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Abstract. In this paper we investigate the use of parallel computing
to deal with the high computational cost of numerical algorithms for
model reduction of large linear descriptor systems. The state-space trun-
cation methods considered here are composed of iterative schemes for
the disk and sign functions which can be efficiently implemented on par-
allel architectures using the kernels from existing parallel linear algebra
libraries.

Our experimental results on a cluster of Intel Pentium Xeon processors
show the performance and scalability of the parallel algorithms.
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1 Introduction

Model reduction is of fundamental importance in many modeling and control
applications involving continuous-time linear descriptor systems. In generalized
state-space form these systems are defined by

Ei(t) = Az(t) + Bu(t), t>0, =z(0)=a2°, ()
y(1) = Calt) + Dult). ¢ >0,

where E, A € R"*", B € R"*™, C € RP*", D € RP*™, 20 ¢ R” is the initial
state of the system, and n is said to be the order (or degree) of the system. The
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transfer function matrix (TFM) associated with the system (1) is then given by
G(s) = O(sE— A)~'B+ D. Hereafter, we assume that the matrix pencil A —\F
is regular, i.e., 3\ € C with det(A — AE) # 0. We also assume that A — \E is
stable, implying that the finite part of the spectrum of A — AE is contained in
the open left half plane.

In the model reduction problem, we are interested in finding a reduced-order
realization

>

Ex(t) = A#(t) + Ba(t), t>0 &0) =4

j(t) = C2(t) + Da(t), t>0, (2)

of order r, r < n, and associated TFM G(s) = C(sE — A)™'B + D which
approximates G(s).

Model reduction of large-scale linear descriptor systems arises in control
of multibody (mechanical) systems, manipulation of fluid flow (e.g., (Navier)-
Stokes equations), circuit simulation, VLSI chip design, in particular when mod-
eling the interconnections via RLC networks, and simulation of MEMS and
NEMS (micro- and nano-electro-mechanical systems), to name a few; see, e.g.,[11,
12,14, 26]. State-space dimensions n of order 10? to 10* are common in these
applications.

There is no general technique for model reduction that can be considered as
optimal in an overall sense. In this paper we focus on the so-called state-space
truncation approach [2,25] and, in particular, on balanced truncation (BT) of
the system [24,31,36,38]. BT methods belong to the family of absolute error
methods, which try to minimize || A, = |G — G||oo. Here, ||G]|c denotes the
Lo~ or Heo-norm of a stable, rational matrix function which is defined for proper
transfer functions as

|Glloo = ess sup omax(G(jw)), (3)
w€ER, w>0

where 5 := /—1 and omay (M) is the largest singular value of the matrix M. Note
that transfer functions of descriptor systems are in general not proper. BT and
Hoo-norm considerations are therefore not always applicable directly. A way to
circumvent these difficulties is presented in [5, 32, 33]. But BT methods for linear
descriptor systems as proposed in [32,33] with dense state matrix pencil A —AFE
present a computational cost of O(n?) floating-point operations (flops). Large-
scale applications, like those enumerated above, thus clearly benefit from using
parallel computing techniques to obtain the reduced-order system. Parallel model
reduction of standard linear systems (E = I,,) using the state-space approach
has been investigated elsewhere; see, e.g., the review in [9].

Although there exist several other approaches for model reduction, see, e.g.,
[2,14,15], those are specialized for certain problem classes and often lack proper-
ties like error bounds or preservation of stability, passivity, or phase information.

Our procedure for parallel model reduction of linear descriptor systems is
composed of two major tasks: First, it is necessary to decouple (separate) the
finite poles of the system from the infinite ones, which is equivalent to computing



an additive decomposition of the TFM. Then, in a second step, BT is applied
to the part of the system associated with the finite poles, which requires the
solution of two generalized Lyapunov equations.

The rest of the paper is structured as follows. In Section 2 we review specific
algorithms for the two major tasks involved in model reduction of linear descrip-
tor systems. In Section 3 we then introduce two numerical tools, namely the
disk and sign functions, that are the basis for our model reduction algorithms.
In particular, an inverse-free iteration for the disk function is employed for the
separation of the poles of the system into the appropriate regions, while the gen-
eralized Lyapunov equations are solved by means of a modified Newton iteration
for the sign function of a matrix pencil. A few details on the implementation
and parallelization of the resulting algorithm are given in Section 4. Finally, the
numerical and parallel performances of the algorithms are reported in Section 5,
and some concluding remarks follow in Section 6.

2 Model Reduction of Descriptor Systems

In this section we briefly describe a model reduction method for linear descriptor
systems proposed in [5]. It is based on the observation that the method of [32,
33] is mathematically equivalent to the following procedure. First, the TFM of
the system is decomposed as

G(s) = Go(s) + Goo(5),

where G and G« contain, respectively, the finite and infinite poles of the system.
This is followed by the application of BT to approximate Go(s) by Go(s). The
reduced-order model is then given by

G(s) = Go(s) + Guo(s).

In [34] it is also shown how to apply model reduction to the infinite part of the
system. We will not consider this here any further, but the procedure described
there should accompany the method discussed here.

2.1 Decoupling the infinite poles of a TFM

Consider the system defined by (A — AE, B,C, D). In order to compute the
sought-after additive decomposition, we are interested in finding an equivalence
transformation defined by a pair of nonsingular matrices U, V € R"*" such that
A — AE is “block-diagonalized” as

N 1[40 0 Ey 0
A—\E:=U(A - \E)V _{OAOO Mo |

where Ag — AEy and A, — AE. contain, respectively, the finite and infinite
eigenvalues of A — \E.



If this equivalence transformation is now applied to the rest of the system

B:=UB =: {50}, C:=CVt=[CyCuxl,

we obtain the desired additive decomposition of the TFM into

G(s)=C(sE—-A)"'B+D
GsE- A'B4 D
= [Co Coo] [(SEO = Ao)” (sEs _Aoo)1:| [5:0} +D

= {Co(sEs — Ag) ™' By + D}J+ {Coo(8Es — Aoc) ™' Boo } -

~

-~

=:Go(s) =:G o (8)

Thus, the problem of computing an additive decomposition has been rede-
fined in terms of finding appropriate matrices U and V that block-diagonalize
the system.

In order to compute these matrices we will proceed in two steps. First,
we compute orthogonal matrices @, Z € R"*™ that reduce A — AE to block-
triangular form; i.e,

Ay W
0 AL (4)

QT(A-\E)Z = { 0 B

NG

In subsection 3.1 we review a numerical tool: the matrix disk function [23], that
allows the computation of the appropriate “block-triangularizing” transforma-
tion.

Then, in a second step, (4) is further reduced into the required block-diagonal
form by solving the following generalized Sylvester equation

AgY + XAg + Wi =0, E)Y + XEs +Wg =0. (5)
Thus,
A—XE:=UA-\E)V™!
Z[IXT([AWa] _\ [EoWe]\[IY
“lor 0 As 0 Ex|)|0T
_[4 0] _[E O
T 0 A 0 Esx

and U =UQT, V-1 = ZV-1L

In case the system is of index 1, denoted by ind(A4, E) = 1 (i.e., the infinite
eigenvalues of A — A\E are non-defective), we obtain that in (4) Eo = 0 and the
Sylvester equation in (5) decouples into two linear systems

EOY = _WE: XAOO = _(WA + AOY)



In case the index is greater than one, (5) can be solved using the generalized
Schur or Hessenberg-Schur methods proposed in [13,17]. However, the paral-
lelization of both algorithms requires a parallel implementation of the QZ al-
gorithm, an extremely difficult task (no parallel version exists yet!); besides,
many applications with ind(A, E) > 1 have an equivalent formulation with
ind(4, E) = 1. We therefore assume that the index is one hereafter. Note that
this implies that the system has no impulsive modes.

2.2 Balanced truncation of linear descriptor systems

Consider now the realization (Ag — AEg, Bg, Cq, Dy) resulting from the deflation
of the infinite part of (A — AE, B,C, D) using the procedure described in the
previous section. In the second step we will proceed to apply BT to reduce
this realization further, noting that Ej is invertible and the deflated system is
equivalent to the standard state-space system given by (E, * Ao, E; ' Bg, Co, Dy).
BT methods are strongly related to the controllability Gramian W, and the
observability Gramian W, of the system. In the continuous-time case, these
Gramians are given by the solutions of two coupled generalized Lyapunov equa-
tions
AgW.ET + EgW AT + BoBT =0, 6
ATW,Ey + ETW,Ag+ CTCy =0, W, =ETW,E. (6)

As A — AE was assumed to be stable, so is Ay — AEy, and the Gramians W,
and W, are positive semidefinite; therefore there exist factorizations W, = ST
and W, = RTR. Matrices S and R are called the Cholesky factors of the Grami-
ans (even if they are not Cholesky factors in a strict sense). Efficient parallel
algorithms for the solution of (6) are discussed in subsection 3.2.

Consider now the singular value decomposition (SVD)

SRT = [U, Us) [201 4\22} [“;ﬂ , (7)

where the matrices are partitioned at a given dimension r such that X; =
diag (o1,...,0.), Xy = diag(or41,...,00), 0; > 0 for all j, and o, > opq1.
Here, 01, ...,0, are the Hankel singular values of the system.

The so-called square-root (SR) BT algorithms determine the reduced-order
model as

EO = LEOT, 1210 = LAOT, BO = LB(], é() = C(]T, .D(] = DO, (8)
where the truncation matrices L and T are given by
L=x7"?VTRE;' and T =STU,x;">. (9)

Note that EO = I, and needs not be computed. Even though the reduction
yields a standard state-space representation, it is still beneficial not to transform
the generalized system to standard form by inverting Ey directly as rounding



errors introduced by this operation are delayed as much as possible in the given
procedure and therefore intermediate results are not corrupted by them.

The balancing-free square-root (BFSR) BT algorithms often provide more
accurate reduced-order models in the presence of rounding errors [38]. These
algorithms share the first two stages (solving the coupled equations and com-
puting the SVD of SRT) with the SR methods, but differ in the procedure to
obtain L and T'. Specifically, the following two QR factorizations are computed,

STU, = [P, Py [ﬂ . EyTRTVI =[Q1 Q1) {ﬂ , (10)

where Py, (1 € R®*" have orthonormal columns, and R, R € R"™*" are upper
triangular. The reduced-order system is then given by the projection matrices

= (Q1TP1)71Q1T= T:Ph (11)

and (8).
Both SR and BFSR BT algorithms provide a realization of order r that
satisfies the error bound [19]

[4allse = [1Go = Golloo <2 Y 0y, (12)

j=r+1

allowing thus an adaptive choice of the state-space dimension r of the reduced-
order model. Also note that as G — G = Gy — G and G — G is proper, the error
bound (12) applies also for the complete reduced-order model.

3 Numerical Tools

The model reduction method described in the previous section involves, as the
two major computational problems, the computation of an equivalence transfor-
mation that divides the eigenspectrum of A — AE, A(A, E), into the appropriate
parts, and the solution of two coupled generalized Lyapunov equations. We next
review efficient iterative algorithms for both computations that yield high per-
formance on parallel distributed memory computers.

3.1 The inverse-free iteration for the disk function

In [23], Malyshev proposed an iterative scheme for the spectral division of a
matrix pencil. Given F — A\G, F,G € R"*", with no eigenvalues on the unit
circle, the technique described there provides orthogonal matrices @, Z € R"*"
such that
Fi, F G G
T _ || 11 Gz

QT (F AG)Z_{ 0 FQJ A[ ) GQJ, (13)
where F1; —AG1; and Fyy — AG4o contain, respectively, the eigenvalues of FF—AG
inside and outside the unit circle. A careful use of Moébius transformations



allows to separate the spectrum along other regions. In particular, the finite
eigenvalues of A(F,G) can be separated from the infinite ones by applying the
method described next to the matrix pencil «F — AG, with a@ > max{|A|,\ €
A(F,G)\{o0}}. However, it remains an open question how to estimate the value
of a.

Malyshev’s iteration was further refined and made truly inverse-free in [4],
where it was redefined as follows:

Fy F, Go «— G
for j=0,1,2,...
Compute the QR decomposition

Fj _ Uir Ups Rj

—Gj Us1 Uss 0
Fiy1 < ULF
Gjr1 + UpG;

As the convergence rate of the inverse-free iteration is ultimately quadratic, a
suitable convergence criterion is to stop when

|1Rjp1 — Rjlli <7 :=ce,

with ¢ a certain threshold value and e the machine precision. In practice, how-
ever, it is better to set 7 = n/||R;||1 and perform two more iterations once
this criterion is satisfied. Due to the ultimate quadratic convergence of the iter-
ation this ensures in most cases the maximum possible accuracy while avoiding
convergence stagnation problems.

The iteration can be used both for the computation of the matrix disk
function and for spectral division. For instance, let F, := lim;_,. F; and
G :=1im;_, o G, then the disk function of the matrix pencil is defined as

disk(F,G) = (Fao + Goo) M (Foo — AG o).

The procedure for spectral division was further improved in [35], where an
inverse-free subspace extraction scheme was described that provides both () and
Z in (13) from a single inverse-free iteration, saving thus half of the compu-
tational cost. Specifically, this technique requires first the computation of the

rank-revealing QR (RRQR) factorization [20]
FL = ZRII, r=rank(Fy) =rank(R).

Now, let Z = [Zy, Z5], Z; € R**("=7) Z, € R"*". The sought-after orthogonal
matrices are then given by Z = [Z2, Z1] and the orthogonal matrix in the RRQR
factorization

[AZy, BZs] = QRII.

The parallelization of the inverse-free iteration has been previously reported
in [3,27].



3.2 Solving generalized Lyapunov equations via the sign function

Since its introduction in [30], the sign function has proved useful in a variety of
numerical linear algebra problems which include, among others, spectral division,
solution of algebraic Riccati equations, and solution of linear matrix equations;
see, e.g., [7,16,30].

We next describe a special variant of the Newton iteration for the matrix sign
function that can be used for the solution of the generalized Lyapunov equations
in (6). Specifically, in our method the equations are solved for the Cholesky
factors of the solutions allowing great computational savings in case they are
applied to the type of equations arising in large-scale non-minimal systems. For
a detailed description of this technique, see, e.g., [8].

In brief, the proposed variant of the Newton iteration for the sign function
is defined as follows:

Ao(—A,S()(—B,Ro(—C
for j=0,1,2,...
1
cj = (det(4;)/ det(E;))™

Aj+1 — \/% (A] + C?EA;lE)

Compute the RRQR decompositions
_ T R
75 15 6 EATIS ] =0 { os} s
R; R
1 J _ r
\/2¢; |:CjRjAj1E:| - Qr [ 0 :| HT
Rj+1 — (RTHT)T
Sj+1 — R, I,
At convergence, the iteration provides factors S, R of controllability and observ-

ability Gramians of the system as follows:

1 1
— lim S;E™T, R:= — lim R;.
NP ' NoFE

A convergence criterion can easily be derived from

S =

Aoo = hm Aj =F.
J]—0
Thus, following the same ideas as in the inverse-free iteration, in order to avoid
convergence stagnation problems we can test whether ||A; — E||; < ny/e||4;|
and perform two more iterations once this criterion is satisfied.
For further details on the numerical accuracy, converge rate, and (parallel)
implementation of this iteration, see [7,6].

4 TImplementation and Parallelization Details

The iterative schemes that we have described in the previous sections are basi-
cally composed of traditional matrix computations such as matrix factorizations,



solution of triangular linear systems, matrix inversion, and matrix products. All
these operations can be efficiently performed employing parallel linear algebra
libraries for distributed memory computers [10,37]. The use of these libraries
enhances the reliability and improves the portability of the model reduction
algorithms. The performance will depend on the efficiencies of the underlying
serial and parallel computational linear algebra kernels and the communication
routines.

Here we employ the parallel kernels in the ScaLAPACK library [10]. This is a
freely available library that implements parallel versions of many of the routines
in LAPACK [1], using the message-passing paradigm. ScaLAPACK employs the
PBLAS (a parallel version of the serial BLAS) for computation and BLACS for
communication. The BLACS can be ported to any (serial and) parallel architec-
ture with an implementation of the MPI (our case) or the PVM libraries [18,
22].

The RRQR factorizations in our codes are computed by means of the tra-
ditional QR factorization with column pivoting [20]. In order to improve the
performance of our parallel model reduction routines we have designed and im-
plemented two specialized parallel kernels that outperform parallel kernels in
ScalLAPACK with an analogous purpose: the QR factorization with partial piv-
oting is computed in our codes using a parallel BLAS-3 version instead of the
traditional BLAS-2 approach [29]. Also, our matrix inversion routine is based on
a Gauss-Jordan elimination procedure [28] that presents a better load balance
on distributed memory architectures than traditional inversion algorithms based
on Gaussian elimination (LU factorization).

5 Experimental Results

All the experiments presented in this section were performed on a cluster of
16 nodes using IEEE double-precision floating-point arithmetic (¢ ~ 2.2204 x
1071%). Each node consists of an Intel Pentium Xeon processor at 2.4 GHz
with 1 GByte of RAM. We employ a BLAS library specially tuned for this
processor that achieves around 3.0 Gflops (millions of flops per second) for the
matrix product (routine DGEMM) [21]. The nodes are connected via a Myrinet
multistage network and the MPI communication library is specially developed
and tuned for this network. The performance of the interconnection network
was measured by a simple loop-back message transfer resulting in a latency of
18 psec. and a bandwidth of 1.4 Gbit/sec. We made use of the LAPACK, BLAS,
and ScalLAPACK libraries whenever possible.

As in our experiments both SR and BFSR BT algorithms obtained closely
similar results we only report data for the first algorithm.

5.1 Numerical aspects

In order to evaluate the numerical behavior of our model reduction algorithms
we employed a linear descriptor system with n = 500 states, m = 5 inputs, and



p=10 outputs. This system was generated so that the ratio between finite/infinite
poles was 470/30 and ind(4, E) = 1.

Our first experiment is designed to evaluate the accuracy and performance
of the inverse-free iteration as a spectral division tool. For this purpose compare
the residuals (backward errors for spectral division) of ||[A21, E21]||r and || E2a||F
in (4) obtained both with the inverse-free iteration and the QZ algorithm. The
latter is proved to be a numerically stable algorithm [20] and therefore should
provide a measure of how accurate our inverse-free approach is. The results in
Table 1 demonstrate that, at least for this example, the inverse-free iteration
provides orthogonal bases ) and Z that are as “accurate” as those resulting
from the QZ algorithm.

| |Disk function| QZ alg. |

l[A21, Eo1]||r| 4.2 x 1077 [1.0 x 1072
[Ealr [11x10°7° 11x10° 7

Table 1. Accuracy of the bases for the deflating subspaces.

The convergence of the inverse-free iteration for block-triangularization of
this example is shown in the left plot in Fig. 1.

T T T
-6~ inverse-free iteration 102
-8~ Newon iteration

— absolute error

- — error bound

16w - G i) Il

stopping criterion

iteration no. frequency w (rad/s)

Fig. 1. Convergence rate for the iterative schemes (left plot) and Bode plot (magnitude)
of error system (right plot).

We then applied BT to the realization associated with the finite part of
A(A, E) to obtain a reduced-order realization so that

|Go — Gyl < 0.01.
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As a result, the order of the system was reduced from n=470 to r=60 and

470
[Adlloo = [Go = Golloo <2 05 =9.796 x 10,

j=61

In the left-hand plot in Figure 1 we also report the convergence rate of our
Newton iteration for the solution of the coupled generalized Lyapunov equations.
We report the absolute error between the original and the reduced-order TFM in
the right-hand plot of this figure. The results show that the reduced-order model
is very accurate and the error bound (12) is fairly pessimistic in this example.

5.2 Parallel performance

In this subsection we report the performance of the parallel routine for the
decoupling of the infinite poles of the TFM, pggdec, and the reduction of a
linear descriptor system with no infinite poles, pgab09ax. In order to mimic a
real case, we employ a stable linear descriptor system of order n with m = n/10
inputs, p = n/10 outputs, n/10 infinite poles, and ind(A4, E) = 1.

Our first experiment reports the execution time of the parallel routines on a
system of order n = 1800. Here, once the infinite poles have been decoupled, rou-
tine pgab09ax is applied on a system of order n —n/10 = 1620. These are about
the largest sizes we could evaluate on a single node of our cluster, considering
the number of data matrices involved, the amount of workspace necessary for
computations, and the size of the RAM per node. The left-hand plot in Figure 2
reports the execution time of the parallel routine using n,=1, 2, 4, 6, 8, and 10
nodes. The execution of the parallel algorithm on a single node is likely to re-
quire a higher time than that of a serial implementation of the algorithm (using,
e.g., LAPACK and BLAS); however, at least for such large scale problems, we
expect this overhead to be negligible compared to the overall execution time.

The figure shows reasonable speed-ups when a reduced number of processors
is employed. Thus, when n,=4, speed-ups of 3.25 and 4.25 are obtained for
routines pdggdec and pgab09ax, respectively. The super speed-up in the latter
case is due to a better use of the memory in the parallel algorithm. However,
as expected the efficiency decreases as n, gets larger (as the system dimension
is fixed, the problem size per node is reduced) so that using more than a few
processors does not achieve a significant reduction in the execution time for such
a small problem.

We next evaluate the scalability of the parallel routine when the problem
size per node is constant. For that purpose, we fix the problem dimensions to
n/\/np = 1800 for routine pggdec, and n/,/n, = 1620 for routine pgab09ax.
The number of inputs/outputs in both cases is m = p = n/10. The right-hand
plot in Figure 2 shows the Gigaflop rate per node of the parallel routine. These
results demonstrate the scalability of our parallel kernels, as there is only a minor
decrease in the performance of the algorithms when n, is increased while the
problem dimension per node remains fixed.
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Fig. 2. Performance of the parallel routines for model reduction of linear descriptor
systems.

6 Concluding Remarks

We have described the design and use of parallel algorithms for model reduction
of large-scale linear descriptor systems. The spectral projection methods consid-
ered here are composed of highly efficient iterative schemes for the disk and sign
functions and allow one to obtain low-order approximations of very large dense
systems.

Experimental results report a high performance and scalability of the parallel
algorithms on a cluster of Intel Pentium Xeon processors.
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