
Cooperative Cost Sharing via Incremental
Mechanisms∗

Janina Brenner† Guido Scḧafer‡

July 29, 2009

Abstract

For many fundamental cooperative cost sharing games, especially when costs are supermod-
ular, it is known that Moulin mechanisms inevitably suffer from poor budget balance factors.
Mehta, Roughgarden, and Sundararajan recently introducedacyclic mechanisms, which achieve
a slightly weaker notion of group-strategyproofness, but leave more flexibility to improve upon
the approximation guarantees with respect to budget balance and social cost. In this paper, we
provide a very simple but powerful method for turning anyρ-approximation algorithm for a
combinatorial optimization problem into aρ-budget balanced acyclic mechanism. Hence, we
show that there is no gap between the best possible approximation guarantees of full-knowledge
approximation algorithms and weakly group-strategyproofcost sharing mechanisms. The ap-
plicability of our method is demonstrated by deriving mechanisms for scheduling and network
design problems which beat the best possible budget balancefactors of Moulin mechanisms. By
elaborating our framework, we provide means to construct weakly group-strategyproof mecha-
nisms with approximate social cost. The mechanisms we develop for completion time schedul-
ing problems perform surprisingly well by achieving the first constant budget balance and social
cost factors.

Keywords: cooperative game theory, mechanism design, cost sharing, Moulin mechanisms,
acyclic mechanisms, combinatorial optimization, networkdesign problems, scheduling problems.

JEL Classification: C02 (Mathematical Methods), C61 (Optimization Techniques), C63 (Compu-
tational Techniques), C71 (Cooperative Games).

1 Introduction

One of the most fundamental problems in algorithmic mechanism design is to characterize the
trade-off between truthfulness (orincentive compatibility), efficiency, and polynomial-time com-
putability. As an example, consider a combinatorial auction in which m indivisible items are to
be auctioned off ton players. It is well known that the VCG mechanism due to Vickrey [45],

∗A preliminary version of this paper appeared in [8]. This work was supported by the DFG Research Center MATHEON

“Mathematics for key technologies”.
†Full postal address: Technische Universität Berlin, Fakulẗat II: Mathematik und Naturwissenschaften, Institut für Math-

ematik (MA 5-1), Straße des 17. Juni 136, 10623 Berlin, Germany. Email: brenner@math.tu-berlin.de.
‡Corresponding author. Full postal address: Centrum Wiskunde & Informatica, Algorithms, Combinatorics and Opti-

mization, Science Park 123, 1098 XG Amsterdam, The Netherlands. Email: g.schaefer@cwi.nl. Phone: +31 20 592 4257.
Fax: +31 20 592 4199.

1

Clarke [12], and Groves [23] is truthful and optimizes social welfare even in the most general
multi-parameter setting, where players may value every possible subset of items differently. How-
ever, no truthful mechanism that is additionally required to run in polynomial time can approximate
social welfare by a factor of less than

√
m in general (unless NP⊆ ZPP). This result holds even

in the very restricted single-minded setting, where every player is only interested in receiving a
specific subset of items. We refer the reader to [36] for more details.

In general, the question is to which extent the additional restriction of polynomial-time com-
putability influences the feasibility of game-theoretic objectives such as truthfulness, efficiency,
etc. In this paper, we address this question in the context ofcooperative cost sharing: We consider
the problem of devising truthful (direct revelation) mechanisms for single-parameter cost sharing
games.

In this setting, we are given a set of players that are interested in receiving a common service,
e.g., connectivity to a network. The provision of the service incurs some cost that is specified by
a (player-set dependent) cost function. Often, this cost function is given implicitly by the optimal
solution cost of an underlying optimization problem. For example, the cost of connecting a set of
players in a given network may be given by the cost of an optimal Steiner tree on these players.
Every player announces a bid which represents the maximum price he is willing to pay for the
service. Based on these bids, a cost sharing mechanism needsto decide which players receive
the service and at what price. Each player’s personal valuation for the service is private data only
known to the player himself. We assume that every player actsstrategically in that he solely aims
for maximizing his own (quasi-linear) utility function. Asa consequence, a player may declare a
false valuation if this is advantageous to him. We considercooperativecost sharing games, i.e.,
players can form coalitions in order to coordinate their bids and collectively attempt to manipulate
the outcome of the mechanism.

We are primarily interested in mechanisms that meet the following objectives (formal defini-
tions will be given in Section 2):

1. Computational efficiency: The mechanism runs in polynomial time.

2. Truthfulness: The selection and payment scheme implemented by the mechanism guarantee
that it is in every player’s own self-interest to reveal his private valuation.

3. (Approximate) budget balance: The sum of all payments charged to the players equals the
cost to establish the service.

4. (Approximate) social cost: The selected set of players optimizes a socially desirableobjective
function.

We remark that for several natural cost sharing games, achieving the budget balance or social cost
objectives exactly is tantamount to solving NP-hard optimization problems; additionally, there are
various lower bounds on their approximability in the game theoretic context. We therefore relax
these objectives and only require that they are met approximately.

In recent years, considerable progress has been made in devising truthful mechanisms for coop-
erative cost sharing games. Most notably, Moulin [34] proposed a general framework for designing
so-calledMoulin mechanismsthat are truthful and (approximately) budget balanced. Moulin mech-
anisms realize one of the strongest notions of truthfulness, namelygroup-strategyproofness, which
ensures that no coordinated bidding of a coalition of players can ever strictly increase the utility
of some player without strictly decreasing the utility of another player in the coalition. Basically,
a Moulin mechanism can be viewed as an iterative ascending auction: In every round, the mecha-
nism asks every player whether he is willing to pay a certain cost share or not. It then removes all
players who reject their offers from the game and continues with the next round. The mechanism

2

halts when all remaining players accept their offer. Moulinshowed that this mechanism is group-
strategyproof if the cost shares proposed by the mechanism arecross-monotonic, i.e., the cost share
of a player does not decrease when some of the other players leave the game.

Most of the cost sharing mechanisms that are currently prevailing in literature are Moulin mech-
anisms. Designing cross-monotonic cost shares that are approximately budget balanced is often a
highly non-trivial task, and a lot of research in recent years has gone into finding such cost shares for
several different cost sharing games, including problems such as minimum spanning tree [28, 30]
and Steiner tree [28], Steiner forest [11, 31], price-collecting Steiner forest [24], (connected) facil-
ity location [25, 32, 37], machine scheduling [5, 7], etc. However, recent negative results showed
that for several fundamental cost sharing games, Moulin mechanisms can only achieve a very poor
budget balance factor [5, 7, 27, 31, 41]; and this effect is even further amplified if approximate
social cost is desired as additional objective [7, 11, 41, 42].

Motivated by these shortcomings, Mehta, Roughgarden, and Sundararajan [33] recently in-
troduced a new class of cost sharing mechanisms calledacyclic mechanisms. These mecha-
nisms generalize Moulin mechanisms by slightly relaxing the notion of truthfulness from group-
strategyproofness toweakgroup-strategyproofness. A mechanism isweakly group-strategyproof
[13, 33] if no coordinated bidding of a coalition of players can ever strictly increase the utility of
everyplayer in the coalition. This relaxation opens new ground for improving budget balance and
social cost approximation factors. The authors study theirnew framework mainly in relation to
primal-dual algorithms.

In his seminal work [34], Moulin introduced fully budget balanced(generalized) incremental
mechanisms. Roughly, an incremental mechanism works as follows: It proceeds in rounds; at the
beginning of every round, it fixes an order on the set of all remaining players. According to this
order, it then asks one player after the other whether he is willing to pay the offered cost share
or not. The cost share offered to a player is simply its incremental cost, i.e., the increase in the
cost caused by adding this player to the current set of servedplayers. If a player accepts, he is
added to the set of players that receive service and is never considered again; otherwise, the player
is removed from the game and the mechanism continues with thenext round. Moulin states that
if the underlying cost function is supermodular, essentially only incremental mechanisms can be
group-strategyproof and budget balanced.

1.1 Our Results

The main contributions of this paper are the following:

1. Framework to derive weakly group-strategyproof mechanisms

We provide a framework for deriving weakly group-strategyproof mechanisms for cooperative cost
sharing games from approximation algorithms. More precisely, we show how aρ-approximation
algorithm for the underlying optimization problem of a costsharing game can be turned into an
incrementalcost sharing mechanism that isρ-budget balanced and prove that this mechanism is
weakly group-strategyproof. The construction is very simple and uses the approximation algorithm
as a black-box. While previously, most cost sharing mechanisms were developed in case-by-case
studies, this is the first general framework for obtaining cost sharing mechanisms from existing
approximation algorithms, thereby exploiting the full strength of the latter. As a consequence,
we show that there is no gap between the best possible approximation guarantees obtainable by
full-knowledge approximation algorithms and weakly group-strategyproof mechanisms.

We use our framework to derive weakly group-strategyproof and approximately budget bal-
anced mechanisms for several scheduling and network designproblems. Our examples include
minimum makespan and completion time scheduling problems,the minimum spanning tree prob-
lem and the minimum Steiner tree problem. The results are summarized in Table 1. A direct

3

Problem Incremental mechanism Moulin mechanism

P| |Cmax
4
3 − 1

3m 2⋆ [5, 7]
P| |∑Ci (1, 2) Ω(n) [7]

P| |∑wiCi (1.21, 2.42) Ω(n) [7]
1|r i ,pmtn|∑Ci (1, 4) Ω(n) [7]
1|r i ,pmtn|∑Fi 1 Ω(n) [7]

MST 1 1⋆ [28, 30]
Steiner tree 2 2⋆ [28, 31]

TSP 2 2 [28]

Table 1: Results of this paper.(β ,α) states the budget balance (β) and social cost (α) approxima-
tion factors; all other entries refer to budget balance factors; tight corresponding lower bounds are
indicated by a⋆.

consequence of some of the results presented in this paper isthat several lower bounds on the bud-
get balance factor of Moulin mechanisms can be overcome by incremental mechanisms. Given
our framework, obtaining the respective incremental mechanisms is (almost) trivial, while this is in
general not the case for Moulin mechanisms and acyclic mechanisms (cf., e.g., the Moulin mech-
anism by Jain and Vazirani [28] and the acyclic mechanism by Mehta et al. [33] for the minimum
spanning tree problem and the Steiner tree problem).

2. Method to bound approximate social cost and its application to completion time scheduling

We offer refined conditions and additional proof techniquesfor situations in which cooperative
cost sharing mechanisms are not only required to attain attractive budget balance factors, but the
concern is also about social cost minimization. We present conditions under which our incremental
mechanisms fulfill the no positive transfer property without the need to artificially change negative
prices to zero even when the cost function defined by the inputalgorithm is not increasing. We
also provide a method to facilitate proving upper bounds on the social cost approximation factor
of incremental mechanisms. Essentially, we identify an additional weak monotonicity property,
which, if satisfied by the mechanism, allows to bound its social cost approximation factor.

We demonstrate the full power of this extended framework, also when social cost is concerned,
by developing weakly group-strategyproof mechanisms for completion time scheduling problems
with and without release dates and preemption. More specifically, using the three-field notation
scheme by Graham et al. [20], we achieve 1-budget balance and2-approximate social cost for
P| |∑Ci , 1.21-budget balance and 2.42-approximate social cost forP| |∑wiCi , and 1-budget bal-
ance and 4-approximate social cost for 1|r i ,pmtn|∑Ci. Not only are these the first cost sharing
mechanisms to achieve constant social cost approximation factors, but they also outperform the
strong lower bound ofΩ(n) on the budget balance factor of any Moulin mechanism for all com-
pletion time related objectives [7].

3. Implications for scheduling problems with rejection

Every mechanism which approximates social cost defines an approximation algorithm for theprice-
collectingvariant of the underlying optimization problem; in the scheduling context, these prob-
lems are also called scheduling problemswith rejection(formal definitions are given in Section 2).
As a by-product of our game-theoretic results, we thereforeobtain constant factor approximation
algorithms for several machine scheduling problems with rejection.

4

Relation to acyclic mechanismsWe show that incremental mechanisms belong to the class of
acyclic mechanisms; indeed, we first encountered these mechanisms when studying the framework
of acyclic mechanisms (see also the exposition in [8]). We explain how in this framework, incre-
mental mechanisms can be viewed as complementary to Moulin mechanisms regarding the degree
of freedom that the mechanism has for ordering its price proposals to players.

1.2 Related Work

Cost Sharing Moulin [34] presented a framework that allows to obtain budget balanced and
group-strategyproof mechanisms for cooperative cost sharing games from cross-monotonic cost
sharing methods (cf. also the exposition given by Moulin andShenker in [35]). Jain and Vazi-
rani [28] observed that this framework can be adapted to achieve approximate budget balance,
thereby opening the possibility to realize computational efficiency additionally. Immorlica et
al. [27] were able to show that every group-strategyproof cost sharing mechanism that satisfies
some additional conditions corresponds to a Moulin mechanism driven by a cross-monotonic cost
sharing method.

Intrinsically, an additional objective in cost sharing is to let the mechanism choose an output set
that maximizes thesocial welfare, defined as the sum of valuations of all served players minus the
servicing cost. However, classical results in economics [22, 40] state that budget balance and social
welfare cannot be achieved simultaneously. Feigenbaum et al. [17] showed that for the multicast
cost sharing game, these two objectives cannot even be approximated simultaneously; even if only
strategyproofness is required (i.e., in the non-cooperative case).

As a consequence, researchers focused on either approximating budget balance or social wel-
fare. Moulin mechanisms with constant budget balance factors have been developed for the cost
sharing variants of many classical optimization problems,including fixed tree multicast [2, 17, 18],
submodular cost sharing [35], minimum spanning tree [28, 30], Steiner tree [28], price-collecting
Steiner tree [24], facility location [37], connected facility location [25, 32, 37], Steiner forest [31],
and machine scheduling [5, 7]. On the negative side, lower bounds on the budget balance factor
achievable by Moulin mechanism were given in [5, 7, 27, 31, 41].

Recently, Roughgarden and Sundararajan [41] defined an alternative measure of social effi-
ciency that circumvents the intractability results in [17,22, 40] (at least partially). They define the
social costof an output set as the sum of valuations of excluded players plus the servicing cost.
(Notice that a served set minimizes social cost if and only ifit maximizes social welfare.) With
this alternative social efficiency notion, it became possible to approximate both budget balance and
social cost simultaneously. The authors also revealed a relation between the social cost approxi-
mation factor of a Moulin mechanism and a property of the underlying cost sharing method which
they termedα-summability.

Following the work of Roughgarden and Sundararajan, the performance of Moulin mechanisms
has also been studied with respect to social cost, e.g., for Steiner tree and forest, facility location,
single-source rent-or-buy network design and machine scheduling (see [7, 11, 24, 41, 42]). How-
ever, for various problems, strong lower bounds on the budget balance and social cost approxima-
tion factors that are achievable by Moulin mechanisms exist[5, 7, 11, 27, 31, 41, 42].

Driven by the limitations inherent to cross-monotonic costsharing methods, Mehta, Roughgar-
den, and Sundararajan [33] recently introduced a more general framework for designing truthful
cost sharing mechanisms, termedacyclic mechanisms. These mechanisms implement a slightly
weaker notion of truthfulness, calledweak group-strategyproofness, but therefore leave more flex-
ibility to improve upon the approximation guarantees with respect to budget balance and social
cost. The authors demonstrate the applicability of their framework by showing that primal-dual
approximation algorithms for several combinatorial optimization problems naturally give rise to
acyclic mechanisms that achieve attractive approximationguarantees both with respect to budget
balance and social cost.

5

The basic idea of acyclic mechanisms is to ask players according to an order chosen by the
mechanism designer whether they accept an offered cost share or not. Similar to Moulin mecha-
nisms, the crucial condition for truthfulness is that the cost shares offered to a player during the
run of the mechanism are non-decreasing. However, since notevery player is offered a cost share
in every round, acyclic mechanisms provide a lot more flexibility for defining such cost shares.
Nevertheless, in order to be non-decreasing, the cost shares must satisfy certain properties which
are tied to the order in which players are considered (more details will be given in Section 6.1), and
finding such cost shares may still be a highly non-trivial andproblem-specific task.

Independently of our work, Bleischwitz et al. [6] recently definedegalitarian mechanisms,
which belong to the class of acyclic mechanisms. Egalitarian mechanisms iteratively add a most
cost efficient player set and charge each player in the set an equal amount. The authors show how to
construct egalitarian mechanisms from approximation algorithms that fulfill a rather strong mono-
tonicity property, requiring that the approximate solution cost cannot increase when any player’s
size(e.g., its processing time) is reduced. They apply their results primarily to makespan schedul-
ing and bin packing problems. Bleischwitz et al. also prove that all acyclic mechanisms areweakly
group-strategyproof against collectors, a notion that strengthens weak group-strategyproofness to
the setting where players are assumed to strictly prefer receiving service at their valuation price
over not receiving service.

Moulin [34] introduced (generalized) incremental mechanisms with full budget balance. He
states that if the underlying cost function is supermodular, essentially only incremental mechanisms
can be group-strategyproof and budget balanced. On the other hand, if the cost function is submod-
ular, all cross-monotonic cost sharing methods for binary demand games yield group-strategyproof
mechanisms. We build on and add to Moulin’s work by consolidating the strong theory on ap-
proximation algorithms with incremental mechanisms and proving weak group-strategyproofness
for the whole generality of incremental mechanisms. We define incremental mechanisms slightly
differently than Moulin in that they accept requests in the borderline cases in which a player’s bid
equals the offered price.

Scheduling The problem of scheduling independent jobs on parallel machines is well-studied
for various objective functions. We assume that the reader is familiar with the three-field no-
tation scheme by Graham et al. [20]. The minimum makespan version P| |Cmax is shown to be
NP-complete by Garey and Johnson [19]. Hochbaum and Shmoys [26] gave a polynomial-time
approximation scheme (PTAS) for this problem. Graham’slargest processing time(LPT) algo-
rithm [21] is a 4/3-approximation. Lenstra proves that the minimum weightedcompletion time
scheduling problemP| |∑i wiCi is NP-complete (see [9]). A PTAS for this problem has been given
in [1]. Smith’s rule [44] schedules jobs by non-increasing weight per processing time ratios and
approximates the problem by a factor of1

2 · (1+
√

2) ≈ 1.21. For unit processing times or equal
weights, Smith’s rule delivers an optimal solution. With release dates and preemption, minimizing
the sum of (unweighted) completion timesP|r i ,pmtn|∑i Ci becomes NP-hard [38]. Only the single
machine case is solved optimally by theshortest remaining processing time(SRPT) algorithm [43].
SRPTis a 2-approximation algorithm for the parallel machine case [15].

In scheduling problems with rejection, the algorithm may choose to schedule only part of the
input job set at a certain penalty per omitted job. This setting has been introduced by Bartal et
al. [4] for an online minimum makespan scheduling problem. Engels et al. study the offline version
for completion time related problems [16]. They give randomized algorithms for minimizing the
weighted sum of completion times on related machines which achieve expected approximation
guarantees of 2 with and 3/2 without release dates, respectively. For the single machine case, they
were able to design optimal algorithms; however, their running-time is only pseudopolynomial
unless either weights or processing times are all equal. Bunde [10] gives an optimal algorithm
for the single machine case with release dates and unit processing times. He also proves that the

6

completion time scheduling problem with rejection is NP-complete even on a single machine if
there are release dates. Bansal et al. [3] study the online preemptive single machine case where
flow time or job idle time is concerned.

1.3 Organization of Paper

We introduce the formal definitions and notations used in this paper in Section 2. In Section 3, we
describe our general framework for constructing incremental mechanisms and give a few straight-
forward examples from the areas of scheduling and network design. We provide more elaborate
characterizations and a method for proving approximate social cost for incremental mechanisms
in Section 4. This method is used in Section 5 to prove constant budget balance and social cost
approximation factors of incremental mechanisms for fundamental min-sum scheduling problems.
In Section 6, we draw the connection between incremental mechanisms and acyclic mechanisms
and sketch the implications of our results in the area of scheduling with rejection. Finally, we give
some concluding remarks in Section 7.

2 Preliminaries

2.1 Cost Sharing

A binary demand, single parameter cost sharing gameis defined as follows. We are given a
universeU of players that are interested in a common service, and a costfunctionC : 2U →R

+ that
specifies the costC(S) to serve player setS⊆U . We require thatC(/0) = 0. In this paper, we assume
thatC is given implicitly by the cost of an optimal solution to an underlying cost-minimization
problemP. Every playeri ∈U has a private, non-negativevaluation vi and a non-negativebid bi
for receiving the service.

A (direct revelation) cost sharing mechanism Mtakes the bid vectorb := (bi)i∈U as input and
computes a binary allocation vectorx := (xi)i∈U and a payment vectorp := (pi)i∈U . Let SM be the
subset of players associated with the allocation vectorx, i.e., i ∈ SM iff xi = 1. We say thatSM is
the player set that receives service. We require that a cost sharing mechanism complies with the
following two standard assumptions:

1. Individual rationality: A player is charged only if he receives service and his payment is at
most his bid, i.e.,pi = 0 if i /∈ SM andpi ≤ bi if i ∈ SM.

2. No positive transfer: A player is not paid for receiving the service, i.e.,pi ≥ 0 for all i ∈ SM.

In addition, the mechanism has to compute a (possibly suboptimal) feasible solution to the under-
lying optimization problemP on the player setSM. We denote the cost of the computed solution
by C̄(SM). A mechanismM is β -budget balancedfor someβ ≥ 1 if

C̄(SM) ≤ ∑
i∈SM

pi ≤ β ·C(SM).

We assume that players act strategically and every player’sgoal is to maximize his own utility.
Theutility ui of playeri is defined asui(x,p) := vixi − pi . Since the outcome(x,p) computed by
the mechanismM solely depends on the bidsb of the players (and not on their true valuations),
a player may have an incentive to declare a bidbi that differs from his valuationvi . We say
that M is strategyproofif bidding truthfully is a dominant strategy for every player. That is, for
every playeri ∈ U and every two bid vectorsb,b′ with bi = vi andb j = b′j for all j 6= i, we have
ui(x,p) ≥ ui(x

′,p′), where(x,p) and(x′,p′) are the solutions output byM for bid vectorsb andb′,
respectively. In this paper, we considercooperative cost sharing games, i.e., we assume that players

7

can form coalitions in order to coordinate their bids. A mechanismM is group-strategyproofif no
coordinated bidding of a coalitionT ⊆U can ever strictly increase the utility of some player inT
without strictly decreasing the utility of another player in T. More formally, for every coalition
T ⊆U and every two bid vectorsb,b′ with bi = vi for everyi ∈ T andbi = b′i for everyi /∈ T,

ui(x
′,p′) ≥ ui(x,p) ∀i ∈ T =⇒ ui(x

′,p′) = ui(x,p) ∀i ∈ T.

M is weakly group-strategyproofif no coordinated bidding can ever strictly increase the utility of
everyplayer in the coalition. That is, for every coalitionT ⊆U and every two bid vectorsb,b′ with
bi = vi for everyi ∈ T andbi = b′i for everyi /∈ T,

∃i ∈ T : ui(x
′,p′) ≤ ui(x,p).

Intuitively, by requiring weak group-strategyproofness only, we assume that players adopt a slightly
more conservative attitude with respect to their willingness of joining a coalition: While in the
group-strategyproof setting a player only defects from a coalition if he is strictly worse off, he
defects already if he is not strictly better off in the weaklygroup-strategyproof setting.

Thesocial cost[41] of a setS⊆U is defined as

Π(S) := C̄(S)+∑
i /∈S

vi .

A mechanismM is said to beα-approximatefor someα ≥ 1 if (assuming that every playeri ∈
U bids truthfully bi = vi) the social cost of the served setSM output by the mechanism satisfies
Π(SM) ≤ α ·Π∗, where

Π∗ := min
S⊆U

(

C(S)+∑
i /∈S

vi

)

denotes the optimal social cost.

2.2 Scheduling

Parallel Machine Scheduling In a parallel machine scheduling problem, we are given a setU
of n jobs that are to be scheduled onm identical machines. Every jobi ∈ U has a non-negative
release date ri , a positiveprocessing time pi , and a non-negative weightwi . The release date
specifies the time when jobi becomes available for execution. The processing time describes the
time needed to executei on one of the machines. Every machine can execute at most one job at a
time. In thepreemptivesetting, the execution of a job can be interrupted at any point of time and
resumed later; in contrast, in thenon-preemptivesetting, job interruption is not permitted. In the
cost sharing variant of a scheduling problem, each job is identified with a player who wants his job
to be processed on one of the machines.

Depending on the respective scheduling applications, there are various meaningful objective
functions for machine scheduling problems. LetCi(S) denote thecompletion timeof job i ∈ S
in the schedule for the setS⊆ U computed by a given scheduling algorithm. Among the most
common objectives are the minimization of the total weighted completion time, i.e.,∑i wiCi, and
the makespan, i.e., maxi Ci , over all feasible schedules. Theflow time Fi of a job is defined as the
difference between its completion time and its release date, i.e.Fi := Ci − r i . We will often use the
three-field notation scheme by Graham et al. [20] to refer to specific scheduling settings.

Scheduling with Rejection Consider an arbitrary scheduling problemP with job setU and
objective functionC. A natural variant of this problem is the following: Every job i ∈ U has a
non-negativepenalty zi . For every jobi ∈ U , we now have the option to either schedulei and

8

incur its respective contribution to the objective function value, or not to schedulei and pay its
penaltyzi . More formally, the problem is to compute a subsetS⊆U of jobs such that the overall
costC(S)+∑i /∈Szi is minimized. We call the resulting problem ascheduling problem with rejection.
(Similar variants for network design problems are usually calledprice-collecting; in the scheduling
context with due dates, these variants are sometimes calledscheduling with penalties.)

3 Incremental Mechanisms

In the following, we describe our general framework for converting approximation algorithms to
weakly group-strategyproof cost sharing mechanisms. We call the resulting mechanismsincremen-
tal mechanismsdue to their affinity to Moulin’s mechanisms [34]. We then apply our framework
to several scheduling and network design problems. Our mainresult is the following:

Theorem 1. Let ALG be aρ-approximate algorithm for an optimization problemP. Then, there
is a weakly group-strategyproof andρ-budget balanced cost sharing mechanism forP.

3.1 Construction and Properties

Besides the approximation algorithmALG, the main ingredient for our framework is an injective
order functionτ : U ×2U → R

+ which defines a permutation for every subsetS⊆ U by ordering
the elements inSwith respect to increasingτ-values. For a given approximation algorithmALG,
let C̄ denote the cost function induced byALG, i.e.,C̄(S) is the cost of the solution computed by
ALG for player setS⊆U . Without loss of generality, we assume thatC̄(/0) = 0. In the following,
assume that we are given aρ-approximation algorithmALG and an order functionτ .

The incremental mechanism I(ALG,τ) induced byALG andτ receives the bid vectorb as input
and proceeds as indicated in Algorithm 1. Throughout its execution,R refers to the set of players
that currently remain in the game, andA denotes the set of players that have been accepted so far.
The mechanism starts with the entire player setR= U and initializesA = /0. In every iteration, it
picks the playeri∗ from R\A with the smallestτ-value, and computes its incremental approximate
cost sharepi∗ , defined as the increase in the approximate costC̄ when playeri∗ is added toA.
If player i∗ accepts this cost share, he is added to the setA of accepted players; otherwise, he
is removed fromR and hence rejected from the game. The mechanism continues like this until
eventually all remaining players have been accepted. It outputs the characteristic vectorx of the
accepted playersA and the corresponding paymentsp (where we implicitly setpi = 0 for all i /∈ A).

Algorithm 1 : Incremental mechanismI(ALG,τ) induced byALG andτ .

Input : Set of playersU and bid vectorb = (bi)i∈U
Output : Allocation vectorx = (xi)i∈U and payment vectorp = (pi)i∈U

Initialize A := /0, R := U .1

while A 6= R do2

Among all playersi ∈ R\A, let i∗ be the one with minimumτ(i,R).3

Definepi∗ := C̄(A∪{i∗})−C̄(A).4

if bi∗ ≥ pi∗ then setA := A∪{i∗};5

elsesetR := R\{i∗}.6

end7

Output the characteristic vectorx of A and paymentsp.8

It is straightforward to see that the incremental mechanisminherits its budget balance factor
from the input approximation algorithm:

9

Lemma 1. The incremental mechanism I(ALG,τ) is ρ-budget balanced.

Proof. In every iteration of the mechanism, we have∑i∈A pi = C̄(A), since every accepted player
pays exactly the incremental approximate cost for adding him to the current setA. In particular,
this is true for the output setSM. SinceALG is aρ-approximation algorithm, we obtain

C(SM) = ∑
i∈SM

pi ≤ ρ ·C(SM),

which provesρ-budget balance.

We remark that the cost shares assigned to the served playersdepend on the cost function
induced by the approximation algorithmALG and are not necessarily non-negative. Thus, an in-
cremental mechanism does not necessarily satisfy theno positive transferproperty. However, it
is easy to verify that every approximation algorithm can be turned into an incremental mechanism
which fulfills no positive transfer by the following modest modification: We redefine the offered
price in Line 4 aspi∗ := max{0,C̄(A∪{i∗})−∑i∈A pi}. Hence, if the incremental cost of adding
a player turns out to be negative, we simply charge the playerzero. This mechanism achievesρ-
budget balance if the underlying cost function is montone, i.e. if C(S) ≤C(T) for all S⊆ T ⊆U ,
which can be shown by an inductive argument: Whenever a player i∗ is added to the current setA,
we haveC̄(A∪{i∗})≤ ∑i∈A∪{i∗} pi ≤ ρ ·C(A)≤ ρ ·C(A∪{i∗}). However, since all the incremental
mechanisms in this paper are derived from approximation algorithms with non-negative marginal
costs, we adhere to our original definition.

Lemma 2. The incremental mechanism I(ALG,τ) is weakly group-strategyproof.

Proof. Fix a coalitionT ⊆U and a bid vectorb with bi = vi for all i ∈ T. Assume for contradiction
that all members of the coalition can increase their utilities by changing their bids tob′ (while
bi = b′i for all i /∈ T). The runs of the incremental mechanism onb andb′ are identical until the first
member ofT, say j, is offered a cost share. Since the cost share offered to him depends only on
the setA of previously accepted players, which coincides in both runs, the utility of j is maximized
when biddingv j and cannot be influenced by other members ofT. Hence j cannot increase his
utility by joining the coalition.

Theorem 1 follows from Lemmas 1 and 2. The following example shows that in general,
incremental mechanisms are not group-strategyproof.

Example 1. We define an instance of a cost sharing game on n= 2 players with valuations v1 = 1
and v2 = 2. LetC̄({1}) = C̄({2}) = 1 andC̄({1,2}) = 3 (this cost function is e.g. realized by the
completion time scheduling problem on one machine with unitprocessing times). Letτ be the offer
function which orders players by their index. The induced incremental mechanism accepts both
players and yields utilities u1(v) = u2(v) = 0. Consider the forming of a coalition with bids b1 = 0
and b2 = 2. In this case, player 1 rejects, and so u1(b) = 0 as before, but u2(b) = 2−1= 1. Hence,
this coalition breaks the condition of group-strategyproofness.

3.2 Direct Applications

Our framework is directly applicable to the cost sharing games of many combinatorial optimization
problems. We now state some examples from scheduling and network design.

Makespan Scheduling In the minimum makespan scheduling problemP| |Cmax, a set of jobsU
is to be scheduled on a set of identical parallel machines to minimize the latest completion time
of a job, also called the makespan. Graham’slargest processing time(LPT) algorithm is a 4/3-
approximation for this problem [21].LPT is a list schedulingalgorithm: it first orders the jobs,

10

in this case by non-increasing processing times, and then adds jobs one by one (according to this
order) to the current schedule; every new job is assigned to the machine which currently has the
least amount of processing time assigned to it. We use Graham’s LPT algorithm to obtain an
incremental mechanism which beats the corresponding lowerbound of essentially 2 for Moulin
mechanisms [5]. LetILPT := M(LPT,τ) be the incremental mechanism induced byLPT and the
order functionτ which sorts the jobs inLPT’s list scheduling order.

Corollary 1. The incremental mechanismILPT induced by Graham’sLPT algorithm is weakly
group-strategyproof and4/3-budget balanced for the makespan scheduling problem P| |Cmax.

Non-Preemptive Completion Time Scheduling The weighted completion time scheduling
problemP| |∑wiCi asks to schedule a setU of n jobs with non-negative weightswi on m paral-
lel machines such that the total weighted completion time isminimized. Smith’s list scheduling
algorithm (SM) [44] orders the jobs by non-increasing weight per processing time ratioswi/pi and
iteratively assigns each job to a machine with smallest total load. It is optimal on a single machine
and(1+

√
2)/2≈ 1.21-approximate in the general case [29]. In the unweighted setting, i.e., when

wi = 1 for all i ∈U , it reduces to theshortest processing timepolicy and also delivers an optimal
schedule. Even in the unweighted case, no Moulin mechanism can achieve a budget balance factor
better thann/2 [7]. Using incremental mechanisms, we can heavily improveupon this. We de-
fine the incremental mechanismISM := M(SM,τ) induced by Smith’s rule and the order functionτ
which orders all jobs in the list scheduling order.

Corollary 2. The incremental mechanismISM induced by Smith’s algorithm is weakly group-
strategyproof and budget balanced for P| |∑Ci and 1| |∑wiCi, and 1.21-budget balanced for
P| |∑wiCi .

Preemptive Min-Sum Scheduling If we allow preemption and introduce a release dater i for
every jobi ∈U , theshortest remaining processing time(SRPT) policy is a standard algorithm. At
any point of time,SRPTexecutes themavailable jobs with the smallest remaining processing times.
It is optimal for minimizing the sum of completion or flow times in the single-machine case with
no weights [43]. In the unweighted parallel machine case,SRPTapproximates the minimum total
completion time by a factor of 2 [15]. As for all min-sum scheduling problems, the lower bound
for the budget balance factor of Moulin mechanisms isΩ(n) [7]. We obtain the following strongly
superior results:

For a given subset of jobsS⊆U , letτ(·,S) be the order induced by increasing completion times
in theSRPTschedule forS; if two jobs are completed at the same time, we assume an arbitrary but
consistent tie breaking rule. LetISRPT := I(SRPT,τ) be the incremental mechanism induced by the
SRPTalgorithm andτ . We prove in Section 5 that the induced cost shares are non-negative.

Corollary 3. The incremental mechanismISRPT induced by theSRPT algorithm andτ is weakly
group-strategyproof and budget balanced for1|r i ,pmtn|∑Fi and1|r i ,pmtn|∑Ci, and2-budget bal-
anced for P|r i ,pmtn|∑Ci .

Spanning Tree, Steiner Tree and TSP Given a connected undirected graphG = (V,E) with
edge weightswe ≥ 0 for all edgese∈ E, theminimum spanning tree problem (MST)is to find a
cycle free subset of edgesT ⊆ E that spans all vertices ofG and minimizesw(T) := ∑e∈T

we.
In the cost sharing setting, we identify each player with a vertex which he wishes to connect to the
network, i.e.,U = V. Prim’s algorithm (PRIM) [39] solves the MST problem optimally. It proceeds
as follows: Pick an arbitrary vertexv∈V as starting connected component. Then iteratively pick a
minimum weight edge that connects a new vertex to the component until all vertices are connected;
if there are several minimum weight edges that might be chosen, we assume that an arbitrary but

11

consistent tie breaking rule is used. For a subsetS⊆U of vertices, letτ(·,S) be the order in which
PRIM adds the vertices to the connected component if run onS. We defineI PRIM := I(PRIM,τ) as
the incremental mechanism induced byPRIM and τ .

Corollary 4. The incremental mechanism IPRIM induced by Prim’s algorithm is weakly group-
strategyproof and budget balanced for the minimum spanningtree problem.

We can use Prim’s algorithm to obtain constantly budget balanced cost sharing methods for the
Steiner tree and traveling salesman problems. TheSteiner tree problemasks for a minimum weight
tree that spans a subset of prespecified terminal vertices; the tree may contain some non-terminal
vertices, calledSteiner vertices. In the traveling salesman problem, the goal is to determine a
minimum weight tour through all vertices such that every vertex is visited exactly once. Both
problems admit a simple approximation algorithm that constructs a 2-approximate solution from
a minimum spanning tree. We can therefore use the cost sharing mechanism based on Prim’s
algorithm to obtain 2-budget balanced incremental mechanisms for these problems.

Corollary 5. Prim’s algorithm yields a 2-budget balanced and weakly group-strategyproof incre-
mental mechanism for the Steiner tree problem.

Proof. Run the cost sharing mechanismM := I PRIM on the set of terminals. LetT be the MST
computed for the final output setSM and letpPRIM

i denote the cost share of playeri ∈SM. We output
T and charge every playeri ∈ SM a cost share ofpi = pPRIM

i . The sum of the cost shares collected
equals the weightw(T) of the MST.

Let T ∗ be a minimum weight Steiner tree onSM. Double every edge ofT ∗ to obtain an
Euler tour on the terminalsSM. By traversing this Euler tour and shortcutting all Steinervertices,
we obtain a spanning treeT ′ on SM whose weight is at most 2w(T ∗); note that we can assume
without loss of generality that the edge weights satisfy thetriangle inequality. SinceT is an
optimal MST, we conclude

w(T) ≤ w(T ′) ≤ 2w(T ∗),

which proves 2-budget balance.

Corollary 6. Prim’s algorithm yields a 2-budget balanced and weakly group-strategyproof incre-
mental mechanism for the traveling salesman problem.

Proof. Run the cost sharing mechanismM := I PRIM on the set of vertices. LetT be the MST
computed for the final output setSM and letpPRIM

i be the cost share of playeri. Double every edge
of T to obtain an Euler tour on the vertices inSM. By traversing this Euler tour and shortcutting
vertices that have been visited before, we obtain a traveling salesman tourT ′ whose weight is at
most 2w(T). We returnT ′ and charge every playeri ∈ SM a cost share ofpi := 2pPRIM

i . Note that
∑i∈SM pi = 2w(T).

Let T ∗ be a minimum weight traveling salesman tour onSM. By deleting an arbitrary edge,
we obtain a tree spanning all vertices inSM and thusw(T) ≤ w(T ∗). We have

w(T ′) ≤ 2w(T) ≤ 2w(T ∗),

which concludes the proof.

We remark that the budget balance factors we obtain for the minimum spanning tree, Steiner
tree, and traveling salesman problems match those of previously known cost sharing mechanisms
for these problems [28, 30, 33]. However, our incremental mechanisms stand out due to their great
simplicity.

12

4 Approximating Social Cost

In Section 3, we introduced the general framework for incremental mechanisms and emphasized
that we can use the full power of approximation algorithms toobtain weakly group-strategyproof
mechanisms; we undermined this finding with some straightforward and well-studied examples.
In this section, we offer additional techniques and theoretical results which will enhance the use
of more elaborate order functions and enable us to prove approximate social cost of incremental
mechanisms. These characterizations will allow us to obtain completely novel and outstanding
results for several completion time scheduling problems, which are presented in Section 5.

It is known that truthful mechanisms cannot approximate social cost by less than logarithmic
factors for a large class of cost sharing games, in particular those which contain thepublic ex-
cludable goodproblem, where the serving cost isC(S) = 1 for every non-empty subset of players
/0 6= S⊆U [14]. Due to their paticularly simple structure, there exist even stronger lower bounds for
incremental mechanisms on these instances (see Example 2).However, the suffering point of all
of the above problems is the high submodularity of their costfunctions, i.e. players profit from the
presence of other players. These problems are typically well solved by cross-monotonic cost shar-
ing methods which in turn achieve reasonable (poly-logarithmic) social cost approximation factors.
The class of problems where Moulin mechanisms fail are thosewith supermodular or superaddi-
tive costs, as e.g. min sum scheduling problems [7]. This is where incremental mechanisms come
into play. In this Section, we present not only the first sublinearly budget balanced cost sharing
mechanisms for comletion time scheduling, but also the veryfirst mechanisms to achieve constant
social cost approximation factors in general.

4.1 No Positive Transfer

As we have mentioned, incremental mechanisms in our original definition do not guarantee theno
positive transferproperty. This property is easily seen to be fulfilled if the input approximation
algorithm is increasing, i.e.,̄C(S) ≤ C̄(T) for all S⊆ T ⊆ U . However, a much weaker restric-
tion on the approximation algorithm suffices if we somewhat constrain the order functionτ . This
restriction will enable us later to find clever and well-performing combinations of algorithms and
order functions.

Consider a setS⊆ U and order the players inS according to increasingτ(·,S) values. Let
S=: {i1, . . . , ip} be the ordered set, i.e.,τ(ik,S) < τ(i l ,S) for all 1 ≤ k < l ≤ p. We also say
S= {i1, . . . , ip} is ordered byτ . We denote bySk := {i1, . . . , ik} ⊆ S the set of the first 1≤ k ≤ p
elements inSordered byτ ; we defineS0 := /0.

Definition 1. An order functionτ : U × 2U → R
+ is consistentif for all subsetsS⊆ T ⊆ U ,

ordered byτ asS=: {i1, i2, . . . , ip} andT =: { j1, j2, . . . , jq}, the following holds: Ifk is minimal
with jk ∈ T \S, theni l = j l for all l < k.

Figure 1 illustrates the restriction imposed by the consistency property. The most simple exam-
ple of a consistent order function is one in which the order ofevery subset of players is induced by
a fixed global order onU .

Consider the execution of the incremental mechanismI(ALG,τ) induced byALG and a con-
sistent order functionτ . Recall thatR refers to the set of players that are currently remaining in
the game. Note that the order in which the players inR=: {i1, . . . , i|R|} are considered remains the
same until the first player, sayik, is dropped. The consistency ofτ now ensures that the ordered
setsR′ = R\{ik} andR agree on the firstk−1 players; said differently, only the order of the play-
ers succeedingik in R can change inR′. Hence, the firstk−1 players correspond to the setA of
currently accepted players. We prove this formally in the next lemma.

Lemma 3. At the beginning of every iteration of I(ALG,τ), we have R|A| = A.

13

T 1 2 3 4 5 6 7 8 9

S 1 2 3 4 7 9 6

Figure 1: Illustration of the consistency property for two setsS⊆ T := {1, . . . ,9}; elements belong-
ing to Sare depicted in gray. Both sets are ordered according toτ . Note that consistency requires
thatShas to be ordered likeT up to the first element ofT that is missing inS(indicated in bold).

Proof. We prove the lemma by induction on the number of iterations. In the first iteration,R|A| =
R0 = /0 = A. For the induction step, assume thatR|A| = A at the beginning of some iteration. Let

i∗ be the player that is picked in this iteration, i.e., by the induction hypothesis,i∗ is the(|A|+1)st
player in the order onR. Let R′ andA′ denote the updated sets at the end of this iteration. There
are two cases: (i) Ifi∗ accepts, thenR′ = R and A′ = A∪ {i∗}. Hence, we can conclude that
R′
|A′| = R|A|+1 = A∪{i∗} = A′. (ii) On the other hand, ifi∗ rejects, thenA′ = A andR′ = R\ {i∗}.

Note thati∗ is the first element in the order onR which is not inR′, and so by consistency ofτ , we
haveR′

|A′| = R|A| = A = A′.

We can use this lemma to prove that the order in which players are added to the setA during
the course of the incremental mechanismI(ALG,τ) coincides with the order induced byτ on the
final output setSM.

Corollary 7. Let SM be the set of players output by I(ALG,τ). During the course of I(ALG,τ),
players are added to A by increasingτ(·,SM)-values.

Proof. SupposeSM is ordered byτ asSM =: {i1, . . . , ip}. Let i be thekth player that is added toA
in the execution ofI(ALG,τ). We need to show thati = ik.

Consider the iteration in which playeri is added toA. Let RandA be the sets of remaining and
accepted players at the beginning of the iteration, respectively, and letR′ andA′ be the respective
sets at the end of the iteration. We haveR′ = R, A′ = A∪{i} and|A′| = k. By Lemma 3,Rk−1 = A
andR′

k = Rk = A′.
Note that all players inRk−1 = A are contained inSM, so by consistency ofτ , at least the first

k−1 elements ofSM coincide with those ofR, i.e.,Rk−1 = SM
k−1. By the same argument, we have

R′
k = Rk = SM

k . We conclude thatSM
k \SM

k−1 = Rk \Rk−1 and thusi = ik.

Corollary 7 has an important consequence: If the cost functionC̄(·) of the approximation algo-
rithm ALG does not decrease as players are added toSM one by one (in the order ofτ), then the final
payments charged by the incremental mechanismI(ALG,τ) to the players inSM are non-negative.
However, since potentially every subsetS⊆U might be chosen as the output set, we have to require
that the approximation algorithm satisfies this property for every subset of players:

Definition 2. Let ALG be aρ-approximate algorithm for the underlying optimization problemP.
We say thatALG is τ-increasingif for everyS⊆U and 1≤ k≤ |S|, we haveC̄(Sk) ≥ C̄(Sk−1).

In light of the subsequent sections, it is useful to define theincremental (approximate) cost
share functionξ : U ×2U → R induced byALG andτ . Let S⊆U be an arbitrary subset of players
ordered byτ asS=: {i1, . . . , ip}. We define the incremental approximate cost share of playeri = ik,
1≤ k≤ p, with respect toSasξi(S) := C̄(Sk)−C̄(Sk−1); we defineξi(S) := 0 if i /∈ S. That is, the
cost share of playeri refers to the increase in the approximate cost functionC̄(·) caused by player
i when the players inS are added one by one according to the orderτ . Note that Definition 2 is

14

equivalent to stating that for every subsetS⊆U and every playeri ∈S, the incremental approximate
cost shareξi(S) of playeri is non-negative.

The following theorem now follows directly from Corollary 7and Definition 2.

Theorem 2. Let τ be a consistent order function and letALG be aτ-increasingρ-approximate
algorithm for an optimization problemP. Then, the incremental mechanism I(ALG,τ) is a weakly
group-strategyproof andρ-budget balanced cost sharing mechanism forP, which satisfies the no
positive transfer property.

Given an approximation algorithmALG, the budget balance factor ofI(ALG,τ) is independent
of the order functionτ used. However, the choice of the order function may very wellinfluence
the social cost of the output solution. If the cost functionC̄ induced byALG is increasing, i.e.,
C̄(S)≤ C̄(T) for all S⊆ T ⊆U , we can chooseτ solely to achieve a good social cost approximation
factor. If not, the no positive transfer property restrictsthe choice ofτ to consistent offer functions
with respect to whichALG is increasing.

4.2 Bounding Social Cost

An important criterion for the performance of a cost sharingmechanism is the social cost approxi-
mation factor incurred by its choice of the served player set. For proving a social cost approxima-
tion guarantee for a mechanismM, we need to upper bound the ratio between the social cost of the
setSM chosen by the mechanism and the cost of a socially optimal set

S∗ := argmin
S⊆U

(

C(S)+∑
i /∈S

vi

)

.

In this section, we present a tool for bounding the social cost approximation factor for incremen-
tal mechanisms that fulfill a weak monotonicity property reminiscent of the inverse of the core
property:

Definition 3. Let ξ be the incremental approximate cost share function inducedby an approx-
imation algorithmALG and an order functionτ . We call ξ weakly monotoneif for all subsets
S⊆ T ⊆U , ∑i∈Sξi(T) ≥ C̄(S).

We obtain the following theorem for incremental mechanismsthat implement weakly monotone
cost share functions.

Theorem 3. Let τ be a consistent order function andALG be aτ-increasing algorithm. Suppose
that the incremental approximate cost share functionξ induced byALG andτ is weakly monotone.
Then, the incremental mechanism I(ALG,τ) approximates social cost by a factor ofα if

C̄(SM ∪S∗)
C(S∗)+C(SM \S∗)

≤ α .

Proof. We can bound the social cost approximation factor by

Π(SM)

Π∗ =
C̄(SM)+∑i∈S∗\SM vi +∑i /∈SM∪S∗ vi

C(S∗)+∑i∈SM\S∗ vi +∑i /∈SM∪S∗ vi
≤

C̄(SM)+∑i∈S∗\SM vi

C(S∗)+∑i∈SM\S∗ vi

≤
C̄(SM)+∑i∈S∗\SM vi

C(S∗)+∑i∈SM\S∗ ξi(S
M)

≤
C̄(SM)+∑i∈S∗\SM vi

C(S∗)+C(SM \S∗)
.

Here, the first inequality follows from the fact thata
b ≤ a−c

b−c for arbitrary real numbersa≥ b> c≥ 0.
The second inequality holds becausevi ≥ ξi(S

M) for every playeri ∈ SM, sincei accepted and we

15

R A

︷ ︸︸ ︷

R|A| = A

i

Ri A i

Figure 2: Illustration of the consistency property as used in the proof of Theorem 3.

assume truthful bidding. The last inequality follows from weak monotonicity ofξ and the fact that
C̄(S) ≥C(S) for every setS⊆U .

We conclude the proof by showing that

∑
i∈S∗\SM

vi ≤ C̄(SM ∪S∗)−C̄(SM).

Without loss of generality, number the players inS∗ \SM in the order in which they were rejected
by M, i.e.,S∗ \SM =: {1, . . . , ℓ}. Fix a playeri ∈ S∗ \SM and consider the iteration in which player
i was removed. LetR andA be the sets of remaining and accepted players at the beginning of
this iteration, respectively. DefineRi as the subset of players inS∗ ∪SM that were still remaining
in the game wheni was picked, i.e.,Ri := SM ∪{i, i + 1, . . . , ℓ}. Let k := |A|. By Lemma 3, we
haveRk = A. Moreover, sincei is chosen, we haveRk+1 = A∪{i}. Note thatA∪{i} is a subset
of Ri . By the consistency ofτ , the firstk+ 1 elements ofRi andR must coincide and we thus
haveA∪{i} = Rk+1 = Ri

k+1. The same argument also yields thatA = Rk = Ri
k; see Figure 2 for an

illustration. Therefore,

pi = C̄(A∪{i})−C̄(A) = C̄(Ri
k+1)−C̄(Ri

k) = ξi(R
i).

Since i rejected, we havevi < pi = ξi(R
i). Note thatRi = Ri+1 ∪ {i}. Exploiting thatξ is

weakly monotone, we obtain that

C̄(Ri) = ∑
j∈Ri

ξ j(R
i) = ξi(R

i)+ ∑
j∈Ri+1

ξ j(R
i) ≥ ξi(R

i)+C̄(Ri+1).

Summing over alli ∈ {1, . . . , ℓ} yields

∑
i∈S∗\SM

vi <
ℓ

∑
i=1

ξi(R
i) ≤

ℓ

∑
i=1

(
C̄(Ri)−C̄(Ri+1)

)
= C̄(SM ∪S∗)−C̄(SM).

For some cost functions, incremental mechnanisms cannot beexpected to achieve attractive
social cost approximation factors. A prominent example is the public excludable good problem,
where the serving cost isC(S) = 1 for every non-empty subset of players /06= S⊆U .

Example 2. Consider an instance of the public excludable good problem with |U | = n players.
Set vi = 1− ε for an arbitrarily small constantε > 0. Assuming truthful bidding, any incremental
mechanism serves the empty set, incurring a social cost ofΠ(/0) ≈ 0+n = n, whereas serving the
whole set induces a social cost ofΠ(U) = 1−0 = 1. We obtain a social cost approximation factor
of n.

16

5 Completion Time Scheduling

In this section, we study the performance of incremental mechanisms for parallel machine schedul-
ing problems with total completion time objectives, also taking into account their social cost ap-
proximation guarantees. We distinguish between the model with weights in which all jobs arrive at
time zero and no preemption is allowed, and the model in whichjobs have release dates and may
be preempted.

5.1 Weighted Completion Time

We reconsider the (weighted) completion time scheduling problems introduced in Section 3.2. We
already showed that the incremental mechanismISM := I(SM,τ) induced by Smith’s rule and the of-
fer functionτ defined by non-increasing weight per processing time is weakly group-strategyproof
and achievesρSM-budget balance, whereρSM is the approximation guarantee of Smith’s rule. In
this section, we show thatISM also achieves a surprisingly small social cost approximation factor.

Theorem 4. The incremental mechanismISM induced by Smith’s algorithm andτ is weakly group-
strategyproof,ρSM-budget balanced, and2ρSM-approximate for the respective (weighted) comple-
tion time scheduling problem.

We first prove the following lemma.

Lemma 4. Let ALG be an algorithm for P| |∑wiCi with cost functionC̄. Let X and Y be two
disjoint sets of jobs. Then, the cost of an optimal schedule for X∪Y can be bounded by C(X∪Y)≤
2(C̄(X)+C̄(Y)).

Proof. We prove the inequality individually for each machineM̂. Consider the jobŝX ⊆ X and
Ŷ ⊆Y scheduled on̂M in the runs ofALG onX andY, respectively. We denote byci the completion
time of job i in his respective schedule, i.e.,ci := C̄i(X) for all i ∈ X̂ andci := C̄i(Y) for all i ∈ Ŷ.

Consider the schedule which processes all jobs inX̂∪Ŷ on M̂ according to non-decreasingci .
The completion time of a jobi ∈ X̂ in this schedule isci + ci∗ , wherei∗ denotes the last job in̂Y
that is processed beforei. Sincei∗ is processed beforei, we haveci +ci∗ ≤ 2ci . By exchanging the
roles ofX andY, we can show the same for the completion time of every jobi ∈ Ŷ.

Since the cost of an optimal schedule forX ∪Y is at most that of the schedule produced by
repeating the above procedure for each machine, we have

C(X∪Y) ≤ ∑
i∈X∪Y

wi ·2ci = 2
(

∑
i∈X

wici + ∑
i∈Y

wici

)

= 2
(
C̄(X)+C̄(Y)

)
.

We can now prove Theorem 4.

Proof of Theorem 4.It follows from Corollary 2 thatISM is weakly group-strategyproof andρSM-
budget balanced. In order to obtain the social cost approximation guarantee, we show that the
induced cost sharing methodξ is weakly monotone. Consider an arbitrary subsetS⊆ U of jobs.
Note that the incremental approximate cost shareξi(S) of a playeri ∈ Swith respect toSequals his
completion time in the schedule output by Smith’s rule forS. It is not hard to see thatCi(T)≥Ci(S)
for everyi ∈ S⊆ T. Hence,∑i∈Sξi(T) ≥ ∑i∈Sξi(S) = C̄(S). The social cost approximation factor
now follows from Lemma 4 and Theorem 3.

The following example shows that our social cost analysis istight, even in the unweighted
single machine case.

17

Example 3. Consider an instance of1|pi = 1|∑Ci on an even number of n jobs with valuations
vi = i for all i ∈ [n]. Assume thatISM orders the jobs according to increasing valuations (note that
we can easily enforce this by slightly perturbing the processing times) and thus accepts all jobs.
Consequently,Π(SM) = C̄([n]) = n(n+ 1)/2. However, if we exclude the first n/2 jobs from the
scheduled set, we obtain a social cost of

C
([n

2

])

+
n/2

∑
i=1

vi = 2·
(n

4

(n
2

+1
))

= n(n+2)/4≥ Π∗,

yielding a social cost approximation ratio that approaches2.

5.2 Completion Time with Release Dates and Preemption

For the sake of clarity, we first consider the single machine case and comment on the extension of
the results given below to the parallel machine case at the end of this section.

Single Machine Case Consider the problem 1|r i ,pmtn|∑Ci of scheduling a set of jobsU on a
single machine to minimize the total completion time. Theshortest remaining processing time
(SRPT) policy solves this problem to optimality [43]. Throughoutthis section, we denote byCi(S)
the completion time of jobi ∈ S in the SRPT schedule forS⊆ U . Note that by optimality of
SRPT, we haveC̄(S) = C(S) = ∑i∈SCi(S). As in Section 3.2, we defineτ(·,S) to be the order
induced by increasing completion times in theSRPT schedule, i.e.,τ(i,S) := Ci(S) for all i ∈ S.
Let ISRPT := I(SRPT,τ) be the incremental mechanism induced bySRPTandτ . In this section, we
prove the following theorem.

Theorem 5. The incremental mechanismISRPT induced by SRPT and τ is weakly group-
strategyproof, budget balanced, and4-approximate for1|r i ,pmtn|∑Ci .

The proof of Theorem 5 relies on Lemmas 5 and 6 below. The most work goes into showing
that the order functionτ is consistent and thatSRPTis τ-increasing. However, we defer this part of
the proof to the end of this section. Lemma 6 is used to prove the social cost approximation factor.

Lemma 5. The order functionτ is consistent. Moreover,SRPTis τ-increasing.

Lemma 6. Let ALG be an algorithm for P|r i ,pmtn|∑Ci with cost functionC̄. Let X and Y be
two disjoint sets of jobs. Then, the cost of an optimal schedule for X∪Y can be bounded by
C(X∪Y) ≤ 4(C̄(X)+C̄(Y)).

Proof. Phillips et al. [38] prove that any preemptive schedule forP|r i ,pmtn|∑Ci can be turned into
a non-preemptive scheduleNP with at most twice the cost. With Lemma 4, we obtainC(X∪Y) ≤
2(CNP(X∪Y)) ≤ 4(C̄(X)+C̄(Y)).

Assuming that Lemma 5 holds true, we can now prove Theorem 5.

Proof of Theorem 5.Lemma 5 together with Theorem 1 imply thatISRPT is weakly group-
strategyproof and budget balanced. To prove thatISRPT approximates social cost, we first show
thatξ is weakly monotone. Fix some setT and letS⊆ T. Consider theSRPTschedule forT. By
removing all jobs inT \S from this schedule, we obtain a feasible schedule forS of cost at most
∑i∈SCi(T), hence∑i∈SCi(T) ≥C(S). Subsequently, it will become clear that the incremental cost
shareξi(T) of a job i ∈ T with respect toT is equal to its completion timeCi(T). We conclude
thatξ is weakly monotone. Now, the bound on the social cost approximation factor follows from
Lemma 6 and Theorem 3.

18

It remains to show that the order functionτ induced by increasing completion times in theSRPT

schedule is consistent and thatSRPTis τ-increasing. To this end, we study the effect of removing a
single job from theSRPTschedule. We claim the following:

Lemma 7. Let T⊆U. Suppose we remove an arbitrary job j from T. Define S:= T \{ j} as the
set of remaining jobs. Let Ci(S) and Ci(T) denote the completion times of job i∈ S in theSRPT

schedules for S and T , respectively. Then

1. Ci(S) = Ci(T) for every job i∈ S with Ci(T) < Cj(T); and

2. Ci(S) ≥Cj(T) for every job i∈ S with Ci(T) > Cj(T).

Suppose this lemma holds true. We can then prove thatτ is consistent and thatSRPT is τ-
increasing:

Proof of Lemma 5.We first prove consistency. LetS⊆ T ⊆ U be two subsets ordered byτ as
S=: {i1, i2, . . . , ip} andT =: { j1, j2, . . . , jq}. Let k be minimal with jk ∈ T \S. Define j := jk to
simplify notation. By definition ofτ , for every jobi = j l with 1≤ l < k, we haveCi(T) < Cj(T).
Also, for every jobi = jr with k < r ≤ q, we haveCi(T) > Cj(T). Thus, by removing jobj from
T we obtain a new setT ′ = T \ { j} such thatCi(T

′) = Ci(T) for all i = j l with 1 ≤ l < k and
Ci(T

′)≥Cj(T) for all i = jr with k < r ≤ q. Repeating the above procedure (withT ′ instead ofT),
we eventually remove all jobs inT \S from T and conclude thati l = j l for all 1≤ l < k.

It remains to prove thatSRPT is τ-increasing. Consider an arbitrary subsetS⊆ U of jobs and
supposeS is ordered byτ asS=: {i1, . . . , ip}. We need to argue that̄C(Sk) ≥ C̄(Sk−1) for every
1 ≤ k ≤ p. The proof is by induction onk. For k = p the claim follows since we remove a job
j = ip with Cj(S) >Ci(S) for all i ∈S\{ j} and by Lemma 7, the completion times of all remaining
jobs remain the same. Thus̄C(Sp)−C̄(Sp−1) = Cj(Sp) = Cj(S) ≥ 0. Suppose the claim holds true
for all k+ 1 ≥ ℓ for some 1< ℓ ≤ p. We show that it remains true fork. Let j = ik. We have
Cj(S) > Ci(S) for all i ∈ Sk−1. The consistency ofτ implies thatCj(Sk) > Ci(Sk) for all i ∈ Sk−1.
Thus, by Lemma 7, the completion times of all jobsi ∈ Sk−1 remain the same if we remove jobj
from theSRPTschedule forSk. We conclude that the incremental cost share of playerj is exactly
its completion time, i.e.,̄C(Sk)−C̄(Sk−1) = Cj(Sk) ≥ 0.

Intuitively, it is relatively easy to verify that Lemma 7 holds true: During the lifetime (i.e.,
between release and completion time) of jobj in the SRPT schedule forT, job j prevents some
jobs, call themlosing jobs, to be executed (because they have a larger remaining processing time)
while some other jobs, call themwinning jobs, preventj from being executed (because they have a
smaller remaining processing time). Clearly, every losingjob has a larger completion time thanj,
while every winning job has a smaller completion time thanj. Now suppose we remove jobj from
the input set and consider the resultingSRPTschedule. There are two crucial insights: (i) nothing
changes for the winning jobs, and (ii) wheneverj was processed in theSRPT schedule forT, a
losing job might now be processed in theSRPTschedule forS; however, this losing job will not be
completed before timeCj(T). See Figure 3 for an illustration.

In order to turn this intuition into a formal proof, we first introduce some more notation. Let
ei(t) be the amount of time that has been spent on processing jobi up to timet. The remaining
processingtime xi(t) of job i at timet is xi(t) := pi −ei(t). We call a jobi activeat timet if it has
been released but not yet completed at this time, i.e.,r i ≤ t < Ci . Let A(t) be the set of jobs that are
active at timet. SRPTworks as follows: At any timet ≥ 0, SRPTschedules an active jobi ∈ A(t)
with minimum remaining processing time, i.e.,xi(t) ≤ xk(t) for all k∈ A(t). We assume thatSRPT

uses a consistent tie breaking rule, e.g., ifxi(t) = xk(t) for two different jobsi andk, then schedule
the one with smaller index.

Consider theSRPTschedule for a setT ⊆U . Let i, j ∈ A(t) be two jobs that are active at timet.
We definei ≺t j iff either xi(t) < x j(t) or xi(t) = x j(t) andi ≤ j. Note that at any point of timet,

19

0 5 10 15 t
1 33 5

2

4

T 1 2 23 34 5

S 1 2 24 5

Cj(T)

Figure 3: The effect of removing a single jobj = 3 from theSRPTschedule onT = {1, . . . ,5}. The
upper part represents the input instance forT; jobs are numbered by increasing release times. The
lower part shows the twoSRPTschedules forT andS:= T \{ j}. The winning and losing jobs are
indicated in black and gray, respectively.

SRPTschedules the jobi ∈ A(t) with i ≺t j for all j ∈ A(t). Thus, if i ≺t j for somet, theni ≺t′ j
for all t ′ ∈ [t,Ci). We therefore simply writei ≺ j iff there exists a timet with i ≺t j. Let σ(t)
denote the job that is executed at timet in theSRPTschedule forT; we defineσ(t) = /0 if A(t) = /0.

Let j ∈ T be an arbitrary job and consider the time interval[r j ,Cj). We define the setC j of
jobs that arecompetingwith j asC j := {i ∈ T \{ j} : [r i ,Ci)∩ [r j ,Cj) 6= /0}. Note that j /∈ C j . We
partition the jobs inC j into a setW j of winning jobsand a setL j of losing jobswith respect toj:
W j := {i ∈C j : i ≺ j} andL j := C j \W j . Intuitively, supposei and j are both active at some timet.
If i is a winning job, theni preventsj from being executed bySRPT. On the other hand, ifi is a
losing job, thenj preventsi from being executed.

We next investigate the effect of removing a jobj from T. We use the superscriptS if we refer
to theSRPTschedule forS:= T \{ j}.

Lemma 8. Consider the twoSRPTschedules on job sets T and S:= T \{ j}. For every job i∈ C j
that is active at time t∈ [r j ,Cj),

xS
i (t) = xi(t) if i ∈ W j and xSi (t) ≥ x j(t) if i ∈ L j .

Proof. We partition the time interval[r j ,Cj) into a sequence of maximal subintervalsI1, I2, . . . , I f
such that the set of active jobs remains the same within everysubintervalIℓ := [sℓ,eℓ). We prove
by induction overℓ that the claim holds for everyt ∈ [r j ,eℓ).

Note that both schedules are identical up to timer j = s1. If σ(s1) 6= j, then both schedules
process the same job duringI1 and the claim follows. Supposeσ(s1) = j. This implies that
A(s1)∩W j = /0 and thus all jobs inA(s1) \ { j} = AS(s1) are losing jobs. IfAS(s1) = /0, the claim

follows. Otherwise, letk := σS(s1) be the job that is processed in the schedule forS. Sincek is
a losing job, we havexS

k(s1) = xk(s1) ≥ x j(s1). Sincek and j receive the same processing time
during I1 in their respective schedules, the claim holds for allt ∈ [r j ,e1).

Now, assume that the claim is true for everyt ∈ [r j ,eℓ−1) for someℓ > 1. We show that

it remains true during the time intervalIℓ. By the induction hypothesis,xS
i (t) = xi(t) for every

job i ∈ W j that is active at timet ∈ [r j ,eℓ−1). This implies that a jobi ∈ W j is executed at time
t ∈ [r j ,eℓ−1) in the schedule forT iff it is executed at timet in the schedule forS. We thus

haveAS(sℓ)∩W j = A(sℓ)∩W j . Moreover,xS
i (t) ≥ x j(t) for every job i ∈ L j that is active at

time t ∈ [r j ,eℓ−1). Sincex j(t) > 0 for everyt ∈ [r j ,Cj), every jobi ∈ L j that is active at time
t ∈ [r j ,eℓ−1) in the schedule forT must also be active at timet in the schedule forS. Thus,

AS(sℓ)∩L j = A(sℓ)∩L j . We now distinguish two cases:
(i) First, assumeσ(sℓ) =: k ∈ W j . Jobk then has smallest remaining processing time, i.e.,

20

xk(sℓ) ≤ xi(sℓ) for all i ∈ A(sℓ). We conclude that

xS
k(sℓ) = xk(sℓ) ≤ xi(sℓ) = xS

i (sℓ) ∀i ∈ A(sℓ)∩W j = AS(sℓ)∩W j

xS
k(sℓ) = xk(sℓ) ≤ x j(sℓ) ≤ xS

i (sℓ) ∀i ∈ A(sℓ)∩L j = AS(sℓ)∩L j .

Since we assume thatSRPTuses a consistent tie breaking rule, this implies thatσS(sℓ) = k and the
claim follows.

(ii) Now, supposeσ(sℓ) = j. (Note thatσ(sℓ) ∈ L j is impossible.) Thenx j(sℓ) ≤ xi(sℓ) for

everyi ∈ A(sℓ) andA(sℓ)∩W j = /0. But then we also haveAS(sℓ)∩W j = /0 and thusAS(sℓ) ⊆ L j .

If AS(sℓ) = /0, the claim follows. Otherwise, letk := σS(sℓ) ∈L j be the job that is executed at time

sℓ in the schedule forS. SincexS
k(sℓ) ≥ x j(sℓ) and the remaining processing times ofk and j in

their respective schedules reduce by the same amount duringIℓ, the claim follows.

Using Lemma 8, we can now easily prove Lemma 7.

Proof of Lemma 7.Let i ∈Sbe a job withCi(T) <Cj(T). If i is not competing withj, thenr j ≥Ci
and thus removingj from the schedule does not change the completion time ofi, i.e.,Ci(S) =Ci(T).
Otherwise,i is competing withj, but sinceCj(T) > Ci(T), i is a winning job with respect toj. By
Lemma 8, jobi is completed at the same time in theSRPT schedules forS and forT and thus
Ci(S) = Ci(T).

Next, consider a jobi ∈ S with Ci(T) > Cj(T). The claim clearly holds ifr i ≥ Cj(T) since
Ci(S) ≥ r i . Assumer i < Cj(T). Theni is competing withj and i is a losing job with respect to
j. By Lemma 8, jobi cannot be completed before timeCj(T) in the SRPTschedule forS. Thus
Ci(S) ≥Cj(T).

Parallel Machine Case The crucial insight in the single machine case is Lemma 7. Thesame
property holds in the parallel machine case if we assume a consistent tie breaking rule between jobs
with equal remaining processing times. Showing that the computed output set is 4-approximate
proceeds exactly along the same lines as in Theorem 5 (in fact, Lemma 6 is formulated for the mul-
tiple machine case). The only difference is thatSRPTproduces a schedule whose total completion
time is at most twice the optimum. We conclude with the following theorem:

Theorem 6. The incremental mechanismISRPT induced by theSRPT algorithm andτ is weakly
group-strategyproof,2-budget balanced and4-approximate for P|r i ,pmtn|∑Ci.

6 Connections to Other Frameworks

6.1 Acyclic Mechanisms

Our incremental mechanisms were motivated by and are a subclass of acyclic mechanisms. In a
certain sense, they can be viewed as being complementary to Moulin mechanisms in the scope
of acyclic mechanisms. In this section, we briefly review thedefinition of acyclic mechanisms by
Mehta, Roughgarden, and Sundararajan [33] and discuss how incremental mechanisms fit into their
framework.

Framework An acyclic mechanism is defined in terms of acost sharing methodξ : U ×2U → R

and anoffer functionτ , which defines for every subsetS⊆U and every playeri ∈ Sa non-negative
offer timeτ(i,S). Theacyclic mechanism A(ξ ,τ) induced byξ andτ receives the bid vectorb as
input and proceeds as described in Algorithm 2.

For a given subsetS⊆U and a playeri ∈S, define the following partition of the player setSinto
three subsets with respect to the offer time ofi. Let L(i,S), E(i,S) andG(i,S) be the sets of players

21

Algorithm 2 : Acyclic mechanismA(ξ ,τ) induced byξ andτ .

Input : Set of playersU and bid vectorb = (bi)i∈U
Output : Allocation vectorx = (xi)i∈U and payment vectorp = (pi)i∈U

Initialize S:= U .1

if ξi(S) ≤ bi for every player i∈ S then halt and output the characteristic vectorx of Sand2

paymentsp := (ξi(S))i∈U .
Among all players inSwith ξi(S) > bi , let i∗ be one with minimumτ(i,S) (breaking ties3

arbitrarily).
SetS:= S\{i∗} and return to Step 2.4

with offer timesτ(·,S) strictly less than, equal to, or strictly greater thanτ(i,S), respectively. The
following definition is crucial to achieve weak group-strategyproofness.

Definition 4. Let ξ andτ be a cost sharing method and an offer function onU . The offer functionτ
is valid for ξ if the following two properties hold for every subsetS⊆U and playeri ∈ S:

(P1) ξi(S\T) = ξi(S) for every subsetT ⊆ G(i,S);

(P2) ξi(S\T) ≥ ξi(S) for every subsetT ⊆ G(i,S)∪ (E(i,S)\{i}).

A cost sharing methodξ is called β -budget balancedif for every subsetS⊆ U we have
C̄(S) ≤ ∑i∈Sξi(S) ≤ β ·C(S). We summarize the main result of Mehta, Roughgarden, and Sun-
dararajan [33] in the following theorem:

Theorem 7 ([33]). Let ξ be a β -budget balanced cost sharing method on U and letτ be an
offer function on U that is valid forξ . Then, the induced acyclic mechanism A(ξ ,τ) is β -budget
balanced and weakly group-strategyproof.

Relation to Incremental Mechanisms Our interest in incremental mechanisms was initiated by
the following simple observations. Consider the offer function τ of an acyclic mechanism. For a
given set of playersS⊆ U , τ dividesS into subsets of players with equal offer timesτ(·,S). We
like to think about acyclic mechanisms in terms of such maximal player sets with equal offer times,
and call themclusters. Depending on the size of these clusters, we can illustrate the landscape of
acyclic mechanisms as follows:

Towards one end, assume that every setS consists of one big cluster that contains all players
in S. Then, Definition 4 reduces to (P2), which is exactly equivalent to the definition of cross-
monotonicity (cf. [34]). Hence, acyclic mechanisms with maximum cluster size are Moulin mech-
anisms. Towards the other end, consider an acyclic mechanism for which all clusters are singletons,
i.e., in every setS, every player has a unique offer time. In this case, Definition 4 reduces to (P1)
and once a cost share is announced to a player, it can never be changed again. This is exactly the
subclass of acyclic mechanisms that we decided to study.

Following these observations, we definedorder functionsto be offer functions that produce
only singleton clusters, i.e., offer functionsτ(i,S) in which eachi ∈ Sreceives a distinct offer time
with respect toS, or, in other words, that are injective ini for every fixedS. We studied this special
case of acyclic mechanisms and termed the cost sharing mechanisms that are induced by order
functions and incremental approximate cost sharessingleton mechanisms.

In this paper, we study the subclass of singleton mechanismsin which every player is charged
the incrementalcost of adding him to the current solution, i.e.incrementalmechanisms. It can
easily be verified that consistent order functions are validfor the induced incremental cost sharing
methods defined in this paper. Intuitively, the reason is that the cost share of a player only depends
on the set of players that precede him in the order ofτ . As a consequence, incremental mechanisms

22

fulfill all properties of acyclic mechanisms, including, e.g., weak group-strategyproofness against
collectors, which was identified by Bleischwitz et al. [6].

6.2 Scheduling with Rejection

It is easy to verify that every cost sharing mechanism that approximates social cost by a factor
of α defines anα-approximate algorithm for the underlying optimization problem with rejection.
Along with our results in mechanism design, we therefore obtain several approximation algorithms
for scheduling problems with rejection.

We sketch the reduction at the example of a scheduling problem. LetP be an arbitrary schedul-
ing problem. For every jobi ∈U , letzi be the rejection penalty for the price-collecting variant of P.
We define a cost sharing game onP by identifying every player’s valuation with the penalty ofhis
job, i.e.,vi := zi for all i ∈U . An α-approximate mechanism for this cost sharing game outputs a
served set of playersSM and a feasible solution of cost̄C(SM) for this set, with social cost

C̄(SM)+ ∑
i /∈SM

vi ≤ α ·min
S⊆U

(

C(S)+∑
i /∈S

vi

)

.

Now, it is easy to see that the algorithm that schedulesSM and rejects all other jobs outputs an
α-approximate solution to the scheduling problem with rejection.

Thus, the following results are immediate consequences of our mechanisms presented in Sec-
tion 5.

Theorem 8. The incremental mechanismISM induced by Smith’s rule defines a2.42-approximate
algorithm for the weighted completion time scheduling problem P| |∑wiCi with rejection, and2-
approximate algorithms for the scheduling problems P| |∑Ci and1| |∑wiCi with rejection.

Theorem 9. The incremental mechanismISRPT based on theSRPTpolicy defines a 4-approximate
algorithm for the completion time scheduling problem P|r i ,pmtn|∑Ci with rejection.

7 Conclusion

We introduced singleton mechanisms as a subclass of acyclicmechanisms that is complementary
to Moulin mechanisms with respect to the size ofclusters, i.e., maximal player sets whose order
is undetermined beforehand. Remark that in this paper, we concentrated solely on incremental
mechanisms withincremental approximate cost shares. For this type of singleton mechanisms, we
gave a very general construction technique which allows to benefit from the whole range of the
enormous theory on approximation algorithms.

We are confident that our proposed transformation techniquecan be applied for various combi-
natorial optimization problems. It would be interesting tosee more examples for which social cost
can be approximated. Here, the most promising problems are ones with supermodular cost func-
tions, i.e. where congestion effects occur. Concurrently,these are the problems for which Moulin
mechanisms usually perform only poorly.

Besides, we are interested in other mechanisms with singleton clusters. Stepping back to the
full generality of acyclic mechanisms, some of the most interesting open problems are to find a
general way to construct acyclic mechanisms from approximation algorithms and to find a gen-
eral property for provingα-approximate social cost, alike the summability property for Moulin
mechanisms.

We would like to thank the anonymous referees for helpful suggestions and comments.

23

References

[1] F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S.Khanna, I. Milis, M. Queyranne,
M. Skutella, C. Stein, and M. Sviridenko. Approximation schemes for minimizing average
weighted completion time with release dates. InProc. of the 40th Sympos. on the Foundations
of Computer Sci., pages 32–43, 1999.

[2] A. Archer, J. Feigenbaum, A. Krishnamurthy, R. Sami, andS. Shenker. Approximation and
collusion in multicast cost sharing.Games Econ. Behav., 47(1):36–71, 2004.

[3] N. Bansal, A. Blum, S. Chawla, and K. Dhamdhere. Scheduling for flow-time with admission
control. InIn Proc. of the 11th Annual Europ. Sympos. on Algorithms, volume 2832 ofLecture
Notes in Computer Sci., pages 43–54. Springer, 2003.

[4] Y. Bartal, S. Leonardi, A. Marchetti-Spaccamela, and L.Stougie. Multiprocessor scheduling
with rejection. InProc. of the 7th ACM-SIAM Sympos. on Discrete Algorithms, pages 95–103,
1996.

[5] Y. Bleischwitz and B. Monien. Fair cost-sharing methodsfor scheduling jobs on parallel
machines. InProc. of the 6th Int. Conf. on Algorithms and Complexity, volume 3998 of
Lecture Notes in Computer Sci., pages 175–186, 2006.

[6] Y. Bleischwitz, B. Monien, and F. Schoppmann. To be or notto be (served). InProc. of
the 3rd Int. Workshop on Internet and Network Economics, volume 4858 ofLecture Notes in
Computer Sci., pages 515–528, 2007.

[7] J. Brenner and G. Schäfer. Cost sharing methods for makespan and completion timeschedul-
ing. In Proc. of the 24th Int. Sympos. on Theoretical Aspects of Computer Sci., volume 4393
of Lecture Notes in Computer Sci., pages 670–681, 2007.

[8] J. Brenner and G. Schäfer. Singleton acyclic mechanisms and their applicationsto scheduling
problems. InProc. of the 1st Int. Sympos. on Algorithmic Game Theory, volume 4997 of
Lecture Notes in Computer Sci., pages 315–326, 2008.

[9] P. Brucker.Scheduling Algorithms. Springer, New York, USA, 1998.

[10] D. Bunde. Scheduling on a single machine to minimize total flow time with job rejections.
In Proc. of the 2nd Multidisciplinary Int. Conference on Scheduling: Theory & Applications,
pages 562–572, 2005.

[11] S. Chawla, T. Roughgarden, and M. Sundararajan. Optimal cost-sharing mechanisms for
Steiner forest problems. InProc. of the 2nd Int. Workshop on Internet and Network Eco-
nomics, pages 112–123, 2006.

[12] E. H. Clarke. Multipart pricing of public goods.Public Choice, 11:17–33, 1971.

[13] N. Devanur, M. Mihail, and V. Vazirani. Strategyproof cost-sharing mechanisms for set cover
and facility location games. InProc. of the ACM Conference on Electronic Commerce, 2003.

[14] S. Dobzinski, A. Mehta, T. Roughgarden, and M. Sundararajan. Is Shapley cost sharing
optimal? InProc. of the 1st Int. Sympos. on Algorithmic Game Theory, volume 4997 of
Lecture Notes in Computer Sci., pages 327–336, 2008.

[15] J. Du, J. Y. T. Leung, and G. H. Young. Minimizing mean flowtime with release time
constraint.Theoretical Computer Sci., 75(3):347–355, 1990.

24

[16] D. Engels, D. Karger, S. Kolliopoulos, S. Sengupta, R. Uma, and J. Wein. Techniques for
scheduling with rejection.J. Algorithms, 49:175–191, 2003.

[17] J. Feigenbaum, A. Krishnamurthy, R. Sami, and S. Shenker. Hardness results for multicast
cost-sharing.Theoretical Computer Sci., 304:215–236, 2003.

[18] J. Feigenbaum, C. Papadimitriou, and S. Shenker. Sharing the cost of multicast transmissions.
J. Comput. System Sci., 63(1):21–41, 2001. Special issue on internet algorithms.

[19] M. R. Garey and D. S. Johnson. Strong NP-completeness results: Motivation, examples and
implications.J. ACM, 25(3):499–508, 1978.

[20] R. Graham, E. Lawler, J. Lenstra, and A. Rinnooy Kan. Optimization and approximation in
deterministic sequencing and scheduling: a survey.Annals of Discrete Math., 5:287–326,
1979.

[21] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.,
17(2):416–429, 1969.

[22] J. Green, E. Kohlberg, and J. J. Laffont. Partial equilibrium approach to the free rider problem.
J. Public Econ., 6:375–394, 1976.

[23] T. Groves. Incentives in teams.Econometrica, 41:617–631, 1973.

[24] A. Gupta, J. K̈onemann, S. Leonardi, R. Ravi, and G. Schäfer. An efficient cost-sharing
mechanism for the prize-collecting Steiner forest problem. In Proc. of the 18th ACM-SIAM
Sympos. on Discrete Algorithms, pages 1153–1162, 2007.

[25] A. Gupta, A. Srinivasan, and́E. Tardos. Cost-sharing mechanisms for network design. In
Proc. of the 7th Int. Workshop on Approximation Algorithms for Combinatorial Optimization
Problems, 2004.

[26] D. Hochbaum and D. Shmoys. Using dual approximation algorithms for scheduling problems:
Theoretical and practical results.J. ACM, 34(1):144–162, 1987.

[27] N. Immorlica, M. Mahdian, and V. S. Mirrokni. Limitations of cross-monotonic cost sharing
schemes. InProc. of the 16th ACM-SIAM Sympos. on Discrete Algorithms, pages 602–611,
2005.

[28] K. Jain and V. Vazirani. Applications of approximationalgorithms to cooperative games. In
Proc. of the 33rd ACM Sympos. on Theory of Computing, pages 364–372, 2001.

[29] T. Kawaguchi and S. Kyan. Worst case bound of an LRF schedule for the mean weighted
flow time problem.SIAM J. Computing, 15(4):1119–1129, 1986.

[30] K. Kent and D. Skorin-Kapov. Population monotonic costallocations on MSTs. InProc. of
the 6th Int. Conf. on Operational Res., pages 43–48. Croatian Oper. Res. Soc., Zagreb, 1996.

[31] J. Könemann, S. Leonardi, G. Schäfer, and S. van Zwam. From primal-dual to cost shares
and back: a stronger LP relaxation for the Steiner forest problem. InAutomata, Languages
and Programming, volume 3580 ofLecture Notes in Computer Sci., pages 930–942. Springer,
2005.

[32] S. Leonardi and G. Schäfer. Cross-monotonic cost sharing methods for connected facility
location games.Theor. Comput. Sci., 326(1-3):431–442, 2004.

[33] A. Mehta, T. Roughgarden, and M. Sundararajan. Beyond Moulin mechanisms. InProc. of
the ACM Conference on Electronic Commerce, 2007.

25

[34] H. Moulin. Incremental cost sharing: Characterization by coalition strategy-proofness.
Soc. Choice Welfare, 16:279–320, 1999.

[35] H. Moulin and S. Shenker. Strategyproof sharing of submodular costs: budget balance versus
efficiency.Econ. Theory, 18(3):511–533, 2001.

[36] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani,editors.Algorithmic Game Theory.
Cambridge University Press, 2007.

[37] M. Pál andÉ. Tardos. Group strategyproof mechanisms via primal-dualalgorithms. In
Proc. of the 44th Sympos. on the Foundations of Computer Sci., pages 584–593, 2003.

[38] C. Phillips, C. Stein, and J. Wein. Minimizing average completion time in the presence of
release dates.Math. Programming, 82:199–223, 1998.

[39] R. Prim. Shortest connection networks and some generalizations. Bell System Technical J.,
36:1389–1401, 1957.

[40] K. Roberts. The characterization of implementable choice rules. In J. J. Laffont, editor,
Aggregation and Revelation of Preferences. North-Holland, 1979.

[41] T. Roughgarden and M. Sundararajan. New trade-offs in cost-sharing mechanisms. InProc. of
the 38th ACM Sympos. on Theory of Computing, pages 79–88, 2006.

[42] T. Roughgarden and M. Sundararajan. Optimal efficiencyguarantees for network design
mechanisms. InProc. of the 12th Int. Conf. on Integer Programming and Combinatorial
Optimization, pages 469–483, 2007.

[43] L. Schrage. A proof of the optimality of the shortest remaining processing time discipline.
Operations Res., 16:687–690, 1968.

[44] W. Smith. Various optimizers for single-stage production. In Naval Res. Logistics Quarterly,
volume 3, pages 59–66, 1956.

[45] W. Vickrey. Counterspeculations, auctions, and competitive sealed tenders.J. Finance,
16(1):8–37, 1961.

26

