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Abstract

In this paper we study a certain cardinality constrained packing integgragrowhich is motivated
by the problem of dimensioning a cut in a two-layer network. We prd{B-hardness and consider
the facial structure of the corresponding polytope. We provide a caengkscription for the smallest
nontrivial case and develop two general classes of facet-definiggatiges. This approach extends the
notion of the well known cutset inequalities to two network layers.
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1 Introduction

Let A be a 0-1 matrix withm > 2 rows,n > m columns, and the first, columns forming an identity
matrix. We denote by/ := {1,...,m}andN := {1,...,n} the row and column indices of. Thelength
¢; of columnj € N is defined as the sum of its entries, i.6.,= >, a;;. We setl := max;en ().
Depending on whethef; is odd or even we speak of odd and even columnd.ofThe index set for all
odd columns is denoted iy C N. ObviouslyM C O. For any vectow and a subset of its indices let
v(8) 1= ;g v; throughout.

Letd be an-dimensional 0-1 vector witd; = 1 ifand only if j € O. Considering, € Z. and a right
hand side vectay € Z']" we study the polytope

P :=conv{x € Z : dx > by, Ax < b}.

By aggregating variables we may assume that all columns differ. A valid inequality for P is called
nontrivial if it is not a nonnegativity constraint and if it is not tleardinality constraintdz > by or one
of the packing constraintén the systemdxz < b. The columns ofd can be seen as incidence vectors for
subsets of the base skf. Since the identity matrix is contained i all singleton subsets are part of the
problem. An integer point i can be seen as a ggckingwhere each elementc M is covered at most
b; times and the number of subsets with odd cardinality is at ga The canonic packing® (satisfying
all packing constraints) is given b;8 :=b;forallj e M andxg? :=0forallj € N\M.

Our study of P is motivated by design problems for layered telecommuitnatetworks [1, 7, 11].
In such stacked networks two (or more) layers are coupledidh & way that every upper layer link is
represented by paths (between the corresponding end)rindles underlying lower layer. In the following
we provide a mixed integer programming formulation for a a-teyer network design problem and show
that optimizing over the polytop® corresponds to the design problem for a cut (or a two-nodeldyer
network).

Two-layer network design Consider a firsphysical layerrepresented by a graghi = (V, E). and a
second completeirtual layer H = (V,V x V') defined by the same set of locatiovisand all possible
virtual links. Every virtual link can be realised by (different) paths e {physical layer. Both graphs are
simple and undirected. In general one may also consideetb$§V andV x V in the virtual graph.
In practice, the graplir might represent a fiber topology of an optical transport oekw In this case, a
virtual link of H reflects the possibility to connect the corresponding emdier by dight-pathin G using
wavelength division multiplexingVDM) technology [13]. Here we consider the physical grapbedixed
(not being subject to dimensioning). A realisation of auattlink as a path in the physical layer will be
called a light-path in the following.

Given a traffic matrix of user demands with respecttathe task is to select light-paths and to equip
them with capacities such that the user demands can be riouteslvirtual layer. A demand can be routed
using several virtual paths (paths /) consisting of multiple virtual links. Flow can be fract@ln Every



edge ofG provides only a fixed number of channels. Every light-patbacity module consumes one
channel on every edge along the patltin

The model we consider here is close to the formulation pregpdryy Raghavan and StanojeyiL2],
also see [1]. It has the advantage of a very compact desuripfithe virtual layer flow. This is achieved
by aggregating all flow variables for light-paths with theneaend-nodes to a single variable. For every
virtual link {v,w} € V x V a setPy, ,,, of admissible light-paths in the physical gragtis considered.
Let P be the union of all these paths. Each path P can be equipped with multiples of a badennel
capacityC' at a certain cost. Every physical linke E supports a total of3. channels. We consider a
set of commoditied< modeling the given traffic forecast. With every commodity K and every node
v € V, ademand valu®} is associated such that, _,, DF = 0.

We introduce the following variables. For every virtuaKifw, w} the variables”, andf*, describe
the flow betweerv andw in both directions w.r.t. commodity € K. The integer variable;, counts
the number of channel capacities for pathThe problem of minimizing the cost of a feasible capacity
assignment satisfying the given traffic demands and thec@gp@strictions on both layers can now be
formulated as the problem of minimizing a linear functioreothe following set of constraints:
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The flow conservation equations (1) ensure a feasible @uifnthe traffic. The virtual link capacity
constraint (2) says that the flow betweeandw must not exceed the total capacity installed on all cor-
responding paths. The physical link capacity constraiptg8tricts the number of light-path channels for
every physical linke. An extension of the formulation above considering theglegiroblem of virtual as
well as physical links and nodes is used in [1].

Two-Layer cuts Consider a cut in the physical graph and all crossing ligiitg, (i. e., all paths i®
using at least one of the physical cut links, see Figure 1y @slch a path uses an odd number of physical
cut links, i. e., its end-nodes are in different shores ofdhi it can contribute to the transport of traffic
across the cut. We assume that these odd paths have to bpedjuijph at leask, many capacity modules
to allow for a feasible realization of the traffic across tl cThe cardinality constrainiz > b, reflects
this requirement and can be seen as the (capacity forcinggtcimequality [2, 3, 8] for the virtual cut.
The valueb, depends on the cut demarhtiand the size of the channel capadityand can be computed
asby = (g]. The packing constraintdz < b are simply the physical channel limitations (3) for all cut
links. The rows ofA correspond to all physical cut links and the columnslaforrespond to all light-paths
crossing the cut. Since in practice typically all singleglahannels (light-paths using exactly one physical
link) are part of the problem, the matri contains the identity matrix.

In this context,P is a two-layer network design polytope for two network nodea (two-layer) cutset
polytope. Every cut inG defines a polytope of typ®. Hence, facets oP extend the notion of cutset
inequalities to two layers. Single-layer network desigtybedra, cutset polyhedra, and cutset inequalities
have been studied for instance in [2, 3, 8].

Basic observations In this paper, we study the complexity of optimizing oveas well as the polyhedral
structure ofP. For this, we introduce the following additional notatiddiven a column indey € N, the
setM[j] :={i € M : a;; = 1} contains all row indices with a nonzero entry in colugnof A. Similarly,
for a row indexi € M, the setN[i] := {j € N : a;; = 1} corresponds to all columns with a nonzero
entry in row; of A. Forj € N we writeb; := b(M[j]). Note that; is well defined since it coincides with
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Figure 1: Physical cut and crossing light-paths. Physiaglicks correspond to rows. Paths correspond to
columns ofA. All singleton paths are part of the problem.

the right hand side of the packing constraintfor M. We denote by’ € {0, 1} the j-th unit vector for
jEN.

By a simple reduction from the decision versionM&AXIMUM SET PACKING [5] it can be seen that
already deciding whethd? is nonempty or not isV'P -complete if we allow for arbitrary0, 1}-matrices
A. The situation however changesAf contains the identity matrix as claimed above. In this chse t
dimension ofP only depends on the size bfM) compared to the size &f.

Lemma 1.1. P is nonempty if and only #(M) > bo.

Proof. Sincedx = >, o z; < > ;o ¢jz; and by aggregating all packing constraidts, y £;z; <
b(M). we conclude thaP is empty ifb(M) < byg. On the other hand, (M) > by, thenz® € P. O

Lemma1.2. P is full-dimensional if and only #; > 1 forall i € M andb(M) > by +max(1, 2 [¢/2]).

Proof. Let j = argmax{{; : j € N}.

Necessity:If b; = 0 for some:; € M, thenz; = 0 for all feasible packings and thusP is not full-
dimensional. Assume tha{M) < by. ThusP is either empty (Lemma 1.1) &(M) = by. If the latter is
true, the only feasible vector is given b which gives a dimension df and hence a contradiction. We
may assume that M) > by+1. SinceP is full-dimensional there exists a feasible assignmerttwjt> 1.
For this assignment it holds thdt = 3, z; > bo if column j is even and ;.\ (5, z; = bo — xj if
columnj is odd. Summing up the packing constraints sho@d) > by + 2 | £/ 2].

Sufficiency: We constructn + 1 affinely independent points i#. The first vector is given by°
which is feasible because:’ = b(M) > by + 1. Since the cardinality constraint is not tight aind> 1
for all i € M, every nonzero entry of’ can be reduced individually. More precisely, forc M we
consider the vectar® := 20 — e*. Additionally, for columnsk € N\M, we define the vectors® :=
a4 e¥ =37 - Itholds thatda® = b(M) — ¢ or da® = b(M) — ¢, + 1 depending on whethé,
is even or odd. From, < ¢ we get thatlz* > b, in both cases. The + 1 constructed vectors are clearly
affinely independent. O

Lemma 1.2 implies that i is not full dimensional it is either empty, contains a singéént or there
existsj € N such thatr; = 0 for all z € P. It follows that by consecutively deleting variables that
are fixed to zero and by excluding the trivial cases we mayrasdhatP is full dimensional w.l.0.g.
throughout the rest of this article. Due to length restoicsi we have to omit most of the proofs.

2 Complexity
Given weightsw € Z", we consider the problem of optimizing a linear functionroke
min{wz : = € P} P)

We first observe that if all columns of have at most two entrieg (< 2) the problem (P) can be solved
efficiently. If £ = 1, then A is the identity matrix and ;") is totally unimodular. Hence is already
completely described by the cardinality, packing, and egativity constraints. Now consider the case
that¢ = 2, which implies that for every column of the constraint mat(’TAd) the sum of the absolute
values of its entries is 2. By Edmonds and Johnson [4], theesponding optimization problem can



be seen as a generalizéanatching problem or a matching problem on bidirected gsaid, chapter
36]. A complete description oP is obtained by adding al{0, 1/2}-Chvatal-Gomory cuts (alblossom
inequalities) [4, 6, 14]. Also in this cases the problem (B) be solved in strongly polynomial time.
Notice that the casé < 2 is of particular practical interest since for a single-n@ig in a two-layer
network it holds that a light-path visits the cut at most ®vic

In the following we show that optimizing ové? is strongly NP -hard in general. For the maximization
version of (P) there is a straightforward reduction fremxIMUM SET PACKING [5].

Proposition 2.1. The optimization probler(P)is strongly NP -hard.

Proof. We reduceMAXIMUM SET PACKING to (P). We are given a collectiaghof finite sets and a number
K € 7, and we have to decide whether there exists a subcolle@tiaC of disjoint sets with cardinality
|C’| > K. We introduce the base s&f := UgccS as the union of all sets i@ and N := M U C. The first

| M| columns form the identity matrix and for s€tc C we introduce a column representing the incidence
vector of S. We seth, := 0 andb; := 1 for all ¢ € M, and define the weights; := 0 forall j € M
andw; := —1for all j € N\M. Now every solution: to (P) corresponds to a maximum subcollection of
sets fromC since we can set; = 0 for all i« € M without changing the objective. These sets are disjoint
because ;. y;;z; < 1foralli € M. It follows that there exists a maximum set packing with size
leastK if and only ifwz < — K. O

The corresponding reduction uses nonpositive weights @ulyit turns out that also the minimization
version (nonnegative weights) of (P)ASP -hard (in contrast to the minimization version of standsid
PACKING). Notice that network design typically means minimizing tost of certain resources. Here we
prove an even stronger result for 0-1 weights by reductiomfnAXIMUM INDEPENDENCE SET [5].

Theorem 2.2. The optimization problertP) with w; € {0, 1} for all j € N is stronglyN'P -hard.

Proof. The problem (P) is clearly ilv’P. We reduceMAXIMUM INDEPENDENT SET to (P). LetG =
(V, E) be a connected graph witf| > |V| (MAXIMUM INDEPENDENT SET is in P for trees, see [10])
and letK € Z.. We have to decide whether there is a sulsset V' with |S| > K which is independent,
that is, for every edgév, w} € E it holds that|.S N {v,w}| < 1. The set of incident edges toc V is
denoted by (v). LetU C V be the set of nodes i@ with even node degree. We define the mattims
follows. Setm := |E| 4 |U| and identify the first E| rows of A with edges ofG and all other rows with
nodes inU. The number of columns is defined by:= m + |V|. The firstm columns form an identity
matrix again. Every colump > m represents a nodg € V with M[j] := §(j) U {j} if j € U and
M][j] = 6(j) if j € V\U. This way all columns of4 have odd length. Sét := 1 foralli ¢ E U U and
by := K. The weights are defined such that := 1 for j < m andw; := 0 otherwise.

In the following we show that using this reduction there &xisn independent set i@ of size at
least K if and only if there exists an integer solutiane P with weightwx < 0. Let firstz € Z,
be a vector inP. Such a solution exists sinééM) > |E| > |V| > K = by, see Lemma 1.2. We
defineS := {j € N : z; = 1}. Itfollows thatS C V if wz < 0. From the cardinality constraint
we get that|S| = dx > by = K because all columns ol are odd. FromAz < b it follows that
1SN {v,wh = > cgx; < 1forall edges{v,w} € E. HenceS is an independent set of size at
least K. Now let S be an independent set of size at leAst We construct an integer solution ia by
settingz; := 1 forall j € S andxz; := 0 otherwise. It holds that € P becauselz > K = b, and
Yjesti=15N{v,w} < 1. O

3 Polyhedral Studies

In this section we study the facial structure Bf We start by considering trivial facets and properties
of nontrivial facets. Next, we provide a complete desooiptof P for the casen = 3. Based on this
description, we develop two classes of general facet-aefimequalities forP. Recall that we assum@

to be full-dimensional.

Lemma 3.1. Rowi € M of the systemia < b defines a facet aP.



Proof. Rowi € M can be written a3, v, z; < b;. Then vectorsz® andz* for k # i from the proof
of Lemma 1.2 all satisfy this inequality at equality. O

Lemma 3.2. The cardinality constraintz > b, defines a facet aP if and only ifbg > 0.

Proof. Necessitytf by = 0, thend > by is the sum of nonnegativity constraints which differ since 2.
Sufficiency:Consider a feasible point with ZjeM xj; = bp andz; = 0 for j € N\M. This point
exists becausg M) > by+1. We may assume thatis given such that;, > 1 andz;, < b;, —1 for some
Ji,j2 € M. Now letj € M with j # j1,jo. In case that; = 0 we may increase; and decrease;, . If
otherwisex; is positive we may decrease it and increage If now j; # j, we can alternatively decrease
z;, and increase:;,. For everyk € N\M we consider the packing® from the proof of Lemma 1.2
reduced by a value @f M) — 2 | ¢, / 2] — by keepingz¥ = 1. We have constructed affinely independent
points satisfyinglz = by. O

Lemma3.3. Letj € N. The nonnegativity constraint; > 0 defines a facet oP if either j € N\ M or
b(M) —b; > by + max(1, 2[/2]).

Proof. Let j € N and consider the packingsz® andz* for k € N, k # j from the proof of Lemma 1.2.
If j € N\M these points all satisfy; = 0. If otherwisej € M, then we may delete the entry fgiin
all of thesen vectors maintaining affinely independence. Sibce/) — b; > by + max(1, 2 [£/2]) the
cardinality constraint still holds. O

Lemma 3.4. Letaxr < ag be a nontrivial facet-defining inequality fd? and letj € N. If j € M then
a; <0.1f j € N\O, thenay; > 0. Moreovera; < a; forall i € M[j]land}_,;c ;i < ;.

Proof. First assume that € M. Sinceax < «ag is not one of the packing constraints there is a feasible
point 2 on the facet that is not tight in royx. Hencez; can be increased without leavidgwhich gives

a; < 0. Now letj € N\M. Sinceax < ap iS not a nonnegativity constraint there is a pairtn the facet
with z; > 1. If £; is even entryr; can be reduced maintaining feasibility. Hencg> 0. Moreover, we
can construct new feasible packings franby reducingz; and increasing:; for (some or all); € M j].
This showsy; < a; foralli € M[jland} ;) i < ;. O

Corollary 3.5. If ez < «y is a facet-defining inequality faP with o; > 0 for all j € N, then it is either
one of the packing constraints ar; = 0 for all j € M.

Proof. If ax < ag is nontrivial thena; < 0 for all j € M by Lemma 3.4. O

Lemma 3.6. If ax < «y is a facet-defining inequality faP with o; < 0 for all j € IV, then itis either a
nonnegativity constraint or the cardinality constraint.

Proof. Fromax < a( being a facet followsy, < 0. If it is not the cardinality constraint, then there is a
point z* on the facet withzjeo x; > bo. Letj € N with 27 > 0. We may reduce:;. The resulting
vector is feasible and has to satisfy < ag, hencex; = 0. It follows that for allj € NV eitherx;f =0or

a; = 0. Henceaz™ = 0 which impliesay = 0 and thusvae < o is a nonnegativity constraint. O

Complete description for m = 3. In the context of two-layer network desigm, small is of particular
interest since physical networks are sparse in practieg,guts typically have a small number of physical
links. If m = 2, then? < 2 for which a complete description (by blossom inequalitissknown as
mentioned in Section 2. Here we aim to study the case- 3 with equal right hand sides, reading as
follows:

T1+To+x3 + T4 > by (5)
x1 + 24+ @5 +a7 <8 (6)
To + x4+ 25 + 6 <pg (7
3+ T4 +zetrr <3 (8)



Notice that the columns in (6)-(8) correspond to all nongnsotbsets of\/ = {1,2,3}. We consider the
polytopeP? := conv{z € Z : xz satisfies (5) - (8). We assume that, by € Z\{0} and thatP? is full
dimensional, hence by Lemma 1.2 it holds that> b, + 2. It suffices to studyP? since all other instances
havingm = 3 can be obtained by fixing subsetsaof, 5, x¢ Or 7 to zero which gives nonempty faces
of P3. Consequently, a complete description &t means a complete description for = 3. Setting
p:=[(38—bo) /2] andq := | (28 — bo) / 2], the following inequalities are obviously valid f&t*:

Tyt x5 +x6+a7<p (9)

—x + x6 <q (10)
—x3 +s <gq (11)

— T +r7<q (12)

These inequalities are obtained by aggregating subsef-¢8) and applying 0, %}-Chvatal-Gomory
step. The subsets afé5)-(8)}, {(5), (7), (8)}, {(5), (6), (7)}, and{(5), (6), (8)}, respectively. In the
following we will make use of the following integral pointeweral times:

xl = (578787p7070a0)7x2 = (Ovtat50707qa0)ax3 = (07070a6a07050)7q"4 = (0a0a05b0+1a —-S, _87_5)

wheres := [(by — 3) /2] andt := [by /2]. Notice thatz' € P3 whenever3 < by, thatz? is in P? if
23 > by, and that:3, z* are valid if 3 > by.

Lemma 3.7. Inequality(9) defines a facet gP? if and only ifb, — 3 is odd.

Proof. Necessitytf by — 3 is even or equivalentl$3 — by is even, then (9) is the sum of (5)-(8).
Sufficiency:Settingy := x' if 8 < by andy := 2% if 3 > by the following seven affinely independent
points are on the face defined by (9):

v, y—e4+e5, y_e4_|_€6’ y—e4+e7, y—e4—|—63+e5, y_e4+€1_|_€6’ y—e4+62—|—e7
Notice that from the fact thdt — 3 is odd follows thap+s = 3, p+3s = by +1, andby+1—2s = 3. [
Lemma 3.8. The inequalitieg10) - (12) define facets oP? if and only ifb, is odd and23 — by > 1.

Proof. By symmetry, it suffices to prove the result for (18)ecessityif b, is even or equivalentlgs — b
is even, then (10) is the sum of (5), (7) and (82— by < —1, then the sum of (5), (7) and (8) dominates
(10). Sufficiency:The following affinely independent points are on the facergefiby (10):

172, xQ—eQ, x2—e3, x2—62—63+e4, 952—62—1—657 sc2—63+e7, 2—e?—ed el 46
Notice that ifty is odd thert = by + 1 andg + t = 8. O
Theorem 3.9. The polytopeP? is completely described by the the inequaliti@s— (12).

Proof. Let az < «a define a nontrivial facef” of P3. Hence it is not one of (5) - (8) and it is not a
nonnegativity constraint. We first state some general ptigseof the coefficients;:

ar,ag, a3 <0 and oy, a5, a,a7 >0 (13)
max{ay, as, ag, a7} >0 (14)
a;tag<as and ax+ar<ay and az+as < ay (15)
If ag > B anday, as, ag, a7 < 1,thena; = as = a3, as = ag = a7 anda; + ag = ay (16)

Properties (13) and (14) follow from Lemma 3.4 - 3.6 exceptfp > 0. There is an integral feasible point
x € Fwithxy +x0+x3+24 > b+ 1. If 24 > 1 we may decrease it, henag > 0. If otherwisex, = 0,
we may decrease one of , z, or x3 and hencenax;—; 2 3 &; = 0. By a1, a2, 3 < g (Lemma 3.4), we
concludeay > 0.

There is also an integral feasible poine F with =, > 1. We may decrease, and increase;; and
xg, v3 andxs, or x5 andxz; which gives property (15).



To show (16) we take an integral feasible painte F' which is not tight in (6). Hence:; + x4 +
x5 + a7 < B. Letag > B, as, a5, 06,07 < 1. f g = 0,00 = ax < o1 +x4 +25 +27 < 3, @
contradiction. Henceyg > 1. We may decreases; and increase:; or x; without losing feasibility, and
thusas, a7 < ag. Applying the same argument to points that are not tight Jndv (8), respectively, we
eventually concluders = ag = a7. Now we choose: € F with x; > 1. Again we conclude thatg > 1.
Now decreasing:, xg and increasing, givesa; + ag = ay. Similarly, as +a7 = a4 andas + a5 = ay.
Finally it follows a1 = as = as.

We proceed by showing thatr < « can only be one of (9) — (12). We distinguish two cases.

1. Assume thaty; = as = a3 = 0. Using (15) it can be seen that, > a5, ag, a7 and with (14)
follows oy > 0. We may scaley, to 1. If 3 < by, thenz! is valid. Henceny > p andaz < ag
has to be inequality (9) (otherwise it is dominated by (%)3 I> by, thenz? is valid, thusag > f3.
Using (16)ax < o becomesey + x5 + 26 + 27 < ag Which is (9) because alsd' is a valid point.

2. Assume w.l.0.ga; < 0. We consider an integral feasible poine F with 1 + xo + x3 + x4 >
by + 1. Obviouslyz;, = 0 (otherwise reducing; givesa; = 0). Three subcases are distinguished.

() LetS < by. Then bothr, > 1 andzs > 1. Reducinge; or z3 givesas = a3 = 0. Inequality
(6) cannot be tight, because otherwise, by evaluating (8), (e getrs + x3 + x4 + 226 < 5
which contradictse, + x3 + x4 > by + 1 > 5+ 1. Hence inequality (6) is not tight and we
may decrease, andxz simultaneously and increasg which givesa, = 0. Now, by (14) and
(15), a5 = a7 = 0 and after scalingy to 1, oy < —1. Evaluating the point? givesag > ¢
andax < ag becomes (10).

(b) Lets > by andxy4 > 1. Reducinge, and either increasings, xg Or x7 givesay > as, g, Q7.
Scalingay to 1 and using (16) we conclude that: < ag is (9).

(c) Letg > by andzy = 0. We may assume w.l.o.g. that > 1. It follows as = 0. If
inequality (6) is tight ther:; > 1 (otherwisexr, > 1 is a contradiction) and we may decrease
o, x7 and increasery, x5 Or xg, thusay, as, g < «ay. Scalinga; to 1 and evaluating
the point(0, by, 0,0,0,0, ) results inay > B which by using (16) gives the contradiction
0 = as = a3 < 0. Hence inequality (6) is not tight. First assume that= 0. If now
inequality (8) is tight, them:g > 1 (otherwise inequality (6) being tight is a contradictioBY.
decreasing:g, increasingey, x5, or x7, and by using similar arguments as before (16) gives a
contradiction. But also inequality (8) having slack is nossgible since we might decreasg
and increasey, x5, ¢ Or 7, contradicting (14). It remains the case that inequalidyigéot
tight andx3 > 1. Reducingrs andz, and increasing:, givesay = a5 = a7 = 0. But then
using (15) results im; < —ag and evaluating point? gives inequality (10).

The proof is complete. O

General facets. It has been shown above that the @tal rank ofP is 1 also in the caser = ¢ = 3. All
facet-defining inequalities ag, 1/2}-cuts. But not every combination of rows of the initial forfation
gives rise to a facet-defining inequality. Only thd$e1/2}-cuts that combine the rows efz < b with
the cardinality constraint are strong. This observatiotivates the following two general classes of facet-
defining inequalities. The first class of facets generalinegualities (10)—(12) and the second class is
similar to (9). Both inequalities are rank 1 mixed integarnding (MIR) inequalities [9].

Let i1,io € M be two arbitrary rows ofA. We assume w.l.0.g. that = 1 andiy, = 2. For
k € {0,1,2} we setN* := {j € N : [M[j] n{1,2}| = k}. HenceN* corresponds to all columns that
havek entries in the first two rows ofl. We setq := [(by + ba — bg) /2] . Aggregating rows, i and
the cardinality constraint, dividing l/and rounding down left and right hand sides gives

S on- Y w<q (17)

JEN2\O JENONO

Theorem 3.10. Inequality(17)is valid and defines a facet &f if the following conditions hold:



1. by + by — by > 0'is positive and oddN?\O # 0, and|b; — by| < by — 1
2. b; > q+2foralli e M[j],j € N*\O

Condition 1 is necessary fdil7) to define a facet. A further necessary conditiom;is> ¢ + 1 for all
i€ M[j],j € N*\O.

Proof. Validity: Aggregating the cardinality constraint and all packingstoaints corresponding to=
1,2 results in the base inequality

2 Z T+ Z T+ Z T — Z zj < by +ba —bo. (18)

JEN2\O JEN2NO JENI\O JENONO

Applying a{0, 1 / 2}-Chvatal-Gomory step gives (17).

Necessity??

Sufficiency:We staten affinely independent points on the face defined by (17). ALet N2\O and
consider the poing* defined by

q j=k
yr=<b;—q j=1,2
0 else

This point respects all packing constraints aptl = b, +b, —2q = by + 1. It also satisfies (17) at equality.
We state the rest of the — 1 affinely independent points as variations,6f

y" + e for j € N\O (19a)
Y el—el—e2 46l for je N°NO (19b)
yb — el for j=1,2 (19¢)
Yt — el el for j € N',1e M[j],j#1 (19d)
Yt — et el for j € N',2€ M[j],j #2 (19e)
y* — ek el for j € N2\O,j #k (19f)
Yy —el —e? el for j€e N>*nO (199)

Condition 2 ensures feasibility of the pointin (19b). Vatey} is increased to a value gft-1. In addition,
if i € M[k] N M][j] with j € N°O, we need thab; > ¢ + 2.

Necessity:If by + by — by is even or negative then (17) is dominated by the base inigg(a8). If
N2\O = 0 then (17) is dominated by nonnegativity constraints. Assuhat|b; — bs| > by and that
b1 + by — bg is odd. Leth; > by w.l.0.g.. In this casé, > by + b which impliesb, < ¢ and thus
(17) is dominated by the packing constraint jor 2. Finally, b; > ¢ + 1 is a necessary condition for all
i€ M[j],5 € N?\O for (17) to define a facet since otherwise (17) is dominatethbypacking constraint
1€ M. O

Another nontrivial facet-defining inequality is derived falows. Let us assume there is a column
k € N\M with the property that: has at most one entry in common with any other columdn. e., it
holds thaf M [k] N M[j]| < 1 foreveryj € N, j # k. Let N2, N} C N denote the columns of that have
no entry in common with columh and that have exactly one entry in common with columrespectively.
We denote by the length of the longest odd columni¥y, thus¢? = max{¢; : j € NP N O} and byr
the remainder of the division &f, — by by s := 2 | ¢, / 2|. Setp := | (bx, — bo) / s]. Now we aggregate all
rows corresponding td/[k] and the cardinality constraint, and consider thie-MIR inequality

(s—ra— Y a;<(s-1)p (20)

e NO
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Theorem 3.11. Inequality(20)is valid and defines a facet &f if the following conditions hold:



1. r > 1, b, > by, andb; > pforall i € M[K]
2. EitherM\M[k] =0 orb(M) — b, > s — 1+ £).
Condition 1 is necessary f@R0) to define a facet.

Proof. Validity: Aggregating the cardinality constraint and all packingsteaints fori € M [k] results in
the base inequality

STk + Z T — Z xz; < by — bg. (22)

JENINO JENPMO

Applying a1l / s Mixed Integer Rounding (MIR) step (see Nemhauser and WdBjggives (20).
Necessity:lf » = 0, thens dividesb, — by and inequality (21) dominates (20). Alsobif — by < 0,
then (21) dominates (20) since in this cage- by < (s — r) p. If for somei € M|[E] it holds thath; < p,
then (20) is dominated by the packing constraintifahich implieszy < b;.
Sufficiency:Let axz < «g be a valid inequality that is fulfilled at equality by all ptsnon the face
defined by (20). The packing' given by

p Jj=k
y]l:: bj—p je€ Mk
0 else

is feasible since all packing constraints are satisfied and
dy' = by, — sp = by + .

The packingy! is also clearly on the face defined by (20). We concludedhat= «. Decreasing/jl for
j € M[k] givesa; = 0 for all j € MIk]. The proof is complete if\/\ M [k] = 0.

Let M\M (k] # 0. For a columnj € N, leti € M[k] N M[j]. By decreasing; and increasing;,
we concludey; = 0. Forj € NY\O, by increasing;, it also holds thaty; = 0.

Consider the capacity vectg? defined by

p+1 J=k
s Jli— 1) e MK
7 e j € M\MI[K]
0 else

wheree; € Zy With 3,y p\ arp) €5 = s — 7 such thak; < b; (such values always exist sinte\/) — by, >
s — r). Hence the packing constraints are satisfied and for thireity constraint it holds that

dy?> = by, —s(p+1)+s—17=bp.

The pointy? satisfies (20) at equality. Comparing andy? givesay + ZjeM\M[k] aje; = 0. Since

¢9 > 1 the vectory? is not tight in the packing constraints corresponding\fq M [k]. We may still
shift values between the variablg$ for j € M\M|k] without leaving the face such that we conclude
ar = —(s —r)a; forall j € M\MIk]. Finally we have to consider the case that> 1. For every
column; € NP with ¢; > 2 we consider a variant of* with y? < b, — 1 for i € M[j]. Such a point exists
becausé(M) — by > s — r + . Increasingy; and decreasing; for somei € M\ M|k] gives another
feasible point on the face. It follows that, = —(s — )« for all j € N NO. Sinceay = ay, p inequality
ax < aq is (20) up to a scalar multiple. Hence (20) defines a facet. O

4 Concluding remarks

In this paper we have discussed the complexity and the pdighproperties of a combinatorial structure
appearing in the context of dimensioning cuts in two-layetworks. The corresponding problem has



been described as a cardinality constrained packing infgggram and has been proven to be strongly
NP -hard. Based on the complete description of the smallestrimimh instance two classes of facet
defining inequalities have been identified. These inedaslgeneralize the well known cutset inequalities
to two network layers. Future work involves the separatibthese inequalities and evaluation of the
practical value of these inequalities.
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