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Abstract

We consider backward stochastic differential equations with drivers of quadratic growth
(qgBSDE). We prove several statements concerning path regularity and stochastic smooth-
ness of the solution processes of the qgBSDE, in particular we prove an extension of Zhang’s
path regularity theorem to the quadratic growth setting. We give explicit convergence rates
for the difference between the solution of a qgBSDE and its truncation, filling an important
gap in numerics for qgBSDE. We give an alternative proof of second order Malliavin dif-
ferentiability for BSDE with drivers that are Lipschitz continuous (and differentiable), and
then derive the same result for qgBSDE.
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1 Introduction

Backward Stochastic differential equations (BSDE) have been receiving much attention in the
last 15 years, due to their central significance in optimization problems for instance in stochastic
finance, and more generally in stochastic control theory. A particularly important class, BSDE
with drivers of quadratic growth, for example arise in the context of utility optimization problems
with exponential utility functions, or alternatively in questions related to risk minimization for
the entropic risk measure. BSDE provide the genuinely stochastic approach of control problems
which find their analytical expression in the Hamilton-Jacobi-Bellman formalism. BSDE with
drivers of this type keep being a source of intensive research.

As for Monte-Carlo methods to simulate random processes, numerical schemes for BSDE
provide a robust method for simulating and approximating solutions of control problems. Much
has been done in recent years to create schemes for BSDE with Lipschitz continuous drivers (see
[BT04] or [Eli06] and references therein). So far BSDE with drivers of quadratic growth resisted
attempts to allow such schemes, which was the main motivation for this paper.

If the driver is Lipschitz continuous, following [BT04], the strategy to prove convergence of
a numerical discretization combines two ingredients: regularity of the trajectories of the control
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process, and a convenient a priori estimate for the solution. The regularity result we refer to is
obtained in [Zha01]. It allows to establish the convergence order for the approximation of the
control process.

Our approach for the case of drivers with quadratic growth contains an essential modification
of [BT04].

In a first step, we extend the path regularity result for the control process to the setting of
qgBSDE. The methods we apply to achieve this goal rely crucially on the power of the stochastic
calculus of variations. If (Y, Z) is the solution pair of a BSDE, it is well known that the trace
of the first Malliavin derivative allows a description of Z by the formula Dt Yt = Zt, which in
turn allows estimates of Z in the sup norm, provided an extra continuity result is established.
To describe path regularity of Z efficiently, one also needs estimates of the Malliavin derivative
of Z in the sup norm, whence second order Malliavin derivatives of Y are needed and add to
the complexity of the treatment. Nonetheless we derive path regularity without assuming that
Z is bounded.

In the second step of our approach, we truncate the quadratic growth part of the driver
to fall back into the setting of Lipschitz continuous drivers. We are able to explicitly capture
the convergence rate for the solutions of the truncated BSDE as a function of the truncation
height. Combining the error estimate for the truncation with the ones for the discretizations in
any existent numerical scheme for BSDE with Lipschitz continuous drivers, we find a numerical
approximation for quadratic growth BSDE.

This result is new to the best of our knowledge. The truncation procedure, however, does not
look like the most efficient solution one hopes for. The main drawback of the approach resides
in the running times of the numerical algorithm. Roughly, if K is the truncation dependent
Lipschitz constant, the time step h of the partition for the usual numerical discretization has to
satisfy eKh < 1 modulo some multiplicative constant which results from the use of Gronwall’s
inequality. So if the truncation height increases, h will have to become small very quickly, which
computationally is a rather inconvenient fact.

The paper is organized as follows. In the introductory Section 2 we recall some of the well
known results concerning SDE and BSDE. In section 3 we establish some estimates concerning a
special class of BSDE, and in Section 4 we establish the second order Malliavin differentiability
of solutions of Lipschitz BSDE and qgBSDE. These results are used in Section 5 to state and
prove several regularity results for the trajectories of the solution processes. In Section 6 we
discuss convergence rates of solutions of truncated BSDE to those related to BSDE with drivers
of quadratic growth.

2 Preliminaries

2.1 Spaces and Notation

We work on a canonical Wiener space (Ω,F ,P) carrying a d-dimensional Wiener process W =
(W 1, · · · ,W d) restricted to the time interval [0, T ], and we denote by F = (Ft)t∈[0,T ] its natural
filtration enlarged in the usual way by the P-zero sets. We shall need the following operators,
and auxiliary spaces of functions and stochastic processes: let p ≥ 2,m, n, d ∈ N, Q a probability
measure on (Ω,F). We use the symbol EQ for the expectation with respect to Q, and omit the
superscript for the canonical measure P. For vectors x = (x1, · · · , xm) in Euclidean space Rm

we write |x| = (
∑m

i=1(x
i)2)

1
2 . We denote further

• Ck
b (Rm) the set of k-times differentiable real valued maps defined on Rm with bounded

partial derivatives up to order k, and C∞
b (Rm) = ∩k≥1C

k
b (Rm); We omit the subscript b
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to denote the same set but without the boundedness assumptions.

• Bm×d
n the set of all functions h : [0, T ]×Rn → Rm×d for which there is a constant C such

that for all t ∈ [0, T ] we have |h(t, x)| ≤ C(1 + |x|) and x 7→ h(t, x) is differentiable with
bounded Lipschitz derivative;

• Lp(Rm;Q) the space of FT -measurable random variables X : Ω 7→ Rm, normed by ‖X‖Lp=
EQ[ |X|p] 1

p ; L∞ the space of bounded random variables;

• Sp(Rm) the space of all measurable processes (Yt)t∈[0,T ] with values in Rm normed by

‖Y ‖Sp = E[
(
supt∈[0,T ] |Yt|

)p
]
1
p ; S∞(Rm) the space of bounded measurable processes;

• Hp(Rm,Q) the space of all progressively measurable processes (Zt)t∈[0,T ] with values in

Rm normed by ‖Z‖Hp = EQ[
(∫ T

0 |Zs|2ds
)p/2

]
1
p ;

• BMO(Q) or BMO2(Q) the space of square integrable martingales Φ with Φ0 = 0 and we
set

‖Φ‖2
BMO(Q)= sup

τ

∥∥∥EQ
[〈Φ〉T − 〈Φ〉τ |Fτ

]∥∥∥
∞

< ∞,

where the supremum is taken over all stopping times τ ∈ [0, T ].

• Dk,p(Rd) and Lk,d(Rd) are the spaces of Malliavin differentiable random variables and
processes, see subsection 2.2.

If there is no ambiguity about the underlying spaces or measures, we also omit them as arguments
in the function spaces defined above.

To denote stochastic integral processes of the Wiener process on [0, T ], according to Paul-
André Meyer, we write

Z ∗W =
∫ ·

0
ZsdWs, with Z ∈ H2.

Constants appearing in inequalities of our proofs will for simplicity be denoted by C, although
they may change from line to line.

2.2 Malliavin Calculus

We shall use techniques of the stochastic calculus of variations. To this end, we use the following
notation. For more details, we refer the reader to [Nua95]. Let S be the space of random variables
of the form

ξ = F
(
(
∫ T

0
h1,i

s dW 1
s )1≤i≤n, · · · , (

∫ T

0
hd,i

s dW d
s )1≤i≤n)

)
,

where F ∈ C∞
b (Rn×d), h1, · · · , hn ∈ L2([0, T ];Rd), n ∈ N. To simplify notation, assume that all

hj are written as row vectors. For ξ ∈ S, we define D = (D1, · · · , Dd) : S → L2(Ω× [0, T ])d by

Di
θξ =

n∑

j=1

∂F

∂xi,j

(∫ T

0
h1

t dWt, . . . ,

∫ T

0
hn

t dWt

)
hi,j

θ , 0 ≤ θ ≤ T, 1 ≤ i ≤ d,

and for k ∈ N its k-fold iteration by

D(k) = (Di1 · · ·Dik)1≤i1,··· ,ik≤d.
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For k ∈ N, p ≥ 1 let Dk,p be the closure of S with respect to the norm

‖ξ‖p
k,p= E

[
‖ξ‖p

Lp +
k∑

i=1

‖|D(k)]ξ|‖p
(Hp)i

]
.

D(k) is a closed linear operator on the space Dk,p. Observe that if ξ ∈ D1,2 is Ft-measurable
then Dθξ = 0 for θ ∈ (t, T ]. Further denote Dk,∞ = ∩p>1Dk,p.

We also need Malliavin’s calculus for smooth stochastic processes with values in Rm. For
k ∈ N, p ≥ 1, denote by Lk,p(Rm) the set of Rm-valued progressively measurable processes
u = (u1, · · · , um) on [0, T ]× Ω such that

i) For Lebesgue a.a. t ∈ [0, T ], u(t, ·) ∈ (Dk,p)m;

ii) [0, T ] × Ω 3 (t, ω) 7→ D(k)u(t, ω) ∈ (L2([0, T ]1+k))d×n admits a progressively measurable
version;

iii) ‖u‖k,p=
[
‖|u|‖p

Hp +
∑k

i=1 ‖Diu ‖p
(Hp)1+i

] 1
p

< ∞
For instance, for a process X ∈ L2,2(R) we have

‖X‖2
1,2 = E

[ ∫ T

0
|Xt|2dt +

∫ T

0

∫ T

0
|DθXt|2dθdt

]
,

‖X‖2
2,2 = ‖X‖2

1,2 +E
[ ∫ T

0

∫ T

0

∫ T

0
|Dθ1Dθ2Xt|2dθ1dθ2dt

]
.

Note that Jensen’s inequality gives for all p ≥ 2

E
[( ∫ T

0

∫ T

0
|DuXt|2dudt

) p
2
]
≤ T p/2−1

∫ T

0
‖DuX‖p

Hpdu.

This inequality is very useful since techniques used to deal with BSDE don’t allow a direct
estimate of the left hand side, but easily give access to the right hand side.

For the sake of completeness we state a result from [Nua95] that we will use in this work.
(One needs an L2([0, T ])-valued version of this Lemma for Theorem 4.1.)

Lemma 2.1 (Lemma 1.2.3 in [Nua95]). Let {Fn, n ≥ 1} be a sequence of random variables
in D1,2 that converges to F in L2(Ω) and such that

sup
n∈N

E[ ‖DFn‖H2 ] < ∞.

Then F belongs to D1,2, and the sequence of derivatives {DFn, n ∈ N} converges to DF in the
weak topology of L2(Ω× [0, T ]).

2.3 Some results on BMO martingales

BMO martingales play a key role for a priori estimates needed in our sensitivity analysis of
solutions of BSDE. For details about their theory we refer the reader to [Kaz94].

If Φ is a square integrable martingale, the martingale representation theorem yields a square
integrable process φ such that Φt =

∫ t
0 φsdWs, t ∈ [0, T ]. Hence the BMO(Q) norm can be

alternatively expressed as

sup
τ∈[0,T ]

EQ
[ ∫ T

τ
φ2

sds|Fτ

]
< ∞.

As an easy consequence, if Φ ∈ BMO then
∫

HdΦ ∈ BMO for any bounded adapted process
H.
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Lemma 2.2 (Properties of BMO martingales). Let Φ be a BMO martingale. Then we
have:

1) The stochastic exponential E(Φ) is uniformly integrable.

2) There exists a number r > 1 such that E(ΦT ) ∈ Lr. This property follows from the Reverse
Hölder inequality. The maximal r with this property can be expressed in terms of the BMO
norm of Φ.

3) For probability measures P and Q satisfying Q = E(ΦT ) · P, and for Φ ∈ BMO(P), the
process Φ̂ = Φ− 〈Φ〉 is a BMO(Q) martingale.

4) Energy inequalities imply the inclusion BMO ⊂ Hp for all p ≥ 1. More precisely, for
Φ =

∫ ·
0 φsds ∈ BMO with BMO norm C, and p ≥ 1 the following estimate holds

E[
(∫ T

0
|φs|2ds

)p
] ≤ 2p!(4C2)p. (1)

2.4 The setting and its assumptions

For functions b, σ, g and f , for x ∈ Rm and a d-dimensional Brownian motion W we intend to
study the solution processes of the following system of forward-backward stochastic differential
equations (with generators of quadratic growth (qgFBSDE)). For t ∈ [0, T ] they are given by

Xt = x +
∫ t

0
b(s,Xs)ds +

∫ t

0
σ(s,Xs)dWs, (2)

Yt = ξ −
∫ T

t
ZsdWs +

∫ T

t
f(s,Θs)ds, (3)

with ξ = g(XT ) and Θs = (Xs, Ys, Zs).
For the functions figuring in the above system of equations we hierarchically order the prop-

erties they will be assumed to satisfy.

HX0 There is a constant K such that b, σi : [0, T ]×Rm → Rm, 1 ≤ i ≤ d, are uniformly Lipschitz
continuous with Lipschitz constant K, and b(·, 0) and σi(·, 0), 1 ≤ i ≤ d, are bounded by
K.

HX1 Hypothesis HX0 holds. For any 0 ≤ t ≤ T the functions b(t, ·), σi(t, ·), 1 ≤ i ≤ d, are
differentiable and uniformly Lipschitz with Lipschitz constant K independent of t. In
other words, σ ∈ Bm×d

m and b ∈ Bm×1
m . There exists a positive constant c such that

yT σ(t, x)σT (t, x)y ≥ c|y|2, x, y ∈ Rm, t ∈ [0, T ].

HX2 Hypothesis HX1 holds. There exists a positive constant K such that b(t, ·) ∈ C2
b (Rm) and

σ(t, ·) ∈ C2
b (Rm×d) with second derivatives bounded by K.

HY0 There is a constant M ∈ R+ such that g : Rm → R is bounded by M , hence |ξ| ≤ M .
f : [0, T ]×Rm ×R×Rd → R is an adapted measurable function, continuous in (y, z), for
which there exists M ∈ R+ such that |f(·, ·, y, z)| ≤ M(1 + |y|+ |z|2), for (y, z) ∈ R×Rd.

5



HY1 Hypothesis HY0 holds. f is differentiable in (x, y, z) and there exists M ∈ R+ such that

|∇xf(t, x, y, z)| ≤ M(1 + |y|+ |z|2),
|∇yf(t, x, y, z)| ≤ M,

|∇zf(t, x, y, z)| ≤ M(1 + |z|).

g : Rm → R is a Lipschitz differentiable function satisfying |∇g| ≤ M .

HY2 Hypothesis HY1 holds, g ∈ C2
b (Rm). The driver f is twice differentiable with continuous

second order derivatives. There exists an adapted process (Kt)0≤t≤T belonging to S2p(R)
for all p ≥ 1 such that for any t ∈ [0, T ] all second order derivatives of f at (t, Θt) =
(t,Xt, Yt, Zt) are a.s. dominated by Kt.

2.5 Some results on SDE

We recall the results on SDE known from the literature that are relevant for this work. We state
our assumptions in the multidimensional setting. However, for ease of notation we present some
formulas in the one dimensional case.1

Theorem 2.3 (Moment estimates for SDE). Assume that HX0 holds. Then (2) has a
unique solution and the following moment estimates hold: for any p ≥ 2 there exists a constant
C > 0, depending only on T , K and p such that for any x ∈ Rm, s, t ∈ [0, T ]

E[ sup
0≤t≤T

|Xt|p ] ≤ CE
[
|x|p +

∫ T

0

(|b(t, 0)|p + |σ(t, 0)|p)dt
]
, (4)

E[ sup
s≤u≤t

|Xu −Xs|p ] ≤ CE
[
|x|p + sup

0≤t≤T

{|b(t, 0)|p + |σ(t, 0)|p}
]
|t− s|p/2. (5)

Furthermore, given two different initial conditions x, x′ ∈ Rm and denoting the respective solu-
tions of (2) by Xx and Xx′, we have

E
[

sup
0≤t≤T

|Xx
t −Xx′

t |p
]
≤ C|x− x′|p. (6)

Theorem 2.4 (Classical differentiability). Assume HX1 holds. Then the solution process
X of (2) as a function of the initial condition x ∈ Rm is differentiable and satisfies for t ∈ [0, T ]

∇Xt = Im +
∫ t

0
∇b(Xs)∇Xsds +

∫ t

0
∇σ(Xs)∇XsdWs, (7)

where Im denotes the m × m unit matrix. Moreover, ∇Xt as an m × m-matrix is invertible
for any t ∈ [0, T ]. Its inverse (∇Xt)−1 satisfies an SDE and for any p ≥ 2 there are positive
constants Cp and cp such that

‖∇X‖Sp + ‖(∇X)−1‖Sp ≤ Cp (8)

and

E
[

sup
s≤u≤t

|(∇Xu)− (∇Xs)|p + sup
s≤u≤t

|(∇Xu)−1 − (∇Xs)−1|p
]
≤ cp |t− s|p/2. (9)

1For a beautiful presentation of this subsection’s Theorems we point the reader to [Eli06].
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Theorem 2.5 (Malliavin Differentiability). Under HX1, X ∈ L1,2 and its Malliavin deriva-
tive admits a version (u, t) 7→ DuXt satisfying for 0 ≤ u ≤ t ≤ T the SDE

DuXt = σ(Xu) +
∫ t

u
∇b(Xs)DuXsds +

∫ t

u
∇σ(Xs)DuXsdWs.

Moreover, for any p ≥ 2 there is a constant Cp > 0 such that for x ∈ Rm, 0 ≤ v ≤ u ≤ t ≤ s ≤ T

‖DuX‖p
Sp ≤ Cp(1 + |x|p), (10)

E[ |DuXt −DuXs|p] ≤ Cp(1 + |x|p)|t− s| p2 , (11)

‖DuX −DvX‖p
Sp ≤ Cp(1 + |x|p)|u− v| p2 . (12)

By Theorem 2.4, we have the representation

DuXt = ∇Xt(∇Xu)−1σ(Xu)1[0,u](t), for all u, t ∈ [0, T ].

If HX2 holds, then DX ∈ L1,2. For all v, u, t ∈ [0, T ], DvDuXt admits a version which
solves for 0 ≤ v ≤ u ≤ t ≤ T

DvDuXt = ∇σ(Xu)DvXu +∇σ(Xv)DuXv

+
∫ t

u

[
∇b(Xs)DvDuXs + ∆b(Xs)DvXsDuXs

]
ds

+
∫ t

u

[
∇σ(Xs)DvDuXs + ∆σ(Xs)DvXsDuXs

]
dWs.

Furthermore, there exists a continuous version of (DvDuXt)v,u,t∈[0,T ] and for all 0 ≤ v, u ≤ T
we have

‖DuDvX‖p
Sp ≤ Cp(1 + |x|2p).

For 0 ≤ v, v′ ≤ u, u′ ≤ t ≤ T we have

‖DvDuX −Dv′Du′X‖p
Sp ≤ Cp(|v − v′| p2 + |u− u′| p2 ).

2.6 Results on BSDE with drivers of quadratic growth

We next collect some results on qgBSDE. For their original versions or more information, we
refer to [Kob00], [AIdR07], [BC07] and [dR09].

Theorem 2.6 (Properties of qgBSDE). Under HY0, HX0, the system (2)-(3) has a unique
solution (X,Y, Z) ∈ S2 × S∞ ×H2. The norms of Y and Z depend only on T , K, M as given
by assumption HY0.

The martingale Z ∗W belongs to the space of BMO martingales, and hence Z ∈ Hp for all
p ≥ 2. The following estimate holds2:

‖Z ∗W‖BMO ≤ 4 + 6M2T )
3M2

exp
{

6M‖ξ‖L∞ + MT
}

< ∞.

Remark 2.7. Following Part 2 of Lemma 2.2, we define a pair (r̄, q̄) such that 1/r̄ + 1/q̄ = 1
and E(Z ∗W ) ∈ Lr̄.

In the following, when discussing BMO martingales, an appearing exponent r̄ will always be
used in this sense.

2This inequality follows from applying Itô’s formula to eaYt+bt with an appropriate choice of a and b.
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For more properties about BMO martingales in the setting of BSDE with drivers of quadratic
growth we refer to Lemma 2.1 in [AIdR07].

The two differentiability results we now present can be found in [dR09]. These results are
natural extensions of results proved in [AIdR07] or [BC07]. For further details, comments and
complete proofs we refer to [dR09].

Theorem 2.8 (Classical differentiability). Suppose that HX1 and HY1 hold. Then for all
p ≥ 2 the solution processes (Xx, Y x, Zx) of the system (2)-(3) with initial vector x ∈ Rm for
the forward component belongs to Sp × Sp × Hp. The application Rm 3 x 7→ (Xx, Y x, Zx) ∈
Sp(Rm) × Sp(R1) × Hp(Rd) is differentiable. The derivatives of X satisfy (7) while the the
derivatives of (Y,Z) satisfy the linear BSDE

∇Y x
t = ∇g(Xx

T )∇Xx
T −

∫ T

t
∇Zx

s dWs +
∫ T

t
〈∇f(s,Θx

s ),∇Θx
s 〉ds. (13)

If HX2 and HY2 hold, then there exists a version of the solution Ω× [0, T ]×Rm 3 (ω, t, x) 7→
(Xx

t , Y x
t , Zx

t )(ω) ∈ Rm×R1×Rd, such that for almost all ω, Xx and Y x are continuous in time
and continuously differentiable in x.

Theorem 2.9 (Malliavin differentiability). Suppose that HX1 and HY1 hold. Then the
solution processes (X,Y, Z) of system (2)-(3) verify

• for any 0 ≤ t ≤ T , x ∈ Rm we have (Yt, Zt) ∈ L1,2 ×
(
L1,2

)d. X satisfies the statement of
Theorem 2.5, and a version of (DuYt, DuZt)0≤u,t≤T satisfies

DuYt = 0, DuZt = 0, t < u ≤ T,

DuYt = ∇g(XT )DuXT +
∫ T

t
〈∇f(s,Θs), DuΘs〉ds−

∫ T

t
DuZsdWs, t ∈ [u, T ]. (14)

Moreover, (DtYt)0≤t≤T defined by the above equation is a version of (Zt)0≤t≤T .

• the following representation holds for any 0 ≤ u ≤ t ≤ T and x ∈ Rm

DuYt = ∇xYt(∇xXu)−1σ(u, Xu), a.s., (15)

Zt = ∇xYt(∇xXt)−1σ(s,Xt), a.s.. (16)

3 Inequalities for BSDE with stochastic Lipschitz conditions

In this section we look closely at BSDE with drivers that satisfy Lipschitz conditions with random
Lipschitz constants. Our interest in this problem is motivated by the following observation. If
we formally differentiate the driver of our original BSDE, we see that the essential term Z2

produces a term of the form ZDZ. In this term we may consider the factor Z as a random
growth rate of the factor DZ.

Let ζ be a random variable and f a measurable function. We consider the BSDE

Ut = ζ −
∫ T

t
VsdWs +

∫ T

t
f(ω, s, Us, Vs)ds, t ∈ [0, T ]. (17)

We state a set of assumptions for ζ and f . For p ≥ 1 we stipulate

(HA1) ζ is FT -adapted random variable and ζ ∈ L2p(R).
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(HA2) f : Ω × [0, T ] × R × Rd → R is product measurable and for all u, u′ ∈ R and v, v′ ∈ Rd

there exists a constant M > 0 and a positive predictable process H such that

|f(t, u, v)− f(t, u′, v′)| ≤ M |u− u′|+ Ht|v − v′|, (18)

and such that H ∗W is a BMO martingale.

(HA3) f(t, 0, 0) is a measurable (Ft)-adapted process satisfying E[
( ∫ T

0 |f(s, 0, 0)|ds
)p] < ∞ for

all p ≥ 1.

Moreover, we assume that (U, V ) is a solution of BSDE (17), and the constant r̄ is related to
the BMO martingale H ∗W as in Remark 2.7.

3.1 Moment estimates for BSDE with random Lipschitz constant

For the study of sensitivity properties of solutions of qgFBSDE, as seen in [AIdR07] or [BC07],
it is convenient to consider BSDE with random Lipschitz constants. The moment estimates for
this type of BSDE one can find in the two cited papers still leave space for improvements. A
weakness of the results of [AIdR07], owed to the techniques used, is the lack of an estimate for
‖U‖S2 . We next state an extended moment estimate, obtained by using ideas of [BC07].

Lemma 3.1. Let (HA1)-(HA3) be satisfied, let p ≥ 1 and r̄ > 1 such that E(H ∗W ) ∈ Lr̄(P ).
Then there exists a constant C > 0, depending only on p, T , M and the BMO-norm of H ∗W ,
such that with the conjugate exponent q̄ of r̄ we have

‖U‖2p
S2p + ‖V ‖2p

H2p ≤ CE
[
|ζ|2pq̄2

+
(∫ T

0
|f(s, 0, 0)|ds

)2pq̄2] 1
q̄2

. (19)

Proof. Assumption (HA2) states that the driver is Lipschitz continuous in u. We first use this
hypothesis to simplify the BSDE. For t ∈ [0, T ] we define

at =
f(t, Ut, Vt)− f(t, 0, Vt)

Ut
1{Ut 6=0} and et = exp

{∫ t

0
asds

}
.

Under (HA2), the process a is well defined and bounded by M . Hence e is bounded as well. For
t ∈ [0, T ] we further define

bt =
f(t, 0, Vt)− f(t, 0, 0)

|Vt|2 Vt 1{Vt 6=0}.

By (HA2), b is well defined and bounded in absolute value by the process H. Applying Itô’s
formula to e · U we obtain

etUt = eT ζ +
∫ T

t
es

[
f(s, 0, 0) + bsVs

]
ds−

∫ T

t
esVsdWs.

We simplify the BSDE further by defining a new measure Qb for which W b = W − ∫ ·
0 bsds is

a Qb-Brownian motion. The Radon-Nikodym density of Qb with respect to P is given by the
stochastic exponential E(b ∗W ). Since |b| ≤ H we have ‖b ∗W‖BMO ≤ ‖H ∗W‖BMO. Hence
the measure Qb is indeed a probability measure. For t ∈ [0, T ] our BSDE takes the form

etUt = eT ζ +
∫ T

t
esf(s, 0, 0)ds−

∫ T

t
esVsdW b

s . (20)
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We now proceed with moment estimates. Taking conditional expectation with respect to Qb,
estimating by absolute values and integrating on the whole interval we obtain

|etUt| ≤ EQb
[
eT |ζ|+

∫ T

0
es|f(s, 0, 0)|ds

∣∣Ft

]
.

Applying Doob’s moment inequality for 2p ≥ 2 we obtain a similar inequality as in this Theo-
rem’s statement, but under the measure Qb, i.e.

‖U‖2p
S2p(Qb)

≤ CEQ
b
[
|ζ|2p +

(∫ T

0
|f(s, 0, 0)|ds

)2p]
. (21)

If we rewrite equation (20), isolate the stochastic integral on the left hand side and take t = 0, use
Burkholder-Davis-Gundy’s inequality and remember that e is also bounded below by a positive
constant thanks to (HA2), we get

EQ
b
[( ∫ T

0
|Vs|2ds

)p]
≤ cpEQ

b
[
|eT ζ|2p + sup

0≤t≤T
|etUt|2p +

(∫ T

0
|esf(s, 0, 0)|ds

)2p]

≤ CEQ
b
[
|ζ|2p +

( ∫ T

0
|f(s, 0, 0)|ds

)2p]
.

For the second inequality we used (21) and the fact that [
∫ T
0 |Vs|2ds]1/2 is integrable.

Summarizing the last two inequalities we get

‖U‖2p
S2p(Qb)

+ ‖V ‖2p
H2p(Qb)

≤ CEQ
b
[
|ζ|2p +

(∫ T

0
|f(s, 0, 0)|ds

)2p]
. (22)

This inequality is already close to the one we have to deduce. To complete the proof, we just
have to get rid of the dependence of the right hand side on Qb. We do this for (21), noting that
for the other inequality the arguments are very similar. As mentioned before, b is dominated by
H and therefore

‖b ∗W‖BMO ≤ ‖H ∗W‖BMO.

Further, part 3) of Lemma 2.2 implies that since b∗W ∈ BMO(P), also (−b)∗W b ∈ BMO(Qb).
Moreover, since [E(b ∗W )]−1 = E(

(−b) ∗W b
)
, part 2) of the same Lemma states the existence3

of a real number r̄ > 1 for which E(b ∗W ) ∈ Lr̄(P) and [E(b ∗W )]−1 ∈ Lr̄(Qb). The constant r̄
is estimated from the BMO(P) norm of H ∗W , as indicated in Lemma 2.2.

Throughout let D = max
{‖E(b ∗W )‖Lr̄(P), ‖E(b ∗W )−1‖Lr̄(Qb)

}
and let q̄ be the conjugate

Hölder exponent of r̄.
Combining (21) and Hölder’s inequality, we obtain for any p ≥ 1

EP[ sup
s∈[0,T ]

|Us|2p] = EQ
b[E(b ∗W )−1 sup

s∈[0,T ]
|Us|2p

] ≤ DEQ
b[

sup
s∈[0,T ]

|Us|2pq̄
] 1

q̄

≤ C1 DEQ
b
[
|ζ|2pq̄ +

(∫ T

0
|f(s, 0, 0)|ds

)2pq̄] 1
q̄

= C1 DEP
[
E(b ∗W )

(
|ζ|2pq̄ +

(∫ T

0
|f(s, 0, 0)|ds

)2pq̄)] 1
q̄

≤ C2 D
1+q̄

q̄ EP
[
|ζ|2pq̄2

+
( ∫ T

0
|f(s, 0, 0)|ds

)2pq̄2] 1
q̄2

,

3Here we follow the notation we stipulated in Remark 2.7.
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where C1, C2 represent constants depending on p, M, T and the BMO norm of (b∗W ). Similarly,
with another constant C3,

EP
[( ∫ T

0
|Vs|2ds

)p]
≤ C3 D

1+q̄
q̄ EP

[
|ζ|2pq̄2

+
(∫ T

0
|f(s, 0, 0)|ds

)2pq̄2)] 1
q̄2

.

Combining the two estimates we obtain (19).

3.2 A priori estimates for BSDE with random Lipschitz constant

In this section, following the results of the previous one, we derive a priori inequalities which
serve in the usual way to compare solutions of BSDE of the type considered obtained for different
system parameters such as initial states of the forward part. This result will later be used to
determine the good candidates for the derivatives of our original qgBSDE.

For each i ∈ {1, 2}, let ζi be a random variable satisfying condition (HA1) and fi a driver
function satisfying (HA2)-(HA3) with respective square integrable processes H i such that H i ∗
W ∈ BMO. With this random variable and driver function we investigate the following BSDE

U
(i)
t = ζi −

∫ T

t
V (i)

s dWs +
∫ T

t
fi(ω, s, U (i)

s , V (i)
s )ds, t ∈ [0, T ]. (23)

Lemma 3.2. Assume that the conditions of Lemma 3.1 hold for (23). Take further q̄ with
respect to the BSDE with i = 1. Then we have

‖U (1) − U (2)‖2p
S2p + ‖V (1) − V (2)‖2p

H2p

≤ C E
[
|ζ1 − ζ2|2pq̄2

+
(∫ T

0
|(f1 − f2)(s, U (2)

s , V (2)
s )|ds

)2pq̄2] 1
q̄2

.

Proof. The arguments to prove this inequality are similar to those used in the proof of Lemma
3.1. Therefore we will omit some of the already familiar details.

Define δU = U (1) − U (2), δV = V (1) − V (2), δζ = ζ1 − ζ2 and δf(t, u, v) = (f1 − f2)(t, u, v).
Then to simplify the BSDE define a and b by

at =
f1(s, U

(1)
t , V

(1)
t )− f1(s, U

(2)
t , V

(1)
t )

U
(1)
t − U

(2)
t

1{U(1)
t 6=U

(2)
t },

bt =
f1(s, U

(2)
t , V

(1)
t )− f1(s, U

(2)
t , V

(2)
t )

|V (1)
t − V

(2)
t |2

(V (1)
t − V

(2)
t )1{V (1)

t 6=V
(2)
t },

t ∈ [0, T ]. We arrive at an equation similar to (20) given by:

etδUt = eT δζ +
∫ T

t
[es δf(s, U (2)

s , V (2)
s )] ds−

∫ T

t
δVsdW b

s ,

with W b = W − ∫ ·
0 bsds. Define Qb with respect to b as before. Now we may proceed as in the

proof of Lemma 3.1. The existence of the integral of δf(s, U (2)
s , V

(2)
s ) is justified by observing

that we can dominate δf using our assumptions and also because Lemma 3.1 is applicable to
each individual BSDE. The result follows.

Without prior knowledge of the form of f1 and f2 the right hand side of the Lemma’s
inequality cannot be treated further. In the following result we assume that the drivers satisfy
a stochastic linearity property. Then the increment in the drivers can be further estimated.
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Corollary 3.3. Assume that the conditions of Lemma 3.2 are satisfied, and furthermore that
for each i ∈ {1, 2} the driver is linear, i.e. it satisfies

fi(·, t, u, v) = αi(·, s) + βi(·, t)u + 〈γi(·, t), v〉,
with (αi, βi, γi) adapted random processes belonging to H2p(R)×S∞(R)×H2(Rd) for any p ≥ 1.
Moreover, we assume that βi is bounded and that (γi ∗W ) ∈ BMO. Then

‖U (1) − U (2)‖2p
S2p + ‖V (1) − V (2)‖2p

H2p

≤ C
{
E

[
|ζ1 − ζ2|2pq̄2

+
(∫ T

0
|α1(s)− α2(s)|ds

)2pq̄2] 1
q̄2

+ E
[( ∫ T

0
|β1(s)− β2(s)|ds

)4pq̄2

+
(∫ T

0
|(γ1(s)− γ2(s)|2ds

)2pq̄2] 1
2q̄2

}

Proof. Starting with the inequality of Lemma 3.2, and injecting the new assumptions, we obtain

‖U (1) − U (2)‖2p
S2p + ‖V (1) − V (2)‖2p

H2p

≤ CE
[
|ζ1 − ζ2|2pq̄2

+
(∫ T

0
|α1(s)− α2(s)|ds

)2pq̄2

+
(

sup
0≤t≤T

|U (2)
t |

)2pq̄2(∫ T

0
|β1(s)− β2(s)|ds

)2pq̄2

+
(∫ T

0
|V (2)

s |2ds
)pq̄2( ∫ T

0
|(γ1(s)− γ2(s)|2ds

)pq̄2] 1
q̄2

.

The moment estimates of Lemma 3.1 ensure that ‖U (2)‖S4pq̄2 and ‖V (2)‖H4pq̄2 are finite. Hence
a simple application of Hölder’s inequality yields the desired result.

4 Second order Malliavin differentiability

We now give sufficient conditions on our system of stochastic equations which ensure that the
solution processes are twice Malliavin differentiable.

4.1 The main result

Theorem 4.1. Assume HX2 and HY2 hold. Then the solution process Θ = (X,Y, Z) of the
qgFBSDE (2)-(3) is twice Malliavin differentiable, i.e. for each u ∈ [0, T ] and i ∈ {1, . . . , d} the
processes (Di

uYt, D
i
uZt) ∈ L1,2 × (L1,2)d. A version of {(Dj

vDi
uYt, D

j
vDi

uZt); 0 ≤ v ≤ u ≤ t ≤ T}
with 0 ≤ j, i ≤ d satisfies

Dj
vD

i
uYt = Dj

vD
i
uξ −

∫ T

t
Dj

vD
i
uZsdWs (24)

+
∫ T

t

[
(Dj

vΘs)T
[
Hf

]
(s,Θs)Di

uΘs + 〈∇f(s,Θs), Dj
vD

i
uΘs〉

]
ds,

where
[
Hf

]
is the Hessian matrix of the function f and ξ = g(XT ). Considered as a BSDE,

(24) admits a unique solution.
Moreover {DtDuYt; 0 ≤ u ≤ t ≤ T} is a version of {DuZt; 0 ≤ u ≤ t ≤ T}.
By Theorem 2.5, condition HX2 already implies that X ∈ D2,p. Therefore one only needs

to prove the Malliavin differentiability of (DY,DZ).
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4.2 Strategy of the proof

The main problem in proving the variational differentiability of equation (14) is given by the
growth of ∇zf(·, z) in z. HY1 states that ∇zf(·, z) is dominated by C(1 + |z|). Considering
(14) as a BSDE with solution process (DY, DZ) leads to interpreting the influence of ∇zf(·, z)
in the driver as a random Lipschitz constant. We aim at using the same strategy of proof as
in [AIdR07]: we approximate the BSDE (14) by truncating the random Lipschitz constant, and
then use Lemma 2.1 to obtain variational differentiability in the limit. Threfore we mainly have
to establish the conditions of Lemma 2.1.

4.2.1 A differentiable truncation family for the identity function

So we introduce a family functions (hn)n∈N that truncate the identity function on the real line,
and that will be used to truncate the z variable in ∇f(·, z) in the driver term of (14). We choose
hn : R→ R continuously differentiable with the following properties:

• hn(z) → z locally uniformly; |hn(z)| ≤ |z| and |hn(z)| ≤ n + 1, z ∈ R; moreover

hn(z) =





(n + 1) , z > n + 2,
z , |z| ≤ n,

−(n + 1) , z < −(n + 2).
(25)

• h′n is bounded by 1, and h′n → 1 locally uniformly.

We remark that such sequence of functions exists. The above requirements are for instance
consistent with

hn(z) =
{ (− n2 + 2nx− x(x− 4)

)
/4 , z ∈ [n, n + 2],(

n2 + 2nx + x(x + 4)
)
/4 , z ∈ [−(n + 2),−n].

4.2.2 The family of truncated FBSDE and results concerning them

Recall the notation Θ = (X, Y, Z) for the solution of system (2)-(3), the driver of BSDE (14)
with terminal condition ξ = g(XT ), where g is a bounded differentiable function and HX1
is satisfied. For n ∈ N take the sequence (hn)n∈N defined in (25) and define the sequence of
approximate drivers Fn : Ω× [0, T ]× Rm × R× Rd → R by

Fn(t, x, u, v) =
〈∇xf(t, Θt), x

〉
+∇yf(t, Θt)u +

〈∇zf
(
t,Xt, Yt, hn(Zt)

)
, v

〉
. (26)

The advantage of approximating the driver in this way is a technical one: we can make use of
the well known Θ and its properties, and do not have to deal with approximations of Θ and its
Malliavin derivatives at the same time.

For i ∈ {1, · · · , d}, 0 ≤ u ≤ t ≤ T and n ∈ N consider the following BSDE

Un
u,t = Di

uξ +
∫ T

t
Fn(s,Ξn

u,s)ds−
∫ T

t
V n

u,sdWs, Ξn
u,s = (Di

uXs, U
n
u,s, V

n
u,s), (27)

where Diξ, DiX denote the first Malliavin derivatives of ξ and X respectively.
In the following Lemma we state existence, uniqueness and Malliavin differentiability of the

solution processes of BSDE (27). The Lemma’s proof will result from a theorem formulated in
the Appendix, where all the hypotheses, variants of the hypotheses employed in Theorem 4.1,
are formulated. To avoid repetitions, we do not formulate them here again.
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Lemma 4.2 (2nd order Malliavin diff. of Lipschitz BSDE). For each n ∈ N, (27)
possesses a unique solution (Un, V n) in H2p([0, T ]× [0, T ])×H2p([0, T ]× [0, T ]) for p ≥ 1.

Furthermore for 0 ≤ u ≤ t ≤ T the random variables (Un
u,t, V

n
u,t) are Malliavin differentiable

and for any j ∈ {1, · · · , d} a version of {(Dj
vUn

u,t, D
j
vV n

u,t); 0 ≤ v ≤ u ≤ t ≤ T} satisfies

Dj
vU

n
u,t = Dj

vD
i
uξ −

∫ T

t
Dj

vV
n
u,sdWs

+
∫ T

t

[
(Dj

vF
n)(s,Ξn

u,s) + 〈(∇Fn)(s,Ξn
u,s), D

j
vΞ

n
u,s〉

]
ds, (28)

with Ξn
u,s = (Di

uXs, U
n
u,s, V

n
u,s) and Dj

vΞn
u,s = (Dj

vDi
uXs, D

j
vUn

u,s, D
j
vV n

u,s), 0 ≤ v ≤ u ≤ s ≤ T .

For clarity of exposition we add a few words about the driver of BSDE (28). Assuming
d = m = 1 and hence omitting the superscripts i and j, and denoting Θ = (X,Y, Z) and
Θn = (X, Y, hn(Z)), we can describe the first term inside the integral by

(DvF
n)(t,Ξn

u,t) = Dv[(∇xf)(t,Θt)]DuXt + Dv[(∇yf)(t, Θt)]Un
u,t + Dv[(∇zf)(t, Θn

t )]V n
u,t.

These three terms can be further specified by

Dv[(∇xf)(t, Θt)]DuXt

= (∇xxf)(t,Θt)DvXtDuXt + (∇xyf)(t,Θt)DvYtDuXt + (∇xzf)(t, Θt)DvZtDuXt,

an analogous expression for Dv[(∇yf)], while the last part is given by

Dv[(∇zf)(t, Θn
t )]V n

u,t

= (∇zxf)(t,Θn
t )DvXtV

n
u,t + (∇zyf)(t,Θn

t )DvYtV
n
u,t + (∇zzf)

(
t, Θn

t )h′n(Zt)DvZtV
n
u,t.

The second term of the driver in (28) can be expressed by

〈(∇Fn)(s,Ξn
u,s), DvΞn

u,s〉
= ∇xf(s,Θs)DvDuXs +∇yf(s,Θs)DvU

n
u,s +∇zf

(
s,Xs, Ys, hn(Zs)

)
DvV

n
u,s.

To compactify notation a bit, we denote the driver component in (28) not containing DvU
n
u,s

and DvV
n
u,s by

An
v,u,s = (DvF

n)(s,Ξn
u,s) + (∇xFn)(s,Ξn

u,s)DvDuXs, v, u, s ∈ [0, T ]. (29)

Before giving the proof of the Theorem 4.1 we prove two helpful Lemmata.

Remark 4.3. Since |hn(z)| is dominated by |z|, it is clear from HY1 that

‖∇zf(t,X, Y, hn(Z)) ∗W‖BMO ≤ C‖(1 + |Z|) ∗W‖BMO.

Hence (see Part 2 of Lemma 2.2), there exists a r̄ such that the stochastic exponentials related
to the two BMO martingales above belong both to Lr̄. We remark that r̄ is independent of n.

Lemma 4.4. Assume HX2 and HY2 hold, and that (Un, V n) solve BSDE (27), (DY,DZ)
BSDE (14). Then, for any p ≥ 1 we have

sup
n∈N

sup
0≤u≤T

{
E

[( ∫ T

0
|DuYs|2 + |DuZs|2ds

)p
+

(∫ T

0
|Un

u,s|2 + |V n
u,s|2ds

)p]}
< ∞.
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Proof. For any n ∈ N, z ∈ R our hypothesis gives |hn(z)| ≤ |z|. Hence the driver Fn of (26)
satisfies the same growth conditions as the driver of BSDE (14). Therefore, one can apply the
results of section 3 to either BSDE and obtain for p ≥ 1

sup
0≤u≤T

{
E

[( ∫ T

0
|DuYs|2ds

)p
+

(∫ T

0
|DuZs|2ds

)p
+

(∫ T

0
|Un

u,s|2ds
)p

+
(∫ T

0
|V n

u,s|2ds
)p]}

≤ C sup
0≤u≤T

E
[(
|Duξ|2 +

∫ T

0
|∇xf(s,Θs)DuXs|2ds

)pq̄2] 1
q̄2

,

with q̄ conjugate to r̄. The results of subsection 2.5 combined with assumptions HX2 and HY2
yield the finiteness of the right hand side of the inequality.

Lemma 4.5. Assume HX2 and HY2 hold. For all p ≥ 1 we have

sup
n∈N

sup
0≤u,v≤T

E
[
|DvDuξ|2p +

(∫ T

0
|An

v,u,s|ds
)2p]

< ∞,

with An, n ∈ N, given by (29).

Proof. To prove this result we analyze each term in more detail.
Part 1): The first term presents little difficulty, since ξ = g(XT ) and X is a diffusion process.

For 0 ≤ u ≤ v ≤ T we have DvDuξ = DvXT [Hg](XT )DuXT +∇g(XT )DvDuXT , where [Hg] is
the Hessian matrix of g.

Since g ∈ C2
b , we may use the inequality ab ≤ (a2 + b2) valid for a, b ∈ R combined with

Theorem 2.5 to obtain

sup
0≤u,v≤T

E
[
|DvDuξ|2p

]
≤ C sup

0≤u,v≤T
E

[
|DvXT |4p + |DuXT |4p + |DvDuXT |2p

]
< ∞.

Part 2): We now analyze the second term, starting with the identification

An
v,u,s = (DvF

n)(s,Ξn
u,s) + (∇xFn)(s,Ξn

u,s)DvDuXs

= (DvF
n)(s,Ξn

u,s) + (∇xf)(s,Θs)DvDuXs

for v, u, s ∈ [0, T ]. Now (DvF
n)(t, Ξn

u,s) is composed of products of first order Malliavin deriva-
tives of X, Y or Z and second order partial derivatives of f . Assumption HY2 guarantees
that the second order derivatives of f are dominated by a process K belonging to S2p([0, T ]).
Combining this with the hypothesis |h′n| ≤ 1 for all n we easily obtain

|(DvF
n)(s,Ξn

u,s)| ≤ CKs

{
|DvXs|2 + |DuXs|2 + |DvYs|2 + |Un

u,s|2 + |DvZs|2 + |V n
u,s|2

}
.

Summands involving the Malliavin derivatives of X can be dealt with arguments as in part 1)
of this proof. Furthermore,

sup
n∈N

sup
0≤u≤T

E
[(

sup
0≤t≤T

|Kt|
∫ T

0

[
|Un

u,s|2 + |V n
u,s|2 + |DuYs|2 + |DuZs|2

]
ds

)2p]

≤ ‖K‖2p
S4p sup

n∈N
sup

0≤u≤T
‖ |Un

u |+ |V n
u |+ |DuY |+ |DuZ| ‖4p

H8p < ∞.

The last inequality is satisfied by Lemma 4.4 and the fact that K ∈ S2p for all p ≥ 1.
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We are left with the analysis of the term (∇xf)(s,Θs)DvDuXs. From condition HY1,
∇xf(s,Θs) is dominated by M(1 + |Ys|+ |Zs|2) with a bounded process Y , and so we obtain

sup
0≤u,v≤T

E
[ ( ∫ T

0
|(∇xf)(t, Θs)DvDuXs|ds

)2p]

≤ C sup
0≤u,v≤T

E
[

sup
t∈[0,T ]

|DvDuXt|2p
(∫ T

0
(1 + |Zs|2)ds

)2p]

≤ C sup
0≤u,v≤T

∥∥DvDuX
∥∥2p

S4p

∥∥1 + |Z|∥∥4p

H8p < ∞

For the last two inequalities we used Hölder’s inequality, that Z ∈ H2p for all p ≥ 1 and Theorem
2.5.

The Lemma’s inequality follows from a combination of Part 1) and Part 2).

We are now in a position to prove Lemma 4.2.

Proof of Lemma 4.2. We have to establish the hypotheses to hold for the application of Theorem
A.1. The terminal condition is given by the Malliavin derivative of ξ = g(XT ) with g ∈ C2

b . In
view of Theorems 2.4 and 2.5, conditions (A2) and (A4) are satisfied.

Given our construction, it is clear Fn is uniformly Lipschitz continuous in (y, z), since ∇yf
and ∇zf(·, hn(·)) are bounded. The boundedness of ∇xf(·, hn(·)) combined with the fact that
DX ∈ S2p([0, T ]× [0, T ]) enables us to conclude

sup
0≤u≤T

E[ sup
0≤t≤T

|∇xf(t, Θt)DuXt|2p] < ∞,

and hence condition (A1) is also satisfied.
The verification of condition (A3) is also simple. Fn is continuous differentiable in (y, z).

Furthermore since Y and Z are Malliavin differentiable and X is twice Malliavin differentiable,
Fn(t,DuXt, Y, Z) is also Malliavin differentiable for 0 ≤ u ≤ t ≤ T . The proof of the moment
inequality of assumption (A3) is a consequence of Lemma 4.5. Hence we may apply Theorem
A.1.

4.3 Proof of Theorem 4.1

We are finally able to prove the main result of this section.

Proof of Theorem 4.1. To prove this result we apply Lemma 2.1. We have to show that the
Lemma’s assumptions are satisfied. Fix 0 ≤ u ≤ t ≤ T.

1) Lemma 4.2 ensures existence, uniqueness and Malliavin differentiability of each (Un
u,t, V

n
u,t).

2) We now prove theH2-convergence of (Un
u,·, V n

u,·) to (DuY·, DuZ·). Using Lemma 3.2 applied
to the BSDE resulting from the difference DuY· − Un

u,· (see BSDE (14) and (27)), we have with
Θ = (X,Y, Z) and Θn = (X, Y, hn(Z))

sup
0≤u≤T

E
[ ∫ T

0
|DuYs − Un

u,s|2ds +
∫ T

0
|DuZs − V n

u,s|2ds
]

≤ C sup
0≤u≤T

E
[( ∫ T

0
|∇zf(s,Θs)−∇zf(s,Θn

s )||V n
u,s|ds

)2q̄2] 1
q̄2

≤ C sup
0≤u≤T

E
[( ∫ T

0
|V n

u,s|2ds
)2q̄2] 1

2q̄2 E
[( ∫ T

0
|∇zf(s,Θs)−∇zf(s,Θn

s )|2ds
)2q̄2] 1

2q̄2
,
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where q̄ is related to the BMO martingale (∇zf(·, X, Y, Z)) ∗W as stated in subsection 2.3.
The first term in the last line is finite, uniformly in n, by Lemma 4.4. For the second term,

note that by HY1 ∇zf is continuous and, from (25) so is the family hn. Furthermore, both
∇zf(·, ·, z) and ∇zf(·, ·, hn(z)) are dominated by C(1+ |z|). Given the integrability properties of
Z and the convergence of hn to the identity function, dominated convergence yields the desired
convergence result, from which the convergence of (Un

u,t, V
n
u,t) to (DuYt, DuZt) for a.e. t ∈ [0, T ]

follows.
3) We prove the uniform boundedness of E

[‖(DUn, DV n)‖2
L2(D1,2)

]
in n.

The driver of BSDE (28) is linear. So applying Lemma 3.1, we obtain the following inequality
for n ∈ N

‖DvU
n
u ‖2p

S2p + ‖DvV
n
u ‖2p

H2p ≤ CE
[
|DvDuξ|2pq̄2

+
(∫ T

0
|An

v,u,s|ds
)2pq̄2] 1

q̄2
,

where the constant q̄ is related to the BMO martingale ∇zf(·,Θ) ∗W according to Remark 2.7.
Lemma 4.5 now yields

sup
n∈N

sup
0≤v,u≤T

{
‖DvU

n
u ‖2p

S2p + ‖DvV
n
u ‖2p

H2p

}
< ∞.

By 1) - 3) we can now apply Lemma 2.1 and deduce the Malliavin differentiability of
(DY,DZ). Arguments as the ones used in Theorem 8.4 of [AIdR07] show that (DvDuY, DvDuZ)
is a solution to BSDE (24).

Uniqueness follows immediately from Lemma 3.2.
To prove the representation DtDuYt = DuZt, one only needs to recall that for each n, u ≤ t

we have DtDuY n
t = DuZn

t . Since both sides converge to their respective limiting processes the
equality holds true in the limit.

5 Regularity in the time variable

With a view towards their numerical approximation, in this section we investigate regularity
properties of the Malliavin derivatives of solutions of our FBSDE (2)-(3).

5.1 Continuity and bounds

Lemma 5.1. Under HX1 and HY1 let (X, Y, Z) be the solution processes of system (2)-(3),
and (DX,DY,DZ) their Malliavin derivatives. Then for u, v ∈ [0, T ] and p ≥ 1 there exists
Cp > 0 such that

‖DvY −DuY ‖2p
S2p + ‖DvZ −DuZ‖2p

H2p ≤ Cp|v − u|p. (30)

Proof. We use (14) to write for u, v, t ∈ [0, T ] a FBSDE for the difference DvYt−DuYt. For this
we employ the comparison lemma 3.2, to obtain with ξ = g(XT ) and for any p ≥ 1

‖DvY −DuY ‖2p
S2p + ‖DvZ −DuZ‖2p

H2p

≤ CE
[
|Dvξ −Duξ|2pq̄2

+
(∫ T

0
|(∇xf)(s,Θs)||DvXs −DuXs|ds

)2pq̄2] 1
q̄2

≤ CE
[
|DvXT −DuXT |2pq̄2

+ sup
0≤t≤T

|DvXt −DuXt|2pq̄2
(∫ T

0
(1 + |Ys|+ |Zs|2)ds

)2pq̄2] 1
q̄2

≤ C
{
‖DvXT −DuXT ‖2p

L2pq̄2 + ‖DvX −DuX‖2p

S4pq̄2

}
≤ Cp|v − u|p,
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where q̄ corresponds to the BMO martingale ∇zf(Θ) ∗W . The last line follows from a direct
application of Theorem 2.5.

Equipped with these moment estimates we are now able to state our first main result.

Theorem 5.2 (Time continuity). Assume HX1 and HY1. Then there exists a continuous
version of (u, t) 7→ DuYt in {(u, t) : 0 ≤ u ≤ t ≤ T.} In particular there exists a continuous
version of Z on [0, T ].

Assume HX2 and HY2. Then there exists a continuous version of (v, u, t) 7→ DvDuYt

for 0 ≤ v ≤ u ≤ t ≤ T . In particular there is a continuous version of (u, t) 7→ DuZt for
0 ≤ u ≤ t ≤ T .

Proof. To make the proof simpler we assume m = d = 1. Under HX1, the results of subsection
2.5 imply the existence of continuous versions of X, ∇X, (∇X)−1 and (u, t) 7→ DuXt for
0 ≤ u ≤ t ≤ T .

A quick analysis of (13), combined with the knowledge that (X, Y, Z) ∈ S2p×S∞×H2p and
(∇X,∇Y,∇Z) ∈ S2p×S2p×H2p for all p ≥ 1, allows one to conclude that a continuous version
of ∇Y exists: the process is given by the sum of a Lebesgue and Itô integral with well behaved
integrands.

In Theorem 2.9 we established DuYt = ∇Yt(∇Xu)−1σ(Xu), 0 ≤ u ≤ t ≤ T . Condition
HX0 ensures the continuity of σ. Hence by what has been shown there is a continuous version
of (u, t) 7→ (∇Yt(∇Xu)−1σ(Xu)

)
for 0 ≤ u ≤ t ≤ T . This means that (u, t) 7→ DuYt has a

continuous version for 0 ≤ u ≤ t ≤ T.

By Theorem 2.9, Z is a version of t 7→ DtYt. Hence the continuity of a version of (u, t) 7→
DuYt for 0 ≤ u ≤ t ≤ T immediately implies that Z possesses a continuous version. This finishes
the proof of the first statement.

For the second statement we argue in a different way.
The second Malliavin derivative of Y depends on three variables, v, u, t ∈ [0, T ]. By using

moment inequalities, we will show that (v, u) 7→ (DvDuYt∨u)0≤t≤T is continuous as a mapping
to the space of continuous functions on [0, T ] equipped with the sup norm. By well known
extensions of the Kolmogorov continuity criterion to normed vector spaces (Here we have to add
a reference, e.g. Yor or...) this will establish the desired continuity of (v, u, t) 7→ DvDuYt for
0 ≤ v ≤ u ≤ t ≤ T. To verify the inequalities, for 0 ≤ v ≤ u ≤ T, 0 ≤ v′ ≤ u′ ≤ T we will have
to estimate moments of

sup
0≤t≤T

|DvDuYt −Dv′Du′Yt|p.

In a first step, we separate the two parameters by estimating this quantity by a constant multiple
of

sup
0≤t≤T

|DvDuYt −Dv′DuYt|p + sup
0≤t≤T

|Dv′DuYt −Dv′Du′Yt|p.

In what follows, for convenience we shall only give the estimation of the first summand, remarking
that the second one may be treated in a very similar way. (Give it a quick thought. Is this correct?
Is the estimation of the second term really simpler?) Fix 0 ≤ v, v′ ≤ u ≤ t ≤ T . Again using the
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comparison Lemma 3.2 with (24) specified to DvDuYt −Dv′DuYt, we get for p ≥ 1

E
[

sup
0≤t≤T

|DvDuYt −Dv′DuYt|2p
]

≤ C
{
E

[
|DvDuξ −Dv′Duξ|2pq̄2

+
(∫ T

0

[
|DvΘs −Dv′Θs||[Hf ](s,Θs)||DuΘs|

+ |(∇xf)(s,Θs)||DvDuXs −Dv′DuXs|
]
ds

)2pq̄2]}

≤ C
{
‖DvXT −Dv′XT ‖2p

L6pq̄2 + ‖DvDuX −Dv′DuX‖2p

S4pq̄2

+ ‖DvX −Dv′X‖2p

S4pq̄2 + ‖DvY −Dv′Y ‖2p

S4pq̄2 + ‖DvZ −Dv′Z‖4p

H8pq̄2

}

≤ Cp|v − v′|p.
The successive are justified in view of the growth conditions contained in the assumptions,
Hölder’s inequality, Theorem 2.5 and Lemma 5.1. Kolmogorov’s continuity criterion for vector
valued stochastic processes yields the existence of a continuous version of (v, u, t) 7→ DvDuYt for
0 ≤ v ≤ u ≤ t ≤ T , and hence by restriction also of (u, t) 7→ DuZt for 0 ≤ u ≤ t ≤ T.

Theorem 5.3 (Bounds). Assume that HX1 and HY1 hold. Then for all p ≥ 1

E
[

sup
0≤u≤t≤T

|DuYt|2p
]

< ∞. (31)

In particular

‖Z‖S2p < ∞. (32)

Let HX2 and HY2 be satisfied. Then for all p ≥ 1

sup
0≤u≤T

E[ sup
0≤t≤T

|DuZt|2p ] < ∞. (33)

Proof. As we have seen in Theorem 5.2, a continuous version of (u, t) 7→ DuYt is given by
∇xYt(∇xXu)−1σ(u, Xu). Hence we may estimate

E
[

sup
0≤u≤t≤T

|DuYt|2p
]
≤ E

[
sup

0≤t≤T
|∇xYt|2p sup

0≤u≤T

{|(∇xXu)−1σ(u,Xu)|2p
}]

≤ E
[

sup
0≤t≤T

|∇xYt|6p
] 1

3E
[

sup
0≤u≤T

|(∇xXu)−1|6p
] 1

3E
[

sup
0≤u≤T

|σ(Xu)|6p
] 1

3

< ∞
The last line follows from the fact that ∇Y , (∇X)−1 and X all belong to S2p for all p ≥ 1 (see
(4), (8) and Theorem 2.8). This concludes the first part of the proof. The second claim follows
as a special case of the first by identifying u and t.

For the third statement, note that the proof of Theorem 4.1 (see also the proof of A.1) yields

sup
0≤v,u≤T

E
[

sup
0≤t≤T

|DvDuYt|2p
]

< ∞, p ≥ 1.

By the continuity result of Theorem 5.2 we may choose u = t to obtain

sup
0≤u≤T

E
[

sup
0≤t≤T

|DuZt|2p
]

< ∞, p ≥ 1.
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5.2 A path regularity theorem

In the previous subsection we deduced the continuity property of Z and estimated moments of
its sup over the interval [0, T ]. Here we aim at providing a Kolmogorov continuity type estimate
for Z. The inequality we will obtain will imply an improvement of the well known path regularity
result of [Zha01].

Let Π be the collection of all partitions of the interval [0, T ] by finite families of real numbers.
Particular partitions will be denoted by π = {ti : 0 = t0 < . . . < tN = T} with N ∈ N. We
define the mesh size of partition π as ∆π = ∆ = max0≤i≤N |ti+1 − ti|.

For reference purposes and before approaching the path regularity theorem we recall an
elementary inequality: for real numbers ai, 1 ≤ i ≤ n, and p ≥ 1 we have

∑
|ai|p ≤

(∑
|ai|

)p
. (34)

We start by stating an auxiliary lemma:

Lemma 5.4. Assume HX0 and HY0. Then for the solutions of BSDE (2)-(3) and for any
p ≥ 2 there exists a pair of constants Ap, Cp depending on T , M and p such that

E[ sup
s≤u≤t

|Yu − Ys|p ] ≤ Cp

{
Ap|t− s|p + E

[( ∫ t

s
|Zv|2dv

)p
+

(∫ t

s
|Zv|2dv

)p/2]}
. (35)

Proof. First estimate increments of Y by the sum of a Lebesgue and Ito integral provided by
(3), maximize in s ≤ u ≤ t, and apply Doob’s and Burkholder-Davis-Gundy’s inequalities to the
martingale part to obtain for p ≥ 2

E[ sup
s≤u≤t

|Yu − Ys|p ] ≤ CpE
[( ∫ t

s
|f(v, Xv, Yv, Zv)|dv

)p
+

(∫ t

s
Z2

vdv
) p

2
]
.

Next use the growth condition valid for f , i.e. |f(·, ·, y, z)| ≤ M(1 + |y|+ |z|2) together with the
fact that Y is bounded, to obtain the claimed result.

Let us now state our path regularity Theorem.

Theorem 5.5 (Path regularity). Under HX1 and HY1, the FBSDE system (2)-(3) has a
unique solution (X, Y, Z) ∈ S2p × S∞ ×H2p for all p ≥ 1. Moreover, the following holds true:

i) For p ≥ 2 there exists a constant Cp > 0 such that for 0 ≤ s ≤ t ≤ T we have

E[ sup
s≤u≤t

|Yu − Ys|p ] ≤ Cp|t− s| p2 .

ii) For all p ≥ 1 there exists a constant Cp > 0 such that for any partition π of [0, T ] with
mesh size ∆

N−1∑

i=0

E
[( ∫ ti+1

ti

|Zt − Zti |2dt
)p]

≤ Cp∆p.

Under HX2 and HY2, we further have:

iii) For all p ≥ 2 there exists a constant Cp > 0 such that for 0 ≤ s ≤ t ≤ T

E[ sup
s≤u≤t

|Zu − Zs|p ] ≤ Cp|t− s| p2 .

In particular, the process Z has a continuous modification. (Why prove this once again?)
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Proof. Part i): Under the hypotheses valid we can make use of Theorem 5.3. In fact, combining
(32) with (35) we get

E[ sup
s≤u≤t

|Yu − Ys|p] ≤ C
{
|t− s|p + E

[
|t− s|p sup

s≤u≤t
|Zu|2p + |t− s| p2 sup

s≤u≤t
|Zu|p

]}

≤ Cp

{
|t− s|p + |t− s| p2

}
.

The result follows.
Part ii): Theorem 5.3 states that Z ∈ S2p. Therefore we are able to write, using Jensen’s

inequality

E
[( ∫ ti+1

ti

|Zt − Zti |2dt
)p]

≤ ∆p−1

∫ ti+1

ti

E[ |Zt − Zti |2p ]dt. (36)

In view of Theorem 5.2 and the subsequent representation formula for Z in terms the Malliavin
derivatives of Y (see (16)), we find an alternative way to express the difference Zt − Zti for
t ∈ [ti, ti+1] by writing

Zt − Zti = ∇Yt(∇Xt)−1σ(Xt)−∇Yti(∇Xti)
−1σ(Xti) = I1 + I2 + I3, (37)

where I1 =
(
∇Yt − ∇Yti

)
(∇Xt)−1σ(Xt), I2 = ∇Yti

(
(∇Xt)−1 − (∇Xti)

−1
)
σ(Xt) and I3 =

∇Yti(∇Xti)
−1

(
σ(Xt)− σ(Xti)

)
.

Estimates for I2 and I3 are easy to produce since they rely mainly on ‖∇Y ‖S2p < ∞ and
the results presented in subsection 2.5. We give details for I2 and hints how to deal with I3,
remarking that its treatment is very similar. Hölder’s inequality combined with the growth
condition of σ produce

E[ |I2|2p] ≤ C E
[

sup
0≤u≤T

|∇xYu|6p
] 1

3E
[

sup
ti≤t≤ti+1

|(∇Xt)−1 − (∇Xti)
−1|6p

] 1
3 E

[
sup

0≤u≤T
|Xu|6p

] 1
3

≤ C ∆3p 1
3 = C ∆p. (38)

For the last line we use (4), (9) and ‖∇Y ‖S2p < ∞. For I3, the method is similar: instead of
(4) and (9) we have to use (5) and (8).

We next estimate I1. Using Fubini’s Theorem and Hölder’s inequality we get

∫ ti+1

ti

E
[ |I1|2p

]
dt = E

[ ∫ ti+1

ti

|I1|2pdt
]

≤ E
[ ∫ ti+1

ti

|(∇Xt)−1|4pdt
] 1

2 E
[ ∫ ti+1

ti

|σ(Xt)|4pdt
] 1

2E
[

sup
ti≤t≤ti+1

|∇Yt −∇Yti |2p
]
.

We can simplify the integral terms by estimating the integrands by their suprema over the
intervals. Using the linear growth condition on σ combined with (4), (8), we show in this way
that the first two expectations on the right hand side are bounded by C∆1/2 each. Applying an
appropriate version of (36), and using the previous inequalities, we infer

∆p−1
N−1∑

i=0

∫ ti+1

ti

E
[ |I1|p

]
dt ≤ C∆p

N−1∑

i=0

E
[

sup
ti≤t≤ti+1

|∇Yt −∇Yti |2p
]
.
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It remains to estimate ∇Yt−∇Yti for t ∈ [ti, ti+1] using the BSDE (3). For p ≥ 1, the inequalities
of Doob and Burkholder-Davis-Gundy combine with HX1 and HY1 in the same fashion as in
part i) to yield for Θ = (X,Y, Z) and ∇Θ = (∇X,∇Y,∇Z)

N−1∑

i=0

E
[

sup
ti≤t≤ti+1

|∇Yt −∇Yti |2p
]

≤ C
N−1∑

i=0

E
[( ∫ ti+1

ti

|〈(∇f)(s,Θs),∇Θs〉|ds
)2p

+
(∫ ti+1

ti

|∇Zs|2ds
)p]

≤ C E
[( ∫ T

0
|〈(∇f)(s,Θs),∇Θs〉|ds

)2p
+

(∫ T

0
|∇Zs|2ds

)p]
.

For the last line we interchange summation and expectation, and apply (34) (Here we seem to
lose precision. In particular for small increments the inequality is very rough.). We now use the
growth condition of HY1 combined with the fact that X,Y, Z,∇X,∇Y ∈ S2p and ∇Z ∈ H2p.
Therefore

N−1∑

i=0

E
[

sup
ti≤t≤ti+1

|∇Yt −∇Yti |2p
]

< ∞,

which obviously implies

∆p−1
N−1∑

i=0

∫ ti+1

ti

E
[ |I1|p

]
dt ≤ C∆p.

Finally we inject (38) and the above inequality into (36) (according to (37)), to obtain the second
assertion of the Theorem:

N−1∑

i=0

E
[( ∫ ti+1

ti

|Zt − Zti |2dt
)p]

≤ C∆p−1
N−1∑

i=0

∫ ti+1

ti

E
[ |I1|2p + |I2|2p + |I3|2p

]
dt

≤ C∆p−1
(
∆ + 2∆p

) ≤ C∆p.

Part iii): Theorem 5.2 states that t 7→ DtYt is a continuous version of Z. Hence we may
express for s, t ∈ [0, T ] the difference Zt−Zs by Malliavin derivatives of Y , and its moments for
p ≥ 2 by

E[ |Zt − Zs|p] ≤ C(E[ |DtYt −DsYt|p] + E[ |DsYt −DsYs|p]), with s ≤ t.

We estimate both expressions on the right hand side separately, with similar arguments as in
Part ii).
From Lemma 5.1 we have E[ |DtYt −DsYt|p ] ≤ C|t− s| p2 .
For the other term, a simple calculation using BSDE (14) yields

DsYt −DsYs =
∫ t

s

[〈∇f(Θu), DsΘu〉
]
du−

∫ t

s
DsZudWu.

By Doob’s and Burkholder-Davis-Gundy’s inequalities we have for p ≥ 2

E[ sup
s≤u≤t

|DsYu −DsYs|p] ≤ C E
[( ∫ t

s

[
(1 + |Y |+ |Z|2)|DsXu|+ |DsYu|

+ (1 + |Zu|) |DsZu|
]
du

)p
+

(∫ t

s
|DsZu|2du

) p
2
]

≤ C
{|t− s|p + |t− s| p2 }

.
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This last line follows, because all the integrand processes belong to Sp for all p ≥ 2 (see Theorem
5.3). Combining the two above estimates we have E[ |Zt − Zs|p] ≤ C |t − s| p2 as intended.
Kolmogorov’s continuity criterion yields the continuity statement.

5.3 Zhang’s path regularity Theorem

Now let π be an equidistant partition of [0, T ] with N points and constant mesh size ∆π = h.
We define a set of random variables

Z̄π
ti =

1
h
E

[ ∫ ti+1

ti

Zsds
∣∣Fti

]
, for all partition points ti, 0 ≤ i ≤ N − 1, (39)

where Z is the control process in the solution of FBSDE (2)-(3) under HX0 and HY0. It is
not difficult to show that Z̄π

ti is the best Fti-adapted H2([ti, ti+1]) approximation of Z, i.e.

E
[ ∫ ti+1

ti

|Zs − Z̄π
ti |2ds

]
= inf

Zi∈L2(Ω,Fti )
E

[ ∫ ti+1

ti

|Zs − Zi|2ds
]
.

Let now Z̄π
t = Z̄π

ti for t ∈ [ti, ti+1[, 0 ≤ i ≤ N − 1. It is equally easy to see that Z̄π
t → Zt in

H2 as h → 0: since Z is adapted there exists an adapted family of processes Zπ indexed by our
equidistant partitions such that Zπ

t = Zti for t ∈ [ti, ti+1) and that Zπ → Z in H2 as h → 0.
Since {Z̄π} is the best H2– approximation of Z, we obtain

‖Z − Z̄π‖H2 ≤ ‖Z − Zπ‖H2 → 0

as h → 0. As an immediate corollary of ii) in the previous Theorem we get the extension to the
setting of drivers with quadratic growth of the famous Theorem 3.4.3 in [Zha01]. Let p = 1 in
Theorem 5.5. Then

Theorem 5.6. Under HX1 and HY1 and for each 0 ≤ i ≤ N − 1 we have

max
0≤i≤N−1

{
sup

t∈[ti,ti+1)
E

[
|Yt − Yti |2

]}
+

N−1∑

i=0

E
[ ∫ ti+1

ti

|Zs − Z̄π
ti |2ds

]
≤ C|π|,

where C is a positive constant independent of π.

6 Numerics for qgBSDE - a truncation procedure

A common method to deal with non-linearities or unbounded functions consists in truncating
them. In our BSDE 3, the driver has a quadratic nonlinearity in z. Our truncation of the
nonlinear driver will relate BSDE with drivers of quadratic growth BSDE with globally Lipschitz
drivers. For this type of BSDE numerical schemes are readily available (see [BT04], [Eli06] and
references therein), and the error committed in the numerical approximation for BSDE with
Lipschitz driver is well known. So to fully analyze the error related to successive approximations
in the case of BSDE with drivers of quadratic growth, it only remains to provide an estimate
for the error arising from truncation. This is what we propose to do in this section.

For our qgFBSDE system (2)-(3) we assume that HX1 and HY1 hold. In this section the
diffusion process X appearing in the BSDE’s terminal condition and driver plays a secondary
role, especially in the calculations we will be presenting.

To truncate the driver of quadratic growth, we use the already familiar sequence {hn}n∈N
defined in (25). We will have to justify that this sequence indeed does the job: we will need
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(32) to make our calculations work; we will have to justify that the truncated FBSDE obtained
in this way satisfy HX1 and HY1.

Recalling the driver of BSDE (3), we define a family of functions fn : [0, T ]×Rm×R×Rd →
R, (ω, t, x, y, z) 7→ f(ω, t, x, y, hn(z)) and with it, the family of truncated FBSDE

Y n
t = ξ +

∫ T

t
f(s,Xs, Y

n
s , hn(Zn

s ))ds−
∫ T

t
Zn

s dWs, (40)

with ξ = g(XT ). The solution process of (3) is denoted by (Y,Z) and the solution process of
its truncated counterpart (40) by (Y n, Zn). Furthermore, we recall that in (25) (hn)n∈N was
defined as a sequence of C1 functions, and that by Theorem 2.6 we have

sup
n∈N

‖Zn ∗W‖BMO ≤ ‖Z ∗W‖BMO ≤ C < ∞.

This means that the martingales Zn ∗W,n ∈ N, satisfy the inverse Hölder inequality with the
uniform exponent r̄ (see subsection 2.3, and also Remark 4.3).

Remark 6.1. If (3) satisfies HX1 and HY1, by inspection of the hypotheses it is easy to see
that family (40) satisfies HX1 and HY1 as well. This means that the results on differentiability
in subsection 2.6 and on continuity and bounds in section 5.1 are available for the truncated
BSDE (40) as well.

Our result on the truncation error contains a parameter which arises from the inverse Hölder
inequality.

Theorem 6.2. Assume that HX1 and HY1 are satisfied, and let (Y, Z) and (Y n, Zn) be so-
lutions of (3) and (40) respectively. Then for all p ≥ 1 there exists a positive constant Cp such
that for all n ∈ N

E
[

sup
t∈[0,T ]

|Y n
t − Yt|2p

]
+ E

[( ∫ T

0
|Zn

s − Zs|2ds
)p]

≤ Cpn
− 1

2q̄2 .

The constant q̄ is the Hölder conjugate of r̄ ∈ (1,∞) which is related to the BMO martingale
Z ∗W as explained in Remark 2.7.

Proof. As usual we have to rely on an a priori estimate for the difference of original and truncated
BSDE. To this end we use the notation, methods and arguments of the proofs of Lemmas 3.1
and 3.2 (see Section 3), without repeating all the details. For

bn
t =

fn(·, t, Xt, Y
n
t , Zn

t )− f(·, t, Xt, Y
n
t , Zt)

|Zn
t − Zt|2 (Zn

t − Zt)1{Zn
t 6=Zt}, t ∈ [0, T ], n ∈ N,

the associated equivalent measure obtained after measure change by subtracting the drift related
to bn will be denoted by Qbn . The supersript will be omitted for convenience. Following the
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proof of Lemmas 3.1 and 3.2 we obtain

EQ
[

sup
0≤t≤T

|Yt − Y n
t |2p

]
+ EQ

[( ∫ T

0
|Zs − Zn

s |2ds
)p]

≤ C EQ
[( ∫ T

0
|(f(s, Y n

s , Zn
s )− f(s, Y n

s , hn(Zn
s ))|ds

)2p]

≤ C EQ
[( ∫ T

0
|M(1 + |Zn

s |+ |hn(Zn
s )|)|Zn

s − hn(Zn
s )|ds

)2p]

≤ C EQ
[( ∫ T

0
|M(1 + |Zn

s |+ |hn(Zn
s )|)2ds

)2p] 1
2EQ

[( ∫ T

0
|Zn

s − hn(Zn
s )|2ds

)2p] 1
2

≤ C EQ
[( ∫ T

0
|Zn

s − hn(Zn
s )|2ds

)2p] 1
2
.

Here we made use of the growth assumption on f stated in HY1, Hölder’s inequality and (22).
A closer look at the properties of hn reveals that for n ∈ N, s ∈ [0, T ] we have

|Zn
s − hn(Zn

s )|2 ≤ 4|Zn
s |21{|Zn

s |>n}.

The validity of HX1 and HY1 for the family of drivers used entitles us to employ the
crucial (32) of Theorem 5.3 in the following estimates. Besides, we use Jensen’s inequality,
Fubini’s Theorem and Chebyshev’s inequality, to continue the estimation of the expression in
the last line of our a priori estimate by

EQ
[( ∫ T

0
|Zn

s − hn(Zn
s )|2ds

)2p]

≤ CEQ
[( ∫ T

0
|Zn

s |4ds
)2p] 1

2EQ
[( ∫ T

0
1{|Zn

s |>n}ds
)4p] 1

2 ≤ CEQ
[( ∫ T

0
1{|Zn

s |>n}ds
)4p] 1

2

≤ CT
2k−1

2 EQ
[ ∫ T

0
1{|Zn

s |>n}ds
] 1

2 ≤ Cp,T

(∫ T

0
EQ[1{|Zn

s |>n}]ds
) 1

2

= Cp,T

(∫ T

0
Q

[{|Zn
s | > n}]ds

) 1
2 ≤ Cp,T

(∫ T

0

1
n2
EQ[ |Zn

s |2]ds
) 1

2

≤ Cp,T

n
EQ

[ ∫ T

0
|Zn

s |2ds
] 1

2 ≤ Cp,T
1
n

.

We emphasize that the constants Cp,T which may vary from line to line may depend on p and
T , but not on n. Returning to the inequality we started with we have proved so far

EQ
[

sup
t∈[0,T ]

|Yt − Y n
t |2p +

(∫ T

0
|Zs − Zn

s |2ds
)p]

≤ Cp,T n−
1
2 .

Finally using the same arguments as in the terminal part of Lemma 3.1, we are able to get rid of
the dependence on Q, and derive an inequality with respect to the original measure P by writing

E
[

sup
t∈[0,T ]

|Yt − Y n
t |2p +

(∫ T

0
|Zs − Zn

s |2ds
)p]

≤ Cpn
− 1

2q̄2 ,

with Cp a positive constant independent of n. (This argument is a little short. In particular, why
do you write q̄ instead of q̄2?)
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A Appendix

(I think in this appendix we have to give the condition v ≤ u some attention. If it is needed, we
should let it appear somehow in the hypotheses already.) In this appendix we give the technical
details left out in section 4 in the proof of second order Malliavin differentiability of the solution
processes of a BSDE the driver of which satisfies Lipschitz conditions.

The techniques we will use are not new. They are based on a Picard iteration argument. It
does not only give existence and uniqueness of solutions. It also allows to establish Malliavin
differentiability in each step for the respective approximation of the solution. By means of a
contraction argument in a suitable Sobolev norm, Malliavin smoothness is carried over to the
solution in the limit. In contrast to previous applications, here the scheme deals with an equation
that already has a Malliavin derivative as its solution.

We start with canonical coefficients that are given by an FT -measurable random variable ξ
and a measurable function f : Ω× [0, T ]× [0, T ]× R× Rd → R, such that

f(·, s, u, y, z) = au,s + bs y + 〈cs, z〉.

The coefficient functions defining this driver will be supposed to satisfy the following assump-
tions.

(A1) b : Ω× [0, T ] → R and c : Ω× [0, T ] → Rd are measurable (Ft)-adapted processes bounded
by a constant M > 0.

a : Ω × [0, T ] × [0, T ] → R satisfies sup0≤u≤T ‖au,·‖S2p< ∞ for all p ≥ 1, and for each
u ∈ [0, T ] au,· is (Ft)-adapted.

(A2) ξ is a Malliavin differentiable, FT -measurable, bounded random variable with Malliavin
derivative given by Dξ satisfying

sup
0≤u≤T

‖Duξ‖Lp< ∞, for all p ≥ 1.

(A3) au,t, bt, ct are Malliavin differentiable for all u ∈ [0, T ] and t ∈ [0, T ]. Measurable versions
of their Malliavin derivatives are respectively given by Dvau,t, Dvbt and Dvct for v ∈ [0, T ]
such that for all p ≥ 1

sup
0≤v,u≤T

E
[( ∫ T

0

[ |Dvau,s|2 + |Dvbs|2 + |Dvcs|2
]
ds

)p]
< ∞.

(A4) For all u ∈ [0, T ] Duξ is Malliavin differentiable, with second derivative given by DvDuξ, v, u ∈
[0, T ], and satisfying sup0≤u,v≤T ‖DvDuξ‖Lp < ∞ for all p ≥ 1.

Under these assumptions we consider the following backward stochastic differential equation

Uu,t = 0, Vu,t = 0, t ∈ [0, u),

Uu,t = Duξ −
∫ T

t
Vu,sdWs +

∫ T

t
f(s, u, Uu,s, Vu,s)ds, t ∈ [u, T ]. (41)

Theorem A.1. Under (A1) and (A2), the BSDE (41) has a unique solution (U, V ) in H2p×H2p

for p ≥ 1. Furthermore, if (A3) and (A4) hold, then (U, V ) is Malliavin differentiable and a
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version of {(DvUu,t, DvVu,t); 0 ≤ v ≤ u ≤ t ≤ T} satisfies for any 0 ≤ v ≤ u ≤ t ≤ T

DvUu,t = DvDuξ −
∫ T

t
DvVu,sdWs

+
∫ T

t

[
(Dvf)(s, u, Uu,s, Uu,s) +

〈∇f(s, u, Uu,s, Uu,s), (DvUu,s, DvUu,s)
〉]

ds. (42)

A version of {Vu,t; 0 ≤ u ≤ t ≤ T} is given by {DtUu,t; 0 ≤ u ≤ t ≤ T}.
Proof. For the sake of notational simplicity and clarity, we provide a proof for the case d =
1. This proof splits into two steps. In the first one, we are concerned with existence and
uniqueness of solutions for (41) using a Picard iteration. In the second step we prove Malliavin
differentiability. To this end, we show that the sequence arising in the Picard scheme is in fact
Malliavin differentiable, and by contraction that its limit must be the Malliavin derivative of
the solution process constructed in the first part.

Part i): To simplify notation we refer to Duξ as ξu if there is no ambiguity.
We have a “standard” BSDE with Lipschitz continuous driver and a smooth terminal con-

dition. The usual arguments for existence and uniqueness in this setting are well known.
We recall the Picard iteration argument of the proof of Proposition 5.3 in [EKPQ97]. Let
(U0

u,t, V
0
u,t) = (0, 0) and for k ≥ 0 define recursively the pair (Uk+1

u,t , V k+1
u,t ) as the solution of

Uk+1
u,t = Duξ −

∫ T

t
V k+1

u,s dWs +
∫ T

t
f(s, u, Uk

u,s, V
k
u,s)ds, for 0 ≤ u ≤ t ≤ T.

Under (A1) and (A2) the iteration scheme is well defined and the following moment estimates
hold for all k ∈ N and p ≥ 2 (see Proposition 2.1 in [EKPQ97]):

sup
0≤u≤T

{
‖Uk

u‖p
Sp + ‖V k

u ‖p
Hp

}

≤ C sup
0≤u≤T

{
‖Duξ‖p

Lp + ‖au,·‖p
Hp

}
< ∞. (43)

Along classical lines of argument4 of Corollary 2.1 in [EKPQ97] we obtain: (Uk, V k) → (U, V )
dP⊗ dt⊗ du a.e. as well as

lim
k→∞

sup
0≤u≤T

{
‖Uk+1

u − Uu‖S2p + ‖V k+1
u − Vu‖H2p

}
= 0, for all p ≥ 1.

Part ii): In what follows we prove that the sequence (Uk, V k)k∈N is Malliavin differentiable
and its Malliavin derivatives converge to a version of the Malliavin derivative of (U, V ). This is
done recursively, starting with the initial step. From (A3) and (A4), the differentiability of ξu

and au,t implies that for all 0 ≤ u ≤ t ≤ T the process E
[
ξu +

∫ T
t f(s, u, 0, 0)ds|Ft

] ∈ D1,2 and
hence

E
[
ξu +

∫ T

t
f(s, u, 0, 0)ds|Ft

]
= U1

u,t ∈ D1,2.

Since ξ+
∫ T
t f(s, u, 0, 0)ds−U1

u,t =
∫ T
t V 1

u,sdWs, Lemma 5.1 of [EKPQ97] implies V 1
u,t ∈ D1,2. For

the recursive step, we next show that if (Uk
u,t, V

k
u,t) ∈ D1,2, then also (Uk+1

u,t , V k+1
u,t ) ∈ D1,2. Assume

4Applying the Itô formula to eβt(Uk+1
u,t −Uk

u,t)
2, t ∈ [0, T ], one proves in the usual fashion norm contraction of

the sequence through the a priori estimates. As this argument is well known we omit it.
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that (Uk
u,t, V

k
u,t) ∈ D1,2. Since b, c ∈ D1,2, by the rules of Malliavin calculus we have E

[
ξu +∫ T

t f(s, u, Uk
u,s, V

k
u,s)ds|Ft

] ∈ D1,2 and hence Uk+1
u,t ∈ D1,2. Consequently for

∫ T
t V k+1

u,s dWs =
ξu +

∫ T
t f(s, u, Uk

u,s, V
k
u,s)ds − Uk+1

u,t again Lemma 5.1 in [EKPQ97] yields V k+1
u,t ∈ D1,2. Given

these properties we have for 0 ≤ v ≤ u ≤ t ≤ T

DvU
k+1
u,t = Dvξu −

∫ T

t
DvV

k+1
u,s dWs

+
∫ T

t

[
(Dvf)(s, u, Uk

u,s, V
k
u,s) +

〈
(∇f)(s, u, Uk

u,s, V
k
u,s), (DvU

k
u,s, DvV

k
u,s)

〉]
ds.

We continue by showing that the sequence (DvU
k
u,t, DvV

k
u,t) converges and identify its limit as

(DvUu,t, DvVu,t) which in addition is a solution of (42).
If we assume that equation (42) has a solution (DvUu, DvVu) then the usual moment esti-

mation techniques combined with the current assumptions produce

sup
0≤v,u≤T

{
‖DvUu‖S2p + ‖DvVu‖H2p

}
< ∞, p ≥ 1. (44)

Fix N ∈ N to be chosen later, fix 0 ≤ u ≤ v ≤ T , set δ = T/N and define a partition τi = iδ for
i ∈ {1, . . . , N}. Then a priori estimates yield for 0 ≤ i ≤ N − 1

Ak+1
u,v,i = ‖DvU

k+1
u −DvUu‖2

S2([τi,τi+1])
+ ‖DvV

k+1
u −DvVu‖2

H2([τi,τi+1])

≤ C
{
E

[
|DvU

k+1
u,τi+1

−DvUu,τi+1 |2
]

+ Bk
u,v,i + Ck

u,v,i

}
(45)

with

Bk
u,v,i =

∥∥ |Dvb| |Uk
u − Uu|+ |Dvc| |V k

u − Vu|
∥∥2

H2([τi,τi+1])
,

Ck
u,v,i = E

[( ∫ τi+1

τi

[
|bs| |DvU

k
u,s −DvUu,s|+ |cs| |DvV

k
u,s −DvVu,s|

]
ds

)2]
.

Since both b and c are bounded, Jensen’s inequality yields

Ck
u,v,i ≤ CδAk

u,v,i

and hence, an induction argument combined with (44), (45) and the assumptions provides

sup
0≤u,v≤T

Ak
u,v,i < ∞, for all k ≥ 0. (46)

To estimate Bk
u,v,i, note that according to (A3), sup0≤v≤T

{‖Dvb‖H2 + ‖Dvc‖H2

}
< ∞ and that

according to the first part of the proof (Uk − U, V k − V ) → 0 in Sp ×Hp. Now choose N large
enough to guarantee α = Cδ < 1. Therefore for any η > 0 one finds a K∗ ≥ 0, independent of
u, v for which

Ak+1
u,v,i ≤ CE

[
|DvU

k+1
u,τi+1

−DvUu,τi+1 |2
]

+ η + αAk
u,v,i, for k ≥ K∗.

The equation DvUu,T = DvU
k
u,T allows us to write for i = N − 1 and k ≥ K∗

sup
0≤u,v≤T

Ak
u,v,N−1 ≤ η + αk−K∗

sup
0≤u,v≤T

AK∗
u,v,N−1.
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As a consequence, (46) implies that sup0≤u,v≤T Ak
u,v,N−1 → 0 as k → ∞. One can expand

the argument and show recursively that for all 0 ≤ i ≤ N − 1 one has sup0≤u,v≤T Ak
u,v,i → 0.

Summing over i, one arrives at

sup
0≤u,v≤T

{
‖DvU

k+1
u −DvUu‖2

S2([0,T ]) + ‖DvV
k+1
u −DvVu‖2

H2([0,T ])

}
k→∞−→ 0.

The conclusion is that (Uu, Vu) are indeed Malliavin differentiable and a version of its Malliavin
derivatives is given by the limit of (DvU

k
u , DvV

k
u ).

The last statement of our theorem follows from Lemma 5.1 in [EKPQ97]. We write our
BSDE (41) for terminal time t, apply the Malliavin derivative operator, and obtain by the
quoted Lemma

DvUu,t = Vu,t −
∫ t

v
DvVu,sdWs

+
∫ t

v

[
(Dvf)(s, u, Uu,s, Uu,s) +

〈∇f(s, u, Uu,s, Uu,s), (DvUu,s, DvUu,s)
〉]

ds.

Choosing v = t leads to the desired representation.
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