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Abstract

When managing energy or weather related risk often only imperfect hedging instruments
are available. In the first part we illustrate problems arising with imperfect hedging by
studying a toy model. We consider an airline’s problem with covering income risk due
to fluctuating kerosine prices by investing into futures written on heating oil with closely
correlated price dynamics. In the second part we outline recent results on exponential utility
based cross hedging concepts. They highlight in a generalization of the Black-Scholes delta
hedge formula to incomplete markets. Its derivation is based on a purely stochastic approach
of utility maximization. It interprets stochastic control problems in the BSDE language, and
profits from the power of the stochastic calculus of variations.
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Introduction

In recent years many financial instruments have been created which serve the purpose of trans-
ferring exogenous risk to capital markets in concepts of securitization. For instance in 1999 the
Chicago Mercantile Exchange introduced weather futures contracts, the payoffs of which are
based on average temperatures at specified locations. Another example are catastrophe futures
based on an insurance loss index regulated by an independent agency.

The risk arising in hedging derivatives of this type, and equally in using them as hedging
instruments, is impossible to perfectly replicate, since the underlying risk process carries inde-
pendent uncertainty. To come close to a replication, in practice one often looks for a tradable
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asset that is well correlated to the non-tradable underlying of the derivative, and uses it to cross
hedge the underlying risk. Since the correlation usually differs from one, a non-hedgeable basis
risk remains.

In Section 1 of this paper, we will illustrate typical problems related to hedging the basis
risk in a particular setting of cross hedging. We will consider the situation of an airline company
facing the risk of increasing kerosine prices. It might cross hedge fluctuations in the kerosine
price dynamics by holding heating oil futures the price evolution of which is closely correlated.
Our analysis of the assessment of the problem the airline company faces starts with the intuitive
approach of hedging the basis risk by minimizing the variance of the hedging error in a simple
Gaussian setting. This approach, however, presents a counter-intuitive feature: though the
correlation between the hedged asset and the hedging instrument may be very close to one,
the percentage of the hedging error in units of the standard deviation of the uncertainty to be
hedged is rather large. This calls for more efficient concepts of replicating the basis risk which
in particular take into account its downside component.

In Section 2 we will give an overview of some recent work on utility based concepts of cross
hedging. We consider models in which agents exposed to some exogenous risk generated by a
non-homogeneous diffusion process buy or sell a financial derivative to set off a portion of it to a
financial market with assets correlated to the risk index. We present explicit hedging strategies
that optimize the expected exponential utility of an agent holding a portfolio of such derivatives.
To this end we will establish some structure and smoothness properties of indifference prices
such as the Markov property and differentiability with respect to the underlyings. Once these
properties are established, we can explicitly describe the optimal hedging strategies in terms
of the price gradient and correlation coefficients. This way we obtain a generalization of the
classical delta hedge of the Black-Scholes model. The analytical tool for deriving the crucial
smoothness properties of strategies and prices is provided by a BSDE based approach (see [8]),
which can be seen as the probabilistic counterpart of the usually employed control theoretic
methods whose more analytical touch finds its expression in the Hamilton-Jacobi-Bellman PDE
(see for example [7], [6], [13], [4], [12], [3]). The BSDE approach culminates in a description of
strategies and prices in terms of the solutions of tailor made BSDE with drivers of sub-quadratic
growth, derived by applying the martingale optimality principle in a utility maximization or risk
minimization context.

1 Hedging with residual risk

1.1 Imperfect hedging instruments

A hedging instrument is often unable to perfectly replicate the risk or uncertainty of the asset
it is supposed to hedge. More precisely, the possible risky scenarios of its evolution cannot be
mapped one-to-one to possible scenarios of hedging. In the context of hedging with futures on
financial markets, the difference between the spot price of a risky asset and the price of the
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futures contract used to hedge it is called basis. More generally, we may consider the basis to be
given by the difference between the price of the asset to be hedged and the price of the hedging
instrument. That is why residual risk is frequently also referred to as basis risk.

A prominent example for financial derivatives that may entail residual risk are basket options.
Basket options are written on stock market indices, for example the Dow Jones. In practice they
are often hedged by trading some, but not all of its underlyings. Consequently they cannot be
perfectly replicated, and there remains a basis risk.

Managing weather risk also often involves basis risk. Weather securities are highly, but in
general not perfectly correlated with the risk the security holder bears. For example temperature
derivatives may be used to hedge variations in the demand of heating oil. But the demand of
heating oil may at least weakly depend on uncertainties not caused by weather and temperature
fluctuations.

Hedging with futures provides the generic situation in which basis risk arises. In simple
terms, a futures contract is an agreement to deliver (or to pay in cash the value of) a specified
amount of a commodity, for example crude oil, on a future date at a price specified already
today. To ensure their liquidity, futures are highly standardized, and as a consequence do not
perfectly correlate with the risk the futures’ holder bears. For example there may be a mismatch
between the expiration date of the future and the date on which the futures’ holder sells his
commodity. Or the commodity underlying the future may not be exactly the commodity whose
price has to be hedged.

One might be tempted to think that as the correlation between asset and hedging instrument
increases, the significance of treating the related basis risk shrinks at the same pace. The example
studied in the following subsection shows that this conjecture is surprisingly false, and that it
is very important to take basis risk into account, even if this correlation is very high.

1.2 Case Study: Hedging jet fuel price fluctuations with heating oil futures

The revenues of airline companies strongly depend on the jet fuel spot price. Futures provide
protection against price fluctuations. However, no futures on jet fuel are traded in Europe and
the US. Heating oil and jet fuel prices are highly correlated (see Figure 1), and therefore in
practice airlines buy heating oil futures to protect themselves against rising jet fuel spot prices.
To display the role of high correlation in treating basis risk in a simple setting, let us assume
that the daily price changes of jet fuel is given by a sequence of i.i.d. square integrable random
variables (∆Ji)i≥1. Similarly, assume the daily heating oil price changes (∆Hi)i≥1 are i.i.d. and
square integrable, and that ∆Hi is independent of ∆Jk whenever i 6= k. Let σ2

J = Var(∆Ji)
and σ2

H = Var(∆Hi). Figure 1 shows the daily spot price per Gallon, from January 2006 to
December 2007, of No. 2 Heating Oil and Kerosene-Type Jet Fuel delivered at New York Harbor.
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Figure 1: Daily Spot Prices

The sample standard deviation1 of the price changes during this time period is given by

σ̂J ≈ 3, 9986 and σ̂H ≈ 3, 8353.

Recall that the correlation between two random variables X and Y is defined by

corr(X,Y ) =
cov(X,Y )√

var(X)var(Y )
,

and let ρ = corr(∆Hi,∆Ji). The empirical correlation between jet fuel and heating oil price
changes, or more precisely the Pearson correlation coefficient2, is given by

ρ̂ ≈ 0, 896.

1.2.1 The minimum variance hedge ratio

The airline aims at hedging increasing fuel prices by buying heating oil futures. Suppose that
it wants to hedge the price for NJ Gallons of jet fuel at a future date T . We assume that
there exists a heating oil futures contract with matching delivery date T , and with a size of NH

Gallons. Let K be the price at time 0 of a heating oil futures contract. How many units of
futures a shall the airline buy so that the variance of its fuel costs at time T are minimal?

1The sample standard deviation of a sample x1, . . . , xn of length n ∈ N is defined as s =√
1

n−1

∑n
i=1(xi − ( 1

n

∑n
j=1 xj))2. Notice that s2 is an unbiased estimator of the variance.

2The Pearson correlation coefficient, also known as sample correlation coefficient, is defined by ρ =
n

∑
i xiyi−

∑
i xi

∑
i yi√

n
∑

i x2
i−(

∑
i xi)2

√
n

∑
i x2

i−(
∑

i xi)2
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Let JT and HT denote the spot price at time T of jet fuel and heating oil, respectively.
Notice that at time T the value of one futures contract is equal to NH ·HT . The airline’s fuel
costs amount to (NJJT − a(NHHT −K)), the variance of which is given by

E
[
(NJJT − a(NHHT −K)− E[NJJT − a(NHHT −K)])2

]
= T (N2

Jσ
2
J − 2aNJNHρσJσH + a2N2

Hσ
2
H).

The variance is minimal if the airline holds

a∗ =
NJ

NH
· ρ σJ
σH

(1)

units of the future. The first factor, NJ
NH

, adjusts the units of the futures to the quantity of jet
fuel needed. The second factor,

h = ρ
σJ
σH

,

is referred to as minimum variance hedge ratio (see Chapter 4, Hull [9]), and determines the
proportion of the jet fuel price risk that should be transferred to heating oil futures in order to
minimize the variance of revenue fluctuations.

1.2.2 The hedging error

So far we have seen how many of the highly correlated heating oil futures an airline has to hold,
in order to minimize the variance of its fuel expenses. Let us next discuss the hedging error or
basis risk at time T . We will argue that although the correlation is 90%, the airline bears a high
residual risk. To demonstrate this we assume in addition that the daily price changes of jet fuel
and heating oil are normally distributed. Using the fact that two uncorrelated Gaussian random
variables are independent, we can decompose the daily price changes of jet fuel into

∆Ji = ρ
σJ
σH

∆Hi +
√

1− ρ2Ni, i ≥ 1,

where Ni is independent of ∆Hi, and normally distributed with variance Var(Ni) = σ2
J .

By the hedging error at time T > 0, when holding a futures, we mean the difference

error(a) = NJ(JT − J0)− aNH(HT −H0).

By holding a∗ = NJ
NH
× ρ σJ

σH
futures, the hedging error at time T > 0, in Cent per Gallon, is

given by

error =
T∑
i=1

√
1− ρ2Ni.
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Notice that the standard deviation of the error is given by

√
1− ρ2

√
TσJ ≈ 0.443

√
TσJ .

The standard deviation of the jet fuel price at time T equals
√
TσJ . This means that although

the correlation between the prices of jet fuel and heating oil is almost 90%, only 56% of the
standard deviation of the jet fuel price uncertainty can be hedged!

The conclusions we can draw from this case study are the following.

1. The hedge ratio provides a simple strategy to minimize the variance of price uncertainty. It
is a static hedge, and depends only on the volatilities and the correlation of the processes.

2. Even if the correlation is very high, there remains a considerably high hedging error! If the
correlation was as high as 98%, the standard deviation of the basis would still represent
19% of the total risk! The link between the correlation and the percentage contribution
of the basis to the total risk is depicted in Figure 2.

Figure 2: Basis risk in dependence of the correlation

It clearly exhibits the following phenomenon. If the correlation is high, then a small
change in the correlation leads to a large change in the percentage of basis risk relative to
total risk. Conversely, if the correlation is low, a small change in the correlation leads to
essentially no change in the percentage of basis risk relative to total risk.
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2 A utility-based approach to hedging with basis risk

In this Section, we shall sketch a utility based purely probabilistic approach of hedging the basis
risk in a more sophisticated model for price processes of assets and hedging instruments. As
an alternative to the intuitive and straightforward concept of minimizing the variance of the
hedging cost discussed in Section 1, we shall minimize the expected loss of different hedging
scenarios if revenues are measured with an exponential utility function. This way, we take
into account the essential downside risk of the basis. Our approach provides optimal hedging
strategies if the risk and the hedging instrument have non-linear payoffs. It allows to derive an
explicit formula for the utility indifference price and the derivative hedge of a product designed
to cross hedge the basis risk, generalizing the delta hedging formula in the solution of the
Merton-Scholes problem to the setting of incomplete markets. The formula clarifies the role of
correlation in hedging, and describes the reduction rate of risk by cross hedging. The method
used to derive it translates the underlying optimization problem by martingale optimality into
the language of backward stochastic differential equations (BSDE). It profits from stochastic
calculus of variations (Malliavin’s calculus), since the extension of the delta hedge formula is
based on sensitivity of the BSDE providing the optimal hedges to system parameters such as
initial states of a risk index process. In more formal terms, we shall investigate the following
model.

2.1 The model

Let d ∈ N and let W be a d-dimensional Brownian motion on a probability space (Ω,F , P ). We
denote by (Ft)t≥0 the P -completion of the filtration generated by W . Risk sources, for instance
jet fuel price or temperature processes, will be described as diffusion processes with dynamics

dRt = b(t, Rt)dt+ σ(t, Rt)dWt, (2)

where b : [0, T ]×Rm → Rm and σ : [0, T ]×Rm → Rm×d are measurable functions. Throughout
we assume that there exists a C ∈ R+ such that for all t ∈ [0, T ] and x, x′ ∈ Rm, denoting by
| · | the norm in finite dimensional Euclidean spaces,

(R1)
|b(t, x)− b(t, x′)|+ |σ(t, x)− σ(t, x′)| ≤ C|x− x′|,

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|).

Suppose that an economic agent has expenses at time T > 0 of the form F (RT ), where F :
Rm → R is a bounded and measurable function. At time t ∈ [0, T ], the expected payoff of
F (RT ), conditioned on Rt = r, is given by F (Rt,rT ), where Rt,r is the solution of the SDE

Rt,rs = r +
∫ s

t
b(u,Rt,ru )du+

∫ s

t
σ(u,Rt,ru )dWu, s ∈ [t, T ]. (3)

We assume that there exists a financial market on which k risky assets - such as heating oil
futures or weather derivatives - are traded that may be correlated to the risk source. We further
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assume that there exists a non-risky asset, use it as numeraire and suppose that the prices of
the risky assets in units of the numeraire evolve according to the SDE

dSit = Sit(αi(t, Rt)dt+ βi(t, Rt)dWt), i = 1, . . . , k,

where αi(t, r) is the ith component of a measurable and vector-valued map α : [0, T ]×Rm → Rk

and βi(t, r) is the ith row of a measurable and matrix-valued map β : [0, T ] × Rm → Rk×d.
Notice that W is the same Rd-dimensional Brownian motion as the one driving the risk source
(2), and hence the correlation between the risk and the tradable assets is determined by the
matrices σ and β.

In order to exclude arbitrage opportunities in the financial market we assume d ≥ k. For
technical reasons we suppose that

(M1) α is bounded,

(M2) there exist constants 0 < ε < K such that εIk ≤ (β(t, r)β∗(t, r)) ≤ KIk for all (t, r) ∈
[0, T ]× Rm,

where β∗ denotes the transpose of β, and Ik is the k-dimensional unit matrix. If M and N

are two square matrices of identical dimension, then we write N < M if the difference M −N
is positive definite. (M2) implies that the symmetric matrix ββ∗ is invertible. Moreover, the
Moore-Penrose pseudoinverse of the matrix β is given by

β+ = β∗(ββ∗)−1 ∈ Rd×k.

Notice that β+ is the right inverse of β, i. e.

ββ+ = Ik.

The market price of risk will be denoted by

ϑ = β+α = β∗(ββ∗)−1α.

The properties (M1) and (M2) imply that ϑ is uniformly bounded everywhere.
Suppose that our economic agent aims at reducing his risk exposure F (RT ) by investing

in the financial market. In order to determine an optimal hedge, we assume that the agent’s
preferences are described by the exponential utility function

U(x) = −e−ηx, x ∈ R,

where η > 0 describes the risk aversion. By an investment strategy, or simply strategy, we mean
any predictable process λ = (λi)1≤i≤k with values in Rk (row vectors) such that the integral
process

∫ t
0 λ

i
r
dSi

r

Si
r

is defined for all i ∈ {1, . . . , k}. We interpret λi as the value of the portfolio
fraction invested into asset number i.
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In what follows it will be convenient to embed the strategies into Rd, the space of uncertain-
ties. To this end let C(t, r) = {xβ(t, r) : x ∈ Rk}, (t, r) ∈ [0, T ] × Rm. We denote by pt = λtβt
the image of any investment process λ with respect to β. For any image strategy p = λβ we
interpret

∫ t

0
ps(ϑsds+ dWs) =

k∑
i=1

∫ t

0
λisα

i
sds+

k∑
i=1

d∑
j=1

∫ t

0
λisβ

ij
s dW

j
s

as the increase of wealth up to time t. Moreover, the wealth at time t, conditioned on x at time
s and Rs = r, s ≤ t ≤ T , is given by

Xs,r,x,p
t = x+

∫ t

s
pu(ϑ(u,Rs,ru )du+ dWu).

For (t, r) ∈ [0, T ] × Rm let At,r be the set of all predictable processes p with values in Rd

such that E
∫ T
t |ps|

2ds <∞. The square integrability guarantees that there is no arbitrage (see
Remark 2 in [8]). If p ∈ At,r, then we say that p is admissible on [t, T ].

The value function is defined as

V F (x) = sup{EU(X0,r,x,p
T − F (R0,r)) : p ∈ A0,r, ps ∈ C(s,R0,r

s ) for all s ∈ [0, T ]}. (4)

Frequently we will need the conditional version of the value function given by

V F (t, r, x) = sup{EU(x+
∫ T

t
ps(ϑsds+dWs)−F (Rt,rT )) : p ∈ At,r, ps ∈ C(s,Rt,rs ) for all s ∈ [t, T ]}.

(5)
We recall briefly the Dynamic Programming or Bellman’s Principle (for more details see f.ex.
[11] and [5]). If one follows an optimal strategy up to a stopping time τ , the strategy will remain
optimal, even by taking into account incoming new information. Mathematically, this may be
expressed as follows. For all (s, r) ∈ [0, T ] × Rm, x ∈ Rk, and stopping times τ with values in
[s, T ], we have

V F (s, r, x) = sup
p
E

[
V F

(
τ,Rs,rτ , x+

∫ τ

s
pu(ϑudu+ dWu)

)]
. (6)

If V F is a continuous function satisfying Bellman’s principle (6), and if there exists an op-
timal strategy popt such that V F (0, r, x) = E

[
V F

(
τ,R0,r

τ , x+
∫ τ
0 p

opt
u (ϑudu+ dWu)

)]
, then

V F (t, R0,r
t , X0,r,x,popt

t ) is a martingale. Moreover, if V F ∈ C1,2,2, then Ito’s formula implies that
V F satisfies the associated HJB partial differential equation.

The standard approach of finding V F and the optimal control popt is based on verification:
Solve the HJB equation, and then show that the solution coincides with the value function V F

(Verification Theorem).
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We don’t work with the verification method here, but follow a purely probabilistic ap-
proach based on the martingale optimality of the process V F (t, R0,r

t , X0,r,x,popt

t ), t ∈ [0, T ]. No-
tice that V F (·, R0,r, X0,r,x,p) is a supermartingale for any choice of p, and a martingale iff
p is optimal. Moreover, the process satisfies the boundary condition V F (T,R0,r

T , X0,r,x,p
T ) =

U(X0,r,x,p
T − F (R0,r

T )).
This motivates us to make the risky income F (R0,r

T ) dynamic, by finding a process (Yt)t∈[0,T ]

that solves a BSDE with terminal condition YT = F (R0,r
T ), such that

• (U(X0,r,x,p
t − Yt))0≤t≤T is a supermartingale for all p ∈ A,

• (U(X0,r,x,popt

t − Yt))0≤t≤T is a martingale for at least one popt ∈ A.

2.2 Solving the control problem with BSDEs

The orthogonal projection of a vector z ∈ Rd onto the subspace C = {xβ : x ∈ Rk} is given by

ΠC(z) = z β∗(ββ∗)−1β.

Notice that this can be deduced from the fact that Π2
C = ΠC . In terms of the pseudoinverse,

the projection operator may be written as ΠC(z) = z β+β.
Moreover, given an image strategy p with values in Rd, the associated original strategy λ

with values in Rk is given by

λt = ptβ
+(t, ·), t ∈ [0, T ]. (7)

Indeed, we have pβ+ = λββ+ = λ.
The distance of a vector z ∈ Rd to the linear subspacet C will be defined as dist(z, C) =

min{|z − u| : u ∈ C}.
Let f : [0, T ]× Rm × Rd → R be the generator defined by

f(s, r, z) =
1
2
ηdist2(z +

1
η
ϑ∗(s, r), C(s, r))− zϑ(s, r)− 1

2η
|ϑ(s, r)|2. (8)

Notice that f is a generator with sub-quadratic growth in z, for which there exists a well
established theory (see Kobylanski [10]). Let us recall some notation needed to formulate its
results. For p ≥ 1 and n ∈ N we denote by Hp(Rn) the set of all Rn-valued predictable processes

ζ such that E
(∫ 1

0 |ζt|
2dt
) p

2
< ∞, and by Sp the set of all R-valued predictable processes δ

satisfying E
(

sups∈[0,1] |δs|p
)
<∞. By S∞ we denote the set of all essentially bounded R-valued

predictable processes.
Recall that we assumed the payoff function F and the market price of risk ϑ to be bounded.

According to one of the central results of the theory of BSDE with generators of sub-quadratic
growth, there exists a unique solution (Y, Z) ∈ S∞(R)×H2(Rd) of the BSDE

Yt = F (R0,r
T )−

∫ T

t
ZsdWs +

∫ T

t
f(s,R0,r

s , Zs)ds. (9)
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Lemma 2.1. For every locally square integrable and (Ft)-predictable p, U(X0,r,x,p−Y ) is a local
supermartingale. Moreover, if for (t, r) ∈ [0, T ]×Rm we take pt = Π

C(t,R0,r
t )

(Zt + 1
ηϑ
∗(t, R0,r

t )),
then U(X0,r,x,p − Y ) is a local martingale.

Proof. For all (s, r) ∈ [0, T ]× Rm, p ∈ Rk and z ∈ Rd let

h(s, r, z, p) = −pϑs +
1
2
η|p− z|2,

and notice that

min
p∈C(s,r)

h(s, r, z, p) = f(s, r, z), (10)

where the maximum is attained at p = ΠC(s,r)(z + 1
ηϑ
∗(s, r)).

Now let p be a locally square integrable and (Ft)-predictable process. To simplify notation
we use the abbreviation Xp = X0,r,x,p. An application of Ito’s formula to U(Xp − Y ) yields for
t ∈ [0, T ]

U(Xp
t − Yt) = U(x− Y0) +

∫ t

0
U ′(Xp

s − Ys)(ps − Zs)dWs

+
∫ t

0
U ′(Xp

s − Ys−)(psϑs + f(s, Zs))ds

+
1
2

∫ t

0
U ′′(Xp

s − Ys)(|ps|2 − 2psZ∗s + |Zs|2)ds.

Moreover, we may write

U(Xp
t − Yt) = U(x− Y0) + local martingale (11)

+
∫ t

0
U ′(Xp

s − Ys)(f(s,R0,r
s , Zs)− h(s, ps, Zs))ds (12)

Equation (10) implies that the bounded variation process in (12) is decreasing and hence that
U(Xp − Y ) is a local supermartingale. By choosing pt = Π

C(t,R0,r
t )

(Zt + 1
ηϑ
∗(t, R0,r

t )), (t, r) ∈
[0, T ] × Rm the integrand in (12) vanishes, and therefore in this case U(Xp − Y ) is a local
martingale. �

With the help of Lemma 2.1 we can express the maximal expected utility V F (x) and the
optimal investment strategy in terms of the solution of (9).

Theorem 2.2. The value function satisfies

V F (x) = U(x− Y0),

and there exists an optimal image strategy p, given by

pt = Π
C(t,R0,r

t )
(Zt +

1
η
ϑ∗(t, R0,r

t )), t ∈ [0, T ].
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¿From (7) we immediately obtain the following expression for the optimal investment strat-
egy.

Corollary 2.3. The optimal strategy π is given by

πt = Ztβ
+ (t, R0,r

t ) +
1
η
α∗(ββ∗)−1 (t, R0,r

t ), t ∈ [0, T ].

We remark that Theorem 2.2 can be generalized to the situation where the constraint sets
C are arbitrary closed sets (see [8]).

Proof of Theorem 2.2. For t ∈ [0, T ] let pt = Π
C(t,R0,r

t )
(Zt + 1

ηϑ
∗(t, R0,r

t )). According to the
preceding lemma there exists a sequence of stopping time τn converging to T , a.s. such that for
all n ≥ 1, the stopped process U(Gπ̂·∧τn − Y·∧τn) is a martingale. Now observe that

U(Xp − Y ) = eη(Y0−x)E
(
−η
∫ ·

0

(
ps − (Zs +

ϑs
η

) +
ϑs
η

)
dWs

)
.

The definition of p implies that |p| ≤ |Z|+ 1
η‖ϑ‖∞, and hence for every stopping time τ we have∫ T

τ |p|
2
sds ≤

∫ T
τ |Zs|

2
sds+ T 1

η2 ‖ϑ‖2∞. This means that (p ·W ) is a BMO martingale (for further
details see [8]). This further yields that {U(Xp

ρ − Yρ) : ρ stopping time with values in [0, T ]} is
uniformly integrable, and hence p ∈ A. Moreover, limnEU(Xp

·∧τn −Y·∧τn) = EU(Xp−Y ), from
which we deduce EU(Xp

T − YT ) = EU(x− Y0).
Note that for all p̃ ∈ A we have

EU(Gp̃T − YT ) ≤ EU(Gp̃0 − Y0) = EU(x− Y0),

which shows that p is indeed the optimal image strategy. Finally, it follows that V F (0, r, x) =
EU(x− Y0). �

2.3 Indifference price and optimal hedge

The optimal strategy π can be decomposed into the sum of a pure investment strategy and a
pure hedging component. In order to describe the pure hedging component, we shall consider
the utility maximization problem with and without the additional obligation F (R0,r

T ), compute
the optimal strategies in both cases, and then take their difference. So let (Ŷ t,r, Ẑt,r) ∈ S∞(R)⊗
H2(Rd) be the solution of the BSDE with generator f , defined as in (8), but terminal condition
equal to 0,

Ŷ t,r
s = −

∫ T

s
Ẑt,ru dWu +

∫ T

s
f(u,Rt,ru , Ẑ

t,r
u )du, s ∈ [t, T ]. (13)

¿From Theorem 2.2 we obtain that

V 0(t, x, r) = −e−η(x−Ŷ
t,r
t ), (t, r) ∈ [0, T ]× Rm, x ∈ Rk,

12



and the optimal strategy π̂ on [t, T ] satisfies

π̂sβ(s,Rt,rs ) = ΠC(s,Rt,r
s )[Ẑ

t,r
s +

1
η
ϑ(s,Rt,rs )], s ∈ [t, T ]. (14)

The presence of the derivative F (RT ) leads to a change in the optimal strategy from π̂ to π.
More precisely, let (Y t,r, Zt,r) be unique solution of the BSDE

Y t,r
s = F (Rt,rT )−

∫ T

s
Zt,ru dWu +

∫ T

s
f(u,Rt,ru , Z

t,r
u )du, s ∈ [t, T ]. (15)

Theorem 2.2 implies
V F (t, x, r) = −e−η(x−Y

t,r
t ),

and the optimal strategy π on [t, T ] satisfies

πsβ(s,Rt,rs ) = ΠC(s,Rt,r
s )[Z

t,r
s +

1
η
ϑ(s,Rt,rs )], s ∈ [t, T ]. (16)

The Markov property of our risk process R guarantees that the optimal strategies depend only
on time and the actual value of R.

Lemma 2.4. There exist measurable deterministic functions ν and ν̂, defined on [0, T ] × Rm

and taking values in Rd, such that for (t, r) ∈ [0, T ]×Rm, the optimal strategies, conditioned on
Rt = r, are given by πt,rs = ν(s,Rt,rs ) and π̂t,rs = ν̂(s,Rt,rs ) for all s ∈ [t, T ].

Proof. See Theorem 5.13 in [2]. �

Next we define for all (t, r) ∈ [0, T ]× Rm

∆(t, r) = ν(t, r)− ν̂(t, r).

Then the optimal investment π satisfies

π(t, r) = π̂(t, r) + ∆(t, r).

π̂ represents a pure investment part, and ∆ is the part of the strategy that compensates the
random obligation F (Rt,rT ). We therefore call ∆ optimal hedge.

Since ΠC(s,Rt,r
s ) is a linear operator, the optimal hedge satisfies

∆(s,Rt,rs ) = ΠC(s,Rt,r
s )[Z

t,r
s − Ẑt,rs ] =

(
Zt,rs − Ẑt,rs

)
(β∗(ββ∗)−1)(s,Rt,rs ),

which will be further simplified in the subsequent section.
It turns out that the optimal hedge ∆ is closely related to the indifference price of the

obligation F (RT ). As usual, we mean by indifference price the amout of money p ∈ R such that
the economic agent is indifferent between having F (RT ) in his portfolio or receiving the riskless
payment p.

13



The difference between π̂ and π measures the diversifying impact of F (RT ), also called
diversification pressure. We will see that we can express the diversification pressure in terms of
a price sensitivity multiplied with the hedge ratio we encountered already in Section 1. To this
end define for all (t, r) ∈ [0, T ]× Rm,

p(t, r) = Y t,r
t − Ŷ

t,r
t .

It turns out that p(t, r) is the indifference price of F (Rt,rT ).

Theorem 2.5. For (t, r) ∈ [0, T ] × Rm the quantity p(t, r) represents the indifference price of
F (Rt,rT ), i.e.

V F (t, x, r) = V 0(t, x− p(t, r), r). (17)

Proof. Let x ∈ Rk, (t, r) ∈ [0, T ] × Rm be given. Recall that V F (x, t, r) = −e−η(x−Y
t,r
t )

and V 0(x, t, r) = −e−η(x−Ŷ
t,r
t ). Setting V F (t, x, r) = V 0(t, x− p(t, r), r), immediately gives the

result. �

2.4 Delta hedging

If we impose stronger smoothness conditions on the coefficients of the index process R and the
function F , then we can show that the price function p is differentiable in r, and we can obtain
an explicit representation of the optimal hedge in terms of the price gradient. To this end we
need to introduce the following class of functions.

Definition 2.6. Let n, p ≥ 1. We denote by Bn×p the set of all functions h : [0, T ] × Rm →
Rn×p, (t, x) 7→ h(t, x), differentiable in x, for which there exists a constant C > 0 such that
sup(t,x)∈[0,T ]×Rm

∑m
i=1

∣∣∣∂h(t,x)∂xi

∣∣∣ ≤ C, for all t ∈ [0, T ] we have supx∈Rm
|h(t,x)|
1+|x| ≤ C, and x 7→

∂h(t,x)
∂x is Lipschitz continuous with Lipschitz constant C.

We will assume that the coefficients of the index diffusion satisfy in addition to (R1) the
following two conditions

(R2) σ ∈ Bm×d, b ∈ Bm×1,

(R3) F is a bounded and twice differentiable function such that

∇F · σ ∈ B1×d and
m∑
i=1

bi(t, r)
∂

∂ri
F (r) +

1
2

m∑
i,j=1

[σσ∗]ij(t, r)
∂2

∂ri∂rj
F (r) ∈ B1×1.

Theorem 2.7. Suppose that (R1), (R2) and (R3) are satisfied. Besides, suppose that the
volatility matrix β and the drift density α are bounded, Lipschitz continuous in r, differentiable
in r and that for all 1 ≤ i ≤ k, 1 ≤ j ≤ d the derivatives ∇rβij and ∇rαi are also Lipschitz
continuous in r. Then the optimal hedge satisfies, for all (t, r) ∈ [0, T ]× Rm,

∆(t, r) = ∇rp σβ+ (t, r). (18)

14



Proof. Under conditions (R1)-(R3) we can show that the solution processes (Y,Z) resp.
(Ŷ , Ẑ) are differentiable with respect to the initial states of the index process, and that Z resp.
Ẑ is the Malliavin trace of Y resp. Ŷ . This smoothness transfers to p via its representations
by means of the BSDE solutions. The identification of the control processes Z resp. Ẑ by the
Malliavin traces of Y resp. Ŷ then directly relates ∆ with ∇p. For details see [2] and [1]. �

The matrix σβ+(t, r) can be interpreted as hedge ratio. To illustrate this, let k = m = 1,
d = 2, σ =

(
a 0

)
, β =

(
γ1 γ2

)
. Then the risk process is driven by the martingale M =∫ ·

0 a(s, r)dW 1
s , and the financial asset by N =

∫ ·
0(γ1(t, r)dW 1

t +γ2(t, r)dW 2
t ). The instantaneous

correlation between the driving martingales M and N at time t, conditioned on the risk process
to be r, is given by

ρ(t, r) =
dE(MtNt −M0N0)√

dE(〈M,M〉t)
√
dE(〈N,N〉t)

=
γ1√
γ2

1 + γ2
2

(t, r)

The volatility of the risk source is volaR = a, and the one of the financial asset is volaS =√
γ2

1 + γ2
2 . Now observe that

σβ∗(ββ∗)−1(t, r) = ρ
volaR
volaS

(t, r),

which, in accordance with Section 1, we call again hedge ratio. In dimension 1 we may thus
reformulate Theorem 2.7 as follows.

Theorem 2.8. Let k = m = 1, d = 2. Then the optimal hedge is equal to the hedge ratio h

multiplied with the sensitivity of the indifference price with respect to the risk source, i.e.

∆ =
∂p

∂r
· h.
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