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transfer fun
tion matrix (TFM) asso
iated with the system (1) is then given byG(s) = C(sE�A)�1B+D. Hereafter, we assume that the matrix pen
il A��Eis regular, i.e., 9� 2 C with det(A � �E) 6= 0. We also assume that A � �E isstable, implying that the �nite part of the spe
trum of A � �E is 
ontained inthe open left half plane.In the model redu
tion problem, we are interested in �nding a redu
ed-orderrealization Ê _̂x(t) = Âx̂(t) + B̂û(t); t > 0 x̂(0) = x̂0;ŷ(t) = Ĉx̂(t) + D̂û(t); t � 0; (2)of order r, r � n, and asso
iated TFM Ĝ(s) = Ĉ(sÊ � Â)�1B̂ + D̂ whi
happroximates G(s).Model redu
tion of large-s
ale linear des
riptor systems arises in 
ontrolof multibody (me
hani
al) systems, manipulation of 
uid 
ow (e.g., (Navier)-Stokes equations), 
ir
uit simulation, VLSI 
hip design, in parti
ular when mod-eling the inter
onne
tions via RLC networks, and simulation of MEMS andNEMS (mi
ro- and nano-ele
tro-me
hani
al systems), to name a few; see, e.g.,[11,12, 14, 26℄. State-spa
e dimensions n of order 102 to 104 are 
ommon in theseappli
ations.There is no general te
hnique for model redu
tion that 
an be 
onsidered asoptimal in an overall sense. In this paper we fo
us on the so-
alled state-spa
etrun
ation approa
h [2, 25℄ and, in parti
ular, on balan
ed trun
ation (BT) ofthe system [24, 31, 36, 38℄. BT methods belong to the family of absolute errormethods, whi
h try to minimize k�ak1 = kG� Ĝk1. Here, kGk1 denotes theL1- orH1-norm of a stable, rational matrix fun
tion whi
h is de�ned for propertransfer fun
tions as kGk1 = ess sup!2R; !�0�max(G(|!)); (3)where | := p�1 and �max(M) is the largest singular value of the matrixM . Notethat transfer fun
tions of des
riptor systems are in general not proper. BT andH1-norm 
onsiderations are therefore not always appli
able dire
tly. A way to
ir
umvent these diÆ
ulties is presented in [5, 32, 33℄. But BT methods for lineardes
riptor systems as proposed in [32, 33℄ with dense state matrix pen
il A��Epresent a 
omputational 
ost of O(n3) 
oating-point operations (
ops). Large-s
ale appli
ations, like those enumerated above, thus 
learly bene�t from usingparallel 
omputing te
hniques to obtain the redu
ed-order system. Parallel modelredu
tion of standard linear systems (E = In) using the state-spa
e approa
hhas been investigated elsewhere; see, e.g., the review in [9℄.Although there exist several other approa
hes for model redu
tion, see, e.g.,[2, 14, 15℄, those are spe
ialized for 
ertain problem 
lasses and often la
k proper-ties like error bounds or preservation of stability, passivity, or phase information.Our pro
edure for parallel model redu
tion of linear des
riptor systems is
omposed of two major tasks: First, it is ne
essary to de
ouple (separate) the�nite poles of the system from the in�nite ones, whi
h is equivalent to 
omputing2



an additive de
omposition of the TFM. Then, in a se
ond step, BT is appliedto the part of the system asso
iated with the �nite poles, whi
h requires thesolution of two generalized Lyapunov equations.The rest of the paper is stru
tured as follows. In Se
tion 2 we review spe
i�
algorithms for the two major tasks involved in model redu
tion of linear des
rip-tor systems. In Se
tion 3 we then introdu
e two numeri
al tools, namely thedisk and sign fun
tions, that are the basis for our model redu
tion algorithms.In parti
ular, an inverse-free iteration for the disk fun
tion is employed for theseparation of the poles of the system into the appropriate regions, while the gen-eralized Lyapunov equations are solved by means of a modi�ed Newton iterationfor the sign fun
tion of a matrix pen
il. A few details on the implementationand parallelization of the resulting algorithm are given in Se
tion 4. Finally, thenumeri
al and parallel performan
es of the algorithms are reported in Se
tion 5,and some 
on
luding remarks follow in Se
tion 6.2 Model Redu
tion of Des
riptor SystemsIn this se
tion we brie
y des
ribe a model redu
tion method for linear des
riptorsystems proposed in [5℄. It is based on the observation that the method of [32,33℄ is mathemati
ally equivalent to the following pro
edure. First, the TFM ofthe system is de
omposed asG(s) = G0(s) +G1(s);whereG0 andG1 
ontain, respe
tively, the �nite and in�nite poles of the system.This is followed by the appli
ation of BT to approximate G0(s) by Ĝ0(s). Theredu
ed-order model is then given byĜ(s) = Ĝ0(s) +G1(s):In [34℄ it is also shown how to apply model redu
tion to the in�nite part of thesystem. We will not 
onsider this here any further, but the pro
edure des
ribedthere should a

ompany the method dis
ussed here.2.1 De
oupling the in�nite poles of a TFMConsider the system de�ned by (A � �E;B;C;D). In order to 
ompute thesought-after additive de
omposition, we are interested in �nding an equivalen
etransformation de�ned by a pair of nonsingular matri
es U; V 2 Rn�n , su
h thatA� �E is \blo
k-diagonalized" asÂ� �Ê := U(A� �E)V �1 = �A0 00 A1 �� � �E0 00 E1 � ;where A0 � �E0 and A1 � �E1 
ontain, respe
tively, the �nite and in�niteeigenvalues of A� �E. 3



If this equivalen
e transformation is now applied to the rest of the systemB̂ := UB =: � B0B1 � ; Ĉ := CV �1 =: [C0 C1 ℄ ;we obtain the desired additive de
omposition of the TFM intoG(s) = C(sE �A)�1B +D= Ĉ(sÊ � Â)�1B̂ + D̂= �C0 C1 � � (sE0 � A0)�1 (sE1 �A1)�1 �� B0B1 �+D= �C0(sE0 �A0)�1B0 +D	| {z }=:G0(s) +�C1(sE1 �A1)�1B1	| {z }=:G1(s) :Thus, the problem of 
omputing an additive de
omposition has been rede-�ned in terms of �nding appropriate matri
es U and V that blo
k-diagonalizethe system.In order to 
ompute these matri
es we will pro
eed in two steps. First,we 
ompute orthogonal matri
es Q;Z 2 Rn�n that redu
e A � �E to blo
k-triangular form; i.e,QT (A� �E)Z = �A0 WA0 A1 �� � �E0 WE0 E1 � : (4)In subse
tion 3.1 we review a numeri
al tool: the matrix disk fun
tion [23℄, thatallows the 
omputation of the appropriate \blo
k-triangularizing" transforma-tion.Then, in a se
ond step, (4) is further redu
ed into the required blo
k-diagonalform by solving the following generalized Sylvester equationA0Y +XA1 +WA = 0; E0Y +XE1 +WE = 0: (5)Thus, Â� �Ê := Û(A� �E)V̂ �1:= � I X0 I ���A0 WA0 A1 �� � �E0 WE0 E1 ��� I Y0 I �= �A0 00 A1 �� � �E0 00 E1 � ;and U = ÛQT , V �1 = ZV̂ �1.In 
ase the system is of index 1, denoted by ind(A;E) = 1 (i.e., the in�niteeigenvalues of A� �E are non-defe
tive), we obtain that in (4) E1 = 0 and theSylvester equation in (5) de
ouples into two linear systemsE0Y = �WE ; XA1 = �(WA +A0Y ):4



In 
ase the index is greater than one, (5) 
an be solved using the generalizedS
hur or Hessenberg-S
hur methods proposed in [13, 17℄. However, the paral-lelization of both algorithms requires a parallel implementation of the QZ al-gorithm, an extremely diÆ
ult task (no parallel version exists yet!); besides,many appli
ations with ind(A;E) > 1 have an equivalent formulation withind(A;E) = 1. We therefore assume that the index is one hereafter. Note thatthis implies that the system has no impulsive modes.2.2 Balan
ed trun
ation of linear des
riptor systemsConsider now the realization (A0��E0; B0; C0; D0) resulting from the de
ationof the in�nite part of (A � �E;B;C;D) using the pro
edure des
ribed in theprevious se
tion. In the se
ond step we will pro
eed to apply BT to redu
ethis realization further, noting that E0 is invertible and the de
ated system isequivalent to the standard state-spa
e system given by (E�10 A0; E�10 B0; C0; D0).BT methods are strongly related to the 
ontrollability Gramian W
 and theobservability Gramian Wo of the system. In the 
ontinuous-time 
ase, theseGramians are given by the solutions of two 
oupled generalized Lyapunov equa-tions A0W
ET0 +E0W
AT0 +B0BT0 = 0;AT0 ŴoE0 +ET0 ŴoA0 + CT0 C0 = 0; Wo = ET ŴoE: (6)As A � �E was assumed to be stable, so is A0 � �E0, and the Gramians W
and Wo are positive semide�nite; therefore there exist fa
torizations W
 = STSand Wo = RTR. Matri
es S and R are 
alled the Cholesky fa
tors of the Grami-ans (even if they are not Cholesky fa
tors in a stri
t sense). EÆ
ient parallelalgorithms for the solution of (6) are dis
ussed in subse
tion 3.2.Consider now the singular value de
omposition (SVD)SRT = [U1 U2℄ ��1 00 �2 � �V T1V T2 � ; (7)where the matri
es are partitioned at a given dimension r su
h that �1 =diag (�1; : : : ; �r), �2 = diag (�r+1; : : : ; �n), �j � 0 for all j, and �r > �r+1.Here, �1; : : : ; �n are the Hankel singular values of the system.The so-
alled square-root (SR) BT algorithms determine the redu
ed-ordermodel asÊ0 := LE0T; Â0 := LA0T; B̂0 := LB0; Ĉ0 := C0T; D̂0 := D0; (8)where the trun
ation matri
es L and T are given byL = ��1=21 V T1 RE�10 and T = STU1��1=21 : (9)Note that Ê0 = Ir and needs not be 
omputed. Even though the redu
tionyields a standard state-spa
e representation, it is still bene�
ial not to transformthe generalized system to standard form by inverting E0 dire
tly as rounding5



errors introdu
ed by this operation are delayed as mu
h as possible in the givenpro
edure and therefore intermediate results are not 
orrupted by them.The balan
ing-free square-root (BFSR) BT algorithms often provide morea

urate redu
ed-order models in the presen
e of rounding errors [38℄. Thesealgorithms share the �rst two stages (solving the 
oupled equations and 
om-puting the SVD of SRT ) with the SR methods, but di�er in the pro
edure toobtain L and T . Spe
i�
ally, the following two QR fa
torizations are 
omputed,STU1 = [P1 P2℄ � R̂0 � ; E�T0 RTV1 = [Q1 Q2℄ � �R0 � ; (10)where P1, Q1 2 Rn�r have orthonormal 
olumns, and R̂, �R 2 Rr�r are uppertriangular. The redu
ed-order system is then given by the proje
tion matri
esL = (QT1 P1)�1QT1 ; T = P1; (11)and (8).Both SR and BFSR BT algorithms provide a realization of order r thatsatis�es the error bound [19℄k�ak1 = kG0 � Ĝ0k1 � 2 nXj=r+1�j ; (12)allowing thus an adaptive 
hoi
e of the state-spa
e dimension r of the redu
ed-order model. Also note that as G� Ĝ = G0� Ĝ0 and G� Ĝ is proper, the errorbound (12) applies also for the 
omplete redu
ed-order model.3 Numeri
al ToolsThe model redu
tion method des
ribed in the previous se
tion involves, as thetwo major 
omputational problems, the 
omputation of an equivalen
e transfor-mation that divides the eigenspe
trum of A��E, �(A;E), into the appropriateparts, and the solution of two 
oupled generalized Lyapunov equations. We nextreview eÆ
ient iterative algorithms for both 
omputations that yield high per-forman
e on parallel distributed memory 
omputers.3.1 The inverse-free iteration for the disk fun
tionIn [23℄, Malyshev proposed an iterative s
heme for the spe
tral division of amatrix pen
il. Given F � �G, F;G 2 Rn�n , with no eigenvalues on the unit
ir
le, the te
hnique des
ribed there provides orthogonal matri
es Q;Z 2 Rn�nsu
h that QT (F � �G)Z = �F11 F120 F22 �� � �G11 G120 G22 � ; (13)where F11��G11 and F22��G22 
ontain, respe
tively, the eigenvalues of F��Ginside and outside the unit 
ir
le. A 
areful use of Mo�ebius transformations6



allows to separate the spe
trum along other regions. In parti
ular, the �niteeigenvalues of �(F;G) 
an be separated from the in�nite ones by applying themethod des
ribed next to the matrix pen
il �F � �G, with � > maxfj�j; � 2�(F;G)nf1gg. However, it remains an open question how to estimate the valueof �.Malyshev's iteration was further re�ned and made truly inverse-free in [4℄,where it was rede�ned as follows:F0  F , G0  Gfor j = 0; 1; 2; : : :Compute the QR de
omposition� Fj�Gj � = �U11 U12U21 U22 � �Rj0 �Fj+1  UT12FjGj+1  UT22GjAs the 
onvergen
e rate of the inverse-free iteration is ultimately quadrati
, asuitable 
onvergen
e 
riterion is to stop whenkRj+1 �Rjk1 < � := 
";with 
 a 
ertain threshold value and " the ma
hine pre
ision. In pra
ti
e, how-ever, it is better to set � = np"kRjk1 and perform two more iterations on
ethis 
riterion is satis�ed. Due to the ultimate quadrati
 
onvergen
e of the iter-ation this ensures in most 
ases the maximum possible a

ura
y while avoiding
onvergen
e stagnation problems.The iteration 
an be used both for the 
omputation of the matrix diskfun
tion and for spe
tral division. For instan
e, let F1 := limj!1 Fj andG1 := limj!1Gj , then the disk fun
tion of the matrix pen
il is de�ned asdisk(F;G) = (F1 +G1)�1(F1 � �G1):The pro
edure for spe
tral division was further improved in [35℄, where aninverse-free subspa
e extra
tion s
heme was des
ribed that provides both Q andZ in (13) from a single inverse-free iteration, saving thus half of the 
ompu-tational 
ost. Spe
i�
ally, this te
hnique requires �rst the 
omputation of therank-revealing QR (RRQR) fa
torization [20℄F T1 = �Z �R ��; r = rank (F1) = rank � �R� :Now, let �Z = [Z1; Z2℄, Z1 2 Rn�(n�r) , Z2 2 Rn�r . The sought-after orthogonalmatri
es are then given by Z = [Z2; Z1℄ and the orthogonal matrix in the RRQRfa
torization [AZ2; BZ2℄ = QR�:The parallelization of the inverse-free iteration has been previously reportedin [3, 27℄. 7



3.2 Solving generalized Lyapunov equations via the sign fun
tionSin
e its introdu
tion in [30℄, the sign fun
tion has proved useful in a variety ofnumeri
al linear algebra problems whi
h in
lude, among others, spe
tral division,solution of algebrai
 Ri

ati equations, and solution of linear matrix equations;see, e.g., [7, 16, 30℄.We next des
ribe a spe
ial variant of the Newton iteration for the matrix signfun
tion that 
an be used for the solution of the generalized Lyapunov equationsin (6). Spe
i�
ally, in our method the equations are solved for the Choleskyfa
tors of the solutions allowing great 
omputational savings in 
ase they areapplied to the type of equations arising in large-s
ale non-minimal systems. Fora detailed des
ription of this te
hnique, see, e.g., [8℄.In brief, the proposed variant of the Newton iteration for the sign fun
tionis de�ned as follows:A0  A, S0  B, R0  Cfor j = 0; 1; 2; : : :
j = (det(Aj)= det(Ej)) 1nAj+1  1p2
j �Aj + 
2jEA�1j E�Compute the RRQR de
ompositions1p2
j �Sj 
jEA�1j Sj �T = Qs �Rs0 ��s1p2
j � Rj
jRjA�1j E � = Qr �Rr0 ��rRj+1  (Rr�r)TSj+1  Rs�sAt 
onvergen
e, the iteration provides fa
tors S, R of 
ontrollability and observ-ability Gramians of the system as follows:S := 1p2 limj!1SjE�T ; R := 1p2 limj!1Rj :A 
onvergen
e 
riterion 
an easily be derived fromA1 := limj!1Aj = E:Thus, following the same ideas as in the inverse-free iteration, in order to avoid
onvergen
e stagnation problems we 
an test whether kAj � Ek1 < np"kAjk1and perform two more iterations on
e this 
riterion is satis�ed.For further details on the numeri
al a

ura
y, 
onverge rate, and (parallel)implementation of this iteration, see [7, 6℄.4 Implementation and Parallelization DetailsThe iterative s
hemes that we have des
ribed in the previous se
tions are basi-
ally 
omposed of traditional matrix 
omputations su
h as matrix fa
torizations,8



solution of triangular linear systems, matrix inversion, and matrix produ
ts. Allthese operations 
an be eÆ
iently performed employing parallel linear algebralibraries for distributed memory 
omputers [10, 37℄. The use of these librariesenhan
es the reliability and improves the portability of the model redu
tionalgorithms. The performan
e will depend on the eÆ
ien
ies of the underlyingserial and parallel 
omputational linear algebra kernels and the 
ommuni
ationroutines.Here we employ the parallel kernels in the S
aLAPACK library [10℄. This is afreely available library that implements parallel versions of many of the routinesin LAPACK [1℄, using the message-passing paradigm. S
aLAPACK employs thePBLAS (a parallel version of the serial BLAS) for 
omputation and BLACS for
ommuni
ation. The BLACS 
an be ported to any (serial and) parallel ar
hite
-ture with an implementation of the MPI (our 
ase) or the PVM libraries [18,22℄.The RRQR fa
torizations in our 
odes are 
omputed by means of the tra-ditional QR fa
torization with 
olumn pivoting [20℄. In order to improve theperforman
e of our parallel model redu
tion routines we have designed and im-plemented two spe
ialized parallel kernels that outperform parallel kernels inS
aLAPACK with an analogous purpose: the QR fa
torization with partial piv-oting is 
omputed in our 
odes using a parallel BLAS-3 version instead of thetraditional BLAS-2 approa
h [29℄. Also, our matrix inversion routine is based ona Gauss-Jordan elimination pro
edure [28℄ that presents a better load balan
eon distributed memory ar
hite
tures than traditional inversion algorithms basedon Gaussian elimination (LU fa
torization).5 Experimental ResultsAll the experiments presented in this se
tion were performed on a 
luster of16 nodes using ieee double-pre
ision 
oating-point arithmeti
 (" � 2:2204 �10�16). Ea
h node 
onsists of an Intel Pentium Xeon pro
essor at 2.4 GHzwith 1 GByte of RAM. We employ a BLAS library spe
ially tuned for thispro
essor that a
hieves around 3.0 G
ops (millions of 
ops per se
ond) for thematrix produ
t (routine DGEMM) [21℄. The nodes are 
onne
ted via a Myrinetmultistage network and the MPI 
ommuni
ation library is spe
ially developedand tuned for this network. The performan
e of the inter
onne
tion networkwas measured by a simple loop-ba
k message transfer resulting in a laten
y of18 �se
. and a bandwidth of 1.4 Gbit/se
. We made use of the LAPACK, BLAS,and S
aLAPACK libraries whenever possible.As in our experiments both SR and BFSR BT algorithms obtained 
loselysimilar results we only report data for the �rst algorithm.5.1 Numeri
al aspe
tsIn order to evaluate the numeri
al behavior of our model redu
tion algorithmswe employed a linear des
riptor system with n = 500 states, m = 5 inputs, and9



p=10 outputs. This system was generated so that the ratio between �nite/in�nitepoles was 470/30 and ind(A;E) = 1.Our �rst experiment is designed to evaluate the a

ura
y and performan
eof the inverse-free iteration as a spe
tral division tool. For this purpose 
omparethe residuals (ba
kward errors for spe
tral division) of k[A21; E21℄kF and kE22kFin (4) obtained both with the inverse-free iteration and the QZ algorithm. Thelatter is proved to be a numeri
ally stable algorithm [20℄ and therefore shouldprovide a measure of how a

urate our inverse-free approa
h is. The results inTable 1 demonstrate that, at least for this example, the inverse-free iterationprovides orthogonal bases Q and Z that are as \a

urate" as those resultingfrom the QZ algorithm. Disk fun
tion QZ alg.k[A21; E21℄kF 4:2 � 10�13 1:0 � 10�12kE22kF 1:1 � 10�15 1:1 � 10�15Table 1. A

ura
y of the bases for the de
ating subspa
es.The 
onvergen
e of the inverse-free iteration for blo
k-triangularization ofthis example is shown in the left plot in Fig. 1.
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Fig. 1. Convergen
e rate for the iterative s
hemes (left plot) and Bode plot (magnitude)of error system (right plot).We then applied BT to the realization asso
iated with the �nite part of�(A;E) to obtain a redu
ed-order realization so thatkG0 � Ĝ0k1 � 0:01:10



As a result, the order of the system was redu
ed from n=470 to r=60 andk�ak1 = kG0 � Ĝ0k1 � 2 470Xj=61�j = 9:796� 10�3:In the left-hand plot in Figure 1 we also report the 
onvergen
e rate of ourNewton iteration for the solution of the 
oupled generalized Lyapunov equations.We report the absolute error between the original and the redu
ed-order TFM inthe right-hand plot of this �gure. The results show that the redu
ed-order modelis very a

urate and the error bound (12) is fairly pessimisti
 in this example.5.2 Parallel performan
eIn this subse
tion we report the performan
e of the parallel routine for thede
oupling of the in�nite poles of the TFM, pggde
, and the redu
tion of alinear des
riptor system with no in�nite poles, pgab09ax. In order to mimi
 areal 
ase, we employ a stable linear des
riptor system of order n with m = n=10inputs, p = n=10 outputs, n=10 in�nite poles, and ind(A;E) = 1.Our �rst experiment reports the exe
ution time of the parallel routines on asystem of order n = 1800. Here, on
e the in�nite poles have been de
oupled, rou-tine pgab09ax is applied on a system of order n�n=10 = 1620. These are aboutthe largest sizes we 
ould evaluate on a single node of our 
luster, 
onsideringthe number of data matri
es involved, the amount of workspa
e ne
essary for
omputations, and the size of the RAM per node. The left-hand plot in Figure 2reports the exe
ution time of the parallel routine using np=1, 2, 4, 6, 8, and 10nodes. The exe
ution of the parallel algorithm on a single node is likely to re-quire a higher time than that of a serial implementation of the algorithm (using,e.g., LAPACK and BLAS); however, at least for su
h large s
ale problems, weexpe
t this overhead to be negligible 
ompared to the overall exe
ution time.The �gure shows reasonable speed-ups when a redu
ed number of pro
essorsis employed. Thus, when np=4, speed-ups of 3.25 and 4.25 are obtained forroutines pdggde
 and pgab09ax, respe
tively. The super speed-up in the latter
ase is due to a better use of the memory in the parallel algorithm. However,as expe
ted the eÆ
ien
y de
reases as np gets larger (as the system dimensionis �xed, the problem size per node is redu
ed) so that using more than a fewpro
essors does not a
hieve a signi�
ant redu
tion in the exe
ution time for su
ha small problem.We next evaluate the s
alability of the parallel routine when the problemsize per node is 
onstant. For that purpose, we �x the problem dimensions ton=pnp = 1800 for routine pggde
, and n=pnp = 1620 for routine pgab09ax.The number of inputs/outputs in both 
ases is m = p = n=10. The right-handplot in Figure 2 shows the Giga
op rate per node of the parallel routine. Theseresults demonstrate the s
alability of our parallel kernels, as there is only a minorde
rease in the performan
e of the algorithms when np is in
reased while theproblem dimension per node remains �xed.11
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Fig. 2. Performan
e of the parallel routines for model redu
tion of linear des
riptorsystems.6 Con
luding RemarksWe have des
ribed the design and use of parallel algorithms for model redu
tionof large-s
ale linear des
riptor systems. The spe
tral proje
tion methods 
onsid-ered here are 
omposed of highly eÆ
ient iterative s
hemes for the disk and signfun
tions and allow one to obtain low-order approximations of very large densesystems.Experimental results report a high performan
e and s
alability of the parallelalgorithms on a 
luster of Intel Pentium Xeon pro
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