to BT and SPA, whi
h 
ompute sub-optimal approximations, HNAmethods �nd the optimal solution of the absolute error minimization problemif the Hankel norm k : kH is used, wherekGkH = maxj=1;:::;n�j;and the �j are the Hankel singular values of the system.Relative error methods attempt to minimize the relative error k�rk1 de�nedimpli
itly by G� Ĝ = G�r. Among these, the balan
ed sto
hasti
 trun
ation(BST) method [17,22,48℄ is parti
ularly popular. In 
ontrast to BT and SPA,BST redu
ed-order models approximate the original TFM uniformly over thewhole frequen
y range and also provide a good approximation of the phaseproperties [38℄. The latter property is parti
ularly important in the 
ontext ofinverse problems [13℄.All state-spa
e trun
ation methods mentioned so far 
an only be applied if thesystem is stable. However, if stabilization of the system is the 
omputationaltask to solve, the system is obviously unstable. If a stabilization strategy for alarge-s
ale unstable system is to be designed, but the model is too large to betreated by the stabilization pro
edure, model redu
tion of the unstable plantmodel 
an be employed. Unstable systems often o

ur in 
ontroller redu
tion:
ontrollers are often themselves unstable systems and therefore the task of
ontroller redu
tion leads to model redu
tion of unstable systems [46℄. Modelredu
tion of unstable systems is usually dealt with by �rst separating thestable and the unstable parts of the system, and then redu
ing the stable partusing any of the state-spa
e trun
ation methods.In general, model redu
tion methods for LTI systems with dense state matri-
es have a 
omputational 
ost of O(n3) 
oating-point arithmeti
 operations(
ops) and require storage for O(n2) numbers. While 
urrent desktop 
omput-ers provide enough 
omputational power to redu
e models of order n in thehundreds using libraries like SLICOT 3 or the Matlab 
ontrol-related tool-boxes, large-s
ale appli
ations 
learly require the use of advan
ed 
omputingte
hniques. One approa
h would be to exploit any spe
ial stru
ture of thegiven system, e.g., sparsity of the state matrix A. Several approa
hes for thishave been dis
ussed re
ently, see, e.g., [1,18,23,30℄. These methods are spe
ial-ized for 
ertain problem 
lasses and often la
k properties like error bounds orpreservation of stability, passivity, or phase information. Though a lot of re-sear
h is ongoing, these methods 
annot be used as a bla
k-box. Therefore, we3 Available from http://www.win.tue.nl/ni
onet/NIC2/sli
ot.html.3



will fo
us here on the parallelization of state-spa
e trun
ation methods whi
hwill allow to redu
e large problems without going through the tedious pro
essof developing a spe
ialized 
ode for the given problem. Note that we not onlyparallelize the underlying 
omputational steps but often repla
e them by newmethods that are better suited for parallel 
omputations!The rest of the paper is stru
tured as follows. In Se
tion 2 we review a pro-
edure for model redu
tion of unstable systems. Absolute and relative errormethods for model redu
tion of stable systems are des
ribed, respe
tively, inSe
tions 3 and 4. EÆ
ient algorithms for the solution of the major 
ompu-tational problems arising in state-spa
e trun
ation methods are dis
ussed inSe
tion 5. The integration of these algorithms in a parallel library for modelredu
tion, PLiCMR, is outlined in Se
tion 6. Finally, the performan
e on a
luster of Intel Pentium II pro
essors is reported in Se
tion 7, and some 
on-
luding remarks follow in Se
tion 8.2 Model Redu
tion of Unstable SystemsUsually, unstable poles 
annot be negle
ted when modeling the dynami
s ofa system, and therefore should be preserved in the redu
ed-order system insome sense. This is trivially satis�ed using the following approa
h [40,47℄: �rst,
ompute an additive de
omposition of the TFM,G(s) = G�(s) +G+(s) (5)su
h that G� is stable and G+ is unstable. Then any of the absolute or relativeerror state-spa
e trun
ation methods for model redu
tion 
an be applied toG� in order to obtain a redu
ed-order transfer fun
tion Ĝ�, and the redu
ed-order system is synthesized by Ĝ(s) = Ĝ�(s) + G+(s). Hen
e, the unstablepart is preserved in the redu
ed-order system. This is an important property in
ontroller redu
tion where it is needed to guarantee the stabilization propertyof the 
ontroller. Of 
ourse, if the number of unstable poles is dominating,the potential for redu
ing the model is limited, but in many appli
ations thenumber of unstable poles is very low 
ompared to the number of stable poles.We now des
ribe how the de
omposition (5) 
an be 
omputed using the matrixsign fun
tion. A de�nition of this matrix fun
tion and an iterative algorithmfor its 
omputation are given in subse
tion 5.1.Consider the realization (A;B;C;D) of a 
ontinuous-time LTI system, andlet sign (A) denote the sign fun
tion of A. We start by 
omputing a (rank-revealing) QR fa
torizationIn � sign (A) = QRP; R = 264R11 R120 0 3754



where Q 2 Rn�n is orthogonal,R 2 Rn�n is upper triangular, withR11 2 Rk�k ,and P 2 Rn�n is a permutation matrix. Note that the zeros in the last n� krows of R are to be understood as \zero with respe
t to a given toleran
ethreshold". Then the �rst k 
olumns ofQ span the stable A-invariant subspa
e.Thus, ~A := QTAQ = 264A11 A120 A22 375 ; (6)where � (A11) = � (A) \ C � , and � (A22) = � (A) \ C + .In a se
ond step, we 
ompute a matrix V 2 Rn�n su
h thatÂ := V �1 ~AV = 264 Ik �Y0 In�k 375 264A11 00 A22 375 264 Ik Y0 In�k 375 ; (7)where Y 2 Rk�n�k satis�es the Sylvester equationA11Y � Y A22 + A12 = 0: (8)As � (A11) \ � (A22) = ;, equation (8) has a unique solution [27℄. Sylvesterequations with stri
tly stable/unstable 
oeÆ
ient matri
es 
an be solved usingthe iterative algorithm des
ribed in subse
tion 5.2.The desired additive de
omposition of G(s) = C(sI � A)�1B + D is �nallyobtained by performing the state-spa
e transformation(Â; B̂; Ĉ; D̂) := (V �1QTAQV; V �1QTB;CQV;D)= 0B�264A11 00 A22 375 ; 264B1B2 375 ; [ C1 C2℄; D1CA ;where Â, B̂, and Ĉ are partitioned 
onformally with the partitioning in (6){(7), so thatG(s) = C(sI � A)�1B +D = Ĉ(sI � Â)�1B̂ + D̂= nĈ1(sIk � A11)�1B1 +Do+ nC2(sIn�k � A22)�1B2o=:G�(s) +G+(s);where G�(s) is a stable TFM and G+(s) is a unstable TFM.3 Absolute Error Methods for Stable SystemsAbsolute error methods are strongly related to the 
ontrollability GramianW
and the observability GramianWo of the system. In the 
ontinuous-time 
ase,5



the Gramians are given by the solutions of two 
oupled Lyapunov equationsAW
 +W
AT +BBT = 0; ATWo +WoA+ CTC = 0: (9)(In the dis
rete-time 
ase, the Gramians are the solutions of two 
oupledanalogous Stein equations.) As A is assumed to be stable, the GramiansW
 andWo are positive semide�nite, and therefore there exist fa
torizationsW
 = STSand Wo = RTR. Matri
es S and R are often 
alled the Cholesky fa
tors of theGramians (even if they are not Cholesky fa
tors in a stri
t sense).Note that the eÆ
ient algorithms for the solution of the 
oupled Lyapunovin (9) brie
y reviewed in subse
tion 5.3 do not 
ompute square Choleskyfa
tors, but full-rank fa
tors of W
, Wo.Consider now the singular value de
omposition (SVD)SRT = U�V T [U1 U2℄ 264�1 00 �2 375 264V T1V T2 375 ; (10)where the matri
es are partitioned at a given dimension r su
h that �1 =diag (�1; : : : ; �r), �2 = diag (�r+1; : : : ; �n), �j � 0 for all j, and �r > �r+1.Here, �1; : : : ; �n are known as the Hankel singular values of the system. If�r > �r+1 = 0, then r is the state-spa
e dimension of a minimal realization ofthe system.It should be emphasized that, though mathemati
ally equivalent, our methodsfor solving (9) and (10) signi�
antly di�er from standard methods used inthe Matlab toolboxes or SLICOT [47℄. As we are using full-rank fa
torsrather than Cholesky fa
tors, the solution of (9) is usually mu
h more eÆ
ientif the Gramians have low (numeri
al) rank|whi
h is typi
ally the 
ase inmany large-s
ale models. The e�e
t is even more drasti
 when looking at (10):instead of a 
ost of O(n3) when using Cholesky fa
tors, this new approa
hleads to an O(n
 � no � n) 
ost where n
, no, the 
olumn dimensions of the fullrank fa
tors, often satisfy n
; no � n; see [7℄.3.1 Balan
ed trun
ationThe so-
alled square-root (SR) BT algorithms [29,41℄ determine the redu
ed-order model in (3) using the proje
tion matri
esTl = ��1=21 V T1 R and Tr = STU1��1=21 : (11)In 
ase �1 > 0 and �2 = 0, this redu
ed-order model is a minimal balan
edrealization of the TFM G(s).If the original system is highly unbalan
ed (and hen
e, the state-spa
e trans-formation matrix T is ill-
onditioned), the balan
ing-free square-root (BFSR)6



BT algorithms often provide more a

urate redu
ed-order models in the pres-en
e of rounding errors [44℄. These algorithms di�er in the pro
edure to obtainTl and Tr from the SVD fa
torization of SRT and in that the redu
ed-ordermodel is not balan
ed.The absolute error of a realization of order r 
omputed by the SR or BFSRBT algorithms satis�es the upper bound [19℄k�ak1 = kG� Ĝk1 � 2 nXj=r+1�j: (12)This allows an adaptive 
hoi
e of the size of the redu
ed-order model if a givenupper bound for the error is to be satis�ed.3.2 Singular perturbation approximationLet the tuple ( ~A; ~B; ~C;D) denote a minimal realization of the system 
om-puted using either the SR or BFSR BT algorithms, and partition~A = 264A11 A12A21 A22 375 ; ~B = 264B1B2 375 ; ~C = [ C1 C2℄;a

ording to the desired size r of the redu
ed-order model, i.e., A11 2 Rr�r ,B1 2 Rr�m , and C1 2 Rp�r . Then the SPA redu
ed-order model is obtainedby applying the following formulaeÂ := A11 � A12(
I � A22)�1A21; B̂ := B1 � A12(
I � A22)�1B2;Ĉ := C1 � C2(
I � A22)�1A21; D̂ := D � C2(
I � A22)�1B2; (13)where 
 = 0 for 
ontinuous-time systems (
 = 1 for dis
rete-time systems)[31,43,44℄.The realizations 
omputed using the SR or BFSR SPA algorithms also satisfythe absolute error bound in (12).3.3 Hankel-norm approximationUsing the Hankel norm of a stable rational TFM, kGkH, it is possible to 
om-pute an approximation minimizing k�akH for a given order r of the redu
ed-order system [19℄. Here we only des
ribe the basi
 
omputational steps of theHNA method in order to show whi
h 
omputational kernels (matrix produ
ts,QR fa
torizations, et
.) are needed to implement the HNA method. Furtherdetails are given in [1,19,33,49℄.In the �rst step, a balan
ed minimal realization of G is 
omputed using, e.g.,the SR BT algorithm des
ribed in subse
tion 3.1.7



Next, a TFM ~G(s) = ~C(sI � ~A)�1 ~B + ~D is 
omputed as follows: �rst, theorder r of the redu
ed-order model is 
hosen su
h that the Hankel singularvalues of G satisfy�1 � �2 � : : : � �r > �r+1 = : : : = �r+k > �r+k+1 � : : : � �n; k � 1:By applying the appropriate permutations, the balan
ed transformation of Gis re-ordered su
h that the Gramians be
ome diag ���; �r+1Ik�. The resultingbalan
ed realization given by ( �A; �B; �C; �D) is partitioned 
onformally with thepartitioning of the Gramians, i.e.,�A = 264A11 A12A21 A22 375 ; �B = 264B1B2 375 ; �C = [ C1 C2℄;where A11 2 Rn�k�n�k ; B1 2 Rn�k�m , and C1 2 Rp�n�k . Then the followingformulae de�ne a realization of ~G:~A = ��1 ��2r+1AT11 + ��A11 �� + �r+1CT1 UBT1 � ; ~B = ��1(��B1 � �r+1CT1 U);~C = C1 ��� �r+1UBT1 ; ~D = D + �r+1U:Here, U := (CT2 )yB2, where M y denotes the pseudoinverse of M [21℄, and� := ��2��2r+1In�k. Now, following the pro
edure des
ribed in subse
tion 2, we
an 
ompute an additive de
omposition of ~G su
h that ~G(s) = Ĝ(s) + ~G+(s)where Ĝ is stable and ~G+ is antistable. Then Ĝ is an optimal r-th orderHankel-norm approximation of G.The absolute error for a realization of order r 
omputed using the HNAmethodsatis�es [19℄ k�akH = kG� ĜkH = �r+1: (14)This allows again an adaptive 
hoi
e of r. Note that the TFM Ĝ 
omputedusing the HNA method also satis�es the H1-norm bound (12).4 Relative Error Methods for Stable SystemsWe assume here that 0 < p � m, rank (D) = p, whi
h implies that G(s) mustnot be stri
tly proper. For stri
tly proper systems, the method 
an be appliedintrodu
ing an �-regularization by adding an arti�
ial matrix D = [�Ip 0℄ [20℄.BST is a model redu
tion method based on trun
ating a balan
ed sto
hasti
realization. Su
h a realization is obtained as follows; see [22℄ for details. De�ne�(s) = G(s)GT (�s), and letW be a square minimum phase right spe
tral fa
-tor of �, satisfying �(s) = W T (�s)W (s). As D has full row rank, E := DDT8



is positive de�nite, and a minimal state-spa
e realization (AW ; BW ; CW ; DW )of W is given byAW := A;BW := BDT +W
CT ; CW := E� 12 (C �BTWXW ); DW := E 12 ;where W
 = STS is the 
ontrollability Gramian de�ned in (9), while XW isthe observability Gramian of W (s) obtained as the stabilizing solution of thealgebrai
 Ri

ati equation (ARE)F TX +XF +XBWE�1BTWX + CTE�1C = 0; (15)with F := A�BWE�1C. Here, XW is symmetri
 positive (semi-)de�nite andthus admits a de
omposition XW = RTR. In SR BST a transformation Tyielding proje
tion matri
es Tl; Tr as in the BT method is obtained from thedominant left and right singular subspa
es of SRT su
h that the transformedsystem ( ~A; ~B; ~C; ~D) = (T�1AT; T�1B;CT;D) is sto
hasti
ally balan
ed. Thatis, the 
ontrollability Gramian ~W
 satis�es~W
 := T�1W
T�T = diag (�1; : : : ; �n) = T TXWT =: ~XW ; (16)where 1 = �1 � �2 � : : : � �n � 0. A BST redu
ed-order model is thenobtained by trun
ating the realization ( ~A; ~B; ~C; ~D) to order r where �r ��r+1; This BSR satis�es the following relative error bound�r+1 � k�rk1 � nYj=r+1 1 + �j1� �j � 1; (17)where G�r = G� Ĝ. From that we obtainkG� Ĝk1kGk1 � nYj=r+1 1 + �j1� �j � 1: (18)Our algorithms di�er in several ways from the ones 
onsidered in [38,48℄,though they are mathemati
ally equivalent. Spe
i�
ally, the Lyapunov equa-tion forW
 is solved using a sign fun
tion iteration des
ribed in subse
tion 5.3,from whi
h we obtain a full-rank fa
torizationW
 = STS. The same approa
his used to 
ompute a full-rank fa
tor R of XW from a stabilizing approxima-tion ~XW to XW using the te
hnique des
ribed in [46℄: let D = hD̂T 0iU be anLQ de
omposition of D. Note that D̂ 2 Rp�p is a square, nonsingular matrixas D has full row rank. Now setHW := D̂�TC; B̂W := BW D̂�1; Ĉ := (HW � B̂TWX):Then the ARE (15) is equivalent to ATX+XA+ĈT Ĉ = 0: Using a 
omputedapproximation ~XW of XW to form Ĉ, the Cholesky or full-rank fa
tor R of9



XW 
an be 
omputed dire
tly from the Lyapunov equationA(RTR) + (RTR)A + ĈT Ĉ = 0:The approximation ~XW is obtained by solving (15) using Newton's methodwith exa
t line sear
h as des
ribed in subse
tion 5.4 (see also [3℄). The Lya-punov equation for R is solved using the sign fun
tion iteration from subse
-tion 5.3.5 Solving Linear and Quadrati
 Matrix EquationsThe �rst step in all model redu
tion te
hniques dis
ussed so far involves thenumeri
al solution of linear and quadrati
 matrix equations, namely Sylvester,Lyapunov and Stein equations as well as AREs. In this se
tion we will reviewhow these equations 
an be solved by iterative methods that are parti
ularlyattra
tive for parallelization.5.1 The matrix sign fun
tionConsider a matrix Z 2 Rn�n with no eigenvalues on the imaginary axis andlet Z = S hJ�0 0J+ iS�1 be its Jordan de
omposition. Here, the Jordan blo
ksin J� 2 Rk�k and J+ 2 R(n�k)�(n�k) 
ontain, respe
tively, the stable andunstable parts of � (Z). The matrix sign fun
tion of Z is de�ned as sign (Z) :=S h�Ik0 0In�k iS�1. Note that sign (Z) is unique and independent of the order ofthe eigenvalues in the Jordan de
omposition of Z. Many other de�nitions ofthe sign fun
tion 
an be given; see [25℄ for an overview.Applying Newton's root-�nding iteration to Z2 = In, where the starting pointis 
hosen as Z, we obtain the Newton iteration for the matrix sign fun
tion:Z0  Z; Zj+1  12(Zj + Z�1j ); j = 0; 1; 2; : : : : (19)Under the given assumptions, the sequen
e fZjg1j=0 
onverges to sign (Z) =limj!1Zj [37℄ with an ultimately quadrati
 
onvergen
e rate. As the initial
onvergen
e may be slow, the use of a

eleration te
hniques is re
ommended;e.g., determinantal s
aling [14℄ is given byZj  
jZj; 
j = j det (Zj)j� 1n :Note that the determinant det (Zj) is a by-produ
t of the 
omputations re-quired to implement (19).EÆ
ient parallelization of the matrix sign fun
tion has been reported, e.g.,in [2,24℄. 10



5.2 Solution of Sylvester equationsConsider a Sylvester equation of the formAX +XB + C = 0; (20)with A 2 Rm�m and B 2 Rn�n stable matri
es, and C 2 Rm�n . This equa-tion 
an be solved using a sign fun
tion-based iterative pro
edure, derived byRoberts [37℄, whi
h 
an be formulated as followsA0  A; Aj+1  12 �Aj + A�1j � ;B0  B; Bj+1  12 �Bj +B�1j � ;C0  C; Cj+1  12 �Cj + A�1j CjB�1j � ; j = 0; 1; 2; : : : : (21)It follows that limj!1Aj = �Im, limj!1Bj = �In, and X = 12 limj!1Cj:For an eÆ
ient implementation of this iteration on modern 
omputer ar
hi-te
tures and numeri
al experiments reporting eÆ
ien
y and a

ura
y, see [6℄.5.3 Solution of Lyapunov and Stein equationsExploiting that the Lyapunov equation ATX +XA+Q = 0; with A 2 Rn�nstable and Q 2 Rn�n symmetri
 positive semide�nite, is a spe
ial 
ase of theSylvester equation (20), the iteration (21) boils down toA0  A; Aj+1  12 �Aj + A�1j � ;Q0  Q; Qj+1  12 �Qj + A�Tj QjA�1j � ; j = 0; 1; 2; : : : ; (22)so that limj!1Aj = � In and X = 12 limj!1Qj.In [5,28℄ this iteration was modi�ed to obtain the Cholesky fa
tor rather thanthe solution itself of a Lyapunov equation of the formATX +XA+ LTL = 0;where A 2 Rn�n is stable and L 2 Rm�n . The modi�ed iteration 
an beformulated as follows:A0  A; Aj+1  12 �Aj + A�1j � ;L0  L; Lj+1  1p2 264 LjLjA�1j 375 ; j = 0; 1; 2; : : : : (23)As in the appli
ations 
onsidered here the Cholesky fa
tors are often of low(numeri
al) rank, we 
an save some workspa
e and arithmeti
 work by a 
ol-11



umn 
ompression of the iterates Lj. That is, in ea
h step we 
ompute a rank-revealing QR de
omposition of the matrix Lj+1 using the QR de
ompositionwith 
olumn pivoting [21℄. We then obtain limj!1Lj = L̂, with L̂L̂T = X;i.e., the iterates 
onverge to the full-rank fa
tors of the solution. Note that inall the absolute error methods dis
ussed here, we need to solve both Lyapunovequations (9). We 
an 
ouple the two iterations so that only one of the twosequen
es fAjg1j=0 needs to be 
omputed and the 
ost is further redu
ed; see,e.g., [7℄ for details.In parti
ular, in model redu
tion m; p � n and the numeri
al rank of theCholesky fa
tors S, R of the system Gramians is also usually mu
h smallerthan n. Therefore, working with the full-rank fa
tors quite often saves a largeamount of workspa
e and 
omputational 
ost. Details of the method andthe implementation of BT model redu
tion using these fa
tors instead of theCholesky fa
tors 
an be found in [7℄.The same te
hniques des
ribed here 
an also be employed for the solution ofthe Stein equation arising in dis
rete-time systems if the sign fun
tion iterationis repla
ed by the squared Smith iteration; see [11℄ for details.5.4 The Newton method for the AREIn [26℄ Kleinman shows that, under suitable 
onditions, Newton's methodapplied to the 
lassi
al ARE, as it appears in optimal 
ontrol, 
onverges tothe desired stabilizing solution of the ARE.All the 
onvergen
e results for Newton's method applied to the 
lassi
al ARE
an be derived in a similar way for the 
ase 
onsidered here; see [3,45℄. Inparti
ular, we use these results to formulate Newton's method for an ARE ofthe form R (X) := F TX +XF +XPX +Q = 0; (24)with F 2 Rn�n stable and P;Q 2 Rn�n symmetri
 positive semide�nite. This
an then be applied to (15) withF := A� BWE�1C; P := BWE�1BTW ; Q := CTE�1C: (25)The Newton iteration for (24), starting from some initial stabilizing symmetri
guess X0, 
an be formulated as follows:Fj  F + PXj;Xj+1  Xj +Nj; j = 0; 1; 2; : : : ;where Nj satis�es the Lyapunov equation F Tj Nj +NjFj +R (Xj) = 0:In our implementation, we employ the sign fun
tion-based method (22) tosolve the Lyapunov equations in ea
h step of the Newton iteration [9℄.12



Although Newton's method for the ARE (24) 
onverges ultimately quadrat-i
ally from any starting guess X0 su
h that F + PX0 is stable, the initial
onvergen
e may be slow. Even worse, sometimes the X1 is an enormous leapaway from X0 and the exa
t solution, and the sequen
e fXjg1j=0 only 
on-verges slowly afterwards. Therefore, in pra
ti
e, we use a variant of Newton'smethod whi
h in
ludes an exa
t line sear
h te
hnique in order to a

elerate
onvergen
e in the early stages of the iteration. This te
hnique was proposedfor (24) in [3℄.Here we apply the suggested modi�ed Newton's method to (15) using (25). AsA � BWE�1C is stable [22,48℄, we 
an start Newton's iteration with X0 = 0su
h that the problem of �nding a stabilizing starting guess is 
ir
umventedin this 
ase.For further details on the exa
t line sear
h and the parallelization of Newton'smethod, see [4℄.6 A Parallel Library for Model Redu
tionThe numeri
al algorithms that we have des
ribed in the previous se
tions areall 
omposed of basi
 matrix 
omputations su
h as solving linear systems,matrix produ
ts, and QR fa
torizations (with and without 
olumn pivoting).EÆ
ient implementations of these operations are available in parallel linear al-gebra libraries for distributed memory 
omputers like PLAPACK and S
aLA-PACK [12,42℄. The use of these libraries enhan
es the reliability and improvesportability of the model redu
tion routines. The performan
e will depend onthe eÆ
ien
ies of the underlying serial and parallel 
omputational linear alge-bra libraries and the 
ommuni
ation routines.Using the kernels in S
aLAPACK, we have implemented a library for modelredu
tion of LTI systems, PLiCMR 4 , in Fortran 77. The library 
ontains afew driver routines for model redu
tion and several 
omputational routinesfor the solution of related equations in 
ontrol. The fun
tionality and nam-ing 
onvention of the parallel routines 
losely follow analogous routines fromSLICOT. As part of PLiCMR, three parallel driver routines are provided forabsolute error model redu
tion, one parallel driver routine for relative errormodel redu
tion, and an expert driver routine 
apable of performing any ofthe previous fun
tions on stable and unstable systems:{ pab09ax: SR and BFSR BT algorithms.{ pab09bx: SR and BFSR SPA algorithms.{ pab09
x: HNA algorithm.{ pab09hx: SR and BFSR BST algorithms.{ pab09mr: Model redu
tion of stable/unstable systems employing any ofthe four previous methods.Table 1 shows a list of the 
omputational routines in
luded in PLiCMR.4 Available from http://spine.a
t.uji.es/~pli
mr.html.13



Purpose RoutineSpe
tral division pmb05rdContinuous-time Dis
rete-timeARE solver pdge
rnz {Sylvester solver psb04md {Lyapunov solver pdge
lne {Coupled Lyapunov/Stein solver psb03od
 psb03oddTable 1Computational routines in PLiCMR.6.1 Implementation detailsThe eÆ
ien
y of our model redu
tion routines strongly depends on the eÆ-
ien
y of two numeri
al kernels: the QR fa
torization with 
olumn pivoting,employed in iteration (23) for the 
oupled Lyapunov equations in (9), and thematrix inversion routines ne
essary, e.g., in the Newton iteration for the ma-trix sign fun
tion and related iterations for Sylvester and Lyapunov equations.Highly eÆ
ient parallel routines are adopted for both 
omputations in our li-brary. First, we employ a BLAS-3 version of the QR fa
torization with 
olumnpivoting [36℄ whi
h outperforms the traditional BLAS-2 implementation bothin serial and parallel ar
hite
tures. This new version has been in
luded in LA-PACK (version 3.0) as routine DGEQP3. We have developed a S
aLAPACK-likeparallel implementation of the routine. Se
ondly, we propose to use an inver-sion pro
edure based on Gauss-Jordan elimination. This approa
h presentsa better balan
e of the 
omputational load for parallel distributed-memoryar
hite
tures, see [35℄.The numeri
al rank of a matrix is estimated in our routines by using the QRfa
torization with 
olumn pivoting and an in
remental estimator. Setting atoleran
e threshold for the numeri
al rank is a deli
ate problem, spe
ially ifthe matrix has no large gap in its singular value distribution. As a generalsolution, in order to determine the numeri
al rank of a square matrix of ordern, we set the rank toleran
e threshold, �rank, to �rank = 10 � pn � "; where "is the ma
hine pre
ision. We found this threshold to serve our purposes inpra
ti
e.Most of the 
omputational routines in the library are based on iterative meth-ods with quadrati
 
onvergen
e, e.g., the Newton iteration is used to solveAREs, the iteration (19) for 
omputing the matrix sign fun
tion is also an im-plementation of Newton's method, et
. In all these 
ases we use an iterationtoleran
e threshold, �iter, de�ned as �iter = 10 �n �p": Table 2 lists the spe
i�

onvergen
e 
riteria employed by the 
omputational routines. As all the iter-ative algorithms in the library present an ultimately quadrati
 
onvergen
e,on
e the 
orresponding threshold is satis�ed two more iterations are 
arried14



out to guarantee the maximum attainable a

ura
y.pmb05rd kZj+1 � Zjk < �iter � kZjkContinuous-time Dis
rete-timepdge
rnz kR (Xj) kF < �iter � kXjkF { {psb04md kAj + InkF < �iter � kAjkF and { {{ kBj � InkF < �iter � kBjkFpdge
lne kAj + InkF < �iter � kAjkF { {psb03od
 kAj + InkF < �iter � kAjkF psb03odd kAjkF < �iter � kAkFTable 2Convergen
e 
riteria for the iterations in the 
omputational routines. The Frobe-nious norm was employed in all 
ases.In S
aLAPACK [12℄ the 
omputations are performed by a logi
al grid of np =pr�p
 pro
esses whi
h are mapped onto the physi
al pro
essors, depending onthe available number of these. All data matri
es are partitioned into mb� nbblo
ks, and these blo
ks are then distributed among the pro
esses in 
olumn-major order. Our 
urrent implementations of the routines for model redu
tionin PLiCMR require all data matri
es passed as arguments to the driver and
omputational routines of the libraries to start at entry (1,1) whi
h has to bestored by pro
ess (0,0).7 Experimental ResultsAll the experiments presented in this se
tion were performed on a 
luster of32 nodes using ieee double-pre
ision 
oating-point arithmeti
 (" � 2:2204�10�16). Ea
h node 
onsists of an Intel Pentium-II pro
essor at 300 MHz with128 MBytes of RAM. We employ a BLAS library, spe
ially tuned for thePentium-II pro
essor, that a
hieves around 180 M
ops (millions of 
ops perse
ond) for the matrix produ
t (routine DGEMM). The nodes are 
onne
ted viaa Myrinet multistage network; the 
ommuni
ation library BLACS is basedon an implementation of the MPI 
ommuni
ation library spe
ially developedand tuned for this network. The performan
e of the inter
onne
tion networkwas measured by a simple loop-ba
k message transfer resulting in a laten
yof 33 �se
. and a bandwidth of 200 Mbit/se
. We made use of the LAPACK,PBLAS, and S
aLAPACK libraries whenever possible.We 
ompare the a

ura
y and performan
e of the parallel routines in PLiCMRand the 
orresponding serial routines in SLICOT:{ ab09ad: SR and BFSR BT algorithms.{ ab09bd: SR and BFSR SPA algorithms.{ ab09
d: HNA algorithm.{ ab09hd: SR and BFSR BST algorithms.15



As we did not �nd any signi�
ant di�eren
e between the SR and BFSR algo-rithms, in the experiments we only report results for the latter.7.1 A

ura
y of the redu
ed-order modelsWe evaluate the numeri
al performan
e of our model redu
tion using eightmoderate-s
ale examples 
oming from very di�erent appli
ation areas rangingfrom meteorology over servome
hanism design to stru
tural me
hani
s. For adetailed des
ription of the appli
ations, see [15℄ and the referen
es therein.Table 3 shows the parameters of the systems used in the evaluation. In orderto �x the order of the redu
ed-order system automati
ally, the SLICOT andPLiCMR routines sele
t r so that �r > max(�1; n � " � �1) > �r+1; where �1is a user-spe
i�ed toleran
e threshold. In our 
ase, we set �1 = � � �1, wherethe value � is adjusted for ea
h parti
ular 
ase as shown in the table. TheSPA and HNA methods also employ a se
ond toleran
e threshold equal tomax(�2; n � " � �1) in order to determine a minimal realization of the system.In our experiments we set �2 = 0.Example n m p �1 � rEady 598 1 1 9:93e+2 1:0e�3 9CDplayer 120 2 2 1:17e+6 1:0e�8 42FOM 1006 1 1 5:00e+1 1:0e�3 10PDE 84 1 1 5:34e+0 1:0e�3 2Heat-
 200 1 1 3:25e�2 1:0e�3 4ISS 270 3 3 5:79e�2 1:0e�3 36Build 48 1 1 2:50e�3 1:0e�3 30Beam 348 1 1 2:38e+3 1:0e�3 12Table 3Parameters of the examples employed in the numeri
al evaluation of the parallelmodel redu
tion routines.Table 4 shows the absolute error, k�ak1 = kG � Ĝk1, of the redu
ed-ordersystems 
omputed with the absolute error model redu
tion routines and thetheoreti
al bound (12) for the di�erent examples. We used the fun
tion linormin order to 
ompute the H1 norms of the errors using Matlab (ex
ept in theFOM example, where we had to use gridding on the frequen
y response plot).This fun
tion is based on the SLICOT subroutine ab13dd whi
h 
omputesthe L1-norm of a 
ontinuous- or dis
rete LTI system. Note that the Mat-lab fun
tion normhinf from the Robust Control Toolbox [16℄ was not able to
ompute any of the error norms in the CD player example 
orre
tly. The er-ror bound was obtained from the Hankel singular values provided in the data�les from [15℄. The table shows that the models 
omputed by SLICOT and16



the parallel routines are equally good approximations to the original system.Mostly, both models satisfy the theoreti
al absolute error bound. Only in one
ase (SPA applied to \Heat-
") the error bound is slightly missed. This 
an bedue to rounding errors whi
h 
an e�e
t 
omputation of the bound, the abso-lute error norm, or the redu
ed-order models. A detailed investigation of thisdis
repan
y between theory and pra
ti
e is needed here. Further experimentalresults are reported in [10℄.Example Bound ab09ad pab09ax ab09bd pab09bx ab09
d pab09
xin (12)Eady 1:1e+0 4:6e�1 4:6e�1 4:1e�1 4:1e�1 2:6e�1 2:6e�1CDplayer 2:4e�1 2:0e�2 2:0e�2 2:2e�2 2:2e�2 6:5e�2 3:6e�2FOM 1:0e�1 1:0e�1 1:0e�1 1:0e�1 1:0e�1 3:6e�2 3:6e�2PDE 1:0e�2 4:6e�3 4:6e�3 7:4e�3 7:4e�3 3:8e�3 3:8e�3Heat-
 3:4e�5 2:6e�5 2:6e�5 4:9e�5 4:9e�5 2:9e�5 2:9e�5ISS 1:8e�3 1:1e�4 1:1e�4 1:1e�4 1:1e�4 1:5e�4 1:5e�4Build 2:7e�5 4:9e�6 4:9e�6 4:8e�6 4:8e�6 6:7e�6 6:7e�6Beam 1:2e+1 2:4e+0 2:4e+0 1:7e+0 1:7e+0 1:7e+0 1:7e+0Table 4Absolute error k�ak1 of the redu
ed-order models 
omputed for the examplesemployed in the numeri
al evaluation of the absolute error model redu
tion routines.Table 5 shows the relative error kG�Ĝk1=kGk1 of the redu
ed-order systems
omputed with the serial and the parallel BST routines and the theoreti
albound (18) for the di�erent examples. In those 
ases where a regularizationis ne
essary we used D = [ Ip 0 ℄. (Again the H1 norm in the FOM example
ould not be 
omputed using fun
tion linorm and gridding had to be used.)7.2 Parallel performan
e of the 
omputational routinesWe �rst report the performan
e of the major 
omputational routines in PLiC-MR. Spe
i�
ally, we report results for a single iteration of the ARE solver,the spe
tral division routine based on the sign fun
tion, and the linear matrixequation solvers. The Newton method for the ARE requires the solution ofa Lyapunov equation at ea
h iteration step. We �x the number of iterationsfor this LME solver to 10. This value is determined from our experien
e whenevaluating the 
olle
tion of ben
hmark examples in [10℄.As in pra
ti
e m; p � n, in the experiments in this subse
tion we employsystems with n=10 = m = p and random entries in U[0; 1℄. The systems aregenerated with n=1:1 stable and 0:1n=1:1 unstable poles in an attempt tomimi
 a real 
ase. The dimensions of the numeri
al problems to be solved17



Example Bound ab09hd pab09hxin (18)Eady 4:0e�3 1:1e�3 1:1e�3CDplayer 7:2e�2 7:4e�5 3:2e�5FOM 2:1e�2 | 6:2e�3PDE 1:6e�3 5:5e�4 5:5e�4Heat-
 3:4e�5 2:6e�5 2:6e�5ISS 1:8e�3 9:6e�5 9:6e�5Build 2:7e�5 4:9e�6 4:9e�6Beam 9:1e+1 4:8e�1 2:1e�1Table 5Relative error kG � Ĝk1=kGk1 of the redu
ed-order models 
omputed for theexamples employed in the numeri
al evaluation of the relative error model redu
tionroutines. (The entry with a dash denotes a problem that 
ould not be solved dueto memory restri
tions.)are therefore those that would arise when model redu
tion is applied to su
hsystems; e.g., spe
tral division via the matrix sign fun
tion is applied on asquare matrix of order n; the Sylvester equation involves square 
oeÆ
ientmatri
es A and B of order n=1:1 and 0:1n=1:1, respe
tively; on
e additivede
omposition is performed, all other linear and quadrati
 matrix solvers workon problems of dimension given by n=1:1, m=1:1, and p=1:1.Our �rst experiment reports the exe
ution time of a single iteration of the
omputational routines on a system of order n = 880; see Figure 1. Thisis about the largest size we 
ould evaluate on a single node of our 
luster
onsidering the number of data matri
es involved, the amount of workspa
ene
essary for 
omputations, and the redu
ed size of the RAM per node. Theexe
ution of a parallel algorithm on a single node is likely to require a highertime than that of a serial implementation of the algorithm (implemented using,e.g., LAPACK and BLAS); however, at least for su
h large s
ale problems, weexpe
t this overhead to be negligible 
ompared to the overall exe
ution time.The �gure shows reasonable speed-ups when a redu
ed number of pro
essorsis employed. Thus, e.g., when np = 4, speed-ups of 2.63, 2.04, and 2.61 areobtained for routines pdge
rnz, pmb05rd, and pdge
lne, respe
tively. In all
ases, the eÆ
ien
y de
reases as np gets larger (as the system dimension is�xed, the problem size per node is redu
ed) so that using more than a fewpro
essors does not a
hieve a signi�
ant redu
tion in the exe
ution time forsu
h a small problem. In our test, when np = 10, speed-ups of only 3.88, 2.93,4.17 are obtained by routines pdge
rnz, pmb05rd and pdge
lne, respe
tively.We next evaluate the performan
e of a single iteration of the 
omputationalroutines when the problem size per node is 
onstant. For that purpose, we �x18
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Fig. 1. Exe
ution time of a single iteration of the 
omputational routines.the order of the system to n=pnp = 880, and we report the M
ops per nodein Figure 2.The �gure demonstrates the s
alability of our parallel kernels, as there is only aminor de
rease in the performan
e of the algorithms when np is in
reased whilethe problem dimension per node remains �xed. As the major 
omputations inour driver routines are performed in these routines, we 
an also 
on
lude thes
alability of the model redu
tion parallel algorithms.7.3 Parallel performan
e of the driver routinesIn this subse
tion we evaluate the performan
e of the driver routines for modelredu
tion using �ve large-s
ale examples. Three of these examples 
orrespondto 
ontinuous-time systems, while the remaining two are dis
rete-time models.In the experiments we only report results for the BT and BST methods. Theperforman
es of the SPA and HNA methods were 
losely similar to those ofthe BT method.Example 1: This 
ontinuous LTI system 
omes from a �nite element dis-
retization of a mathemati
al model for optimal 
ooling of steel pro�les. Thepro
ess is modeled by a boundary 
ontrol problem for a linearized 2-dimensionalheat equation. The system has 6 inputs and outputs. Di�erent meshes are em-ployed resulting in realizations of order n = 821, 1357, 3113, and 5177. As19
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Fig. 2. M
op rate of a single iteration of the 
omputational routines.there is no signi�
ant gap in the Hankel singular values of the system, we
ompute in this experiment redu
ed-order systems of �xed order r = 40.Example 2: (see [34℄): This model 
omes from the simulation of a 
atalyti
tubular rea
tor used in a gPROMS training 
ourse. A gas phase rea
tion(oxidation of o-xylene to phthali
 anhydride) takes pla
e inside the rea
torwhi
h is pa
ked with 
atalyst parti
les. The rea
tor is 
ooled externally. Themathemati
al model 
onsists of a boundary 
ontrol problem for a system of
oupled partial di�erential equations in
luding 
onservation laws for mass andenergy. A 
ontinuous LTI system is obtained from a semi-dis
retization of thePDE system. The order of the system is n = 1171, and the numbers of inputsand outputs are m = 6 and p = 4, respe
tively. A redu
ed-order system withr=9 states is 
omputed in this example.Example 3: (see [34℄): The model in the previous example is here dis
retizedusing zero-order hold with sampling time �t = 0:1 se
. su
h that xk = x(k�t),k = 0; 1; 2; : : :. Again, a redu
ed system of order r=9 is obtained for thisexample.Example 4: (see [15℄): The heat equation in this 
ase is an example of asemidis
retized point 
ontrol problem for a paraboli
 PDE. The given equationmodels the heat di�usion in a 1-dimensional thin rod with a single heat sour
e.The equation is parameterized by a s
alar � that we set to � = 0:01. Thespatial domain is dis
retized in segments of length h = 1N+1 and 
entereddi�eren
es are used to approximate the di�usion operator. A heat sour
e is20



assumed to be lo
ated at 1/3 of the length and the temperature is measuredat 2/3 of the length.This example, of order n = N and with a single input and a single output(m = p = 1), 
an be s
aled to obtain very large systems. We thus employthis 
ase to report results for a problem of dimensions that are 
lose to themaximum that 
an be solved in a single pro
essor, n = 800, and a mu
h largerproblem, of order n = 3000. A redu
ed system of order r = 10 was 
omputedin both 
ases.Example 5: (see [15℄): The same equation in the last example is used here.This time, however, a full dis
retization of the 
ontrol problem for the heatequation is obtained using the Crank{Ni
holson s
heme. This results in a dis-
rete LTI system. In this 
ase, the Hankel singular values de
ay slightly slowerthan in the 
ontinuous 
ase, leading to a higher dimension of the redu
ed-ordersystem if the same approximation error is to be a
hieved. We again 
omputein this 
ase redu
ed systems of order r = 10 for models with n = 800 andn = 3000 states.Table 6 reports the exe
ution time of the serial and the parallel BT andBST model redu
tion routines. The exe
ution times of the BST approa
h areup to 20 times of those of the BT method. This is easily explained by itsmu
h higher 
omputational 
ost (an ARE needs to be solved in BST). Noti
ethat our driver routines are not a dire
t parallelization of the serial SLICOTroutines, but employ numeri
al solvers for the LME and the AREs whi
h aredi�erent from those used in the serial 
odes. Therefore, 
on
luding the degreeof parallelism of the driver routines from the results in the table is misdire
ted.Our driver routines are intended to help a 
ontrol engineer to redu
e large-s
ale models and/or obtain the redu
ed-order models in a shorter period oftime. Both goals are a
hieved in PLiCMR: The order of the largest model that
ould be redu
ed using SLICOT serial routines ab09ad and ab09hd was in thehundreds. Using the parallel routines pab09ax and pab09hx in PLiCMR we
ould redu
e models of order around 5000 and 3000, respe
tively. The use ofthe parallel algorithms redu
ed the exe
ution times of the serial routines in all
ases. The redu
tion however is quite di�erent depending on the 
ase. Thus,exe
ution times are obtained for the parallel algorithms that range from 7.51%to 60% of those of the 
orresponding serial algorithms. Noti
e here that weare interested here in redu
ing the exe
ution time as mu
h as possible, notobtaining the best possible speed-up (whi
h would surely be higher had weemployed a smaller number of pro
essors in this experiment!).8 Con
lusionsOver the last years we have developed the library PLiCMR for model redu
tionof large-s
ale LTI systems on parallel ar
hite
tures. Using the kernels in thislibrary, eÆ
ient model redu
tion of systems with thousands of states is possible21



Example r ab09ad pab09ax (np) ab09hd pab09hx (np)(n;m; p)Ex. 1 (821; 6; 6) 40 227 79 (16) 1819 1060 (16)Ex. 1 (1357; 6; 6) 40 { 203 (16) { 1053 (16)Ex. 1 (3113; 6; 6) 40 { 701 (25) { 14730 (25)Ex. 1 (5177; 6; 6) 40 { 2314 (32) { {Ex. 2 (1171; 6; 4) 9 678 144 (16) { 1819 (16)Ex. 3 (1171; 6; 4) 9 218 98 (16) { 1050 (16)Ex. 4 (800; 1; 1) 10 218 65 (16) 1713 331 (16)Ex. 4 (3000; 1; 1) 10 { 679 (25) { 6310 (25)Ex. 5 (800; 1; 1) 10 400 30 (16) 1959 331 (16)Ex. 5 (3000; 1; 1) 10 { 370 (25) { 6266 (25)Table 6Exe
ution time (in se
.) of the model redu
tion routines in SLICOT and PLiCMR.(Entries with a dash denote problems that 
ould not be solved due to memoryrestri
tions.)on a 
luster of moderate dimensions. Iterative algorithms are employed for thesolution of the major numeri
al problems that arise in the model redu
tionmethods resulting in highly parallel algorithms with 
oarse granularity.A 
olle
tion of ben
hmark examples shows the numeri
al a

ura
y and theparallel performan
e of our approa
h on a 
luster of Intel Pentium II pro
es-sors.A
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