
On Eulerian Extension Problems and their Application
to Sequencing Problems

Wiebke Höhn1?, Tobias Jacobs2, and Nicole Megow3

1 Technische Universität Berlin, Germany. hoehn@math.tu-berlin.de
2 Albert-Ludwigs-Universität, Freiburg, Germany. jacobs@informatik.uni-freiburg.de
3 Max Planck Institute for Informatics, Saarbrücken, Germany. nmegow@mpi-inf.mpg.de

Abstract. We introduce a new technique for solving several sequencing prob-
lems. We consider Gilmore and Gomory’s variant of the Traveling Salesman
Problem and two variants of no-wait flowshop scheduling, the classical makespan
minimization problem and a new problem arising in the multistage production
process in steel manufacturing.
Our technique is based on an intuitive interpretation of sequencing problems as
Eulerian Extension Problems. This view reveals new structural insights and leads
to elegant and simple algorithms and proofs for this ancient type of problems. As
a major effect, we compute not only a single solution; instead, we represent the
entire space of optimal solutions. For the new flowshop scheduling problem we
give a full complexity classification for any machine configuration.

1 Introduction

We present a new technique for analyzing sequencing problems such as no-wait flow-
shop scheduling problems and a variant of the Traveling Salesman Problem (TSP). We
show that these problems have a natural interpretation as Eulerian Extension Prob-
lems. This leads to new structural insights and new solution methods. On a high level
view, for an instance of a sequencing problem we find a particular Eulerian graph in
which all existing Eulerian circuits represent sequencing solutions with the same cost.
In fact, we provide the entire set of optimal solutions, instead of just a single one. For
a non-standard flowshop sequencing problem, which has not been investigated from
an information theoretic point of view, we gain new structural insights which form the
basis for fully settling the complexity status of any particular problem case.

A directed multi-graph G = (V,E) is called Eulerian if it contains a cycle visit-
ing each edge exactly once. A Eulerian extension is a set of additional edges E ′ for a
given (not necessarily connected) multigraph G = (V,E) such that (V,E ∪E ′) is Eu-
lerian. A Eulerian Extension Problem is, generally speaking, the problem of finding a
Eulerian extension minimizing the total cost of additional edges E ′ according to some
cost function. Notice that the classical Chinese Postman Problem (see e.g. [18]) is a spe-
cial case in which the given graph is strongly connected and the cost function is based
on the cost of paths in the graph. Eulerian extension problems are generally intractable

? Supported by the German Research Foundation (DFG) as part of the priority programme
“SPP 1307: Algorithm Engineering”.

as straightforward reduction from TSP shows. We investigate Eulerian Extension Prob-
lems for special classes of cost functions arising in the context of the following classes
of sequencing problems.

The TSP is one of the most intensively studied optimization problems; see e.g. [9].
In its full generality it is highly intractable, however special cases can be solved opti-
mally in polynomial time. One of the most famous solvable subclasses was studied al-
ready four decades ago by Gilmore and Gomory [4]. In this problem variant, which we
denote by G-TSP, each city i is associated with two numbers Ai and Bi for i = 1, . . . ,n.
The cost for traveling from city i to city j is

∫ A j
Bi

f (x)dx if A j ≥ Bi and
∫ Bi

A j
g(x)dx other-

wise, where f ,g are integrable functions satisfying f (x)+g(x)≥ 0, for any x.
Another classical sequencing problem is no-wait flowshop scheduling. In flowshop

scheduling, we consider a production process where n jobs J1, . . . ,Jn must pass s pro-
duction stages L1, . . . ,Ls. Each job J j consists of s operations each of which is dedicated
to a specific stage Li on which it must process for pi j time units without preemption.
Note that we consider operations with zero processing time as infinitely small opera-
tions which require a free machine. Each stage Li has mi identical parallel machines
available. The jobs pass the production stages L1,L2, . . . ,Ls in exactly this order. In a
feasible no-wait flowshop schedule, there is no waiting time allowed between the ex-
ecution of two consecutive operations of the same job. The goal is to minimize the
makespan Cmax, that is the completion time of the last job. Following the classical three-
field notation [5] we denote this problem by F |nwt |Cmax if there is only a single proces-
sor available on each stage and by FF |nwt |Cmax in the multiprocessor case. In case that
the number of stages is fixed to s, we denote the corresponding processor environments
by Fs and FFs, respectively.

In the single processor case, the no-wait condition implies the same job order on
each machine stage. Thus, idle times are uniquely determined by a job order which leads
to a natural interpretation as an asymmetric TSP. In fact, F2 |nwt |Cmax is well-known to
be a special case of G-TSP [4, 11]: each job j can be interpreted as a city with A j = p1 j
and B j = p2 j, and the cost function is of Gilmore-Gomory type with f ≡ 1 and g≡ 0.

A structurally quite different sequencing problem concerns no-wait flowshop
scheduling with the objective of minimizing the number of interruptions, i.e., the num-
ber of continuous idle time intervals on the last stage Ls. Here, we refer to idle time as
time intervals where a machine is not processing any job during the actual production
process, i.e., the time before the first job and after the last job to be processed on the
particular machine is not considered as idle time. We denote this new objective by G .

This problem is motivated by a particular application in steel production, the con-
tinuous casting process, in which ladles of melted steel have to pass several production
stages. The final stage, the casting machine, plays a special role: the steel must flow
continuously into the casting machine. When the flow is broken (we call it interrup-
tion), then the casting machine must be stopped for maintenance and extensive cleaning.
Therefore, practitioners call it their objective to minimize the number of interruptions.

Related work. Gilmore and Gomory [4] derived an algorithm to find an optimal solu-
tion for G-TSP. Its computation time O(n logn) matches the lower bound on the worst
case time complexity for any optimal algorithm solving this problem [13]. A slightly
simplified variant of this algorithm has been presented by Vairaktarakis [16].

2

Due to its practical importance in production planning, most of the existing liter-
ature on no-wait flowshops addresses the objective of minimizing the makespan. For
an extensive survey on various occurrences of no-wait constraints in production envi-
ronments and previous theoretical work we refer to [6]. The special case of two-stage
scheduling F2 |nwt |Cmax can be solved to optimality directly with Gilmore and Go-
mory’s algorithm [4, 11]. The complexity status changes if there is more than one pro-
cessor on one of the two stages; then the problem becomes strongly NP-hard [15].

The particular problem of scheduling the continuous casting process is investigated
from a practical point of view e.g. in [7, 10, 14], where mathematical programming ap-
proaches as well as meta-heuristics and simulation are considered. To the best of our
knowledge, there is no literature on theoretical investigations on the problem of mini-
mizing the number of interruptions in a no-wait flowshop. The only related theoretical
work we are aware of, enforces the aim for interruption-free scheduling as a hard con-
straint. In [2, 3], the authors give complexity and approximation results for openshop
and flowshop problems with the objective to minimize the makespan when no interrup-
tion is allowed on any machine. This restriction is much stronger than what we aim for.
In our application, idle times on other stages than the last one, the casting machine, do
not incur extra cost. A more restricted variant of the same problem is considered in [17]
with only two production stages and unit processing times on the first stage such that in-
terruptions can occur only on the second stage. Even though this processor environment
is close to our setting, we do not see how results could transfer between the makespan
minimization problem and our problem of minimizing the number of interruptions.

Our contribution.4 We interpret Gilmore and Gomory’s TSP as a Eulerian Extension
Problem with a specific cost function. We present an optimal algorithm which is much
simpler than previously proposed ones [4, 16] and which admits a much simpler and
more intuitive analysis (Section 2). Its worst case computation time is O(n logn) which
is best possible [13]. Moreover, our algorithm reveals a structural property that seems
to be inherent in this kind of sequencing problems. Typically, an optimal solution is
not unique. With our method we keep an implicit representation of the set of optimal
solutions and defer the selection of a particular tour to the final part of the algorithm.
This gives us the opportunity of conveniently accessing all optimal solutions. Besides
the theoretical significance, this is meaningful to practical applications in which often a
secondary optimization criteria plays a role. In this case, one may choose accordingly
from the set of all optimal solutions regarding the first criteria.

Clearly, the optimality result for G-TSP applies directly to the classical two-stage
flowshop scheduling problem F2 |nwt |Cmax since it is a special case of G-TSP. This
is not the case for the new flowshop problem F2 |nwt |G . Nevertheless, we show an
interpretation as a Eulerian Extension Problem with another appropriate cost function
and derive an elegant and fast optimal algorithm (Section 3). In this case, we obtain
an implicit representation of all optimal solutions in time O(n logn), from which any
particular optimum can be extracted in linear time. The main computation effort lies
in sorting all processing times once, and thus, the algorithm runs in linear time if pro-
cessing times are already sorted. Moreover, we solve optimally the generalized prob-

4 Due to space limitation we cannot give full proofs of all results; missing ones can be found in
the appendix.

3

lem FF2 |nwt |G with a single machine on the first stage, m1 = 1. Notice, that this result
is a sharp contrast to the makespan variant of the same problem which is known to be
strongly NP-hard [15].

In Section 4 we show that the problem on three machine stages F3 |nwt |G is NP-
hard. Again an interpretation as Eulerian Extension Problem is crucial. Finally, we com-
plement our results with further findings that fully reveal the computational complexity
of FFs |nwt |G for each value of s and each machine configuration m1, . . . ,ms.

2 Solving the Gilmore-Gomory Traveling Salesman Problem

We revisit the variant of the traveling salesman problem denoted by G-TSP in the pre-
vious section. Both algorithms, the original one by Gilmore and Gomory [4] and the
improved method proposed by Vairaktarakis [16], are based on an interpretation of the
problem as a bipartite matching problem, where each city i corresponds to an edge,
the so-called city edge, from point Ai in the first partition to Bi in the second partition.
The goal is to find a minimum cost matching E ′ such that the union of E ′ and the city
edges constitute a cycle. Their algorithms first sort the vertices in both partitions, then
compute a minimum cost matching and finally transform it into a cyclic one using an
involved patching algorithm.

Similarly to these approaches, we also model a city i as an edge (Ai,Bi) and call it
city edge, and we also seek to insert a minimum cost set E ′ of additional edges called
extension edges such that the resulting graph contains a Eulerian cycle. The conceptual
difference is that we do not consider the graph as bipartite, i.e. we allow E ′ to contain
any possible edge.

Definition 1 (One-Dimensional Eulerian Extension Problem, 1DEE). Given a finite
directed graph G = (V,E) where vertices in V are labeled with real numbers, and given
integrable functions f ,g : R→R with f (x)+g(x)≥ 0 for any x∈R, the problem 1DEE
denotes the task of finding a Eulerian Extension E ′ minimizing ∑(u,v)∈E ′ c(u,v), where

c(u,v) =

u∫
v

f (x)dx u≥ v

v∫
u

g(x)dx v > u .

To avoid overloaded notation, we refer to a vertex by its label.

Theorem 1. G-TSP is equivalent to 1DEE. The reductions can be done in linear time.

Proof. Given an instance I of G-TSP, we construct the directed multigraph G = (V,E)
of a 1DEE instance I′ as follows: let V =

⋃n
i=1{Ai,Bi} and E =

⋃n
i=1{(Ai,Bi)}. A tour T

for I can be directly translated into a Eulerian extension E ′ for I′ having the same cost:
For any city j that is visited immediately after city i, add an extension edge (Bi,A j)
to E ′. The total cost of E ′ equals the cost of the tour T by definition of the cost functions.

Conversely, given a 1DEE instance I′ with the graph G = (V,E), we construct the
G-TSP instance I by converting each edge (u,v) ∈ E into a city j with A j = u,B j = v.

4

Consider a solution E ′ for I′, and find an arbitrary Eulerian tour T ′ in V = (G,E ∪E ′).
We show that by interpreting the order of the city edges in T ′ as the order of the cities,
gives a solution T to the G-TSP instance I of the same cost as E ′.

Let (w1,w2, . . . ,wm) be a sub-path of T ′ traversing only extension edges. We assume
w.l.o.g. that w1 < wm; the reverse case works analogously. Moreover, we can assume
that wi < wi+1 for i = 1, . . . ,m− 1. Suppose there exists values wi < wi+1 and wi+1 >
wi+2. Then simple calculations show that replacing edges (wi,wi+1), (wi+1,wi+2) ∈ E ′

by (wi,wi+2) does not increase the cost of the Eulerian extension.
With this observation and the linearity of integrals, the total cost of exten-

sion edges (w1,w2),(w2,w3), . . . ,(wm−1,wm) between successive city edges (∗,w1)
and (wm,∗) equals c(w1,wm). This implies by definition of the cost function that the
costs of solutions T and T ′ are equal. ut

Motivated by the cost function of 1DEE that is defined on vertex labels, we in-
troduce the concept of minimal edges. Consider a linear ordering of vertices in non-
decreasing order of labels. Then we call an edge (u,v) minimal, if u and v are direct
neighbors in this ordering.

Lemma 1. Given a Eulerian extension E ′ for an instance of 1DEE, there is a Eulerian
extension E ′′ satisfying the following properties: E ′′ contains only minimal extension
edges, E ′ and E ′′ have the same cost, and for each Eulerian cycle in E ∪E ′ there is one
in E ∪E ′′ where the city edges occur in the same order.

Proof. Let (u,v) be a non-minimal edge in E ′, i.e., there is a vertex w with u < w <
v or u > w > v. We replace (u,v) by (u,w) and (w,v) to obtain E ′′. This preserves
the balance of indegree and outdegree for each vertex, and due to the linearity of the
integral the overall cost does not change. Repeatedly performing this kind of operation
for each non-minimal edge we obtain a Eulerian extension that contains only minimal
edges. Analogously, we can replace each edge of a Eulerian cycle in E ∪ E ′ by the
corresponding path of minimal edges in E ∪E ′′. This preserves the order of city edges
in the cycle. ut

Let indeg(v) and outdeg(v), v ∈V , denote the indegree and outdegree of v, respec-
tively. The following sufficient condition for a Eulerian graph is well-known; see [18].

Lemma 2. A graph G = (V,E) is Eulerian if and only if it is connected and indeg(v) =
outdeg(v), for all v ∈V .

Let indeg(V ′) denote the indegree of a subset V ′ ⊆ V , i.e., the number of edges
(u,v) ∈ E with u /∈V ′ and v ∈V ′. Let the outdegree outdeg(V ′) be defined analogously.
We state a necessary condition based on indegree and outdegree of vertex subsets.

Lemma 3. If a graph G = (V,E) is Eulerian, then indeg(V ′) = outdeg(V ′) for any
subset of vertices V ′ ⊆V .

The basic idea for our algorithm solving 1DEE is as follows: We restrict ourselves
to solutions consisting only of minimal edges. First, we identify an edge set that any
such feasible solution must contain. We obtain a set of connected components each of

5

which is Eulerian. In the second step, we add a minimum cost edge set that connects all
components while keeping them Eulerian.

Algorithm 1
1: Sort all vertices in V in non-increasing order of their labels.
2: Let E ′ = /0. For i := 1 to n−1 do

Consider v, the i-th vertex in the ordering, and denote its direct successor by v′. Com-
pute b(v) = indeg(v)−outdeg(v) with respect to the graph (V,E ∪E ′).
If b(v) > 0, then add b(v) copies of the minimal edge (v,v′) to E ′, otherwise, add −b(v)
copies of the minimal edge (v′,v) to E ′.

3: Let G1, . . . ,Gk denote the connected components of the graph (V,E ∪E ′). If k ≥ 2, construct
the undirected, connected component graph H by contracting each Gi, i = 1, . . . ,k, to a single
vertex in H. For any minimal edge (u,v) /∈ E ′ with u ∈ Gi and v ∈ G j we add an undirected
edge (Gi,G j) to H with weight c(u,v)+ c(v,u).
Compute a Minimum Spanning Tree (MST) T in H. For each edge (u,v) ∈ T , add both
associated directed, minimal edges (u,v) and (v,u) to E ′.

Lemma 4. Algorithm 1 chooses in Step 2 only edges that are necessary for any feasible
Eulerian extensions that consist only of minimal edges.

Proof. We prove that after any iteration of Step 2 in Algorithm 1, E ′ consists only of
necessary edges. In any iteration, the algorithm inserts |b(v)| edges between a vertex v
and its direct successor v′ in the given ordering. Consider some iteration and the corre-
sponding vertices v and v′. Let V ′ = {u ∈ V |u ≤ v}. Lemma 3 provides the necessary
condition that indeg(V ′) = outdeg(V ′) in the given graph when enhanced by any Eu-
lerian extension. Before inserting additional edges, we have indeg(u) = outdeg(u) for
any u ∈V ′ \{v} in the current graph (V,E ∪E ′). Since we are restricted to minimal ex-
tension edges, any Eulerian extension must add |indeg(V ′)−outdeg(V ′)| appropriately
oriented edges between v and v′. The algorithm inserts exactly the required number of
edges since |indeg(V ′)−outdeg(V ′)|= |indeg(v)−outdeg(v)|= b(v). ut

Theorem 2. Algorithm 1 solves 1DEE optimally in time O(n logn).

Proof. By Lemma 1 we can restrict our attention to Eulerian extensions consisting only
of minimal edges. Let E1 denote the set of extension edges chosen by Algorithm 1
by the end of Step 2. Each vertex i = 1, . . . ,n− 1 has equal in- and outdegree in the
graph (V,E ∪ E1). By the handshaking argument this also holds for the last vertex.
If (V,E ∪ E1) is connected, then it is Eulerian by Lemma 2. Applying additionally
Lemma 4 we have proven that E1 is a necessary and sufficient set of edges and thus
optimal.

Otherwise, (V,E ∪ E1) consists of multiple strongly connected compo-
nents G1, . . . ,Gk each of them being Eulerian. By Lemma 4 any optimal solution must
contain E1. The algorithm now finds a set of additional minimal extension edges of
minimum total cost that connects all components and ensures that the graph is Eule-
rian. Notice, that if we add a single extension edge (u,v) to connect two components Gi
and G j, then by Lemma 3 and the restriction to minimal edges (Lemma 1), we addi-
tionally need to add the reverse edge (v,u) to ensure that the resulting graph is Eulerian.
Therefore our algorithm considers in Step 3 all relevant edges to connect G1, . . . ,Gk and

6

assigns cost for adding both, forward and backward edge. Thus, the MST solution on
the accordingly constructed graph H corresponds to a minimum cost edge subset that
connects all components and keeps the graph Eulerian.

Concerning the runtime of the algorithm, we note that the connected component
graph H in Step 3 can be constructed in O(n) because the vertices are already sorted by
their labels (Step 1). Consider all vertices in the given order starting from the vertex with
smallest index. Suppose v∈Gi. If v’s direct successor v′ belongs to a different connected
component G j 6= Gi, then add an undirected edge between the corresponding vertices Gi
and G j in H. With this observation, the runtime of our algorithm is dominated by sorting
the input and computing an MST which can be done in O(n logn). ut

The reduction from G-TSP to 1DEE (Proof of Theorem 1) implies that for each
solution to G-TSP there is a Eulerian tour in a solution to the corresponding 1DEE
instance. In this Eulerian tour, the city edges are traversed in exactly the same order as
the cities are traversed in the G-TSP solution. By Lemma 1 there is a Eulerian extension
consisting only of minimal edges which admits such a tour. This implies that we do not
loose any optimal G-TSP tour when restricting ourselves to minimal edge extensions.

If the minimum spanning tree computed in Step 3 of Algorithm 1 is unique, then
the optimal set of Eulerian extension edges E ′ is unique under the restriction to minimal
edges. Since this does not restrict the space of optimal solutions for the corresponding
G-TSP instance, each Eulerian cycle in the extended graph (V,E∪E ′) corresponds to an
optimal solution for G-TSP. If there is more than one MST, then each of them represents
a subset of all optimal G-TSP solutions.

3 Solving Two-Stage No-wait Flowshop Problems

While the makespan minimization problem F2 |nwt |Cmax can be solved directly as a
special case of G-TSP with Gilmore-Gomory type cost functions f ≡ 1, g ≡ 0, there is
no way to express the interruption related objective function G as special functions f
and g in G-TSP. Nevertheless, we show that the problem F2 |nwt |G has an interpreta-
tion as a Eulerian Extension Problem, which leads to a fast and elegant algorithm.

We define a cost function for a Eulerian Extension Problem in which extension
edges (u,v) with u < v account for interruptions on the second machine. We call such
extension edges up edges. We denote extension edges (u,v) with u > v as down edges.

Definition 2 (G -related One-Dimensional Eulerian Extension Problem, G -1DEE).
Given a finite directed graph G = (V,E) where the vertices in V are labeled with real
numbers, the problem G -1DEE is to find a Eulerian extension for G minimizing the
number of up edges.

Theorem 3. F2 |nwt |G is equivalent to G -1DEE. The reductions can be done in linear
time.

Proof sketch. An instance I′ = (V,E) of G -1DEE is constructed from an F2 |nwt |G
instance I by defining V =

⋃n
i=1{p1i, p2i} and by adding a so-called job edge (p1i, p2i)

7

to E for each job Ji, i = 1, . . . ,n. Consider an optimal solution E ′ to I′. The set E ′ is con-
verted into a solution to I by scheduling the jobs in the order in which the corresponding
job edges appear in some Eulerian cycle in (V,E ∪E ′). An interruption in the schedule
occurs whenever an up edge is traversed between two job edges. The schedule is con-
structed such that the first job corresponds to a job edge traversed after some up edge
in the cycle (if k 6= 0). Thus, this specific up edge does not account for an interruption
and we obtain a schedule causing max{k−1,0} interruptions. The schedule is optimal,
because we can show that any schedule can be transformed back into a Eulerian tour in
the same way. ut

As in Section 2, we call a down edge (u,v) minimal if u and v are direct neighbors
in a linear ordering of V by non-decreasing labels. Furthermore, we denote an up edge
(u,v) as maximal if u has the minimum label and v has the maximum label in V .

Lemma 5. Given a Eulerian extension E ′ for an instance of G -1DEE with G = (V,E),
there is a Eulerian extension E ′′ satisfying the following properties: E ′′ contains only
minimal down edges and maximal up edges, E ′ and E ′′ have the same cost, and for each
Eulerian cycle in (V,E ∪E ′) there is one in (V,E ∪E ′′) where the edges from E appear
in the same order.

Algorithm 2
1: Sort all vertices in V in non-decreasing order of their labels.
2: Let vi be the i-th vertex in the ordering and let Vi := {u ∈ V |u ≤ vi}. Compute bmax :=

maxi=1,...,n−1{0,b(vi)}, where b(vi) := indeg(Vi)−outdeg(Vi).
3: Initialize E ′ as the set containing bmax copies of the maximal up edge (v1,vn).
4: For i := 1 to n−1, add bmax−b(vi) minimal down edges (vi+1,vi) to E ′.
5: If (V,E∪E ′) is not strongly connected, add one further maximal up edge (v1,vn) and minimal

down edges {(vi+1,vi) | 1≤ i≤ n−1} to E ′.

With similar techniques as in the previous section we prove the following result.

Lemma 6. Algorithm 2 chooses in Step 3 and 4 only edges that are necessary for any
feasible Eulerian extension that consist only of minimal down edges and maximal up
edges. The two steps effectuate that indeg(v) = outdeg(v) for each v ∈V in (V,E ∪E ′).

Proof. Let vi be the vertex maximizing b(vi) in Step 2 of the algorithm. Lemma 3 states
that there must be max{0,b(vi)}= bmax edges from Vi to V \Vi in any feasible Eulerian
extension. As these edges are up edges, they have to be maximal due to our restriction.
They are inserted by the algorithm in Step 3.

After Step 3, we have indeg(Vi)−outdeg(Vi) = b(vi)−bmax ≤ 0 in the graph (V,E∪
E ′) for each i = 1, . . . ,n−1. So from Lemma 3 follows that for the graph to be Eulerian
there must be b(vi)−bmax additional edges from V \Vi to Vi. Such edges are down edges,
and due to our restriction to minimal ones, they must be copies of the edge (vi+1,vi).
Inserting them is exactly what Algorithm 2 does in Step 4.

As soon as Step 4 has been executed, we have indeg(Vi) = outdeg(Vi) for 1 ≤
i ≤ n, and in particular indeg(v1) = outdeg(v1). Since indeg(Vi) − outdeg(Vi) =
∑

i
j=1 indeg(v j) − outdeg(v j) (see proof of Lemma 3), it follows inductively that

indeg(vi) = outdeg(vi) for all i. ut

8

Theorem 4. Algorithm 2 solves G -1DEE optimally in time O(n logn). Steps 2-5 take
only linear time.

Proof. By Lemma 5 it suffices to consider only maximal up edges and minimal down
edges as extension edges. Let E1 be the set of edges chosen by the algorithm by the end
of Step 4. By Lemma 6, E1 is a subset of any feasible Eulerian Extension for G, and
we know that the indegree and outdegree of each node is balanced in (V,E∪E1). If this
graph is strongly connected, it is Eulerian (Lemma 2), and thus, Algorithm 2 is optimal.

Otherwise, at least one additional extension edge, i.e., either a maximal up edge
or a minimal down edge, must be added. Suppose, we add a minimal down edge,
say (vi+1,vi), then we have indeg(Vi)− outdeg(Vi) = 1 in the resulting graph. From
Lemma 3 follows that we need an additional up edge for re-establishing balanced in-
degree and outdegree for each node. Thus, to establish connectivity in (V,E ∪E1) it is
necessary to add an up edge. It is easy to see that with one additional up edge the set of
minimal down edges inserted in Step 5 of the algorithm is necessary and sufficient to re-
establish the balancedness of each node’s indegree and outdegree. The resulting graph
(V,E ∪E ′) contains the cycle v1,vn,vn−1, . . . ,v1 and is therefore strongly connected.

The runtime of the algorithm is dominated by the time for sorting, O(n logn), in
Step 1. The remaining steps require linear computation effort; in particular, values b(vi)
can be computed in Step 2 as b(v1) = indeg(v1)− outdeg(v1) and b(vi) = b(vi−1) +
indeg(vi)−outdeg(vi) in linear time. ut

We remark that the optimal solution to G -1DEE is always unique, because the ob-
jective function only depends on the number of up edges, and – assuming that all up
edges are maximal – the set of down edges is uniquely determined by their number.
As a consequence of the reduction given in the proof of Theorem 3 and Lemma 5, the
extension E ′ computed by Algorithm 2 implicitly represents all optimal schedules.

The above algorithm can be applied also to the two-stage flowshop problem to min-
imize the number of interruptions with more than one machine on the second stage.

Theorem 5. Any problem instance I of FF2 |nwt |G with a single processor on the first
stage, m1 = 1, can be solved optimally in time O(n logn).

Proof sketch. Instances I of FF2 |nwt |G with m2 > 1 can be solved by considering the
same set of jobs as an instance I′ of F2 |nwt |G . Exactly m2 − 1 interruptions caused
by an optimal schedule S′ for I′ can be avoided by migrating to another machine on
the second stage, so an optimal schedule S for I has exactly m2 − 1 interruptions less
than S′. ut

4 Complexity of Minimizing the Number of Interruptions

In contrast to the polynomial time solvable problems with two machine stages in Sec-
tion 3, the problem becomes strongly NP-hard in any other cases.

Theorem 6. The problem FFs |nwt |G is strongly NP-hard for any constant number
of stages s ≥ 3 and arbitrary constant numbers of machines. The same is true for
FF2 |nwt |G with m1 > 1.

9

The proof follows by combining NP-hardness results for four particular problem
classes (machine configurations). The problem F3 |nwt |G plays the main role with
respect to the focus on Eulerian Extensions of this work. Therefore, we consider here
only this case while the remaining result can be found in the Appendix.

To show the complexity result, we consider a natural two-dimensional variant of
G -1DEE, in which vertices have two labels which can be seen as points in R2.

Definition 3 (Two-Dimensional Eulerian Extension(2DEE)). Given a directed graph
G = (V,E) with vertices V ⊂ R+

0 ×R+
0 , determine whether there exists a Eulerian ex-

tension E ′ for G using only down edges {(u,v) | u,v ∈V, u≥ v component-wise}.

We provide a reduction from the Three-Dimensional Matching Problem (see
e.g. [1]) to show the following result.

Theorem 7. The problem 2DEE is strongly NP-complete.

Now we are ready to show NP-completeness for F3 |nwt |G . We give a reduction to
the decision variant in which we ask if a interruption-free solution exists. We denote
the decision problem by E0 (F3 |nwt |G) . Note, that NP-completeness of such a prob-
lem implies obviously NP-hardness and also inapproximability of the corresponding
optimization problem. However, we can show that the optimization problem remains
strongly NP-hard under the assumption that every solution has at least one interruption.

Theorem 8. It is NP-complete to decide whether there is an interruption-free schedule
for an instance of F3 |nwt |G .

We show the NP-completeness of the decision problem E0 (F3 |nwt |G) by reduction
from 2DEE. Unlike in the one-dimensional case, there is no one-to-one correspondence
between instances of 2DEE and E0 (F3 |nwt |G) . Therefore, our proof has the follow-
ing structure: We first give an interpretation of our scheduling problem as an extension
problem. Then we fix a set of properties that are only satisfied by 2DEE instances rep-
resenting a scheduling problem instance in that way. Finally, we prove that any 2DEE
instance can be transformed into an equivalent instance satisfying these properties.

Proof (of Theorem 8). Consider a set of jobs J1, . . . ,Jn. A schedule without interruptions
corresponds to a permutation Jσ(1), . . . ,Jσ(n) of the jobs, where for 1≤ i < n job Jσ(i+1)
can be scheduled after Jσ(i) without causing an idle time on the third machine. This is
the case if and only if p3σ(i) ≥ p2σ(i+1) and p3σ(i) + p2σ(i) ≥ p2σ(i+1) + p1σ(i+1).

In terms of our extension problem, this means that the point (p2σ(i+1), p2σ(i+1) +
p1σ(i+1)) is reachable from the point (p3σ(i), p3σ(i) + p2σ(i)). We associate every job J j
with an edge from (p2 j, p2 j + p1 j) to (p3 j, p3 j + p2 j). In the consequence, there is
an interruption-free schedule of J1, . . . ,Jn if and only if the induced graph (V0,E0)
admits an extension E ′ such that there is a path traversing each edge exactly once.
This is the case if and only if there is a Eulerian extension of the graph (V,E) =
(V0 ∪ {vmin,vmax},E0 ∪ {(vmin,vmax)}), where vmin (vmax) is such that it is smaller
(greater) than all other elements of V in both coordinates.

We call a graph G∗ = (V ∗,E∗) with V ∗⊂R+
0 ×R+

0 legal, if it represents a scheduling
instance in the way we have just described. Respectively, an edge is called legal if it

10

represents some job from a scheduling instance. It is not hard to observe that for an
edge to be legal it suffices that it has the form ((x,y),(x′,x + x′)) with x ≤ y. In other
words, the source and sink vertex of a legal edge are above the bisectrix, and for a given
source there is only one degree of freedom for the choice of the sink. For a graph to be
legal it suffices that it is induced by Ê ∪{(vmin,vmax)}, where Ê is a set of legal edges,
and vmin and vmax are like defined in the preceding paragraph.

We complete our reduction by describing in Lemma 7 how to legalize an arbitrary
instance G = (V,E) of 2DEE, that is, to transform it into a legal instance G∗ = (V ∗,E∗),
where G admits a Eulerian extension if and only if G∗ does. ut

Lemma 7. Each instance of 2DEE can be legalized in polynomial time.

Proof. First, we ensure that every vertex is above the bisectrix and no vertex has coor-
dinates (0,0). This is achieved by vertically shifting the whole graph by xmax = max{x |
(x,y) ∈ V}+ 1. Technically, we obtain the graph G1 = (V1,E1) by adding xmax to the
second coordinate of every vertex. As this does not change the reachability relation
between any pair of vertices, G and G1 are equivalent in the sense of 2DEE.

In the second transformation step, we eliminate all illegal edges. Let edge (u,v) =
((ux,uy),(vx,vy)) ∈ E1 be illegal. Let ymax = max{y | (x,y) ∈ V1}+ 1. We enhance V1
by the vertices w1 = (ymax−ux,ymax), w2 = (0,ymax), w3 = (ymax,ymax) and w4 = (vy−
vx,ymax). Then, we replace (u,v) with the edges (u,w1),(w2,w3) and (w4,v), see Fig. 2.

Straightforward observation shows that all new edges are legal and any possible tour
in a Eulerian extension must traverse the path u,w1,w2,w3,w4,v. Thus, the modified
graph admits a Eulerian extension if and only if G1 does.

We obtain the graph G2 = (V2,E2) by iteratively eliminating every illegal edge
from G1. Note that each such elimination causes ymax to increase by one. Still G2
does not necessarily represent a flowshop scheduling instance, as there has to be an
edge (vmin,vmax). We take care of this requirement in the last step of transforma-
tion. Let u = (ux,uy) ∈ V2 be an arbitrary vertex. We insert vmin = (0,0) and vmax =
(ymax,ymax) into V2, where ymax = max{y | (x,y) ∈ V2}+ 1. Furthermore, we in-
sert w1, w2 and w4 defined like in the transformation from G1 to G2. Note that w3 has al-
ready been inserted as vmax. Then, the edges (u,w1), (w2,vmin), (vmin,vmax) and (w4,u)
are added to E2.

As the new vertices are above the bisectrix, the new edges are legal, and the resulting
graph G∗ = (V ∗,E∗) contains an edge from vmin to vmax, it represents an instance of
F3 |nwt |G . Any Eulerian tour traverses the cycle u,w1,w2,vmin,vmax,w4,u as a closed
sub-tour. Hence, G2 and G∗ are equivalent 2DEE instances. ut

5 Further remarks

We introduced the concept of interpreting sequencing problems as Eulerian Extension
Problems. This view does not only lead to elegant and fast algorithms, it also allows an
implicit representation of all optimal solutions for particular problem classes. We be-
lieve that our technique influences also other algorithmic frameworks for related prob-
lems, and moreover, it raises interesting potential for multi-criteria optimization.

11

As a first step towards multi-criteria optimization, consider both objective func-
tions, G and Cmax. Already simple examples (even on two stages) show that sched-
ules with optimal makespan may have the maximum number of interruptions whereas
there exist idle time free schedules. For the two-stage variants of these problems, our
technique provides us an implicit representation of all optimal solutions from which
one could choose accordingly. Referring to a full version of this paper, we only men-
tion here, that an algorithm that solves the interruption problem optimally, yields a
schedule of makespan no greater than twice the minimum makespan, giving a triv-
ial (1,2)-approximation for the bicriteria objective (G ,Cmax). Moreover, it follows from
the NP-completeness of F2 |nwt,m2 ≥ 2 |Cmax [15] that approximating such problems
with a (c,1)-guarantee is NP-hard for any constant c≥ 1.

References
1. M. R. Garey and D. S. Johnson. Computers and intractability. Freeman, 1979.
2. K. Giaro. NP-hardness of compact scheduling in simplified open shop and flowshop. Euro-

pean Journal of Operational Research, 130:90–98, 2001.
3. K. Giaro and M. Kubale. Compact scheduling of zero-one time operations in multi-stage

systems. Discrete Applied Mathematics, 145:95–103, 2004.
4. P. C. Gilmore and R. E. Gomory. Sequencing a one state-variable machine: A solvable case

of the traveling salesman problem. Operations Research, 12:655–679, 1964.
5. R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization and

approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete
Mathematics, 5:287–326, 1979.

6. N. G. Hall and C. Sriskandarajah. A survey of machine scheduling problems with blocking
and no-wait in process. Operations Research, 44(3):510–525, 1996.

7. I. Harjunkoski and I. Grossmann. A decomposition approach for the scheduling of a steel
plant production. Computers and Chemical Engineering, 25:1647–1660, 2001.

8. R. M. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher,
editors, Complexity of Computer Computations, pages 85–103. Plenum Press, 1972.

9. E. L. Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B. Shmoys. The Traveling Salesman
Problem: A Guided Tour of Combinatorial Optimization. John Wiley & Sons, 1985.

10. D. Pacciarelli and M. Pranzo. Production scheduling in a steelmaking-continuous casting
plant. Computers and Chemical Engineering, 28(12):2823–2835, 2004.

11. S. S. Reddi and C. V. Ramamoorthy. On the flow-shop sequencing problem with no wait in
process. Operational Research Quarterly, 23(3):323–331, 1972.

12. H. Röck. The three-machine no-wait flow shop is NP-complete. Journal of the Association
for Computing Machinery, 31(2):336–345, 1984.

13. G. Rote and G. J. Woeginger. Time complexity and linear-time approximation of the ancient
two-machine flow shop. Journal of Scheduling, 1(3):149–155, 1998.

14. C. Schwindt and N. Trautmann. Scheduling the production of rolling ingots: industrial con-
text, model, and solution method. Int. Trans. Operational Research, 10(6):547–563, 2003.

15. C. Sriskandarajah and P. Ladet. Some no-wait shops scheduling problems: complexity as-
pect. European Journal of Operational Research, 24(3):424–438, 1986.

16. G. L. Vairaktarakis. Simple algorithms for gilmore–gomory’s traveling salesman and related
problems. J. of Scheduling, 6(6):499–520, 2003.

17. Z. Wang, W. Xing, and F. Bai. No-wait flexible flowshop scheduling with no-idle machines.
Operations Research Letters, 33:609–614, 2005.

18. D. B. West. Introduction to Graph Theory. Prentice-Hall, 2nd edition, 2001.

12

A Appendix

Proof (of Lemma 3). We prove the statement by showing a more general result.

indeg(V ′)−outdeg(V ′)

=
(

∑
v∈V ′

indeg(v)−|{(u,v) | u,v ∈V}|
)
−

(
∑

v∈V ′
outdeg(v)−|{(v,u) | u,v ∈V}|

)
= ∑

v∈V ′
indeg(v)− ∑

v∈V ′
outdeg(v) ut

A.1 Proofs for Section 3

Proof (of Lemma 5). Non-maximal up edges (u,v) are can be replaced with the edges
(u′,v′),(v′,v),(u,u′), where (u′,v′) is the maximal up edge. The two other new edges
point downwards, so the total number of up edges is preserved. As soon as all up edges
are maximal, non-minimal downward edges can be replaced with minimal ones as de-
scribed in the proof of Lemma 1. ut

Proof (of Theorem 3). An instance I′ = (V,E) of G -1DEE is constructed from an
F2 |nwt |G instance I by defining V =

⋃n
i=1{p1i, p2i} and by adding a job edge (p1i, p2i)

to E for each job Ji, i = 1, . . . ,n.
In the following we show that the optimal solution to I′ contains k up edges if and

only if the optimal solutions to I cause max{k−1,0} interruptions.
Consider a schedule for I. For simplicity, we assume that the jobs are sched-

uled in the order of their index. We add an extension edge (p2i, p1i+1) to E ′ for i =
1, . . . ,n− 1. This way we obtain a number of up edges equal to the number of inter-
ruptions caused by the schedule. Let (u,v) be the maximal up edge. Adding the edges
(p2n,u),(u,v),(v, p11) two of which are down edges, we obtain an extension admitting
the Eulerian cycle p11, p12, p21, p22, . . . , p2n,u,v, p11.

Consider an optimal solution E ′ to I′. We employ Lemma 5 assuming that all down
edges are minimal and all up edges are maximal. The set E ′ is converted into a solution
to I by scheduling the jobs in the order the corresponding job edges appear in some
Eulerian cycle in (V,E ∪E ′).

If E ′ contains k ≥ 1 up edges, then the schedule is started with the job edge appear-
ing after one of them in the cycle. In the consequence, that specific up edge does not
account for an interruption in the schedule. Whenever an interruption appears between
two consecutive jobs, there is at least one other up edge between the corresponding job
edges in the cycle. There is also at most one up edge between two consecutive job edges
as otherwise up edges could be removed from the extension together with a sequence
of down edges. Therefore, the number of interruptions is k−1.

If E ′ does not contain any up edge, then the schedule causes no interruption no
matter which job it starts with. ut

Proof (of Theorem 5). Given an instance I of problem FF2 |nwt |G with m1 = 1, we
consider an instance I′ which equals I restricted to single machines on both stages,
i.e., m′

1 = m′
2 = 1. We find an optimal solution S′ for I′ with r′ interruptions. This can

13

be done efficiently by Theorem 4 and gives a feasible solution for I. Now, we construct
an improved feasible schedule S for instance I with r = max{0,r′−m2 + 1} interrup-
tions: if there is an interruption in S′ then we move the next block of interruption-free
processing jobs to an unused machine of the second stage; we repeat until all interrup-
tions are resolved or until all m2 machines are used in S. This reduces the number of
interruptions by m2−1 or less if r′ < m2−1.

The solution S is optimal for I. To see that, assume for the sake of contradiction
there is an optimal solution S∗ with less interruptions r∗ < r. Then the corresponding
schedule can be transformed into a feasible one for instance I′ with r′′ < r′ interruptions.
Run the set of jobs using machine mi in S∗ consecutively for i = 1, . . . ,r∗− 1 using
only one processor at the second stage. This gives a feasible solution S′′ for I′ with at
most m2−1 interruptions more, i.e., r′′ ≤ r∗+(m2−1) < r+m2−1. This contradicts
the optimality of schedule S′ for I′ with r′ ≥ r +m2−1 interruptions. ut

A.2 Proofs for Section 4

Proof (of Theorem 7). We provide a reduction from the Three-Dimensional Matching
Problem (3DM): Given a set U ⊆ M1×M2×M3 of triples, where M1, M2 and M3 are
pairwise disjoint and have the same number k of elements, decide whether U contains
a subset U ′ ⊆U with |U ′|= k and no two elements of U ′ agree in any coordinate. Here
we assume w.l.o.g. that any element of M1∪M2∪M3 appears in at least one triple of U .
The problem 3DM is well-known to be strongly NP-complete [8].

Denote the edges in a solution E ′ of 2DEE as extension edges. Note, that in contrast
to the one-dimensional case, extension edges in this setting only contain down edges.
We say that two points u,v ∈ R+

0 ×R+
0 are independent, if neither (u,v) nor (v,u) can

be an extension edge due to the constraint specified in Definition 3.
Consider two rectangles A = [xmin,xmax]× [ymin,ymax], A′ = [x′min,x

′
max]× [y′min,y

′
max]

in R+
0 ×R+

0 . We say that A and A′ are independent if any two points u ∈ A, v ∈ A′

are independent. Formally, A and A′ are independent if and only if either xmax < x′min
and ymin > y′max, or xmin > x′max and ymax < y′min.

A point v = (vx,vy) is reachable from another point u = (ux,uy) if (u,v) is a down
edge, and v is one-way reachable from u if it is reachable from u, but u is not reachable
from v. Formally, v is reachable from u if ux ≥ vx and uy ≥ vy. One-way reachability is
obtained by additionally demanding u 6= v.

Given an instance U ⊆M1×M2×M3 of 3DM with |M1|= |M2|= |M3|= k, we con-
struct an equivalent 2DEE instance (V,E) as follows: Let {A1, . . . ,A|U |} be a collection
of pairwise independent rectangles. For i = 1, . . . , |U |, define three points ai1,ai2,ai3 ∈
Ai such that ai2 is one-way reachable from ai1, and ai3 is one-way reachable from ai2.
We define the set of vertices as V =

⋃
i=1,...,|U |{ai1,ai2,ai3}∪{vmin,vmax}, where vmin is

such that it is one-way reachable from any other vertex in V , and vmax is such that any
other vertex in V is one-way reachable from it. Formally, the vertex set can be imple-
mented as vmin = (0,0), vmax = (|U |+1, |U |+1), and ai j = (4i− j,4(|U |+1− i)− j)
for 1≤ i≤ |U | and j ∈ {1,2,3}.

For constructing the edge set E, let U = {U1, . . . ,U|U |} be an arbitrary enumeration
of the triples in U . For j = 1,2,3 and any element b∈M j, we add edges such that (V,E)
contains a directed cycle. That cycle, called Cb, includes exactly all vertices ai j where b

14

vmin

vmax

a|U |2

a33

a32

a23

a22

a13

a12
a11A1

A2

A3

A|U |

a21

a31

a|U |3

a|U |1....k

Fig. 1. 2DEE representation of a 3DM in-
stance.

v

ymax

u

w1 w4w2

w3

Fig. 2. The edge (u,v) is replaced with the le-
gal edges (u,w1), (w2,w3), and (w4,v).

is the jth component of Ui. Consequently, E contains 3k pairwise vertex-disjoint cycles.
The construction of E is completed by adding k edges from vmin to vmax, see Fig. 1.

In the following, we assume that E ′ is a solution to the 2DEE problem in-
stance (V,E). A Eulerian tour (V,E ∪E ′) traverses (vmin,vmax) exactly k times. The
following two lemmata state crucial properties of such a tour.

Lemma 8. Let P = vmax, . . . ,vmin be a path in (V,E∪E ′) that is part of a Eulerian tour
and does not include the edge (vmin,vmax). Then all edges in P∩E are contained in not
more than three different cycles Cb1 , Cb2 and Cb2 .

Lemma 9. Any Eulerian tour in (V,E ∪E ′) includes each cycle Cb as a contiguous
sub-tour.

Thus, a Eulerian tour leaves each cycle Cb at the same vertex it entered it.
It follows that between any two consecutive traversals of (vmin,vmax), three cy-
cles Cb1 ,Cb2 ,Cb3 are traversed, each time starting and ending inside the same
rectangle Ai. So the Eulerian extension of (V,E) has to have the form E ′ =⋃

h=1,...,k{(vmax,aih1),(aih1,aih2),(aih2,aih3),(aih3,vmin)}, where i1, . . . , ik are such that
each cycle Cb can be traversed. This is the case if and only if no two aih j and aih′ j belong
to the same cycle, which is equivalent to Ui1 , . . . ,Uik constituting a matching. ut

Proof (of Lemma 8). Consider some edge in P that belongs to a cycle Cb with b ∈ M j.
There are only three possibilities to continue P after the sink ai j of the edge has been
reached. If P continues using another edge from E, then, due to the vertex-disjointness
of the cycles, that edge also belongs to Cb. If P continues with an edge from E ′, then,
due to the independence and reachability properties of V , that next edge will be ei-
ther (ai j,vmin) or (ai j,ai j′) with j′ > j. In the former case, P ends. In the latter case, P
can enter a new cycle Cb′ with b′ ∈ M j′ , but j′ is strictly larger than j. In other words,
each time P enters a new cycle Cb, b ∈ M j, the index j strictly increases. As j ≤ 3, the
claim follows. ut

Proof (of Lemma 9). As there are k edges (vmin,vmax) and 3k cycles Cb, it follows from
Lemma 8 that each cycle can be entered at most once, because otherwise some cycles

15

would remain not entered at all. Thus, in a Eulerian tour each cycle must be completely
traversed as soon at it is entered. ut

A.3 More complexity results for minimizing the number of
interruptions (Section 4)

First we consider flexible flowshops with two machine stages. We show by reduction
from 3-PARTITION that minimizing the number of interruptions is strongly NP-hard if
the first stage contains two machines and the second stage only one.

Definition 4 (3-PARTITION). Given a set A of 3m elements from N+ with B/4 < a <
B/2 for all a ∈ A, where B := 1

m ∑a∈A a, decide whether A can be partitioned into m
disjoint sets A1, . . . ,Am with ∑a∈Ai a = B for i = 1, . . . ,m.

It is well known that 3-PARTITION is NP-complete in the strong sense, see SP15 in [1].

Theorem 9. The problem E0 (FF2 |nwt |G) with numbers of machines m1 = 2
and m2 = 1 is strongly NP-complete.

Proof. Given a 3m-element instance A of 3-PARTITION, we construct an instance I of
E0 (FF2 |nwt |G) with m1 = 2 and m2 = 1. For any a ∈ A we choose a job in I with
processing times 1 and a on the first and second stage, respectively. To partition these
jobs, we add m+1 auxiliary jobs having processing times B on the first stage and 0 on
the second stage.

We show that in a schedule without interruptions, there is no point in time at which
two auxiliary jobs are processed in parallel on the first stage. First notice, that two auxil-
iary jobs running fully in parallel must cause an interruption (i) with any job scheduled
before them, because no job in I has processing time B on the second stage, and (ii) with
any job scheduled after them, because no job in I has processing time 0 on the first stage.
Now, assume that there are auxiliary jobs J1 and J2 with start times S1 < S2 < S1 + B,
which, as a consequence, fully block the first stage during [S2,S1 + B). Since all jobs
in I have positive processing times on the first stage, no job can start at S1 + B on the
second stage, and thus, an idle time after J1 is unavoidable.

Therefore, we may assume that in any schedule without interruptions all auxiliary
jobs are processed on the same machine in the first stage. This induces m gaps of length
at least B between the auxiliary jobs on the second stage. These gaps can be filled with
the remaining jobs if and only if A is a yes-instance. ut

Now, we generalize this NP-completeness result and combine it with the single
machine case in Theorem 8. The following two lemmata show that E0 (FFs |nwt |G)
with any constant number of stages s≥ 2 and constant numbers of machines, except s =
2 and m1 = 1, is also strongly NP-complete.

Lemma 10. Consider E0 (FFs |nwt |G) with a constant number of stages s ≥ 2. Then
any variant of this problem with constant numbers of machines m1, . . . ,ms where ms = 1
can be reduced to any other problem variant with constant numbers of machines m′

i, i =
1, . . . ,s, satisfying m′

i ≥ mi, m′
s = 1, and m′

k > mk for some k < s.

16

p

q ∑ j∈J ps j

Ls

Lk

Fig. 3. Arrangement of auxiliary jobs
in a schedule without interruptions
(Lem. 10). Original jobs have to be
processed in dotted slots.

p

Ls

q

Fig. 4. Schedule without interruptions for I′. (Lem. 11)

Proof. We consider E0 (FFs |nwt |G) with a constant number of stages s≥ 2 and con-
stant numbers of machines. Given an instance I of a problem variant with numbers of
machines mi, i = 1, . . . ,s, where ms = 1, we build an instance I′ of a problem variant with
numbers of machines m′

i, satisfying m′
i ≥ mi, m′

s = 1, and m′
k > mk for some k < s. In

addition to the original jobs J of I, we choose auxiliary jobs for I′ which force the jobs
from J to use only mi machines on stage Li. For blocking a stage Li with m′

i > mi ac-
cordingly, we add 2m′

i−mi jobs with processing time p = max j∈J ∑
s−1
i=1 pi j +∑ j∈J ps j

on stage Li, and 0 elsewhere. We denote the auxiliary jobs corresponding to Li by Ji.
For an arbitrary auxiliary job Jmod ∈ Jk, we modify the processing time on the last
stage to q = p−∑ j∈J ps j.

Given a schedule without interruptions for I′, we consider the sub-schedule of aux-
iliary jobs. Observe, that the idle times on the last stage in this sub-schedule sum up
to at most ∑ j∈J ps j, since otherwise they could not be filled with the jobs J in the
total schedule. We examine the arrangement of jobs from Jk. By its cardinality, there
is a machine in stage Lk that processes a subset J̃k ⊆Jk of at least two jobs. Due to
the largest possible length of idle times on the only machine of the last stage, J̃k does
not contain more than two jobs. Thus, the jobs from J̃k generate an idle time of length
exactly p on the last stage. Since no further idle times are allowed, the remaining jobs
from Jk and the other auxiliary jobs must be scheduled such that they exactly meet the
previous jobs on the last stage. In particular, the job Jmod must be scheduled such that it
is processed at the beginning of the idle time, produced by the two jobs from J̃k that
are processed on the same machine on Ls. Thus, we can assume that the auxiliary jobs
are arranged as in Fig. 3.

By definition of p and q there exists a schedule without interruptions for the in-
stance I′ if and only there exists one for the instance I. ut

Lemma 11. Consider E0 (FFs |nwt |G) with a constant number of stages s ≥ 2. Then
any variant of this problem with constant numbers of machines m1, . . . ,ms can be re-
duced to any other problem variant with constant numbers of machines m′

i, i = 1, . . . ,s,
satisfying m′

s ≥ ms and m′
i = mi for i = 1, . . . ,s−1.

Proof. We reduce the problem E0 (FFs |nwt |G) with constant numbers of machines
m1, . . . ,ms to another variant of this problem with machine numbers m′

i, i = 1, . . . ,s,
satisfying m′

s ≥ ms and m′
i = mi elsewhere. Given an instance I of the former problem

17

with set of jobs J , we build an instance I′ of the latter problem by adding auxiliary jobs
to the instance I: We choose ms jobs with processing time q = max j∈J ∑

s
i=1 pi j on the

last stage, and 0 on all other stages. Furthermore, we add m′
1 m′

s jobs with processing
time p > (ms + 1)q + ∑ j∈J ps j on stage L1, and 0 elsewhere. We denote these jobs
with J q

aux and J p
aux, respectively.

If there exists an interruption-free schedule S for I, then the schedule in Fig. 4 shows
how to arrange the jobs from I′ without idle times on the last stages: The jobs from J p

aux
are scheduled in blocks of m′

1 jobs which are processed in parallel on the first stage and
on the same machine in the last stage. With sufficiently long idle times between these
blocks, we can process after ms of them first a job from J q

aux and then a sub-schedule
that corresponds to a last stage machine in S.

On the other hand, given a schedule for I′ without interruptions, we can construct a
schedule without interruptions for I. In the following we call jobs with processing time 0
on the stages L1, . . . ,Ls−1 zero-jobs. We claim that in any interruption-free schedule
for I′ every machine on the last stage processes first one or more jobs from J p

aux, second
a zero-job and third an interruption-free sequence of jobs from J ∪J q

aux (which may
also include jobs from J p

aux).
We consider a schedule for I′ that does not contain an interruption. Then, the last

stage idle times in the sub-schedule induced by the jobs J p
aux do not equal or exceed p,

by definition of p. Thus, there is no pair of jobs from J p
aux that is processed on the same

machine on the first and last stage. In particular, every first stage machine processes
exactly m′

s jobs from J p
aux. Hence, given a machine on the first and last stage, there

is a unique job from J p
aux which is processed on both machines. As a consequence,

the m′
1 jobs from J p

aux, that are processed on a particular machine M on the last stage,
use every machine in the first stage for processing exactly one job.

Let c be the first completion time of these jobs, and let J ∈J p
aux be a job completing

at that time. Since idle times on the last stage must be compensable with the jobs from I′,
none of the jobs from J p

aux on M completes after d = c+ms q+∑ j∈J ps j. Thus, these
jobs block the first stage during [d− p,c). This yields two characteristics for schedules
without interruptions: First, J can be followed on machine M only by zero-jobs. And
second, by ∣∣[d− p,c)

∣∣ = p−ms q+ ∑
j∈J

ps j > q = max
j∈J

s

∑
i=1

pi j,

no job can be processed before J on M. Since the jobs from J p
aux have processing time 0

on the last stage, all further jobs from J ∪J q
aux on M follow the zero-job without idle

time. This completes the proof of the claim.
Given a schedule for I′ with the properties claimed above, we show how to con-

struct an interruption-free schedule for the instance I. Consider all machines on the last
stage that process a job from J ∪J q

aux. If there is a machine that processes more than
one job from J q

aux, then we move the sequence of jobs, starting with the second job
from J q

aux (ignoring the jobs from J p
aux), to a machine on the last stage, that processes

no job from J q
aux. Since the jobs from J q

aux are zero-jobs, this does not create an in-
terruption on the new machine. If there occur conflicts with other jobs, then we delay
sub-schedules corresponding to some machines on the last stage. In case that a machine

18

processes only jobs from J , but no job from J q
aux, then by our claim, the first job is a

zero-job. Hence, we can move the sequence of jobs from J to another machine, which
already processes a job from J q

aux. Thus, we may assume, that there are at most ms ma-
chines on the last stage that process jobs from J and each of these machines processes
one job from J q

aux. If the job from J q
aux is not the first one in the sequence of jobs

from J ∪J q
aux, then we can move the subsequence starting with it to the beginning.

Since the first job in the sequence and the job from J q
aux are zero jobs, this creates no

interruption. Finally, we obtain a schedule for I′, that uses only ms machines on the last
stage, and in which the jobs of J are processed without interruption. This yields an
interruption-free schedule for the instance I. ut

Theorem 6 is proved by combining the results of this subsection with Theorem 8.

19

