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Abstract

In this paper we study a certain cardinality constrained packing integer program which is motivated
by the problem of dimensioning a cut in a two-layer network. We proveNP-hardness and consider
the facial structure of the corresponding polytope. We provide a complete description for the smallest
nontrivial case and develop two general classes of facet-defining inequalities. This approach extends the
notion of the well known cutset inequalities to two network layers.
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1 Introduction

Let A be a 0-1 matrix withm ≥ 2 rows,n ≥ m columns, and the firstm columns forming an identity
matrix. We denote byM := {1, . . . ,m} andN := {1, . . . , n} the row and column indices ofA. Thelength
ℓj of columnj ∈ N is defined as the sum of its entries, i. e.,ℓj =

∑m
j=1 aij . We setℓ̄ := maxj∈N (ℓj).

Depending on whetherℓj is odd or even we speak of odd and even columns ofA. The index set for all
odd columns is denoted byO ⊆ N . ObviouslyM ⊆ O. For any vectorv and a subset of its indicesS, let
v(S) :=

∑

j∈S vj throughout.
Let d be an-dimensional 0-1 vector withdj = 1 if and only if j ∈ O. Consideringb0 ∈ Z+ and a right

hand side vectorb ∈ Z
m
+ we study the polytope

P := conv{x ∈ Z
n
+ : dx ≥ b0, Ax ≤ b}.

By aggregating variables we may assume that all columns ofA differ. A valid inequality forP is called
nontrivial if it is not a nonnegativity constraint and if it is not thecardinality constraintdx ≥ b0 or one
of thepacking constraintsin the systemAx ≤ b. The columns ofA can be seen as incidence vectors for
subsets of the base setM . Since the identity matrix is contained inA all singleton subsets are part of the
problem. An integer point inP can be seen as a setpackingwhere each elementi ∈ M is covered at most
bi times and the number of subsets with odd cardinality is at least b0. The canonic packingx0 (satisfying
all packing constraints) is given byx0

j := bj for all j ∈ M andx0
j := 0 for all j ∈ N\M .

Our study ofP is motivated by design problems for layered telecommunication networks [1, 7, 11].
In such stacked networks two (or more) layers are coupled in such a way that every upper layer link is
represented by paths (between the corresponding end-nodes) in the underlying lower layer. In the following
we provide a mixed integer programming formulation for a a two-layer network design problem and show
that optimizing over the polytopeP corresponds to the design problem for a cut (or a two-node two-layer
network).

Two-layer network design Consider a firstphysical layerrepresented by a graphG = (V,E). and a
second completevirtual layer H = (V, V × V ) defined by the same set of locationsV and all possible
virtual links. Every virtual link can be realised by (different) paths in the physical layer. Both graphs are
simple and undirected. In general one may also consider subsets ofV andV × V in the virtual graph.
In practice, the graphG might represent a fiber topology of an optical transport network. In this case, a
virtual link of H reflects the possibility to connect the corresponding end-nodes by alight-path in G using
wavelength division multiplexing(WDM) technology [13]. Here we consider the physical graph tobe fixed
(not being subject to dimensioning). A realisation of a virtual link as a path in the physical layer will be
called a light-path in the following.

Given a traffic matrix of user demands with respect toV , the task is to select light-paths and to equip
them with capacities such that the user demands can be routedin the virtual layer. A demand can be routed
using several virtual paths (paths inH) consisting of multiple virtual links. Flow can be fractional. Every



edge ofG provides only a fixed number of channels. Every light-path capacity module consumes one
channel on every edge along the path inG.

The model we consider here is close to the formulation proposed by Raghavan and Stanojević [12],
also see [1]. It has the advantage of a very compact description of the virtual layer flow. This is achieved
by aggregating all flow variables for light-paths with the same end-nodes to a single variable. For every
virtual link {v, w} ∈ V × V a setP{v,w} of admissible light-paths in the physical graphG is considered.
Let P be the union of all these paths. Each pathp ∈ P can be equipped with multiples of a basechannel
capacityC at a certain cost. Every physical linke ∈ E supports a total ofBe channels. We consider a
set of commoditiesK modeling the given traffic forecast. With every commodityk ∈ K and every node
v ∈ V , a demand valueDk

v is associated such that
∑

v∈V Dk
v = 0.

We introduce the following variables. For every virtual link {v, w} the variablesfk
vw andfk

wv describe
the flow betweenv andw in both directions w. r. t. commodityk ∈ K. The integer variablexp counts
the number of channel capacities for pathp. The problem of minimizing the cost of a feasible capacity
assignment satisfying the given traffic demands and the capacity restrictions on both layers can now be
formulated as the problem of minimizing a linear function over the following set of constraints:

∑

w∈V \{v}

(fk
vw − fk

wv) = Dk
v ∀v ∈ V, k ∈ K (1)

∑

p∈P{v,w}

Cxp −
∑

k∈K

(fk
vw + fk

wv) ≥ 0 ∀{v, w} ∈ V × V (2)

∑

p∈P : e∈p

xp ≤ Be ∀e ∈ E (3)

fk
vw, fk

wv ∈ R+, xp ∈ Z+ (4)

The flow conservation equations (1) ensure a feasible routing of the traffic. The virtual link capacity
constraint (2) says that the flow betweenv andw must not exceed the total capacity installed on all cor-
responding paths. The physical link capacity constraint (3) restricts the number of light-path channels for
every physical linke. An extension of the formulation above considering the design problem of virtual as
well as physical links and nodes is used in [1].

Two-Layer cuts Consider a cut in the physical graph and all crossing light-paths, (i. e., all paths inP
using at least one of the physical cut links, see Figure 1. Only if such a path uses an odd number of physical
cut links, i. e., its end-nodes are in different shores of thecut, it can contribute to the transport of traffic
across the cut. We assume that these odd paths have to be equipped with at leastb0 many capacity modules
to allow for a feasible realization of the traffic across the cut. The cardinality constraintdx ≥ b0 reflects
this requirement and can be seen as the (capacity forcing) cutset inequality [2, 3, 8] for the virtual cut.
The valueb0 depends on the cut demandD and the size of the channel capacityC and can be computed
asb0 = ⌈D

C
⌉. The packing constraintsAx ≤ b are simply the physical channel limitations (3) for all cut

links. The rows ofA correspond to all physical cut links and the columns ofA correspond to all light-paths
crossing the cut. Since in practice typically all single-hop channels (light-paths using exactly one physical
link) are part of the problem, the matrixA contains the identity matrix.

In this context,P is a two-layer network design polytope for two network nodesor a (two-layer) cutset
polytope. Every cut inG defines a polytope of typeP . Hence, facets ofP extend the notion of cutset
inequalities to two layers. Single-layer network design polyhedra, cutset polyhedra, and cutset inequalities
have been studied for instance in [2, 3, 8].

Basic observations In this paper, we study the complexity of optimizing overP as well as the polyhedral
structure ofP . For this, we introduce the following additional notation.Given a column indexj ∈ N , the
setM [j] := {i ∈ M : aij = 1} contains all row indices with a nonzero entry in columnj of A. Similarly,
for a row indexi ∈ M , the setN [i] := {j ∈ N : aij = 1} corresponds to all columns with a nonzero
entry in rowi of A. Forj ∈ N we writebj := b(M [j]). Note thatbj is well defined since it coincides with
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Figure 1: Physical cut and crossing light-paths. Physical cut links correspond to rows. Paths correspond to
columns ofA. All singleton paths are part of the problem.

the right hand side of the packing constraint forj ∈ M . We denote byej ∈ {0, 1}n thej-th unit vector for
j ∈ N .

By a simple reduction from the decision version ofMAXIMUM SET PACKING [5] it can be seen that
already deciding whetherP is nonempty or not isNP -complete if we allow for arbitrary{0, 1}-matrices
A. The situation however changes ifA contains the identity matrix as claimed above. In this case the
dimension ofP only depends on the size ofb(M) compared to the size ofb0.

Lemma 1.1. P is nonempty if and only ifb(M) ≥ b0.

Proof. Sincedx =
∑

j∈O xj ≤
∑

j∈N ℓjxj and by aggregating all packing constraints
∑

j∈N ℓjxj ≤

b(M). we conclude thatP is empty ifb(M) < b0. On the other hand, ifb(M) ≥ b0, thenx0 ∈ P .

Lemma 1.2. P is full-dimensional if and only ifbi ≥ 1 for all i ∈ M andb(M) ≥ b0 +max(1, 2
⌊

ℓ̄ / 2
⌋

).

Proof. Let j̄ = argmax{ℓj : j ∈ N}.
Necessity:If bi = 0 for somei ∈ M , thenxi = 0 for all feasible packingsx and thusP is not full-

dimensional. Assume thatb(M) ≤ b0. ThusP is either empty (Lemma 1.1) orb(M) = b0. If the latter is
true, the only feasible vector is given byx0 which gives a dimension of0 and hence a contradiction. We
may assume thatb(M) ≥ b0+1. SinceP is full-dimensional there exists a feasible assignment withxj̄ ≥ 1.
For this assignment it holds thatdx =

∑

j∈O xj ≥ b0 if column j̄ is even and
∑

j∈O\{j̄} xj ≥ b0 − xj̄ if

columnj̄ is odd. Summing up the packing constraints showsb(M) ≥ b0 + 2
⌊

ℓ̄ / 2
⌋

.
Sufficiency:We constructn + 1 affinely independent points inP . The first vector is given byx0

which is feasible becausedx0 = b(M) ≥ b0 + 1. Since the cardinality constraint is not tight andbi ≥ 1
for all i ∈ M , every nonzero entry ofx0 can be reduced individually. More precisely, fork ∈ M we
consider the vectorxk := x0 − ek. Additionally, for columnsk ∈ N\M , we define the vectorsxk :=
x0 + ek −

∑

j∈M [k] e
j . It holds thatdxk = b(M)− ℓk or dxk = b(M)− ℓk + 1 depending on whetherℓk

is even or odd. Fromℓk ≤ ℓ̄ we get thatdxk ≥ b0 in both cases. Then + 1 constructed vectors are clearly
affinely independent.

Lemma 1.2 implies that ifP is not full dimensional it is either empty, contains a singlepoint or there
existsj ∈ N such thatxj = 0 for all x ∈ P . It follows that by consecutively deleting variables that
are fixed to zero and by excluding the trivial cases we may assume thatP is full dimensional w. l. o. g.
throughout the rest of this article. Due to length restrictions we have to omit most of the proofs.

2 Complexity

Given weightsw ∈ Z
n, we consider the problem of optimizing a linear function over P :

min{wx : x ∈ P} (P)

We first observe that if all columns ofA have at most two entries (ℓ̄ ≤ 2) the problem (P) can be solved
efficiently. If ℓ̄ = 1, thenA is the identity matrix and

(

−d
A

)

is totally unimodular. HenceP is already
completely described by the cardinality, packing, and nonnegativity constraints. Now consider the case
that ℓ̄ = 2, which implies that for every column of the constraint matrix

(

−d
A

)

the sum of the absolute
values of its entries is 2. By Edmonds and Johnson [4], the corresponding optimization problem can
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be seen as a generalizedb-matching problem or a matching problem on bidirected graphs [14, chapter
36]. A complete description ofP is obtained by adding all{0, 1/2}-Chvátal-Gomory cuts (allblossom
inequalities) [4, 6, 14]. Also in this cases the problem (P) can be solved in strongly polynomial time.
Notice that the casēℓ ≤ 2 is of particular practical interest since for a single-nodecut in a two-layer
network it holds that a light-path visits the cut at most twice.

In the following we show that optimizing overP is stronglyNP -hard in general. For the maximization
version of (P) there is a straightforward reduction fromMAXIMUM SET PACKING [5].

Proposition 2.1. The optimization problem(P) is stronglyNP -hard.

Proof. We reduceMAXIMUM SET PACKING to (P). We are given a collectionC of finite sets and a number
K ∈ Z+ and we have to decide whether there exists a subcollectionC

′

⊆ C of disjoint sets with cardinality
|C

′

| ≥ K. We introduce the base setM := ∪S∈CS as the union of all sets inC andN := M ∪ C. The first
|M | columns form the identity matrix and for setS ∈ C we introduce a column representing the incidence
vector ofS. We setb0 := 0 andbi := 1 for all i ∈ M , and define the weightswj := 0 for all j ∈ M
andwj := −1 for all j ∈ N\M . Now every solutionx to (P) corresponds to a maximum subcollection of
sets fromC since we can setxi = 0 for all i ∈ M without changing the objective. These sets are disjoint
because

∑

j∈N [i] xj ≤ 1 for all i ∈ M . It follows that there exists a maximum set packing with sizeat
leastK if and only if wx ≤ −K.

The corresponding reduction uses nonpositive weights only. But it turns out that also the minimization
version (nonnegative weights) of (P) isNP -hard (in contrast to the minimization version of standardSET

PACKING). Notice that network design typically means minimizing the cost of certain resources. Here we
prove an even stronger result for 0-1 weights by reduction from MAXIMUM INDEPENDENCE SET [5].

Theorem 2.2. The optimization problem(P)with wj ∈ {0, 1} for all j ∈ N is stronglyNP -hard.

Proof. The problem (P) is clearly inNP. We reduceMAXIMUM INDEPENDENT SET to (P). LetG =
(V,E) be a connected graph with|E| ≥ |V | (MAXIMUM INDEPENDENT SET is in P for trees, see [10])
and letK ∈ Z+. We have to decide whether there is a subsetS ⊂ V with |S| ≥ K which is independent,
that is, for every edge{v, w} ∈ E it holds that|S ∩ {v, w}| ≤ 1. The set of incident edges tov ∈ V is
denoted byδ(v). Let U ⊆ V be the set of nodes inG with even node degree. We define the matrixA as
follows. Setm := |E| + |U | and identify the first|E| rows ofA with edges ofG and all other rows with
nodes inU . The number of columns is defined byn := m + |V |. The firstm columns form an identity
matrix again. Every columnj > m represents a nodej ∈ V with M [j] := δ(j) ∪ {j} if j ∈ U and
M [j] := δ(j) if j ∈ V \U . This way all columns ofA have odd length. Setbi := 1 for all i ∈ E ∪ U and
b0 := K. The weights are defined such thatwj := 1 for j ≤ m andwj := 0 otherwise.

In the following we show that using this reduction there exists an independent set inG of size at
leastK if and only if there exists an integer solutionx ∈ P with weight wx ≤ 0. Let first x ∈ Z+

be a vector inP . Such a solution exists sinceb(M) ≥ |E| ≥ |V | ≥ K = b0, see Lemma 1.2. We
defineS := {j ∈ N : xj = 1}. It follows thatS ⊆ V if wx ≤ 0. From the cardinality constraint
we get that|S| = dx ≥ b0 = K because all columns ofA are odd. FromAx ≤ b it follows that
|S ∩ {v, w}| =

∑

j∈S xj ≤ 1 for all edges{v, w} ∈ E. HenceS is an independent set of size at
leastK. Now let S be an independent set of size at leastK. We construct an integer solution inP by
settingxj := 1 for all j ∈ S andxj := 0 otherwise. It holds thatx ∈ P becausedx ≥ K = b0 and
∑

j∈S xj = |S ∩ {v, w}| ≤ 1.

3 Polyhedral Studies

In this section we study the facial structure ofP . We start by considering trivial facets and properties
of nontrivial facets. Next, we provide a complete description of P for the casem = 3. Based on this
description, we develop two classes of general facet-defining inequalities forP . Recall that we assumeP
to be full-dimensional.

Lemma 3.1. Rowi ∈ M of the systemAx ≤ b defines a facet ofP .
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Proof. Row i ∈ M can be written as
∑

j∈N [i] xj ≤ bi. Then vectorsx0 andxk for k 6= i from the proof
of Lemma 1.2 all satisfy this inequality at equality.

Lemma 3.2. The cardinality constraintdx ≥ b0 defines a facet ofP if and only ifb0 > 0.

Proof. Necessity:If b0 = 0, thend ≥ b0 is the sum of nonnegativity constraints which differ sincen ≥ 2.
Sufficiency:Consider a feasible pointx with

∑

j∈M xj = b0 andxj = 0 for j ∈ N\M . This point
exists becauseb(M) ≥ b0+1. We may assume thatx is given such thatxj1 ≥ 1 andxj2 ≤ bj2−1 for some
j1, j2 ∈ M . Now letj ∈ M with j 6= j1, j2. In case thatxj = 0 we may increasexj and decreasexj1 . If
otherwisexj is positive we may decrease it and increasexj2 . If now j1 6= j2 we can alternatively decrease
xj1 and increasexj2 . For everyk ∈ N\M we consider the packingxk from the proof of Lemma 1.2
reduced by a value ofb(M)− 2 ⌊ℓk / 2⌋− b0 keepingxk

k = 1. We have constructedn affinely independent
points satisfyingdx = b0.

Lemma 3.3. Let j ∈ N . The nonnegativity constraintxj ≥ 0 defines a facet ofP if either j ∈ N\M or
b(M) − bj ≥ b0 + max(1, 2

⌊

ℓ̄ / 2
⌋

).

Proof. Let j ∈ N and consider then packingsx0 andxk for k ∈ N, k 6= j from the proof of Lemma 1.2.
If j ∈ N\M these points all satisfyxj = 0. If otherwisej ∈ M , then we may delete the entry forj in
all of thesen vectors maintaining affinely independence. Sinceb(M) − bj ≥ b0 + max(1, 2

⌊

ℓ̄ / 2
⌋

) the
cardinality constraint still holds.

Lemma 3.4. Let αx ≤ α0 be a nontrivial facet-defining inequality forP and letj ∈ N . If j ∈ M then
αj ≤ 0. If j ∈ N\O, thenαj ≥ 0. Moreoverαi ≤ αj for all i ∈ M [j] and

∑

i∈M [j] αi ≤ αj .

Proof. First assume thatj ∈ M . Sinceαx ≤ α0 is not one of the packing constraints there is a feasible
point x on the facet that is not tight in rowj. Hencexj can be increased without leavingP which gives
αj ≤ 0. Now letj ∈ N\M . Sinceαx ≤ α0 is not a nonnegativity constraint there is a pointx on the facet
with xj ≥ 1. If ℓj is even entryxj can be reduced maintaining feasibility. Henceαj ≥ 0. Moreover, we
can construct new feasible packings fromx by reducingxj and increasingxi for (some or all)i ∈ M [j].
This showsαi ≤ αj for all i ∈ M [j] and

∑

i∈M [j] αi ≤ αj .

Corollary 3.5. If αx ≤ α0 is a facet-defining inequality forP with αj ≥ 0 for all j ∈ N , then it is either
one of the packing constraints orαj = 0 for all j ∈ M .

Proof. If αx ≤ α0 is nontrivial thenαj ≤ 0 for all j ∈ M by Lemma 3.4.

Lemma 3.6. If αx ≤ α0 is a facet-defining inequality forP with αj ≤ 0 for all j ∈ N , then it is either a
nonnegativity constraint or the cardinality constraint.

Proof. Fromαx ≤ α0 being a facet followsα0 ≤ 0. If it is not the cardinality constraint, then there is a
point x∗ on the facet with

∑

j∈O x∗
j > b0. Let j ∈ N with x∗

j > 0. We may reducex∗
j . The resulting

vector is feasible and has to satisfyαx ≤ α0, henceαj = 0. It follows that for allj ∈ N eitherx∗
j = 0 or

αj = 0. Henceαx∗ = 0 which impliesα0 = 0 and thusαx ≤ α0 is a nonnegativity constraint.

Complete description for m = 3. In the context of two-layer network design,m small is of particular
interest since physical networks are sparse in practice, i.e., cuts typically have a small number of physical
links. If m = 2, then ℓ̄ ≤ 2 for which a complete description (by blossom inequalities)is known as
mentioned in Section 2. Here we aim to study the casem = 3 with equal right hand sides, reading as
follows:

x1+x2+x3 + x4 ≥ b0 (5)

x1 + x4 + x5 +x7 ≤ β (6)

x2 + x4 + x5 + x6 ≤ β (7)

x3 + x4 + x6+x7 ≤ β (8)
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Notice that the columns in (6)-(8) correspond to all nonempty subsets ofM = {1, 2, 3}. We consider the
polytopeP3 := conv{x ∈ Z

7
+ : x satisfies (5) - (8)}. We assume thatβ, b0 ∈ Z+\{0} and thatP3 is full

dimensional, hence by Lemma 1.2 it holds that3β ≥ b0 +2. It suffices to studyP3 since all other instances
havingm = 3 can be obtained by fixing subsets ofx4, x5, x6 or x7 to zero which gives nonempty faces
of P3. Consequently, a complete description forP3 means a complete description form = 3. Setting
p := ⌊(3β − b0) / 2⌋ andq := ⌊(2β − b0) / 2⌋, the following inequalities are obviously valid forP3:

x4 + x5 + x6 + x7 ≤ p (9)

− x1 + x6 ≤ q (10)

− x3 + x5 ≤ q (11)

− x2 + x7 ≤ q (12)

These inequalities are obtained by aggregating subsets of (5)-(8) and applying a{0, 1
2}-Chvátal-Gomory

step. The subsets are{(5)-(8)}, {(5), (7), (8)}, {(5), (6), (7)}, and{(5), (6), (8)}, respectively. In the
following we will make use of the following integral points several times:

x1 = (s, s, s, p, 0, 0, 0), x2 = (0, t, t, 0, 0, q, 0), x3 = (0, 0, 0, β, 0, 0, 0), x4 = (0, 0, 0, b0 +1,−s,−s,−s)

wheres := ⌈(b0 − β) / 2⌉ andt := ⌈b0 / 2⌉. Notice thatx1 ∈ P3 wheneverβ ≤ b0, thatx2 is in P3 if
2β ≥ b0, and thatx3, x4 are valid ifβ > b0.

Lemma 3.7. Inequality(9) defines a facet ofP3 if and only ifb0 − β is odd.

Proof. Necessity:If b0 − β is even or equivalently3β − b0 is even, then (9) is the sum of (5)-(8).
Sufficiency:Settingy := x1 if β < b0 andy := x4 if β ≥ b0 the following seven affinely independent

points are on the face defined by (9):

y, y− e4 + e5, y− e4 + e6, y− e4 + e7, y− e4 + e3 + e5, y− e4 + e1 + e6, y− e4 + e2 + e7

Notice that from the fact thatb0−β is odd follows thatp+s = β, p+3s = b0+1, andb0+1−2s = β.

Lemma 3.8. The inequalities(10) - (12)define facets ofP3 if and only ifb0 is odd and2β − b0 ≥ 1.

Proof. By symmetry, it suffices to prove the result for (10).Necessity:If b0 is even or equivalently2β− b0

is even, then (10) is the sum of (5), (7) and (8). If2β− b0 ≤ −1, then the sum of (5), (7) and (8) dominates
(10). Sufficiency:The following affinely independent points are on the face defined by (10):

x2, x2 − e2, x2 − e3, x2 − e2 − e3 + e4, x2 − e2 + e5, x2 − e3 + e7, x2 − e2 − e3 + e1 + e6

Notice that ifb0 is odd then2t = b0 + 1 andq + t = β.

Theorem 3.9. The polytopeP3 is completely described by the the inequalities(5) – (12).

Proof. Let αx ≤ α0 define a nontrivial facetF of P3. Hence it is not one of (5) - (8) and it is not a
nonnegativity constraint. We first state some general properties of the coefficientsαi:

α1, α2, α3 ≤ 0 and α4, α5, α6, α7 ≥ 0 (13)

max{α4, α5, α6, α7} > 0 (14)

α1 + α6 ≤ α4 and α2 + α7 ≤ α4 and α3 + α5 ≤ α4 (15)

If α0 ≥ β andα4, α5, α6, α7 ≤ 1, thenα1 = α2 = α3, α5 = α6 = α7 andα1 + α6 = α4 (16)

Properties (13) and (14) follow from Lemma 3.4 - 3.6 except for α4 ≥ 0. There is an integral feasible point
x ∈ F with x1 +x2 +x3 +x4 ≥ b0 +1. If x4 ≥ 1 we may decrease it, henceα4 ≥ 0. If otherwisex4 = 0,
we may decrease one ofx1, x2 or x3 and hencemaxj=1,2,3 αj = 0. By α1, α2, α3 ≤ α4 (Lemma 3.4), we
concludeα4 ≥ 0.

There is also an integral feasible pointx ∈ F with x4 ≥ 1. We may decreasex4 and increasex1 and
x6, x3 andx5, or x2 andx7 which gives property (15).
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To show (16) we take an integral feasible pointx ∈ F which is not tight in (6). Hencex1 + x4 +
x5 + x7 < β. Let α0 ≥ β, α4, α5, α6, α7 ≤ 1. If x6 = 0, α0 = αx ≤ x1 + x4 + x5 + x7 < β, a
contradiction. Hence,x6 ≥ 1. We may decreasex6 and increasex5 or x7 without losing feasibility, and
thusα5, α7 ≤ α6. Applying the same argument to points that are not tight in (7), or (8), respectively, we
eventually concludeα5 = α6 = α7. Now we choosex ∈ F with x1 ≥ 1. Again we conclude thatx6 ≥ 1.
Now decreasingx1, x6 and increasingx4 givesα1 +α6 = α4. Similarly,α2 +α7 = α4 andα3 +α5 = α4.
Finally it follows α1 = α2 = α3.

We proceed by showing thatαx ≤ α0 can only be one of (9) – (12). We distinguish two cases.

1. Assume thatα1 = α2 = α3 = 0. Using (15) it can be seen thatα4 ≥ α5, α6, α7 and with (14)
follows α4 > 0. We may scaleα4 to 1. If β < b0, thenx1 is valid. Henceα0 ≥ p andαx ≤ α0

has to be inequality (9) (otherwise it is dominated by (9)). If β ≥ b0, thenx3 is valid, thusα0 ≥ β.
Using (16)αx ≤ α0 becomesx4 + x5 + x6 + x7 ≤ α0 which is (9) because alsox4 is a valid point.

2. Assume w. l. o. g.α1 < 0. We consider an integral feasible pointx ∈ F with x1 + x2 + x3 + x4 ≥
b0 + 1. Obviouslyx1 = 0 (otherwise reducingx1 givesα1 = 0). Three subcases are distinguished.

(a) Letβ < b0. Then bothx2 ≥ 1 andx3 ≥ 1. Reducingx2 or x3 givesα2 = α3 = 0. Inequality
(6) cannot be tight, because otherwise, by evaluating (6) – (8), we getx2 + x3 + x4 + 2x6 ≤ β
which contradictsx2 + x3 + x4 ≥ b0 + 1 > β + 1. Hence inequality (6) is not tight and we
may decreasex2 andx3 simultaneously and increasex4 which givesα4 = 0. Now, by (14) and
(15),α5 = α7 = 0 and after scalingα6 to 1, α1 ≤ −1. Evaluating the pointx2 givesα0 ≥ q
andαx ≤ α0 becomes (10).

(b) Letβ ≥ b0 andx4 ≥ 1. Reducingx4 and either increasingx5, x6 or x7 givesα4 ≥ α5, α6, α7.
Scalingα4 to 1 and using (16) we conclude thatαx ≤ α0 is (9).

(c) Let β ≥ b0 andx4 = 0. We may assume w. l. o. g. thatx2 ≥ 1. It follows α2 = 0. If
inequality (6) is tight thenx7 ≥ 1 (otherwisex2 ≥ 1 is a contradiction) and we may decrease
x2, x7 and increasex4, x5 or x6, thusα4, α5, α6 ≤ α7. Scalingα7 to 1 and evaluating
the point(0, b0, 0, 0, 0, 0, β) results inα0 ≥ β which by using (16) gives the contradiction
0 = α2 = α1 < 0. Hence inequality (6) is not tight. First assume thatx3 = 0. If now
inequality (8) is tight, thenx6 ≥ 1 (otherwise inequality (6) being tight is a contradiction).By
decreasingx6, increasingx4, x5, or x7, and by using similar arguments as before (16) gives a
contradiction. But also inequality (8) having slack is not possible since we might decreasex2

and increasex4, x5, x6 or x7, contradicting (14). It remains the case that inequality (6) is not
tight andx3 ≥ 1. Reducingx3 andx2 and increasingx4 givesα4 = α5 = α7 = 0. But then
using (15) results inα1 ≤ −α6 and evaluating pointx2 gives inequality (10).

The proof is complete.

General facets. It has been shown above that the Chvátal rank ofP is 1 also in the casem = ℓ̄ = 3. All
facet-defining inequalities are{0, 1/2}-cuts. But not every combination of rows of the initial formulation
gives rise to a facet-defining inequality. Only those{0, 1/2}-cuts that combine the rows ofAx ≤ b with
the cardinality constraint are strong. This observation motivates the following two general classes of facet-
defining inequalities. The first class of facets generalizesinequalities (10)–(12) and the second class is
similar to (9). Both inequalities are rank 1 mixed integer rounding (MIR) inequalities [9].

Let i1, i2 ∈ M be two arbitrary rows ofA. We assume w. l. o. g. thati1 = 1 and i2 = 2. For
k ∈ {0, 1, 2} we setNk := {j ∈ N : |M [j] ∩ {1, 2}| = k}. HenceNk corresponds to all columns that
havek entries in the first two rows ofA. We setq := ⌊(b1 + b2 − b0) / 2⌋ . Aggregating rowsi1, i2 and
the cardinality constraint, dividing by2 and rounding down left and right hand sides gives

∑

j∈N2\O

xj −
∑

j∈N0∩O

xj ≤ q (17)

Theorem 3.10. Inequality(17) is valid and defines a facet ofP if the following conditions hold:
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1. b1 + b2 − b0 > 0 is positive and odd,N2\O 6= ∅, and|b1 − b2| ≤ b0 − 1

2. bi ≥ q + 2 for all i ∈ M [j], j ∈ N2\O

Condition 1 is necessary for(17) to define a facet. A further necessary condition isbi ≥ q + 1 for all
i ∈ M [j], j ∈ N2\O.

Proof. Validity: Aggregating the cardinality constraint and all packing constraints corresponding toi =
1, 2 results in the base inequality

2
∑

j∈N2\O

xj +
∑

j∈N2∩O

xj +
∑

j∈N1\O

xj −
∑

j∈N0∩O

xj ≤ b1 + b2 − b0. (18)

Applying a{0, 1 / 2}-Chvátal-Gomory step gives (17).
Necessity:??
Sufficiency:We staten affinely independent points on the face defined by (17). Letk ∈ N2\O and

consider the pointyk defined by

yk
j :=











q j = k

bj − q j = 1, 2

0 else

This point respects all packing constraints anddyk = b1+b2−2q = b0+1. It also satisfies (17) at equality.
We state the rest of then − 1 affinely independent points as variations ofyk:

yk + ej for j ∈ N0\O (19a)

yk + ek − e1 − e2 + ej for j ∈ N0 ∩ O (19b)

yk − ej for j = 1, 2 (19c)

yk − e1 + ej for j ∈ N1, 1 ∈ M [j], j 6= 1 (19d)

yk − e2 + ej for j ∈ N1, 2 ∈ M [j], j 6= 2 (19e)

yk − ek + ej for j ∈ N2\O, j 6= k (19f)

yk − e1 − e2 + ej for j ∈ N2 ∩ O (19g)

Condition 2 ensures feasibility of the point in (19b). Variableyk
k is increased to a value ofq+1. In addition,

if i ∈ M [k] ∩ M [j] with j ∈ N0O, we need thatbi ≥ q + 2.
Necessity:If b1 + b2 − b0 is even or negative then (17) is dominated by the base inequality (18). If

N2\O = ∅ then (17) is dominated by nonnegativity constraints. Assume that|b1 − b2| ≥ b0 and that
b1 + b2 − b0 is odd. Letb1 ≥ b2 w. l. o. g.. In this caseb1 ≥ b0 + b2 which impliesb2 ≤ q and thus
(17) is dominated by the packing constraint forj = 2. Finally, bi ≥ q + 1 is a necessary condition for all
i ∈ M [j], j ∈ N2\O for (17) to define a facet since otherwise (17) is dominated bythe packing constraint
i ∈ M .

Another nontrivial facet-defining inequality is derived asfollows. Let us assume there is a column
k ∈ N\M with the property thatk has at most one entry in common with any other column inA, i. e., it
holds that|M [k]∩M [j]| ≤ 1 for everyj ∈ N, j 6= k. LetN0

k , N1
k ⊆ N denote the columns ofA that have

no entry in common with columnk and that have exactly one entry in common with columnk, respectively.
We denote byℓ0k the length of the longest odd column inN0

k , thusℓ0k = max{ℓj : j ∈ N0
k ∩ O} and byr

the remainder of the division ofbk − b0 by s := 2 ⌊ℓk / 2⌋. Setp := ⌊(bk − b0) / s⌋. Now we aggregate all
rows corresponding toM [k] and the cardinality constraint, and consider the1/s-MIR inequality

(s − r)xk −
∑

j∈N0

k
∩O

xj ≤ (s − r) p (20)

Theorem 3.11. Inequality(20) is valid and defines a facet ofP if the following conditions hold:
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1. r ≥ 1, bk > b0, andbi > p for all i ∈ M [k]

2. EitherM\M [k] = ∅ or b(M) − bk ≥ s − r + ℓ0k.

Condition 1 is necessary for(20) to define a facet.

Proof. Validity: Aggregating the cardinality constraint and all packing constraints fori ∈ M [k] results in
the base inequality

sxk +
∑

j∈N1

k
\O

xj −
∑

j∈N0

k
∩O

xj ≤ bk − b0. (21)

Applying a1 / s Mixed Integer Rounding (MIR) step (see Nemhauser and Wolsey[9]) gives (20).
Necessity:If r = 0, thens dividesbk − b0 and inequality (21) dominates (20). Also ifbk − b0 ≤ 0,

then (21) dominates (20) since in this casebk − b0 ≤ (s − r) p. If for somei ∈ M [k] it holds thatbi ≤ p,
then (20) is dominated by the packing constraint fori which impliesxk ≤ bi.

Sufficiency:Let αx ≤ α0 be a valid inequality that is fulfilled at equality by all points on the face
defined by (20). The packingy1 given by

y1
j :=











p j = k

bj − p j ∈ M [k]

0 else

is feasible since all packing constraints are satisfied and

dy1 = bk − sp = b0 + r.

The packingy1 is also clearly on the face defined by (20). We conclude thatαkp = α0. Decreasingy1
j for

j ∈ M [k] givesαj = 0 for all j ∈ M [k]. The proof is complete ifM\M [k] = ∅.
Let M\M [k] 6= ∅. For a columnj ∈ N1

k , let i ∈ M [k] ∩ M [j]. By decreasingy1
i and increasingy1

j ,
we concludeαj = 0. Forj ∈ N0

k\O, by increasingy1
j , it also holds thatαj = 0.

Consider the capacity vectory2 defined by

y2
j :=



















p + 1 j = k

bj − (p + 1) j ∈ M [k]

ǫj j ∈ M\M [k]

0 else

whereǫj ∈ Z+ with
∑

j∈M\M [k] ǫj = s−r such thatǫj ≤ bj (such values always exist sinceb(M)−bk ≥
s − r). Hence the packing constraints are satisfied and for the cardinality constraint it holds that

dy2 = bk − s(p + 1) + s − r = b0.

The pointy2 satisfies (20) at equality. Comparingy1 andy2 givesαk +
∑

j∈M\M [k] αjǫj = 0. Since
ℓ0k ≥ 1 the vectory2 is not tight in the packing constraints corresponding toM\M [k]. We may still
shift values between the variablesy2

j for j ∈ M\M [k] without leaving the face such that we conclude
αk = −(s − r)αj for all j ∈ M\M [k]. Finally we have to consider the case thatℓ0k > 1. For every
columnj ∈ N0

k with ℓj ≥ 2 we consider a variant ofy2 with y2
i ≤ bi − 1 for i ∈ M [j]. Such a point exists

becauseb(M) − bk ≥ s − r + ℓ0k. Increasingy2
j and decreasingy2

i for somei ∈ M\M [k] gives another
feasible point on the face. It follows thatαk = −(s− r)αj for all j ∈ N0

k ∩O. Sinceα0 = αk p inequality
αx ≤ α0 is (20) up to a scalar multiple. Hence (20) defines a facet.

4 Concluding remarks

In this paper we have discussed the complexity and the polyhedral properties of a combinatorial structure
appearing in the context of dimensioning cuts in two-layer networks. The corresponding problem has
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been described as a cardinality constrained packing integer program and has been proven to be strongly
NP -hard. Based on the complete description of the smallest nontrivial instance two classes of facet
defining inequalities have been identified. These inequalities generalize the well known cutset inequalities
to two network layers. Future work involves the separation of these inequalities and evaluation of the
practical value of these inequalities.
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