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Abstract

For many fundamental cooperative cost sharing games, iafipe¢chen costs are supermod-
ular, it is known that Moulin mechanisms inevitably suffesrh poor budget balance factors.
Mehta, Roughgarden, and Sundararajan recently introcamyedic mechanismsvhich achieve
a slightly weaker notion of group-strategyproofness, bavé more flexibility to improve upon
the approximation guarantees with respect to budget baland social cost. In this paper, we
provide a very simple but powerful method for turning gmwapproximation algorithm for a
combinatorial optimization problem into@budget balanced acyclic mechanism. Hence, we
show that there is no gap between the best possible appriaimgaarantees of full-knowledge
approximation algorithms and weakly group-strategypiamst sharing mechanisms. The ap-
plicability of our method is demonstrated by deriving metdkens for scheduling and network
design problems which beat the best possible budget balaciwes of Moulin mechanisms. By
elaborating our framework, we provide means to construetkiyegroup-strategyproof mecha-
nisms with approximate social cost. The mechanisms we dp\fel completion time schedul-
ing problems perform surprisingly well by achieving thetfasnstant budget balance and social
cost factors.

Keywords: cooperative game theory, mechanism design, cost sharirmgliMmechanisms,
acyclic mechanisms, combinatorial optimization, netwaekign problems, scheduling problems.
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1 Introduction

One of the most fundamental problems in algorithmic medrmamiesign is to characterize the
trade-off between truthfulness (orcentive compatibility, efficiency, and polynomial-time com-
putability. As an example, consider a combinatorial aurctio which m indivisible items are to
be auctioned off ta players. It is well known that the VCG mechanism due to Vigkj45],
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Clarke [12], and Groves [23] is truthful and optimizes sbeialfare even in the most general
multi-parameter setting, where players may value evergiptessubset of items differently. How-
ever, no truthful mechanism that is additionally requir@d.n in polynomial time can approximate
social welfare by a factor of less thayim in general (unless NE ZPP). This result holds even
in the very restricted single-minded setting, where evéayqr is only interested in receiving a
specific subset of items. We refer the reader to [36] for metaits.

In general, the question is to which extent the additionstrigtion of polynomial-time com-
putability influences the feasibility of game-theoretigeatiives such as truthfulness, efficiency,
etc. In this paper, we address this question in the contexd@berative cost sharingNVe consider
the problem of devising truthful (direct revelation) mentsms for single-parameter cost sharing
games.

In this setting, we are given a set of players that are intedes receiving a common service,
e.g., connectivity to a network. The provision of the sesvitcurs some cost that is specified by
a (player-set dependent) cost function. Often, this casttfan is given implicitly by the optimal
solution cost of an underlying optimization problem. Foaewle, the cost of connecting a set of
players in a given network may be given by the cost of an optBteiner tree on these players.
Every player announces a bid which represents the maximica pe is willing to pay for the
service. Based on these bids, a cost sharing mechanism tweddside which players receive
the service and at what price. Each player’s personal valu&tr the service is private data only
known to the player himself. We assume that every playersicsegically in that he solely aims
for maximizing his own (quasi-linear) utility function. Asconsequence, a player may declare a
false valuation if this is advantageous to him. We consmeperativecost sharing games, i.e.,
players can form coalitions in order to coordinate theistadd collectively attempt to manipulate
the outcome of the mechanism.

We are primarily interested in mechanisms that meet theviotlg objectives (formal defini-
tions will be given in Section 2):

1. Computational efficiencyThe mechanism runs in polynomial time.

2. Truthfulness The selection and payment scheme implemented by the misahgnarantee
that it is in every player’s own self-interest to reveal hivate valuation.

3. (Approximate) budget balanc&he sum of all payments charged to the players equals the
cost to establish the service.

4. (Approximate) social cosiThe selected set of players optimizes a socially desijkctive
function.

We remark that for several natural cost sharing games, dngi¢ghe budget balance or social cost
objectives exactly is tantamount to solving NP-hard optation problems; additionally, there are
various lower bounds on their approximability in the gameottetic context. We therefore relax
these objectives and only require that they are met appeirisn

In recent years, considerable progress has been made sirdgtvuthful mechanisms for coop-
erative cost sharing games. Most notably, Moulin [34] psgtba general framework for designing
so-calledvioulin mechanismthat are truthful and (approximately) budget balanced. IMauech-
anisms realize one of the strongest notions of truthfulmeaselygroup-strategyproofneswhich
ensures that no coordinated bidding of a coalition of playam ever strictly increase the utility
of some player without strictly decreasing the utility ofoétmer player in the coalition. Basically,
a Moulin mechanism can be viewed as an iterative ascendictgpau In every round, the mecha-
nism asks every player whether he is willing to pay a certast share or not. It then removes all
players who reject their offers from the game and continudls the next round. The mechanism



halts when all remaining players accept their offer. Mosglwed that this mechanism is group-
strategyproof if the cost shares proposed by the mechamesonass-monotonid.e., the cost share
of a player does not decrease when some of the other plapeestlee game.

Most of the cost sharing mechanisms that are currently pireyén literature are Moulin mech-
anisms. Designing cross-monotonic cost shares that arexapyately budget balanced is often a
highly non-trivial task, and a lot of research in recent gdwas gone into finding such cost shares for
several different cost sharing games, including problemes &s minimum spanning tree [28, 30]
and Steiner tree [28], Steiner forest [11, 31], price-aiiigy Steiner forest [24], (connected) facil-
ity location [25, 32, 37], machine scheduling [5, 7], etc.wéwer, recent negative results showed
that for several fundamental cost sharing games, Moulirha@isms can only achieve a very poor
budget balance factor [5, 7, 27, 31, 41]; and this effect enefurther amplified if approximate
social cost is desired as additional objective [7, 11, 4], 42

Motivated by these shortcomings, Mehta, Roughgarden, amdl&arajan [33] recently in-
troduced a new class of cost sharing mechanisms callgdlic mechanisms These mecha-
nisms generalize Moulin mechanisms by slightly relaxing tiotion of truthfulness from group-
strategyproofness taweakgroup-strategyproofness. A mechanisnwisakly group-strategyproof
[13, 33] if no coordinated bidding of a coalition of playefncever strictly increase the utility of
everyplayer in the coalition. This relaxation opens new groundrtproving budget balance and
social cost approximation factors. The authors study thew framework mainly in relation to
primal-dual algorithms.

In his seminal work [34], Moulin introduced fully budget baked(generalized) incremental
mechanismsRoughly, an incremental mechanism works as follows: Itpeals in rounds; at the
beginning of every round, it fixes an order on the set of allaimimg players. According to this
order, it then asks one player after the other whether helisgvio pay the offered cost share
or not. The cost share offered to a player is simply its inenetal cost, i.e., the increase in the
cost caused by adding this player to the current set of squlaars. If a player accepts, he is
added to the set of players that receive service and is nemsidered again; otherwise, the player
is removed from the game and the mechanism continues withekieround. Moulin states that
if the underlying cost function is supermodular, esselytiahly incremental mechanisms can be
group-strategyproof and budget balanced.

1.1 Our Results

The main contributions of this paper are the following:

1. Framework to derive weakly group-strategyproof mectiasi

We provide a framework for deriving weakly group-strategpgd mechanisms for cooperative cost
sharing games from approximation algorithms. More préyisee show how g-approximation
algorithm for the underlying optimization problem of a cebfaring game can be turned into an
incrementalcost sharing mechanism thatgsbudget balanced and prove that this mechanism is
weakly group-strategyproof. The construction is very devgnd uses the approximation algorithm
as a black-box. While previously, most cost sharing mecmasiwere developed in case-by-case
studies, this is the first general framework for obtainingtcgharing mechanisms from existing
approximation algorithms, thereby exploiting the fullestgth of the latter. As a consequence,
we show that there is no gap between the best possible appati@n guarantees obtainable by
full-knowledge approximation algorithms and weakly gresipategyproof mechanisms.

We use our framework to derive weakly group-strategyproaf approximately budget bal-
anced mechanisms for several scheduling and network desigslems. Our examples include
minimum makespan and completion time scheduling problémesminimum spanning tree prob-
lem and the minimum Steiner tree problem. The results aremsnned in Table 1. A direct



Problem Incremental mechanism Moulin mechanism
P| |Cmax i-L 2[5 7]
P3G 1,2) Qn) [7]
Pl|ywC (1.21, 2.42) Q(n) [7]
1fr;, pmtri 5 C, (1,4) o) 7]
1r;,pmtri 3 F; 1 Q(n) [7]
MST 1 1* [28, 30]
Steiner tree 2 2 [28, 31]
TSP 2 2 [28]

Table 1: Results of this pap€l3, a) states the budget balang®) @nd social costd) approxima-
tion factors; all other entries refer to budget balancediagttight corresponding lower bounds are
indicated by &.

consequence of some of the results presented in this pagbet several lower bounds on the bud-
get balance factor of Moulin mechanisms can be overcome drginmental mechanisms. Given
our framework, obtaining the respective incremental meismas is (almost) trivial, while this is in
general not the case for Moulin mechanisms and acyclic nmésime (cf., e.g., the Moulin mech-
anism by Jain and Vazirani [28] and the acyclic mechanism lentsl et al. [33] for the minimum
spanning tree problem and the Steiner tree problem).

2. Method to bound approximate social cost and its applazatdb completion time scheduling

We offer refined conditions and additional proof techniqfessituations in which cooperative
cost sharing mechanisms are not only required to attaiachitte budget balance factors, but the
concern is also about social cost minimization. We presemdlitions under which our incremental
mechanisms fulfill the no positive transfer property withtie need to artificially change negative
prices to zero even when the cost function defined by the iajgarithm is not increasing. We
also provide a method to facilitate proving upper boundshensiocial cost approximation factor
of incremental mechanisms. Essentially, we identify anitaadthl weak monotonicity property,
which, if satisfied by the mechanism, allows to bound its@amst approximation factor.

We demonstrate the full power of this extended framewosq alhen social cost is concerned,
by developing weakly group-strategyproof mechanisms éongletion time scheduling problems
with and without release dates and preemption. More spaltyfiaising the three-field notation
scheme by Graham et al. [20], we achieve 1-budget balance@-@pgproximate social cost for
P||5 G, 1.21-budget balance and42-approximate social cost fé |y w,C;, and 1-budget bal-
ance and 4-approximate social cost for, omtr| 5 C,. Not only are these the first cost sharing
mechanisms to achieve constant social cost approximadictors, but they also outperform the
strong lower bound o€(n) on the budget balance factor of any Moulin mechanism for @ih
pletion time related objectives [7].

3. Implications for scheduling problems with rejection

Every mechanism which approximates social cost definesgnozimation algorithm for therice-
collectingvariant of the underlying optimization problem; in the sdhkng context, these prob-
lems are also called scheduling problenith rejection(formal definitions are given in Section 2).
As a by-product of our game-theoretic results, we therediatain constant factor approximation
algorithms for several machine scheduling problems wigcteon.



Relation to acyclic mechanismaNe show that incremental mechanisms belong to the class of
acyclic mechanisms; indeed, we first encountered theseaneshs when studying the framework
of acyclic mechanisms (see also the exposition in [8]). Waa® how in this framework, incre-
mental mechanisms can be viewed as complementary to Mogahamisms regarding the degree
of freedom that the mechanism has for ordering its price gsals to players.

1.2 Related Work

Cost Sharing Moulin [34] presented a framework that allows to obtain ketdgalanced and
group-strategyproof mechanisms for cooperative costirgh@ames from cross-monotonic cost
sharing methods (cf. also the exposition given by Moulin &hénker in [35]). Jain and Vazi-
rani [28] observed that this framework can be adapted toesehapproximate budget balance,
thereby opening the possibility to realize computatiorfiitiency additionally. Immorlica et
al. [27] were able to show that every group-strategyproatt aharing mechanism that satisfies
some additional conditions corresponds to a Moulin meamamiriven by a cross-monotonic cost
sharing method.

Intrinsically, an additional objective in cost sharingadet the mechanism choose an output set
that maximizes theocial welfare defined as the sum of valuations of all served players mimas t
servicing cost. However, classical results in economi2s4P] state that budget balance and social
welfare cannot be achieved simultaneously. Feigenbaur [@f74 showed that for the multicast
cost sharing game, these two objectives cannot even bexapated simultaneously; even if only
strategyproofness is required (i.e., in the non-coopara@iase).

As a consequence, researchers focused on either apprimgrbatiget balance or social wel-
fare. Moulin mechanisms with constant budget balance fadtave been developed for the cost
sharing variants of many classical optimization problemduding fixed tree multicast [2, 17, 18],
submodular cost sharing [35], minimum spanning tree [28, Steiner tree [28], price-collecting
Steiner tree [24], facility location [37], connected fitgilocation [25, 32, 37], Steiner forest [31],
and machine scheduling [5, 7]. On the negative side, lowands on the budget balance factor
achievable by Moulin mechanism were givenin [5, 7, 27, 31, 41

Recently, Roughgarden and Sundararajan [41] defined amatitee measure of social effi-
ciency that circumvents the intractability results in [22, 40] (at least partially). They define the
social costof an output set as the sum of valuations of excluded playlessthe servicing cost.
(Notice that a served set minimizes social cost if and onlyifiaximizes social welfare.) With
this alternative social efficiency notion, it became pdssib approximate both budget balance and
social cost simultaneously. The authors also revealedasiorlbetween the social cost approxi-
mation factor of a Moulin mechanism and a property of the dyitey cost sharing method which
they termedx-summability

Following the work of Roughgarden and Sundararajan, tniepeance of Moulin mechanisms
has also been studied with respect to social cost, e.g.t&me3 tree and forest, facility location,
single-source rent-or-buy network design and machinecsdhmgy (see [7, 11, 24, 41, 42]). How-
ever, for various problems, strong lower bounds on the buolglance and social cost approxima-
tion factors that are achievable by Moulin mechanisms ¢xjst, 11, 27, 31, 41, 42].

Driven by the limitations inherent to cross-monotonic csring methods, Mehta, Roughgar-
den, and Sundararajan [33] recently introduced a more geframework for designing truthful
cost sharing mechanisms, termacyclic mechanismsThese mechanisms implement a slightly
weaker notion of truthfulness, calledeak group-strategyproofnedsut therefore leave more flex-
ibility to improve upon the approximation guarantees wiglsgect to budget balance and social
cost. The authors demonstrate the applicability of theimiework by showing that primal-dual
approximation algorithms for several combinatorial optiation problems naturally give rise to
acyclic mechanisms that achieve attractive approximajitarantees both with respect to budget
balance and social cost.



The basic idea of acyclic mechanisms is to ask players aicptd an order chosen by the
mechanism designer whether they accept an offered cost shaot. Similar to Moulin mecha-
nisms, the crucial condition for truthfulness is that thetcghares offered to a player during the
run of the mechanism are non-decreasing. However, sinceveoy player is offered a cost share
in every round, acyclic mechanisms provide a lot more fldikjbior defining such cost shares.
Nevertheless, in order to be non-decreasing, the costshaust satisfy certain properties which
are tied to the order in which players are considered (mawldevill be given in Section 6.1), and
finding such cost shares may still be a highly non-trivial prmblem-specific task.

Independently of our work, Bleischwitz et al. [6] recentlgfihed egalitarian mechanisms,
which belong to the class of acyclic mechanisms. Egalitanig@chanisms iteratively add a most
cost efficient player set and charge each player in the sefuaal amount. The authors show how to
construct egalitarian mechanisms from approximationrétlyos that fulfill a rather strong mono-
tonicity property, requiring that the approximate solatimost cannot increase when any player's
size(e.q., its processing time) is reduced. They apply theilteprimarily to makespan schedul-
ing and bin packing problems. Bleischwitz et al. also prdwat all acyclic mechanisms aneakly
group-strategyproof against collectora notion that strengthens weak group-strategyprooftoess t
the setting where players are assumed to strictly prefaivieg service at their valuation price
over not receiving service.

Moulin [34] introduced (generalized) incremental meckars with full budget balance. He
states that if the underlying cost function is supermodelssentially only incremental mechanisms
can be group-strategyproof and budget balanced. On thelwhd, if the cost function is submod-
ular, all cross-monotonic cost sharing methods for binamand games yield group-strategyproof
mechanisms. We build on and add to Moulin’s work by consdligathe strong theory on ap-
proximation algorithms with incremental mechanisms araving weak group-strategyproofness
for the whole generality of incremental mechanisms. We ddficremental mechanisms slightly
differently than Moulin in that they accept requests in thederline cases in which a player’s bid
equals the offered price.

Scheduling The problem of scheduling independent jobs on parallel inashis well-studied
for various objective functions. We assume that the reasléamiliar with the three-field no-
tation scheme by Graham et al. [20]. The minimum makespasioreP| |Cnax is shown to be
NP-complete by Garey and Johnson [19]. Hochbaum and Shrn2éysgghave a polynomial-time
approximation scheme (PTAS) for this problem. Grahalargest processing timépT) algo-
rithm [21] is a 4/3-approximation. Lenstra proves that the minimum weigtdechpletion time
scheduling probler®| | 3; w,C, is NP-complete (see [9]). A PTAS for this problem has beeemiv
in [1]. Smith’s rule [44] schedules jobs by non-increasingight per processing time ratios and
approximates the problem by a factor%)f(1+ V/2) ~ 1.21. For unit processing times or equal
weights, Smith’s rule delivers an optimal solution. Withese dates and preemption, minimizing
the sum of (unweighted) completion time§;, pmtrj 3; C; becomes NP-hard [38]. Only the single
machine case is solved optimally by thlgortest remaining processing tirf@RpT) algorithm [43].
SRPTIs a 2-approximation algorithm for the parallel machineecd$].

In scheduling problems with rejection, the algorithm magpase to schedule only part of the
input job set at a certain penalty per omitted job. This sgttias been introduced by Bartal et
al. [4] for an online minimum makespan scheduling problemgéls et al. study the offline version
for completion time related problems [16]. They give randtad algorithms for minimizing the
weighted sum of completion times on related machines whittieae expected approximation
guarantees of 2 with and/3 without release dates, respectively. For the single maatase, they
were able to design optimal algorithms; however, their migitime is only pseudopolynomial
unless either weights or processing times are all equal.d8{ib0] gives an optimal algorithm
for the single machine case with release dates and unit gsgptimes. He also proves that the



completion time scheduling problem with rejection is NPrgbete even on a single machine if
there are release dates. Bansal et al. [3] study the onleenptive single machine case where
flow time or job idle time is concerned.

1.3 Organization of Paper

We introduce the formal definitions and notations used i pliper in Section 2. In Section 3, we
describe our general framework for constructing incremlemechanisms and give a few straight-
forward examples from the areas of scheduling and netwosigde We provide more elaborate
characterizations and a method for proving approximatékoost for incremental mechanisms
in Section 4. This method is used in Section 5 to prove coh&tadget balance and social cost
approximation factors of incremental mechanisms for fumelatal min-sum scheduling problems.
In Section 6, we draw the connection between incrementahar@ésms and acyclic mechanisms
and sketch the implications of our results in the area ofdalireg with rejection. Finally, we give
some concluding remarks in Section 7.

2 Preliminaries

2.1 Cost Sharing

A binary demand, single parameter cost sharing gameefined as follows. We are given a
universdJ of players that are interested in a common service, and duustfonC : 2V — R* that
specifies the co€1(S) to serve player s&@C U. We require tha€(0) = 0. In this paper, we assume
thatC is given implicitly by the cost of an optimal solution to andamlying cost-minimization
problemZ’. Every playeii € U has a private, non-negativaluation y and a non-negativieid b
for receiving the service.

A (direct revelation) cost sharing mechanismtékes the bid vectds := (b, );, as input and
computes a binary allocation vector= (x;);., and a payment vectq:= (p,);. Let S¥ be the
subset of players associated with the allocation vegtae.,i € SV iff X = 1. We say thas" is
the player set that receives service. We require that a basing mechanism complies with the
following two standard assumptions:

1. Individual rationality. A player is charged only if he receives service and his pantriseat
most his bid, i.e.p; =0if i ¢ M andp, < b, if i € SM.

2. No positive transferA player is not paid for receiving the service, i.p.> 0 for alli € S

In addition, the mechanism has to compute a (possibly sihaftfeasible solution to the under-
lying optimization problemz? on the player seBV. We denote the cost of the computed solution
by C(SM). A mechanisnM is B-budget balancefor somep > 1 if

CM< Yy p<B-c(SM.

ie

We assume that players act strategically and every plagedkis to maximize his own utility.
The utility u; of playeri is defined asy(x,p) := v;x;, — p;. Since the outcomé,p) computed by
the mechanisnM solely depends on the bidsof the players (and not on their true valuations),
a player may have an incentive to declare a lyidhat differs from his valuatiorv,. We say
thatM is strategyproofif bidding truthfully is a dominant strategy for every playdhat is, for
every playei € U and every two bid vectors, b’ with by = v; andb; = bj for all j # i, we have
u,(x,p) > u,(x',p'), where(x,p) and(x’,p’) are the solutions output by for bid vectorsb andb/,
respectively. In this paper, we consid®operative cost sharing gamee., we assume that players



can form coalitions in order to coordinate their bids. A matsmM is group-strategyprooff no
coordinated bidding of a coalitioh C U can ever strictly increase the utility of some playeifin
without strictly decreasing the utility of another playarT. More formally, for every coalition
T C U and every two bid vectots, b’ with b; = v, for everyi € T andb, = bj for everyi ¢ T,

u(x,p)>u(x,p) VieT = u(x,p)=u(x,p) VieT.

M is weakly group-strategyprodf no coordinated bidding can ever strictly increase thétytbf
everyplayer in the coalition. That is, for every coalitidnC U and every two bid vectois, b’ with
b, = v; for everyi € T andb; = bj for everyi ¢ T,

JieT: yKX,p) <uy(x,p).

Intuitively, by requiring weak group-strategyproofnespwe assume that players adopt a slightly
more conservative attitude with respect to their willingm@f joining a coalition: While in the
group-strategyproof setting a player only defects from aliton if he is strictly worse off, he
defects already if he is not strictly better off in the weagipup-strategyproof setting.

Thesocial cosff41] of a setSC U is defined as

N :=Cc(9+3 v
iZs
A mechanismM is said to bea-approximatefor somea > 1 if (assuming that every playére
U bids truthfully b, = v;) the social cost of the served 8 output by the mechanism satisfies

n(s") < a-n*, where
n*:= QS (C(S) + i%w)

denotes the optimal social cost.

2.2 Scheduling

Parallel Machine Scheduling In a parallel machine scheduling problem, we are given &set
of n jobs that are to be scheduled onidentical machines. Every jobe U has a non-negative
release date;r a positiveprocessing time ;p and a non-negative weight,. The release date
specifies the time when jabbecomes available for execution. The processing time tthescthe
time needed to executen one of the machines. Every machine can execute at mosbbrat a
time. In thepreemptivesetting, the execution of a job can be interrupted at anytmditime and
resumed later; in contrast, in tmen-preemptivaetting, job interruption is not permitted. In the
cost sharing variant of a scheduling problem, each job istifled with a player who wants his job
to be processed on one of the machines.

Depending on the respective scheduling applicationsethes various meaningful objective
functions for machine scheduling problems. K&tS) denote thecompletion timeof job i € S
in the schedule for the s&C U computed by a given scheduling algorithm. Among the most
common objectives are the minimization of the total weightempletion time, i.e.}; w.C;, and
the makespan, i.e., ma3, over all feasible schedules. THew time F of a job is defined as the
difference between its completion time and its release, daté; := C, —r;. We will often use the
three-field notation scheme by Graham et al. [20] to refep&xHic scheduling settings.

Scheduling with Rejection Consider an arbitrary scheduling problesd with job setU and
objective functionC. A natural variant of this problem is the following: Evenbjo € U has a
non-negativepenalty z. For every jobi € U, we now have the option to either scheduland



incur its respective contribution to the objective funnotiealue, or not to scheduleand pay its

penaltyz. More formally, the problem is to compute a subSe&t U of jobs such that the overall
costC(9) + Yigs% is minimized. We call the resulting problenseheduling problem with rejection
(Similar variants for network design problems are usualjed price-collecting in the scheduling

context with due dates, these variants are sometimes callestiuling with penaltiels

3 Incremental Mechanisms

In the following, we describe our general framework for cening approximation algorithms to
weakly group-strategyproof cost sharing mechanisms. \Wéhearesulting mechanisniscremen-
tal mechanismslue to their affinity to Moulin’s mechanisms [34]. We then Bppur framework
to several scheduling and network design problems. Our nesinlt is the following:

Theorem 1. LetALG be ap-approximate algorithm for an optimization problegd. Then, there
is a weakly group-strategyproof aqmbudget balanced cost sharing mechanism4ér

3.1 Construction and Properties

Besides the approximation algoritnG, the main ingredient for our framework is an injective
order functiont : U x 2Y — R* which defines a permutation for every subSet U by ordering
the elements irs with respect to increasing-values. For a given approximation algorithang,
let C denote the cost function induced byG, i.e.,C(S) is the cost of the solution computed by
ALG for player setSC U. Without loss of generality, we assume tlg®) = 0. In the following,
assume that we are giverpaapproximation algorithmraLG and an order functiom.

Theincremental mechanisnfALG, T) induced byaLG andt receives the bid vectdras input
and proceeds as indicated in Algorithm 1. Throughout itsetien, R refers to the set of players
that currently remain in the game, aAdienotes the set of players that have been accepted so far.
The mechanism starts with the entire playerRet U and initializesA = 0. In every iteration, it
picks the playei* from R\ A with the smallest-value, and computes its incremental approximate
cost sharep;., defined as the increase in the approximate Costhen playeri* is added toA.

If player i* accepts this cost share, he is added to theAset accepted players; otherwise, he
is removed fromR and hence rejected from the game. The mechanism contirkeethls until
eventually all remaining players have been accepted. guisitthe characteristic vectarof the
accepted playera and the corresponding paymept&vhere we implicitly sep, = 0 for alli ¢ A).

Algorithm 1: Incremental mechanisi{ALG, T) induced byaLG andT.

Input: Set of playerd) and bid vectob = (),
Output: Allocation vectorx = (x;);, and payment vectqr = (p, )y

1 Initialize A:=0,R:=U.

2 while A= Rdo

3 Among all players € R\ A, leti* be the one with minimuma(i, R).
4 Definep,. :=C(AU{i*}) —C(A).

5 if b, > p;. thensetA:=Au{i*};

6 elsesetR:= R\ {i*}.

7 end

8 Output the characteristic vectwiof A and paymentp.

It is straightforward to see that the incremental mecharnigrerits its budget balance factor
from the input approximation algorithm:



Lemma 1. The incremental mechanisrtalLG, 1) is p-budget balanced.

Proof. In every iteration of the mechanism, we hgyg , p, = G(A), since every accepted player
pays exactly the incremental approximate cost for adding thi the current seA. In particular,
this is true for the output s&". SinceALG is ap-approximation algorithm, we obtain

cS =7y p<p-CcSM,

ie
which provesp-budget balance. O

We remark that the cost shares assigned to the served pldgpend on the cost function
induced by the approximation algorithm.G and are not necessarily non-negative. Thus, an in-
cremental mechanism does not necessarily satisftywohpositive transfeproperty. However, it
is easy to verify that every approximation algorithm canureéd into an incremental mechanism
which fulfills no positive transfer by the following modesbudification: We redefine the offered
price in Line 4 asp,. := max{0,C(AU{i*}) — 5. P;}. Hence, if the incremental cost of adding
a player turns out to be negative, we simply charge the plager. This mechanism achieves
budget balance if the underlying cost function is montoree,if C(S) < C(T) forall SCT CU,
which can be shown by an inductive argument: Whenever a piaygadded to the current saf
we haveC(AU{i*}) < Yicasficy PSP -C(A) < p-C(AU{i*}). However, since all the incremental
mechanisms in this paper are derived from approximatioarélgns with non-negative marginal
costs, we adhere to our original definition.

Lemma 2. The incremental mechanisrtalLG, 1) is weakly group-strategyproof.

Proof. Fix a coalitionT C U and a bid vectob with b, = v; for all i € T. Assume for contradiction
that all members of the coalition can increase their wiitby changing their bids ti' (while
b, =bi for alli ¢ T). The runs of the incremental mechanismboendb’ are identical until the first
member ofT, say |, is offered a cost share. Since the cost share offered to @pardis only on
the setA of previously accepted players, which coincides in bottsytime utility of j is maximized
when biddingvj and cannot be influenced by other member3 ofHencej cannot increase his
utility by joining the coalition. O

Theorem 1 follows from Lemmas 1 and 2. The following examgievss that in general,
incremental mechanisms are not group-strategyproof.

Example 1. We define an instance of a cost sharing game endplayers with valuations v= 1
andy = 2. LetC({1}) = C({2}) = 1 andC({1,2}) = 3 (this cost function is e.qg. realized by the
completion time scheduling problem on one machine withprmitessing times). Latbe the offer
function which orders players by their index. The induceztémental mechanism accepts both
players and yields utilities \{v) = u,(v) = 0. Consider the forming of a coalition with bidg b- 0
and b, = 2. In this case, player 1 rejects, and sg(b) = 0 as before, but 4(b) =2—1= 1. Hence,
this coalition breaks the condition of group-strategydress.

3.2 Direct Applications

Our framework is directly applicable to the cost sharing gawf many combinatorial optimization
problems. We now state some examples from scheduling anerietiesign.

Makespan Scheduling In the minimum makespan scheduling problPhiCrmayx, a set of jobsJ
is to be scheduled on a set of identical parallel machinesitintize the latest completion time
of a job, also called the makespan. Grahalafgest processing tim@pT) algorithm is a 43-
approximation for this problem [21]LPT is alist schedulingalgorithm: it first orders the jobs,
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in this case by non-increasing processing times, and thes jahs one by one (according to this
order) to the current schedule; every new job is assigneldeartachine which currently has the
least amount of processing time assigned to it. We use Graham algorithm to obtain an
incremental mechanism which beats the corresponding lbaend of essentially 2 for Moulin
mechanisms [5]. Let-PT := M(LPT, 1) be the incremental mechanism inducedumyr and the
order functiont which sorts the jobs inPT's list scheduling order.

Corollary 1. The incremental mechanisif’™ induced by Graham’'sPT algorithm is weakly
group-strategyproof and/3-budget balanced for the makespan scheduling problE@Rx.

Non-Preemptive Completion Time Scheduling The weighted completion time scheduling
problemP| |y w.C, asks to schedule a sétof n jobs with non-negative weights; on m paral-
lel machines such that the total weighted completion timmiiimized. Smith’s list scheduling
algorithm M) [44] orders the jobs by non-increasing weight per processime ratiosw; /p; and
iteratively assigns each job to a machine with smallest to&al. It is optimal on a single machine
and(1++/2)/2 ~ 1.21-approximate in the general case [29]. In the unweighetihg, i.e., when
w:, =1 for alli € U, it reduces to thehortest processing tin@olicy and also delivers an optimal
schedule. Even in the unweighted case, no Moulin mecharasnachieve a budget balance factor
better tham/2 [7]. Using incremental mechanisms, we can heavily impnawen this. We de-
fine the incremental mechanisii! := M(swm, 1) induced by Smith’s rule and the order function
which orders all jobs in the list scheduling order.

Corollary 2. The incremental mechanisii" induced by Smith’s algorithm is weakly group-
strategyproof and budget balanced fof |} C, and 1|3 w,C,, and 1.21-budget balanced for
P> wC.

Preemptive Min-Sum Scheduling If we allow preemption and introduce a release datr
every jobi € U, theshortest remaining processing tifigRrRpPT) policy is a standard algorithm. At
any point of time SRPTexecutes thenavailable jobs with the smallest remaining processinggime
It is optimal for minimizing the sum of completion or flow timén the single-machine case with
no weights [43]. In the unweighted parallel machine cas®Tapproximates the minimum total
completion time by a factor of 2 [15]. As for all min-sum schédg problems, the lower bound
for the budget balance factor of Moulin mechanism@{s) [7]. We obtain the following strongly
superior results:

For a given subset of jol8C U, let 7(+,S) be the order induced by increasing completion times
in the srpTschedule fofS; if two jobs are completed at the same time, we assume amagbiiut
consistent tie breaking rule. LEX*"T:= | (srRPT, 7) be the incremental mechanism induced by the
SRPTalgorithm andr. We prove in Section 5 that the induced cost shares are ngatine.

Corollary 3. The incremental mechanistf"" induced by thesrpPT algorithm andt is weakly
group-strategyproof and budget balanced ¢r;, pmtri 3 F, and1|r;,pmtrj 3 C,, and2-budget bal-
anced for Br;,pmtri 3 C,.

Spanning Tree, Steiner Tree and TSP Given a connected undirected gra@h= (V,E) with
edge weightsve > O for all edges € E, the minimum spanning tree problem (MSi$)to find a
cycle free subset of edge® C E that spans all vertices @& and minimizesv(.7) := ¥ .. 5 We.

In the cost sharing setting, we identify each player with @exewhich he wishes to connect to the
network, i.e.U =V. Prim’s algorithm ¢rim) [39] solves the MST problem optimally. It proceeds
as follows: Pick an arbitrary vertexc V as starting connected component. Then iteratively pick a
minimum weight edge that connects a new vertex to the conmiameil all vertices are connected;

if there are several minimum weight edges that might be ahose assume that an arbitrary but

11



consistent tie breaking rule is used. For a suBseU of vertices, letr (-, S) be the order in which
PRIM adds the vertices to the connected component if ru8.dive definel PR := [ (PRIM, T) as
the incremental mechanism inducedd®simM and 7.

Corollary 4. The incremental mechanismiRI™ induced by Prim’s algorithm is weakly group-
strategyproof and budget balanced for the minimum spaninégproblem.

We can use Prim’s algorithm to obtain constantly budgetrizade cost sharing methods for the
Steiner tree and traveling salesman problems. Steer tree problerasks for a minimum weight
tree that spans a subset of prespecified terminal verticegrée may contain some non-terminal
vertices, calledSteiner vertices In the traveling salesman problenthe goal is to determine a
minimum weight tour through all vertices such that everyteeris visited exactly once. Both
problems admit a simple approximation algorithm that cartss a 2-approximate solution from
a minimum spanning tree. We can therefore use the cost gharathanism based on Prim’s
algorithm to obtain 2-budget balanced incremental meamasfor these problems.

Corollary 5. Prim’s algorithm yields a 2-budget balanced and weakly grstrategyproof incre-
mental mechanism for the Steiner tree problem.

Proof. Run the cost sharing mechanigvh:= I"R'™ on the set of terminals. Le¥ be the MST
computed for the final output s8¥ and letpPR'™ denote the cost share of player SV. We output
7 and charge every playee S* a cost share of, = p’*™™. The sum of the cost shares collected
equals the weight/(.7") of the MST.

Let .7* be a minimum weight Steiner tree @'. Double every edge of* to obtain an
Euler tour on the terminalSV. By traversing this Euler tour and shortcutting all Steivertices,
we obtain a spanning tre€’ on S whose weight is at most®.7*); note that we can assume
without loss of generality that the edge weights satisfy tthengle inequality. Since7 is an
optimal MST, we conclude

W(7) <W(T) < 2w(T),

which proves 2-budget balance. O

Corollary 6. Prim’s algorithm yields a 2-budget balanced and weakly grstrategyproof incre-
mental mechanism for the traveling salesman problem.

Proof. Run the cost sharing mechanigvh:= IPR'™™M on the set of vertices. Le? be the MST
computed for the final output s&¥ and letp”™™ be the cost share of playerDouble every edge
of .7 to obtain an Euler tour on the verticesS¥. By traversing this Euler tour and shortcutting
vertices that have been visited before, we obtain a trayalalesman tou’ whose weight is at
most 2v(.7). We return7’ and charge every playee S¥ a cost share o, := 2p"*™™. Note that
T ieqn P =20(7).

Let .Z7* be a minimum weight traveling salesman tour®h By deleting an arbitrary edge,
we obtain a tree spanning all verticesdh and thuswv(.7) < w(.7*). We have

w(T") <2w(.T7) <2w(.T™),
which concludes the proof. O

We remark that the budget balance factors we obtain for timénmim spanning tree, Steiner
tree, and traveling salesman problems match those of pglyi@nown cost sharing mechanisms
for these problems [28, 30, 33]. However, our incrementallmaisms stand out due to their great
simplicity.
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4  Approximating Social Cost

In Section 3, we introduced the general framework for in@etal mechanisms and emphasized
that we can use the full power of approximation algorithmslttain weakly group-strategyproof
mechanisms; we undermined this finding with some straigivied and well-studied examples.
In this section, we offer additional techniques and thécaktesults which will enhance the use
of more elaborate order functions and enable us to proveoajpate social cost of incremental
mechanisms. These characterizations will allow us to abtampletely novel and outstanding
results for several completion time scheduling problentsclvare presented in Section 5.

It is known that truthful mechanisms cannot approximateéaaost by less than logarithmic
factors for a large class of cost sharing games, in partigdhlzse which contain thpublic ex-
cludable goodoroblem, where the serving cost@$S) = 1 for every non-empty subset of players
0 +# SCU [14]. Due to their paticularly simple structure, there égigen stronger lower bounds for
incremental mechanisms on these instances (see Exampho@jever, the suffering point of all
of the above problems is the high submodularity of their émsttions, i.e. players profit from the
presence of other players. These problems are typicallysekled by cross-monotonic cost shar-
ing methods which in turn achieve reasonable (poly-lobarit) social cost approximation factors.
The class of problems where Moulin mechanisms fail are tmogesupermodular or superaddi-
tive costs, as e.g. min sum scheduling problems [7]. Thishisre incremental mechanisms come
into play. In this Section, we present not only the first suddirly budget balanced cost sharing
mechanisms for comletion time scheduling, but also the fissiymechanisms to achieve constant
social cost approximation factors in general.

4.1 No Positive Transfer

As we have mentioned, incremental mechanisms in our ofligefiition do not guarantee th®
positive transfemproperty. This property is easily seen to be fulfilled if tigut approximation
algorithm is increasing, i.eC(S) < C(T) for all SC T C U. However, a much weaker restric-
tion on the approximation algorithm suffices if we somewlatstrain the order function. This
restriction will enable us later to find clever and well-merhing combinations of algorithms and
order functions.

Consider a seS C U and order the players i according to increasing(-,S) values. Let
S=:{iy,...,ip} be the ordered set, i.et{i,,S) < 1(i;,S) forall 1 <k <| < p. We also say
S={iy,...,ip} is ordered byr. We denote by§, := {i,...,i,} C Sthe set of the first Kk < p
elements irSordered byr; we define§, := 0.

Definition 1. An order functiont : U x 2 — R is consistentif for all subsetsSC T C U,
ordered byr asS=: {i,,i,,...,ip} andT =: {j;, j,,..., Iq}, the following holds: Itk is minimal
with j, € T\ S theni, = j, forall I <k.

Figure 1 illustrates the restriction imposed by the coesisy property. The most simple exam-
ple of a consistent order function is one in which the ordexvay subset of players is induced by
a fixed global order ot .

Consider the execution of the incremental mechariémG, 1) induced byALG and a con-
sistent order functiorr. Recall thatR refers to the set of players that are currently remaining in
the game. Note that the order in which the playerR#a: {i,,..., ilR} are considered remains the
same until the first player, say, is dropped. The consistency ofnow ensures that the ordered
setsR =R\ {i, } andR agree on the firdt— 1 players; said differently, only the order of the play-
ers succeeding in R can change ifiR. Hence, the firsk— 1 players correspond to the sebf
currently accepted players. We prove this formally in thet femma.

Lemma 3. At the beginning of every iteration ofALG, T), we have I‘g\‘ =A.
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Figure 1: lllustration of the consistency property for tvetsSC T := {1,...,9}; elements belong-
ing to Sare depicted in gray. Both sets are ordered according Mote that consistency requires
thatShas to be ordered IiKE up to the first element of that is missing irs (indicated in bold).

Proof. We prove the lemma by induction on the number of iterationghe first iterationR ,, =

R, = 0 = A. For the induction step, assume tlﬁ% = A at the beginning of some iteration. Let

i* be the player that is picked in this iteration, i.e., by thduction hypothesis; is the(|A| 4 1)st
player in the order oR. Let R andA’ denote the updated sets at the end of this iteration. There
are two cases: (i) If* accepts, theiR = RandA = AU {i*}. Hence, we can conclude that

R =Rpa 1 =AU{i"} = A (i) On the other hand, if* rejects, ther\’ = AandR = R\ {i*}.
Note thati* is the first element in the order dwhich is not inR/, and so by consistency of we
haveR’lA/‘ = R\Al =A=A. O

We can use this lemma to prove that the order in which playersdded to the s during
the course of the incremental mechanigmLG, T) coincides with the order induced liyon the
final output se6".

Corollary 7. Let 9 be the set of players output byAlLG, 7). During the course of (ALG, T),
players are added to A by increasimg, S*)-values.

Proof. SupposesV is ordered byr asS* =: {iy,...,ip}. Leti be thekth player that is added t&
in the execution of (ALG, T). We need to show that=i,.

Consider the iteration in which playeis added tdA. Let RandA be the sets of remaining and
accepted players at the beginning of the iteration, resmdytand letR andA’ be the respective
sets at the end of the iteration. We h&¥e= R, A = AU{i} and|A'| =k. By Lemma 3R _; =A
andR, =R, =A'.

Note that all players ifR,_, = A are contained irs¥, so by consistency df, at least the first
k— 1 elements oB" coincide with those oR, i.e.,R,_; = ;. By the same argument, we have

R.=R. =" We conclude tha®)' \§' ; =R \ R, and thus = ,. O

Corollary 7 has an important consequence: If the cost fan€i-) of the approximation algo-
rithm ALG does not decrease as players are add& wne by one (in the order af), then the final
payments charged by the incremental mechanigma, 1) to the players ir§V are non-negative.
However, since potentially every sub&at U might be chosen as the output set, we have to require
that the approximation algorithm satisfies this propertyefcery subset of players:

Definition 2. Let ALG be ap-approximate algorithm for the underlying optimizatiomplem 2.
We say thalLG is t-increasingif for everySC U and 1< k < |§, we haveC(S) > C(S_,).

In light of the subsequent sections, it is useful to defineitlteemental (approximate) cost
share functiorf : U x 2Y — R induced byaLG andt. Let SC U be an arbitrary subset of players
ordered byr asS=: {i;,...,ip}. We define the incremental approximate cost share of playéy,
1<k < p, with respect tBasé;(S) :=C(S,) —C(S._,); we define&;(S) :=0ifi ¢ S That s, the
cost share of playarrefers to the increase in the approximate cost fundiph caused by player
i when the players it are added one by one according to the ordeNote that Definition 2 is
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equivalent to stating that for every subS&t U and every playerc S, the incremental approximate
cost shar€; (S) of playeri is non-negative.
The following theorem now follows directly from Corollaryand Definition 2.

Theorem 2. Let t be a consistent order function and letG be aTt-increasingp-approximate
algorithm for an optimization problem#. Then, the incremental mechanisfalG, 1) is a weakly
group-strategyproof an@-budget balanced cost sharing mechanismdéywhich satisfies the no
positive transfer property.

Given an approximation algorithm_G, the budget balance factor KfaLG, 1) is independent
of the order functiort used. However, the choice of the order function may very wélience
the social cost of the output solution. If the cost functidinduced byALG is increasing, i.e.,
C(9) <C(T)forall SCT CU, we can choose solely to achieve a good social cost approximation
factor. If not, the no positive transfer property restritts choice ofr to consistent offer functions
with respect to whicl\LG is increasing.

4.2 Bounding Social Cost

An important criterion for the performance of a cost sharimechanism is the social cost approxi-
mation factor incurred by its choice of the served player Bet proving a social cost approxima-
tion guarantee for a mechanidvh we need to upper bound the ratio between the social coseof th
setS¥ chosen by the mechanism and the cost of a socially optimal set

S = arggghn(C(S) + Zvi> .
= 75

In this section, we present a tool for bounding the sociat approximation factor for incremen-
tal mechanisms that fulfill a weak monotonicity property neistent of the inverse of the core

property:
Definition 3. Let & be the incremental approximate cost share function indbgean approx-

imation algorithmALG and an order functiorr. We call & weakly monotonéf for all subsets
SCTCU, 5is&(T) >C(9).

We obtain the following theorem for incremental mechaniimsimplement weakly monotone
cost share functions.

Theorem 3. Let T be a consistent order function amd G be at-increasing algorithm. Suppose
that the incremental approximate cost share funcianduced byaLG and T is weakly monotone.
Then, the incremental mechanisfLG, T) approximates social cost by a factor afif

cSMus)
C(S)+C(AN\S) —

Proof. We can bound the social cost approximation factor by

ne" (gw)+2|eg\sw |+z|¢94u9V _(gw)+zie9\9ﬂvi
n  Cc(sH+ 2iegns Vit 2iggus Vi C(Sk)+ziesM\s*Vi

(S’w)+zies*\51\4 < (-:(g\ll)—~_zies*\s'VI Vi
C(S)+ 3, gng &3 ~ C(S)+C(EN\S)

<

Here, the first inequality follows from the fact tht< 2=< for arbitrary real numbera>b>c> 0.
The second inequality holds becawse ¢ (SM) for every playet € SM, sincei accepted and we
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Figure 2: lllustration of the consistency property as usetthé proof of Theorem 3.

assume truthful bidding. The last inequality follows froreak monotonicity of and the fact that
C(S) > C(9) forevery seSCU.
We conclude the proof by showing that

<c(SMus)—c(g.
ieSH\SM

Without loss of generality, number the playersSn\ SV in the order in which they were rejected
byM,i.e.,S\ SV =:{1,...,¢}. Fixa player € S*\ S¥ and consider the iteration in which player
i was removed. LeR andA be the sets of remaining and accepted players at the begiofin
this iteration, respectively. Defif@ as the subset of players 8i U SV that were still remaining
in the game whe was picked, i.e.R :=SMU{i,i+1,...,¢}. Letk:= |A. By Lemma 3, we
haveR = A. Moreover, since is chosen, we havB, ; = AU{i}. Note thatAu {i} is a subset
of R. By the consistency of, the firstk+ 1 elements oR andR must coincide and we thus
haveAu{i} =R, ; = R ;. The same argument also yields that R, = R,; see Figure 2 for an
illustration. Therefore,

P =C(AU{i}) - C(Re:1) ~C(R) = &(R).

Sincei rejected, we have; < p; = &(R). Note thatR = RT1U{i}. Exploiting thaté is
weakly monotone, we obtain that

C(R)= 5 §R)=&R)+ 3 &(R)>&R)+CR™).

jERi jeR'*l

Summing over all € {1,...,¢} yields

~

14
v ER™) — (S US) — C(&
DINED3 ®)<3 CR ) =C(SMUs) - C(s").

O

For some cost functions, incremental mechnanisms cannekjpected to achieve attractive
social cost approximation factors. A prominent examplées public excludable good problem,
where the serving cost &(S) = 1 for every non-empty subset of playergt@5C U.

Example 2. Consider an instance of the public excludable good probleth || = n players.
Set y = 1— ¢ for an arbitrarily small constant > 0. Assuming truthful bidding, any incremental
mechanism serves the empty set, incurring a social cd3{@f ~ 0+ n = n, whereas serving the
whole set induces a social costlofU ) = 1— 0= 1. We obtain a social cost approximation factor
of n.
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5 Completion Time Scheduling

In this section, we study the performance of incrementalharisms for parallel machine schedul-
ing problems with total completion time objectives, alskirg into account their social cost ap-
proximation guarantees. We distinguish between the motlelweights in which all jobs arrive at
time zero and no preemption is allowed, and the model in wjtbk have release dates and may
be preempted.

5.1 Weighted Completion Time

We reconsider the (weighted) completion time schedulimdpi@ms introduced in Section 3.2. We
already showed that the incremental mechari®= 1 (sm, 1) induced by Smith’s rule and the of-
fer functiont defined by non-increasing weight per processing time is lyeakup-strategyproof
and achievepSV-budget balance, whegg®" is the approximation guarantee of Smith’s rule. In
this section, we show that" also achieves a surprisingly small social cost approxionafctor.

Theorem 4. The incremental mechanisit induced by Smith’s algorithm aris weakly group-
strategyproofpSM-budget balanced, an#p>-approximate for the respective (weighted) comple-
tion time scheduling problem.

We first prove the following lemma.

Lemma 4. Let ALG be an algorithm for P| 3 w.C, with cost functionC. Let X and Y be two
disjoint sets of jobs. Then, the cost of an optimal schedulX &Y can be bounded by(® UY) <
2(C(X) +C(Y)).

Proof. We prove the inequality individually for each machikke Consider the jobX C X and
Y CY scheduled oM in the runs ofaLG onX andY, respectively. We denote loythe completion
time of jobi in his respective schedule, i.e;;= C,(X) for all i € X andc; := C,(Y) foralli € Y.
Consider the schedule which processes all job$inY on M according to non-decreasig
The completion time of a jobe X in this schedule I€; 4 ¢;., wherei* denotes the last job it
that is processed beforeSincei* is processed befoligwe havec, +¢,. < 2¢,. By exchanging the
roles ofX andY, we can show the same for the completion time of everyi jol .
Since the cost of an optimal schedule %Y is at most that of the schedule produced by
repeating the above procedure for each machine, we have

CXUY)< 5 w-26 = Z(i;WiCi + i;WiCi) = 2(C(X) +C(Y)).

We can now prove Theorem 4.

Proof of Theorem 41t follows from Corollary 2 that’*™ is weakly group-strategyproof aqf"-
budget balanced. In order to obtain the social cost apprtiim guarantee, we show that the
induced cost sharing methddis weakly monotone. Consider an arbitrary sutisetU of jobs.
Note that the incremental approximate cost sl§gi®) of a playeri € Swith respect t&sequals his
completion time in the schedule output by Smith’s ruleSolt is not hard to see th& (T) > C (S

for everyi € SC T. Hence,y,; . s&(T) > 5,.5& (S = C(S). The social cost approximation factor
now follows from Lemma 4 and Theorem 3. O

The following example shows that our social cost analysisgist, even in the unweighted
single machine case.
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Example 3. Consider an instance dfip; = 1| 3 C, on an even number of n jobs with valuations
v, =iforalli € [n]. Assume that°™ orders the jobs according to increasing valuations (not th
we can easily enforce this by slightly perturbing the preteg times) and thus accepts all jobs.
Consequentlyf1(S") = C([n]) = n(n+1)/2. However, if we exclude the firsfajobs from the
scheduled set, we obtain a social cost of

c([3])+ 3 u=2 (5 (3+2)) =nin+2y4=-

yielding a social cost approximation ratio that approact2es

5.2 Completion Time with Release Dates and Preemption

For the sake of clarity, we first consider the single machaseand comment on the extension of
the results given below to the parallel machine case at t@gthis section.

Single Machine Case Consider the problem|d, pmtri 3 C; of scheduling a set of jobd on a
single machine to minimize the total completion time. Trtest remaining processing time
(srpPT) policy solves this problem to optimality [43]. Throughdhts section, we denote I (S)
the completion time of job € Sin the srRPT schedule forSC U. Note that by optimality of
SRPT, we haveC(S) = C(§) = J,.sC/(S. As in Section 3.2, we define(-,S) to be the order
induced by increasing completion times in thepTschedule, i.e.7(i,S) :=C(S) foralli € S
Let ISRPT:= | (srRPT, T) be the incremental mechanism induceds®pTandr. In this section, we
prove the following theorem.

Theorem 5. The incremental mechanisi?®"T induced bysrpPT and 1 is weakly group-
strategyproof, budget balanced, agdipproximate forl|r;,pmtr| 3 C,.

The proof of Theorem 5 relies on Lemmas 5 and 6 below. The most goes into showing
that the order functiom is consistent and thaRrpTis T-increasing. However, we defer this part of
the proof to the end of this section. Lemma 6 is used to prozadicial cost approximation factor.

Lemma 5. The order functiorr is consistent. MoreovesRPTis T-increasing.

Lemma 6. Let ALG be an algorithm for R,,pmtr 5 C; with cost functionC. Let X and Y be
two disjoint sets of jobs. Then, the cost of an optimal scleetbr XUY can be bounded by
C(XUY) <A4(C(X) +C(Y)).

Proof. Phillips et al. [38] prove that any preemptive scheduleHor, pmtn| 5 C; can be turned into
a non-preemptive schedul® with at most twice the cost. With Lemma 4, we obt&KUY) <

2(CNP(XUY)) < 4(C(X) +C(Y)). O
Assuming that Lemma 5 holds true, we can now prove Theorem 5.

Proof of Theorem 5Lemma 5 together with Theorem 1 imply th&t®F" is weakly group-
strategyproof and budget balanced. To prove th#t™ approximates social cost, we first show
thaté is weakly monotone. Fix some sétand letSC T. Consider thesrpTschedule fofT. By
removing all jobs inT \ Sfrom this schedule, we obtain a feasible scheduleSfof cost at most
YiesGi(T), hencey; .sCi(T) > C(S). Subsequently, it will become clear that the incrementat co
share;(T) of a jobi € T with respect tor is equal to its completion tim€, (T). We conclude
thaté is weakly monotone. Now, the bound on the social cost appration factor follows from
Lemma 6 and Theorem 3. O
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It remains to show that the order functioinduced by increasing completion times in P T
schedule is consistent and tts®PTis T-increasing. To this end, we study the effect of removing a
single job from thesrPTschedule. We claim the following:

Lemma 7. Let T C U. Suppose we remove an arbitrary job j from T. Define-S \ {j} as the
set of remaining jobs. Let;CS) and G(T) denote the completion times of jok iS in thesrpPT
schedules for S and T, respectively. Then

1. G(§ =C(T) for every job i€ S with G(T) < C;(T); and
2. G(S) = C;(T) for every job i€ S with G(T) > C;(T).

Suppose this lemma holds true. We can then prove thatconsistent and thaRPTis 1-
increasing:

Proof of Lemma 5We first prove consistency. L&C T C U be two subsets ordered liyas
S=:{ig,ip,...,ip} andT =: {jy,]5,...,iq}. Letk be minimal withj, € T\ S Definej:= j, to
simplify notation. By definition ofr, for every jobi = j, with 1 <| <k, we haveC(T) < G (T).
Also, for every jobi = j, with k <r < g, we haveC,(T) > G (T). Thus, by removing jolj from
T we obtain a new sef’ =T\ {j} such thatC,(T’) = C(T) for all i = j, with 1 < | <k and
C(T') > Cy(T) foralli = j, with k <r < g. Repeating the above procedure (withinstead ofT),
we eventually remove all jobs in\ Sfrom T and conclude thaf = j, forall 1 <| <k.

It remains to prove thagRPTis T-increasing. Consider an arbitrary subSet U of jobs and
supposeSis ordered byr asS=: {i,...,ip}. We need to argue th&x(S,) > C(S,_,) for every
1 <k < p. The proof is by induction ok. Fork = p the claim follows since we remove a job
j=ipwithC;(S) > C(S) foralli € S\ {j} and by Lemma 7, the completion times of all remaining
jobs remain the same. Th@%S,) —C(S, ;) = C;(S) =C;(S) = 0. Suppose the claim holds true
for all k4-1 > ¢ for some 1< ¢ < p. We show that it remains true fé« Let j =i,. We have
Ci(S) >C(9foralli € §_;. The consistency of implies thatC, (S,) > G(§) forallie § ;.
Thus, by Lemma 7, the completion times of all jabs §_ ; remain the same if we remove jgb
from thesrRPTschedule folS.. We conclude that the incremental cost share of playsexactly
its completion time, i.eC(§) —C(§,_;) =C(§) = 0. O

Intuitively, it is relatively easy to verify that Lemma 7 Il true: During the lifetime (i.e.,
between release and completion time) of jom the SRPTschedule forT, job j prevents some
jobs, call themosing jobs to be executed (because they have a larger remaining gingesne)
while some other jobs, call theminning jobs preventj from being executed (because they have a
smaller remaining processing time). Clearly, every logaighas a larger completion time thgn
while every winning job has a smaller completion time thaNow suppose we remove jgifrom
the input set and consider the resultigPTschedule. There are two crucial insights: (i) nothing
changes for the winning jobs, and (ii) wheneyewas processed in theRPT schedule fofT, a
losing job might now be processed in thePTschedule foS; however, this losing job will not be
completed before tim€;(T). See Figure 3 for an illustration.

In order to turn this intuition into a formal proof, we firsttinduce some more notation. Let
g (t) be the amount of time that has been spent on processiniguplio timet. The remaining
processingime x; (t) of job i at timet is x;(t) := p, — g(t). We call a johi activeat timet if it has
been released but not yet completed at this time rj.et < C,. LetA(t) be the set of jobs that are
active at timet. sSRPTworks as follows: At any time > 0, SRPTschedules an active jabe A(t)
with minimum remaining processing time, i.&.(t) < x,(t) for all k € A(t). We assume th&RrPT
uses a consistent tie breaking rule, e.gx (if) = x, (t) for two different jobs andk, then schedule
the one with smaller index.

Consider thesrpTschedule for a sét CU. Leti, j € At) be two jobs that are active at tinhe
We definei <, j iff either x; (t) < x;(t) orx(t) = x;(t) andi < j. Note that at any point of timg
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Figure 3: The effect of removing a single jpb= 3 from thesrPTschedule ol ={1,...,5}. The
upper part represents the input instancelfpjobs are numbered by increasing release times. The
lower part shows the twerpPTschedules fofl andS:=T \ {j}. The winning and losing jobs are
indicated in black and gray, respectively.

srRPTschedules the jobe A(t) with i <; j for all j € A(t). Thus, ifi <; j for somet, theni <,, j
for all t’ € [t,C). We therefore simply writé < j iff there exists a time with i <; j. Let o(t)
denote the job that is executed at titria the SRpTschedule foiT ; we defineo (t) = 0 if A(t) = 0.

Let j € T be an arbitrary job and consider the time interﬁrejc We define the sef of
jobs that areompetingwith j as?; :={i € T\ {j} : [r;,G)N[r;,C;) # 0}. Note that]j ¢ <. We
partition the jobs w% into a set7// of winning jobsand a setZ; of losing jobswith respect toj:
W= {ie i< i} and,iﬂj =% \Wj. Intuitively, supposéandj are both active at some tine
If i is a winning job, then preventsj from being executed bgrPT. On the other hand, ifis a
losing job, thenj preventd from being executed.

We next investigate the effect of removing a jpfrom T. We use the superscriftif we refer
to thesrpPTschedule folS:=T \ {j}.

Lemma 8. Consider the tweRPTschedules on job sets T and=ST \ {j}. For every job i€ ¢
thatis active attime € [r;,C; ),

X(t) =x(t)ifi € #; and (1) t)ifi € .2,

Proof. We partition the time interva{rj,C ) into a sequence of maximal subintervild,,, ..., I,
such that the set of active jobs remains the same within esidrintervall, := [s,,e,). We prove
by induction over that the claim holds for evetye [r;.e,).

Note that both schedules are identical up to t'lrp& ;. If a(s)) # |, then both schedules
process the same job duririg and the claim follows. Suppose(s;) = j. This implies that
A(s;)N#; = 0 and thus all jobs iM(s;) \ {j} = AS(s,) are losing jobs. IAS(s;) = 0, the claim
follows. Otherwise, lek := g5(s;) be the job that is processed in the scheduleSfoSincek is
a losing job, we haveg(s;) = X (s;) > Xj(s;). Sincek and j receive the same processing time
duringl, in their respective schedules, the claim holds fot &Il[rj,el).

Now, assume that the claim is true for every [r;,e, ;) for somel > 1. We show that
it remains true during the time intervgl. By the induction hypotheS|sgI (t) = x(t) for every
jobi € 7 that is active at time € [r;,e, ;). This implies that a job € ] is executed at time
t € [rj,e,_;) in the schedule fofl iff it is executed at timet in the schedule foS. We thus
have AS(s)) N #; = A(s,) N #;. Moreover,x(t) > x;(t) for every jobi € .#; that is active at
timet € [r;,e, ;). Sincex;(t) > 0 for everyt € [r;,C;), every jobi € .} that is active at time
t € [rj,e,_4) in the schedule folf must also be active at timiein the schedule fo§ Thus,
AS(s)) N.Z; = A(sy) N.%;. We now distinguish two cases:

(i) First, assumeo(s,) = k € WJ Jobk then has smallest remaining processing time, i.e.,
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X (s;) < x(s,) foralli € A(s,). We conclude that

XE(Se) =% (s) <x(s) = X,-S(Sg) VieA(s)NY| = AS(Sg) NY;
XQ(S,) = X(8,) < X;(5) <X, Vi € A(S) L =A%(s)N.Z,

Since we assume thaRPTuses a consistent tie breaking rule, this implies ;) = k and the
claim follows.

(i) Now, supposeo(s,) = j. (Note thato(s,) € .Z; is impossible.) Thewx;(s,) < x(s;) for
everyi € A(s,) andA(s,) N #; = 0. But then we also hawe™(s,) N #; = 0 and thusAS(s,) C ..
If AS(s,) = 0, the claim follows. Otherwise, lé&t:= 05(s,) € Z; be the job that is executed at time
s, in the schedule fo6. Sincexg(s,) > x;(s,) and the remaining processing timeskodnd j in
their respective schedules reduce by the same amount dyyrthg claim follows. O

Using Lemma 8, we can now easily prove Lemma 7.

Proof of Lemma 7 Leti € Sbe a job withC;(T) < C;(T). If i is not competing witlj, thenr; > C,
and thus removing from the schedule does not change the completion timg.ef,C,(S) =C,(T).
Otherwisej is competing withj, but sinceC; (T) >C(T), i is awinning job with respect tp. By
Lemma 8, jobi is completed at the same time in tsePT schedules folS and for T and thus
C(9=G(T).

Next, consider a job € Swith C;(T) > C;(T). The claim clearly holds if; > C;(T) since
Ci(S) = ;. Assumer; < C;(T). Theni is competing withj andi is a losing job with respect to
j. By Lemma 8, joh cannot be completed before tirﬁI?(T) in the srRpTschedule forS. Thus
Ci(9 =Cy(T). O

Parallel Machine Case The crucial insight in the single machine case is Lemma 7. Seme
property holds in the parallel machine case if we assume sistent tie breaking rule between jobs
with equal remaining processing times. Showing that themded output set is 4-approximate
proceeds exactly along the same lines as in Theorem 5 (inLfactma 6 is formulated for the mul-
tiple machine case). The only difference is teatPTproduces a schedule whose total completion
time is at most twice the optimum. We conclude with the follogvtheorem:

Theorem 6. The incremental mechanist"T induced by thesrPT algorithm andt is weakly
group-strategyprooR2-budget balanced and-approximate for f;,pmtrj 3 C,.

6 Connections to Other Frameworks

6.1 Acyclic Mechanisms

Our incremental mechanisms were motivated by and are aassbof acyclic mechanisms. In a
certain sense, they can be viewed as being complementanptdifvmechanisms in the scope
of acyclic mechanisms. In this section, we briefly reviewdleénition of acyclic mechanisms by
Mehta, Roughgarden, and Sundararajan [33] and discussioogniental mechanisms fit into their
framework.

Framework An acyclic mechanism is defined in terms af@st sharing method :U x 2V — R
and aroffer functiont, which defines for every subs8t_ U and every playere Sa non-negative
offer timet(i,S). Theacyclic mechanism (&, 1) induced by andt receives the bid vectdr as
input and proceeds as described in Algorithm 2.

For a given subs&C U and a player € S, define the following partition of the player sginto
three subsets with respect to the offer time.dfetL(i,S), E(i,S) andG(i, S) be the sets of players
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Algorithm 2: Acyclic mechanisnA(€, T) induced byé andt.

Input: Set of playerd) and bid vectob = (b;);
Output: Allocation vectorx = (X; );, and payment vectqy = (p; )y

1 Initialize S:=U.

2 if &(S) < b; for every player ie Sthen halt and output the characteristic vecxasf Sand
payment = (§(9));cy-

3 Among all players irSwith & (S) > by, leti* be one with minimunt (i, S) (breaking ties
arbitrarily).

4 SetS:= S\ {i*} and return to Step 2.

with offer timest(-,S) strictly less than, equal to, or strictly greater then S), respectively. The
following definition is crucial to achieve weak group-sagyproofness.

Definition 4. Let & andrt be a cost sharing method and an offer functiotormhe offer functionr
is valid for £ if the following two properties hold for every subse U and playei € S

(P1) &(S\T) = & (9 for every subset C G(i,S);
(P2) &(S\T) > &(S) for every subset C G(i,S) U (E(i,S)\ {i}).

_ A cost sharing method is called 3-budget balancedf for every subsetS C U we have
C(S) < 5;cséi(S < B-C(S). We summarize the main result of Mehta, Roughgarden, ane Sun
dararajan [33] in the following theorem:

Theorem 7 ([33]). Let & be aB-budget balanced cost sharing method on U andtldie an
offer function on U that is valid fo€. Then, the induced acyclic mechanisii€ &) is 3-budget
balanced and weakly group-strategyproof.

Relation to Incremental Mechanisms Our interest in incremental mechanisms was initiated by
the following simple observations. Consider the offer timt r of an acyclic mechanism. For a
given set of player§ C U, 1 dividesSinto subsets of players with equal offer times,S). We
like to think about acyclic mechanisms in terms of such maxiofayer sets with equal offer times,
and call thentlusters Depending on the size of these clusters, we can illusthetéandscape of
acyclic mechanisms as follows:

Towards one end, assume that everySetnsists of one big cluster that contains all players
in S Then, Definition 4 reduces to (P2), which is exactly eq@nalo the definition of cross-
monotonicity (cf. [34]). Hence, acyclic mechanisms withxinaum cluster size are Moulin mech-
anisms. Towards the other end, consider an acyclic meahdarsvhich all clusters are singletons,
i.e., in every sef, every player has a unique offer time. In this case, Definiiadeduces to (P1)
and once a cost share is announced to a player, it can nevaahgeax again. This is exactly the
subclass of acyclic mechanisms that we decided to study.

Following these observations, we definedler functionsto be offer functions that produce
only singleton clusters, i.e., offer functiom§, S) in which each € Sreceives a distinct offer time
with respect t&, or, in other words, that are injectiveiifior every fixedS. We studied this special
case of acyclic mechanisms and termed the cost sharing mientsthat are induced by order
functions and incremental approximate cost shaimgleton mechanisms

In this paper, we study the subclass of singleton mechariismbkich every player is charged
the incrementalcost of adding him to the current solution, iiecrementalmechanisms. It can
easily be verified that consistent order functions are Malidhe induced incremental cost sharing
methods defined in this paper. Intuitively, the reason isttiecost share of a player only depends
on the set of players that precede him in the ordear. &s a consequence, incremental mechanisms
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fulfill all properties of acyclic mechanisms, includinggeweak group-strategyproofness against
collectors which was identified by Bleischwitz et al. [6].

6.2 Scheduling with Rejection

It is easy to verify that every cost sharing mechanism that@pmates social cost by a factor
of o defines ara-approximate algorithm for the underlying optimizatioroplem with rejection.
Along with our results in mechanism design, we thereforaiokdeveral approximation algorithms
for scheduling problems with rejection.

We sketch the reduction at the example of a scheduling protdlet &2 be an arbitrary schedul-
ing problem. For every jobe U, letz be the rejection penalty for the price-collecting variangé.
We define a cost sharing game &hby identifying every player’s valuation with the penaltyro$
job, i.e.,v; :=z for all i € U. An a-approximate mechanism for this cost sharing game outputs a
served set of player8” and a feasible solution of cos{S) for this set, with social cost

c(M + %uvi <a-min (C(S)+Zvi> .
i¢ ¢S
Now, it is easy to see that the algorithm that sched@®ésand rejects all other jobs outputs an
a-approximate solution to the scheduling problem with régec
Thus, the following results are immediate consequencesiofn@chanisms presented in Sec-
tion 5.

Theorem 8. The incremental mechanisi?" induced by Smith’s rule defines2a42-approximate
algorithm for the weighted completion time scheduling peabF | w,C; with rejection, and2-
approximate algorithms for the scheduling problenis¥C; and1|| s w;C, with rejection.

Theorem 9. The incremental mechanisift"T based on thesRPTpolicy defines a 4-approximate
algorithm for the completion time scheduling problefn, bmtr| 3 C, with rejection.

7 Conclusion

We introduced singleton mechanisms as a subclass of acgelibanisms that is complementary
to Moulin mechanisms with respect to the sizechfsters i.e., maximal player sets whose order
is undetermined beforehand. Remark that in this paper, weerdrated solely on incremental
mechanisms witincremental approximate cost sharé%or this type of singleton mechanisms, we
gave a very general construction technique which allowsetrefit from the whole range of the

enormous theory on approximation algorithms.

We are confident that our proposed transformation techriguée applied for various combi-
natorial optimization problems. It would be interestings®e more examples for which social cost
can be approximated. Here, the most promising problemsrae with supermodular cost func-
tions, i.e. where congestion effects occur. Concurrettise are the problems for which Moulin
mechanisms usually perform only poorly.

Besides, we are interested in other mechanisms with somgldtisters. Stepping back to the
full generality of acyclic mechanisms, some of the mostragéng open problems are to find a
general way to construct acyclic mechanisms from appraot@malgorithms and to find a gen-
eral property for provingr-approximate social cost, alike the summability propedy ¥oulin
mechanisms.

We would like to thank the anonymous referees for helpfubgsstions and comments.
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