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transfer funtion matrix (TFM) assoiated with the system (1) is then given byG(s) = C(sE�A)�1B+D. Hereafter, we assume that the matrix penil A��Eis regular, i.e., 9� 2 C with det(A � �E) 6= 0. We also assume that A � �E isstable, implying that the �nite part of the spetrum of A � �E is ontained inthe open left half plane.In the model redution problem, we are interested in �nding a redued-orderrealization Ê _̂x(t) = Âx̂(t) + B̂û(t); t > 0 x̂(0) = x̂0;ŷ(t) = Ĉx̂(t) + D̂û(t); t � 0; (2)of order r, r � n, and assoiated TFM Ĝ(s) = Ĉ(sÊ � Â)�1B̂ + D̂ whihapproximates G(s).Model redution of large-sale linear desriptor systems arises in ontrolof multibody (mehanial) systems, manipulation of uid ow (e.g., (Navier)-Stokes equations), iruit simulation, VLSI hip design, in partiular when mod-eling the interonnetions via RLC networks, and simulation of MEMS andNEMS (miro- and nano-eletro-mehanial systems), to name a few; see, e.g.,[11,12, 14, 26℄. State-spae dimensions n of order 102 to 104 are ommon in theseappliations.There is no general tehnique for model redution that an be onsidered asoptimal in an overall sense. In this paper we fous on the so-alled state-spaetrunation approah [2, 25℄ and, in partiular, on balaned trunation (BT) ofthe system [24, 31, 36, 38℄. BT methods belong to the family of absolute errormethods, whih try to minimize k�ak1 = kG� Ĝk1. Here, kGk1 denotes theL1- orH1-norm of a stable, rational matrix funtion whih is de�ned for propertransfer funtions as kGk1 = ess sup!2R; !�0�max(G(|!)); (3)where | := p�1 and �max(M) is the largest singular value of the matrixM . Notethat transfer funtions of desriptor systems are in general not proper. BT andH1-norm onsiderations are therefore not always appliable diretly. A way toirumvent these diÆulties is presented in [5, 32, 33℄. But BT methods for lineardesriptor systems as proposed in [32, 33℄ with dense state matrix penil A��Epresent a omputational ost of O(n3) oating-point operations (ops). Large-sale appliations, like those enumerated above, thus learly bene�t from usingparallel omputing tehniques to obtain the redued-order system. Parallel modelredution of standard linear systems (E = In) using the state-spae approahhas been investigated elsewhere; see, e.g., the review in [9℄.Although there exist several other approahes for model redution, see, e.g.,[2, 14, 15℄, those are speialized for ertain problem lasses and often lak proper-ties like error bounds or preservation of stability, passivity, or phase information.Our proedure for parallel model redution of linear desriptor systems isomposed of two major tasks: First, it is neessary to deouple (separate) the�nite poles of the system from the in�nite ones, whih is equivalent to omputing2



an additive deomposition of the TFM. Then, in a seond step, BT is appliedto the part of the system assoiated with the �nite poles, whih requires thesolution of two generalized Lyapunov equations.The rest of the paper is strutured as follows. In Setion 2 we review spei�algorithms for the two major tasks involved in model redution of linear desrip-tor systems. In Setion 3 we then introdue two numerial tools, namely thedisk and sign funtions, that are the basis for our model redution algorithms.In partiular, an inverse-free iteration for the disk funtion is employed for theseparation of the poles of the system into the appropriate regions, while the gen-eralized Lyapunov equations are solved by means of a modi�ed Newton iterationfor the sign funtion of a matrix penil. A few details on the implementationand parallelization of the resulting algorithm are given in Setion 4. Finally, thenumerial and parallel performanes of the algorithms are reported in Setion 5,and some onluding remarks follow in Setion 6.2 Model Redution of Desriptor SystemsIn this setion we briey desribe a model redution method for linear desriptorsystems proposed in [5℄. It is based on the observation that the method of [32,33℄ is mathematially equivalent to the following proedure. First, the TFM ofthe system is deomposed asG(s) = G0(s) +G1(s);whereG0 andG1 ontain, respetively, the �nite and in�nite poles of the system.This is followed by the appliation of BT to approximate G0(s) by Ĝ0(s). Theredued-order model is then given byĜ(s) = Ĝ0(s) +G1(s):In [34℄ it is also shown how to apply model redution to the in�nite part of thesystem. We will not onsider this here any further, but the proedure desribedthere should aompany the method disussed here.2.1 Deoupling the in�nite poles of a TFMConsider the system de�ned by (A � �E;B;C;D). In order to ompute thesought-after additive deomposition, we are interested in �nding an equivalenetransformation de�ned by a pair of nonsingular matries U; V 2 Rn�n , suh thatA� �E is \blok-diagonalized" asÂ� �Ê := U(A� �E)V �1 = �A0 00 A1 �� � �E0 00 E1 � ;where A0 � �E0 and A1 � �E1 ontain, respetively, the �nite and in�niteeigenvalues of A� �E. 3



If this equivalene transformation is now applied to the rest of the systemB̂ := UB =: � B0B1 � ; Ĉ := CV �1 =: [C0 C1 ℄ ;we obtain the desired additive deomposition of the TFM intoG(s) = C(sE �A)�1B +D= Ĉ(sÊ � Â)�1B̂ + D̂= �C0 C1 � � (sE0 � A0)�1 (sE1 �A1)�1 �� B0B1 �+D= �C0(sE0 �A0)�1B0 +D	| {z }=:G0(s) +�C1(sE1 �A1)�1B1	| {z }=:G1(s) :Thus, the problem of omputing an additive deomposition has been rede-�ned in terms of �nding appropriate matries U and V that blok-diagonalizethe system.In order to ompute these matries we will proeed in two steps. First,we ompute orthogonal matries Q;Z 2 Rn�n that redue A � �E to blok-triangular form; i.e,QT (A� �E)Z = �A0 WA0 A1 �� � �E0 WE0 E1 � : (4)In subsetion 3.1 we review a numerial tool: the matrix disk funtion [23℄, thatallows the omputation of the appropriate \blok-triangularizing" transforma-tion.Then, in a seond step, (4) is further redued into the required blok-diagonalform by solving the following generalized Sylvester equationA0Y +XA1 +WA = 0; E0Y +XE1 +WE = 0: (5)Thus, Â� �Ê := Û(A� �E)V̂ �1:= � I X0 I ���A0 WA0 A1 �� � �E0 WE0 E1 ��� I Y0 I �= �A0 00 A1 �� � �E0 00 E1 � ;and U = ÛQT , V �1 = ZV̂ �1.In ase the system is of index 1, denoted by ind(A;E) = 1 (i.e., the in�niteeigenvalues of A� �E are non-defetive), we obtain that in (4) E1 = 0 and theSylvester equation in (5) deouples into two linear systemsE0Y = �WE ; XA1 = �(WA +A0Y ):4



In ase the index is greater than one, (5) an be solved using the generalizedShur or Hessenberg-Shur methods proposed in [13, 17℄. However, the paral-lelization of both algorithms requires a parallel implementation of the QZ al-gorithm, an extremely diÆult task (no parallel version exists yet!); besides,many appliations with ind(A;E) > 1 have an equivalent formulation withind(A;E) = 1. We therefore assume that the index is one hereafter. Note thatthis implies that the system has no impulsive modes.2.2 Balaned trunation of linear desriptor systemsConsider now the realization (A0��E0; B0; C0; D0) resulting from the deationof the in�nite part of (A � �E;B;C;D) using the proedure desribed in theprevious setion. In the seond step we will proeed to apply BT to reduethis realization further, noting that E0 is invertible and the deated system isequivalent to the standard state-spae system given by (E�10 A0; E�10 B0; C0; D0).BT methods are strongly related to the ontrollability Gramian W and theobservability Gramian Wo of the system. In the ontinuous-time ase, theseGramians are given by the solutions of two oupled generalized Lyapunov equa-tions A0WET0 +E0WAT0 +B0BT0 = 0;AT0 ŴoE0 +ET0 ŴoA0 + CT0 C0 = 0; Wo = ET ŴoE: (6)As A � �E was assumed to be stable, so is A0 � �E0, and the Gramians Wand Wo are positive semide�nite; therefore there exist fatorizations W = STSand Wo = RTR. Matries S and R are alled the Cholesky fators of the Grami-ans (even if they are not Cholesky fators in a strit sense). EÆient parallelalgorithms for the solution of (6) are disussed in subsetion 3.2.Consider now the singular value deomposition (SVD)SRT = [U1 U2℄ ��1 00 �2 � �V T1V T2 � ; (7)where the matries are partitioned at a given dimension r suh that �1 =diag (�1; : : : ; �r), �2 = diag (�r+1; : : : ; �n), �j � 0 for all j, and �r > �r+1.Here, �1; : : : ; �n are the Hankel singular values of the system.The so-alled square-root (SR) BT algorithms determine the redued-ordermodel asÊ0 := LE0T; Â0 := LA0T; B̂0 := LB0; Ĉ0 := C0T; D̂0 := D0; (8)where the trunation matries L and T are given byL = ��1=21 V T1 RE�10 and T = STU1��1=21 : (9)Note that Ê0 = Ir and needs not be omputed. Even though the redutionyields a standard state-spae representation, it is still bene�ial not to transformthe generalized system to standard form by inverting E0 diretly as rounding5



errors introdued by this operation are delayed as muh as possible in the givenproedure and therefore intermediate results are not orrupted by them.The balaning-free square-root (BFSR) BT algorithms often provide moreaurate redued-order models in the presene of rounding errors [38℄. Thesealgorithms share the �rst two stages (solving the oupled equations and om-puting the SVD of SRT ) with the SR methods, but di�er in the proedure toobtain L and T . Spei�ally, the following two QR fatorizations are omputed,STU1 = [P1 P2℄ � R̂0 � ; E�T0 RTV1 = [Q1 Q2℄ � �R0 � ; (10)where P1, Q1 2 Rn�r have orthonormal olumns, and R̂, �R 2 Rr�r are uppertriangular. The redued-order system is then given by the projetion matriesL = (QT1 P1)�1QT1 ; T = P1; (11)and (8).Both SR and BFSR BT algorithms provide a realization of order r thatsatis�es the error bound [19℄k�ak1 = kG0 � Ĝ0k1 � 2 nXj=r+1�j ; (12)allowing thus an adaptive hoie of the state-spae dimension r of the redued-order model. Also note that as G� Ĝ = G0� Ĝ0 and G� Ĝ is proper, the errorbound (12) applies also for the omplete redued-order model.3 Numerial ToolsThe model redution method desribed in the previous setion involves, as thetwo major omputational problems, the omputation of an equivalene transfor-mation that divides the eigenspetrum of A��E, �(A;E), into the appropriateparts, and the solution of two oupled generalized Lyapunov equations. We nextreview eÆient iterative algorithms for both omputations that yield high per-formane on parallel distributed memory omputers.3.1 The inverse-free iteration for the disk funtionIn [23℄, Malyshev proposed an iterative sheme for the spetral division of amatrix penil. Given F � �G, F;G 2 Rn�n , with no eigenvalues on the unitirle, the tehnique desribed there provides orthogonal matries Q;Z 2 Rn�nsuh that QT (F � �G)Z = �F11 F120 F22 �� � �G11 G120 G22 � ; (13)where F11��G11 and F22��G22 ontain, respetively, the eigenvalues of F��Ginside and outside the unit irle. A areful use of Mo�ebius transformations6



allows to separate the spetrum along other regions. In partiular, the �niteeigenvalues of �(F;G) an be separated from the in�nite ones by applying themethod desribed next to the matrix penil �F � �G, with � > maxfj�j; � 2�(F;G)nf1gg. However, it remains an open question how to estimate the valueof �.Malyshev's iteration was further re�ned and made truly inverse-free in [4℄,where it was rede�ned as follows:F0  F , G0  Gfor j = 0; 1; 2; : : :Compute the QR deomposition� Fj�Gj � = �U11 U12U21 U22 � �Rj0 �Fj+1  UT12FjGj+1  UT22GjAs the onvergene rate of the inverse-free iteration is ultimately quadrati, asuitable onvergene riterion is to stop whenkRj+1 �Rjk1 < � := ";with  a ertain threshold value and " the mahine preision. In pratie, how-ever, it is better to set � = np"kRjk1 and perform two more iterations onethis riterion is satis�ed. Due to the ultimate quadrati onvergene of the iter-ation this ensures in most ases the maximum possible auray while avoidingonvergene stagnation problems.The iteration an be used both for the omputation of the matrix diskfuntion and for spetral division. For instane, let F1 := limj!1 Fj andG1 := limj!1Gj , then the disk funtion of the matrix penil is de�ned asdisk(F;G) = (F1 +G1)�1(F1 � �G1):The proedure for spetral division was further improved in [35℄, where aninverse-free subspae extration sheme was desribed that provides both Q andZ in (13) from a single inverse-free iteration, saving thus half of the ompu-tational ost. Spei�ally, this tehnique requires �rst the omputation of therank-revealing QR (RRQR) fatorization [20℄F T1 = �Z �R ��; r = rank (F1) = rank � �R� :Now, let �Z = [Z1; Z2℄, Z1 2 Rn�(n�r) , Z2 2 Rn�r . The sought-after orthogonalmatries are then given by Z = [Z2; Z1℄ and the orthogonal matrix in the RRQRfatorization [AZ2; BZ2℄ = QR�:The parallelization of the inverse-free iteration has been previously reportedin [3, 27℄. 7



3.2 Solving generalized Lyapunov equations via the sign funtionSine its introdution in [30℄, the sign funtion has proved useful in a variety ofnumerial linear algebra problems whih inlude, among others, spetral division,solution of algebrai Riati equations, and solution of linear matrix equations;see, e.g., [7, 16, 30℄.We next desribe a speial variant of the Newton iteration for the matrix signfuntion that an be used for the solution of the generalized Lyapunov equationsin (6). Spei�ally, in our method the equations are solved for the Choleskyfators of the solutions allowing great omputational savings in ase they areapplied to the type of equations arising in large-sale non-minimal systems. Fora detailed desription of this tehnique, see, e.g., [8℄.In brief, the proposed variant of the Newton iteration for the sign funtionis de�ned as follows:A0  A, S0  B, R0  Cfor j = 0; 1; 2; : : :j = (det(Aj)= det(Ej)) 1nAj+1  1p2j �Aj + 2jEA�1j E�Compute the RRQR deompositions1p2j �Sj jEA�1j Sj �T = Qs �Rs0 ��s1p2j � RjjRjA�1j E � = Qr �Rr0 ��rRj+1  (Rr�r)TSj+1  Rs�sAt onvergene, the iteration provides fators S, R of ontrollability and observ-ability Gramians of the system as follows:S := 1p2 limj!1SjE�T ; R := 1p2 limj!1Rj :A onvergene riterion an easily be derived fromA1 := limj!1Aj = E:Thus, following the same ideas as in the inverse-free iteration, in order to avoidonvergene stagnation problems we an test whether kAj � Ek1 < np"kAjk1and perform two more iterations one this riterion is satis�ed.For further details on the numerial auray, onverge rate, and (parallel)implementation of this iteration, see [7, 6℄.4 Implementation and Parallelization DetailsThe iterative shemes that we have desribed in the previous setions are basi-ally omposed of traditional matrix omputations suh as matrix fatorizations,8



solution of triangular linear systems, matrix inversion, and matrix produts. Allthese operations an be eÆiently performed employing parallel linear algebralibraries for distributed memory omputers [10, 37℄. The use of these librariesenhanes the reliability and improves the portability of the model redutionalgorithms. The performane will depend on the eÆienies of the underlyingserial and parallel omputational linear algebra kernels and the ommuniationroutines.Here we employ the parallel kernels in the SaLAPACK library [10℄. This is afreely available library that implements parallel versions of many of the routinesin LAPACK [1℄, using the message-passing paradigm. SaLAPACK employs thePBLAS (a parallel version of the serial BLAS) for omputation and BLACS forommuniation. The BLACS an be ported to any (serial and) parallel arhite-ture with an implementation of the MPI (our ase) or the PVM libraries [18,22℄.The RRQR fatorizations in our odes are omputed by means of the tra-ditional QR fatorization with olumn pivoting [20℄. In order to improve theperformane of our parallel model redution routines we have designed and im-plemented two speialized parallel kernels that outperform parallel kernels inSaLAPACK with an analogous purpose: the QR fatorization with partial piv-oting is omputed in our odes using a parallel BLAS-3 version instead of thetraditional BLAS-2 approah [29℄. Also, our matrix inversion routine is based ona Gauss-Jordan elimination proedure [28℄ that presents a better load balaneon distributed memory arhitetures than traditional inversion algorithms basedon Gaussian elimination (LU fatorization).5 Experimental ResultsAll the experiments presented in this setion were performed on a luster of16 nodes using ieee double-preision oating-point arithmeti (" � 2:2204 �10�16). Eah node onsists of an Intel Pentium Xeon proessor at 2.4 GHzwith 1 GByte of RAM. We employ a BLAS library speially tuned for thisproessor that ahieves around 3.0 Gops (millions of ops per seond) for thematrix produt (routine DGEMM) [21℄. The nodes are onneted via a Myrinetmultistage network and the MPI ommuniation library is speially developedand tuned for this network. The performane of the interonnetion networkwas measured by a simple loop-bak message transfer resulting in a lateny of18 �se. and a bandwidth of 1.4 Gbit/se. We made use of the LAPACK, BLAS,and SaLAPACK libraries whenever possible.As in our experiments both SR and BFSR BT algorithms obtained loselysimilar results we only report data for the �rst algorithm.5.1 Numerial aspetsIn order to evaluate the numerial behavior of our model redution algorithmswe employed a linear desriptor system with n = 500 states, m = 5 inputs, and9



p=10 outputs. This system was generated so that the ratio between �nite/in�nitepoles was 470/30 and ind(A;E) = 1.Our �rst experiment is designed to evaluate the auray and performaneof the inverse-free iteration as a spetral division tool. For this purpose omparethe residuals (bakward errors for spetral division) of k[A21; E21℄kF and kE22kFin (4) obtained both with the inverse-free iteration and the QZ algorithm. Thelatter is proved to be a numerially stable algorithm [20℄ and therefore shouldprovide a measure of how aurate our inverse-free approah is. The results inTable 1 demonstrate that, at least for this example, the inverse-free iterationprovides orthogonal bases Q and Z that are as \aurate" as those resultingfrom the QZ algorithm. Disk funtion QZ alg.k[A21; E21℄kF 4:2 � 10�13 1:0 � 10�12kE22kF 1:1 � 10�15 1:1 � 10�15Table 1. Auray of the bases for the deating subspaes.The onvergene of the inverse-free iteration for blok-triangularization ofthis example is shown in the left plot in Fig. 1.
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Fig. 1. Convergene rate for the iterative shemes (left plot) and Bode plot (magnitude)of error system (right plot).We then applied BT to the realization assoiated with the �nite part of�(A;E) to obtain a redued-order realization so thatkG0 � Ĝ0k1 � 0:01:10



As a result, the order of the system was redued from n=470 to r=60 andk�ak1 = kG0 � Ĝ0k1 � 2 470Xj=61�j = 9:796� 10�3:In the left-hand plot in Figure 1 we also report the onvergene rate of ourNewton iteration for the solution of the oupled generalized Lyapunov equations.We report the absolute error between the original and the redued-order TFM inthe right-hand plot of this �gure. The results show that the redued-order modelis very aurate and the error bound (12) is fairly pessimisti in this example.5.2 Parallel performaneIn this subsetion we report the performane of the parallel routine for thedeoupling of the in�nite poles of the TFM, pggde, and the redution of alinear desriptor system with no in�nite poles, pgab09ax. In order to mimi areal ase, we employ a stable linear desriptor system of order n with m = n=10inputs, p = n=10 outputs, n=10 in�nite poles, and ind(A;E) = 1.Our �rst experiment reports the exeution time of the parallel routines on asystem of order n = 1800. Here, one the in�nite poles have been deoupled, rou-tine pgab09ax is applied on a system of order n�n=10 = 1620. These are aboutthe largest sizes we ould evaluate on a single node of our luster, onsideringthe number of data matries involved, the amount of workspae neessary foromputations, and the size of the RAM per node. The left-hand plot in Figure 2reports the exeution time of the parallel routine using np=1, 2, 4, 6, 8, and 10nodes. The exeution of the parallel algorithm on a single node is likely to re-quire a higher time than that of a serial implementation of the algorithm (using,e.g., LAPACK and BLAS); however, at least for suh large sale problems, weexpet this overhead to be negligible ompared to the overall exeution time.The �gure shows reasonable speed-ups when a redued number of proessorsis employed. Thus, when np=4, speed-ups of 3.25 and 4.25 are obtained forroutines pdggde and pgab09ax, respetively. The super speed-up in the latterase is due to a better use of the memory in the parallel algorithm. However,as expeted the eÆieny dereases as np gets larger (as the system dimensionis �xed, the problem size per node is redued) so that using more than a fewproessors does not ahieve a signi�ant redution in the exeution time for suha small problem.We next evaluate the salability of the parallel routine when the problemsize per node is onstant. For that purpose, we �x the problem dimensions ton=pnp = 1800 for routine pggde, and n=pnp = 1620 for routine pgab09ax.The number of inputs/outputs in both ases is m = p = n=10. The right-handplot in Figure 2 shows the Gigaop rate per node of the parallel routine. Theseresults demonstrate the salability of our parallel kernels, as there is only a minorderease in the performane of the algorithms when np is inreased while theproblem dimension per node remains �xed.11
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Fig. 2. Performane of the parallel routines for model redution of linear desriptorsystems.6 Conluding RemarksWe have desribed the design and use of parallel algorithms for model redutionof large-sale linear desriptor systems. The spetral projetion methods onsid-ered here are omposed of highly eÆient iterative shemes for the disk and signfuntions and allow one to obtain low-order approximations of very large densesystems.Experimental results report a high performane and salability of the parallelalgorithms on a luster of Intel Pentium Xeon proessors.Referenes1. E. Anderson, Z. Bai, C. Bishof, J. Demmel, J. Dongarra, J. Du Croz, A. Green-baum, S. Hammarling, A. MKenney, and D. Sorensen. LAPACK Users' Guide.SIAM, Philadelphia, PA, third edition, 1999.2. A.C. Antoulas. Letures on the Approximation of Large-Sale Dynamial Systems.SIAM Publiations, Philadelphia, PA, to appear.3. Z. Bai, J. Demmel, J. Dongarra, A. Petitet, H. Robinson, and K. Stanley. Thespetral deomposition of nonsymmetri matries on distributed memory parallelomputers. SIAM J. Si. Comput., 18:1446{1461, 1997.4. Z. Bai, J. Demmel, and M. Gu. An inverse free parallel spetral divide and onqueralgorithm for nonsymmetri eigenproblems. Numer. Math., 76(3):279{308, 1997.5. P. Benner. Spetral projetion methods for model redution of desriptor systems.Preprint, DFG Researh Center "Mathematis for key tehnologies" (FZT 86),Berlin, Germany, 2003.6. P. Benner, J.M. Claver, and E.S. Quintana-Ort��. EÆient solution of oupledLyapunov equations via matrix sign funtion iteration. In A. Dourado and etal., editors, Pro. 3rd Portuguese Conf. on Automati Control CONTROLO'98,Coimbra, pages 205{210, 1998. 12
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