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Abstract

We consider backward stochastic differential equations (BSDE) with nonlin-
ear generators typically of quadratic growth in the control variable. A measure
solution of such a BSDE will be understood as a probability measure under which
the generator is seen as vanishing, so that the classical solution can be recon-
structed by a combination of the operations of conditioning and using martingale
representations. In case the terminal condition is bounded and the generator ful-
fills the usual continuity and boundedness conditions, we show that measure
solutions with equivalent measures just reinterpret classical ones. In case of ter-
minal conditions that have only exponentially bounded moments, we discuss a
series of examples which show that in case of non-uniqueness classical solutions
that fail to be measure solutions can coexists with different measure solutions.
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Introduction

The generally accepted natural framework for the most efficient formulation of pric-
ing and hedging contingent claims on complete financial markets, for instance in the
classical Merton-Scholes problem, is given by martingale theory, more precisely by the
elegant notion of martingale measures. Martingale measures represent a view of the
world in which price dynamics do not have inherent trends. From the perspective of
this world, pricing a claim amounts to taking expectations, while hedging boils down
to pure conditioning and using martingale representation.

At first glance, hedging a claim is, however, a problem calling upon stochastic con-
trol: it consists in choosing strategies to steer the portfolio into a terminal random
endowment the portfolio holder has to ensure. Solving stochastic backward equations
(BSDE) is a technique tailor-made for this purpose. This powerful tool has been in-
troduced to stochastic control theory by Bismut [1]. Its mathematical treatment in
terms of stochastic analysis was initiated by Pardoux and Peng [15], and its particular
significance for the field of utility maximization in financial stochastics clarified in El
Karoui, Peng and Quenez [7]. To fix ideas, we restrict our attention to a Wiener space
probabilistic environment. In this framework, a BSDE with terminal variable ξ at time
horizon T and generator f is solved by a pair of processes (Y, Z) on the interval [0, T ]
satisfying

Yt = ξ −
∫ T

t

ZsdWs +

∫ T

t

f(s, Ys, Zs)ds, t ∈ [0, T ]. (1)

In the case of vanishing generator, the solution just requires an application of the
martingale representation theorem in the Wiener filtration, and Z will be given as the
stochastic integrand in the representation, to which we will refer as control process in
the sequel. The classical approach of existence and uniqueness for BSDE involves a
priori inequalities as a basic ingredient, by which unique solutions are constructed via
fixed point arguments, just as in the case of forward stochastic differential equations.

In this paper we are looking for a notion in the context of BSDE that plays the role of
the martingale measure in the context of hedging claims. Our main interest is directed
to BSDE of the type (1) with generators that are non-Lipschitzian, and depend on the
control variable z quadratically, typically f(s, y, z) = z2 b(s, z), s ∈ [0, T ], z ∈ R, with
a bounded function b. These generators were given a through treatment in Kobylanski
[12], Briand, Hu [2], and Lepeltier, San Martin [13]. While [12] and [13] consider exis-
tence and uniqueness questions for bounded terminal variables ξ, [2] goes to the limit of
possible terminal variables by considering ξ for which exp(γ|ξ|) has finite expectation
for some γ > 2||b||∞. All these papers employ different methods of approach following
the classical pattern of arguments mentioned above. In contrast to this, we shall inves-
tigate an alternative notion of solution of BSDE, the generators of which fulfill similar
conditions. In analogy with martingale measures in hedging which effectively eliminate
drifts in price dynamics, we shall look for probability measures under which the genera-
tor of a given BSDE is seen as vanishing. Given such a measure Q which we call measure
solution of the BSDE and supposing that Q ∼ P, the processes Y and Z are the results
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of projection and representation respectively, i.e. Y = EQ(ξ|F·) = Y0+
∫ ·

0
ZsdW̃s, where

W̃ is a Wiener process under Q. The first main finding of the paper roughly states that
provided the terminal variable ξ is bounded, all classical solutions can be interpreted
as measure solutions. More precisely, we show that if the generator satisfies the usual
continuity and quadratic boundedness conditions, classical solutions (Y, Z) exist if and
only if measure solutions with Q ∼ P exist. So existence Theorems obtained in the
papers quoted are recovered in a more elegant and concise way in terms of measure
solutions. We do not touch uniqueness questions in general. Of course, determining a
measure Q under which the generator vanishes amounts to doing a Girsanov change of
probability that eliminates it. We therefore have to look at the BSDE in the form

Yt = ξ −
∫ T

t

Zs

[
dWs −

f(s, Ys, Zs)

Zs

ds

]
, t ∈ [0, T ], (2)

define g(s, y, z) =
f(s, y, z)

z
, and study the measure

Q = exp

(
M − 1

2
〈M〉

)
· P

for the martingale M =
∫ ·

0
g(s, Ys, Zs)dWs. One of the fundamental problems that

took some effort to solve consists in showing that Q is a probability measure. Here
one has to dig essentially deeper than Novikov’s or Kazamaki’s criteria allow. We
successfully employed a criterion which is based on the explosion properties of the
quadratic variation 〈M〉, which we learnt from a conversation with M. Yor, and has
been latent in the literature for a while, see Liptser, Shiryaev [14], or the more recent
paper by Wong, Heyde [17]. This criterion allows a simple treatment of the problem
of existence of measure solutions in the case of bounded terminal variable, and a still
elegant and efficient one in the borderline case of exponentially integrable terminal
variable considered by Briand, Hu [2]. If ξ is only exponentially bounded, things turn
essentially more complex immediately. Specializing to a very simple generator, we find
a wealth of different situations looking confusing at first sight. Just to quote three
basic scenarios exhibited in a series of examples of different types: in the first type we
obtain one solution which is a measure solution at the same time; in the second one we
find two different solutions both of which are measure solutions; in the third one we
encounter two solutions one of which is a measure solution, while the other one is not.
We even combine these basic examples to develop a scenario in which there exists a
continuum of measure solutions, and another one in which a continuum of non-measure
solutions is given.

Here is an outline of the presentation of our material. Throughout we consider
BSDE possessing generators with quadratic nonlinearity in z. In a first section we
discuss the case of bounded terminal variable ξ, and show that if the generator satisfies
continuity and quadratic boundedness conditions, classical solutions (Y, Z) exist if and
only if measure solutions with Q ∼ P exist. Things become essentially more complex
in the second section, where we pass to exponentially integrable terminal variables.
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Taking the simple generator f(s, z) = αz2, s ∈ [0, t], z ∈ R, with some α ∈ R, that
a wealth of different scenarios arises in which in case of non-uniqueness in particular
solutions can be measure solutions, while different ones fail to have this property.

1 Measure solutions: Definition and first examples

In this section we first recall some basic definitions concerning BSDEs. We then intro-
duce and exemplify the notion of a measure solution by looking at a special class of
BSDEs.

Throughout let T be a non-negative real, (Ω,F , P) a probability space, and (Wt)0≤t≤T

a one-dimensional Brownian motion, whose natural filtration, augmented by N , is de-
noted by (Ft)0≤t≤T , where

N = {A ⊂ Ω, ∃G ∈ F , A ⊂ G and P(G) = 0} .

Let ξ be an FT -measurable random variable, and let f : Ω × [0, T ] × R → R be a
measurable function such that for all z ∈ R the mapping f(·, ·, z) is predictable. A
classical solution of the BSDE with terminal condition ξ and generator f is defined to
be a pair of predictable processes (Y, Z) such that almost surely we have

∫ T

0
Z2

s ds < ∞,∫ T

0
|f(s, Ys, Zs)|ds < ∞, and for all t ∈ [0, T ],

Yt = ξ −
∫ T

t

ZsdWs +

∫ T

t

f(s, Zs)ds. (3)

The solution processes (Y, Z) are often shown to satisfy some integrability properties
and to belong to the following function spaces. For p ≥ 1 let Hp denote the set of all
R-valued predictable processes ζ such that E

∫ 1

0
|ζt|pdt < ∞, and by S∞ we denote the

set of all essentially bounded R-valued predictable processes.
If ξ is square integrable and f satisfies a Lipschitz condition, then it is known that

there exists a unique pair (Y, Z) ∈ H2 ⊗ H2 solving (3). Recall that the solution
process Yt has a nice representation as a conditional expectation with respect to a new
probability measure if f is a linear function of the form

f(s, z) = bsz, (4)

where b is a predictable and bounded process. More precisely, if Dt = exp(
∫ t

0
bsdWs −

1
2

∫ t

0
b2
sds), and Q is the probability measure with density Q = DT · P , then

Yt = EQ[ξ|Ft]. (5)

In the following we will discuss whether Y still can be written as a conditional expecta-
tion of ξ if f does not have a representation as in (4) with b bounded, but satisfies only
a quadratic growth condition in z. We aim at finding sufficient conditions guaranteeing
that the process Yt of a classical solution of a quadratic BSDE has a representation
as a conditional expectation of ξ with respect to a new probability measure. For this
purpose we consider the class of generators f : Ω× [0, T ]×R → R, satisfying for some
constant c ∈ R+,
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Assumption (H1):

(i) f(s, z) = f(·, s, z) is adapted for any z ∈ R,

(ii) g(s, z) = f(s,z)
z

, z ∈ R, is continuous in z, for all s ∈ [0, T ],

(iii) |f(s, z)| ≤ c(1 + z2) for any s ∈ [0, T ], z ∈ R.

Let ξ be an FT−measurable random variable. We introduce for BSDEs with generators
satisfying (H1) our concept of measure solutions.

Definition 1.1 A triplet (Y, Z, Q) is called measure solution of the BSDE (3), if Q is
a probability measure on (Ω,F), (Y, Z) a pair of (Ft)–predictable stochastic processes

such that
∫ T

0
Z2

s ds < ∞, Q-a.s. and the following conditions are satisfied:

W̃ = W −
∫ ·

0

g(s, Zs)ds is a Q− Brownian motion,

ξ ∈ L1(Ω,F , Q),

Yt = EQ(ξ|Ft) = ξ −
∫ T

t

ZsdW̃s, t ∈ [0, T ].

It is known from the literature that if the terminal condition ξ is bounded and the
generator f satisfies Assumption (H1), then the BSDE (3) has a classical solution (Y, Z)
(see for example Kobylanski [12]). We show that in this case there exists a probability
measure Q, equivalent to P, such that (Y, Z, Q) is a measure solution.

Theorem 1.1 Assume that ξ is bounded, and that f satisfies Assumption (H1). Then
for every classical solution (Y, Z) there exists a probability measure Q, equivalent to P,
such that (Y, Z, Q) is a measure solution of (3).

Proof: Let (Y, Z) be a classical solution of (3). The very definition entails∫ T

0

Z2
s ds < ∞, P− a.s.

Note that due to (ii) and (iii)

|g(s, z)|2 ≤ C(1 + z2), s ∈ [0, T ], z ∈ Rd,

for some C > 0, and hence we have∫ T

0

g2(s, Zs)ds < ∞, P− a.s. (6)

We shall prove that under this condition also a measure solution exists. For this
purpose, we define

M =

∫ ·

0

g(s, Zs)dWs. (7)
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It is clear that all we have to establish is that the measure

Q = VT · P,

with

V = exp

(
M − 1

2
〈M〉

)
leads to a probability measure equivalent to P. This will be done by investigating
possible explosions of the quadratic variation process 〈M〉. For n ∈ N, let

τn = T ∧ inf{t ≥ 0 : 〈M〉t ≥ n}. (8)

Let
Qn = VT · P|Fτn

be the measure change defined locally on Fτn . We know that Qn is a probability measure
equivalent to P, and the Radon-Nikodym density of Qn with respect to P on Fτn is
given by

Vτn = exp

(
Mτn −

1

2
〈M〉τn

)
.

Moreover, the drifted process

W̃ n = W −
∫ τn∧·

0

g(s, Zs)ds

is a Qn– Brownian motion, in particular locally up to time τn. In order to show that
Q is a probability measure, it is sufficient to verify

Qn(τn < T ) → 0 (n →∞). (9)

Namely, (9) implies

lim
n

E(VT 1{τn=T}) = lim
n

[E(Vτn)− E(Vτn1{τn<T})] = 1− lim
n

Qn(τn < T ) = 1. (10)

On the other hand, dominated converges yields E(VT ) = limn E(VT 1{τn=T}), and hence
that Q is a probability measure. We remark that the criterion (9) can be found in [14],
and appears also as Lemma 1.5 in [11].

Recall that by the very definition of the measure change,

Yτn∧· = Y0 +

∫ τn∧·

0

ZsdW̃ n
s

is a martingale under Qn, up to time τn, which is bounded by a constant c1, due to the
boundedness of ξ (see Theorem 2.3 in [12]).
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Hence we obtain for any n ∈ N, starting with an application of Chebyshev-Markov’s
inequality, and, due to (iii), another constant c2 independent of n, such that

Qn(τn < T ) ≤ 1

n
EQn

(∫ τn

0

g(s, Zs)
2ds

)
=

1

n
En

(∫ τn

0

g(s, Zs)
2ds

)
≤ 1

n
c2

(
1 + En

∫ τn

0

Z2
s ds

)
=

1

n
c2

(
1 + En

∣∣∣∣∫ τn

0

ZsdW̃ n
s

∣∣∣∣2
)

=
1

n
c2

(
1 + En |Yτn − Y0|2

)
≤ 1

n
c2(1 + c1).

Thus we have shown (9), and hence that Q is a probability measure. Under Q, by
definition,

W Q = W −
∫ ·

0

g(s, Zs) ds

is a Brownian motion, and our BSDE may be written as

Yt = ξ −
∫ T

t

ZsdW Q
s = EQ(ξ|Ft)

for t ∈ [0, T ]. This shows that (Y, Z, Q) is a measure solution. �

It is straightforward to see that every measure solution gives rise to a classical
solution. Consequently, under the assumptions of Theorem 1.1, measure solutions
exist if and if only classical solutions exist. More precisely, we obtain the following.

Corollary 1.1 Assume that ξ is bounded, and that f satisfies Assumption (H1). Then
(Y, Z) is a classical solution if and only if there exists a probability measure Q, equiv-
alent to P, such that (Y, Z, Q) is a measure solution of (3).

We remark that the previous results can be extended to the case where W is a
d-dimensional Brownian motion. Let f : Ω× [0, T ]×Rd → R be a generator for which
there exists a constant c ∈ R+ such that

|f(s, z)| ≤ c(1 + |z|2), s ∈ [0, T ], z ∈ Rd, (11)

and assume that g : Ω × [0, T ] × Rd → Rd is a function that is continuous in z and
satisfies

〈z, g(s, z)〉 = f(s, z), for all z ∈ Rd and s ∈ [0, T ]. (12)

If ξ is bounded and FT -measurable, then one can show with similar arguments as used
in the preceding proof that, starting from a classical solution (Y, Z), there exists a
probability measure Q such that W −

∫ ·
0
g(s, Zs) is a Q-Brownian motion, and Yt =

EQ(ξ|Ft).
Notice that the relation (12) may be satisfied by more than one continuous g, and

consequently there may exist more than one measure solution in the multidimensional
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case. For example, let d = 2, f(s, z) = z1z2, and observe that |f(z)| ≤ 1
2
|z|2. For any

a ∈ (0,∞) let ga(z) = (az1,
1
a
z2). Then, we have 〈z, ga(s, z)〉 = f(s, z), and thus there

exist more than one measure solution for a BSDE with generator f and a bounded
terminal condition ξ.

In the following sections we shall discuss quadratic BSDEs with terminal conditions
that are not bounded. As is known from literature, see for example Briand, Hu [2], [3],
this case is by far more complex. For example, it is here that even if the generators
are smooth, solutions stop to be unique. We shall exhibit examples below which com-
plement the result shown in Briand, Hu [3], according to which uniqueness is granted
in case the generator of the BSDE possesses additional convexity properties, and the
terminal variable possesses exponential moments of all orders. This fact underlines
that also variations in the generator affect questions of existence and uniqueness of
solutions a lot. For this reason, and also to keep better oriented on a windy track with
many bifurcations, in the next section we shall choose a simpler generator, and assume
that our generator is given by

f(s, z) = αz2.

2 Measure and non-measure solutions of quadratic

BSDEs with unbounded terminal condition

In this section we will study in more detail the BSDEs with generator of the form

f(z) = αz2.

We shall further assume without loss of generality that α > 0. This can always be
obtained in our BSDE by changing the signs of ξ, and the solution pair (Y, Z).

Nonetheless, it turns out that positive and negative terminal variables need a sep-
arate treatment. We will first show (see Subsection 2.1) the existence of measure
solutions for terminal conditions ξ bounded from below. Note that by a linear shift
of Y we may assume that ξ ≥ 0. We shall further work under exponential integrabil-
ity assumptions in the spirit of Briand, Hu [2]. According to this paper, exponential
integrability of the terminal variable of the form

E(exp(γ|ξ|)) < ∞ (13)

for some γ > 2α is sufficient for the existence of a solution. Let us first exhibit an
example to show that one cannot go essentially beyond this condition without losing
solvability.

Example:
Let T = 1, and let α = 1

2
. Let us first consider

ξ =
W 2

1

2
.

It is immediately clear from the fact that W1 possesses the standard normal density,
that E exp(2α|ξ|) = ∞, hence of course also for γ > 2α (13) is not satisfied. To find a
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solution (Y, Z) of (3) on any interval [t, 1] with t > 0 define

Zs =
Ws

s
, s > 0,

and set for completeness Z0 = 0. Let t > 0 and use the product formula for Itô integrals
to deduce ∫ 1

t

ZsdWs =
1

2

W 2
s

s
|1t +

1

2

∫ 1

t

W 2
s

s2
ds (14)

= ξ − 1

2

W 2
t

t
+

1

2

∫ 1

t

Z2
s ds.

This means that, if we set for convenience again Y0 = 0, the pair of processes (Ys, Zs) =

(1
2

W 2
s

s
, Ws

s
), s ∈ [0, 1], solves the BSDE (3) on [t, 1] for any t > 0. Of course, the definition

of Y0 is totally inconsistent with the BSDE. Worse than that, Z is not square integrable
on [0, 1], as is well known from the path behavior of Brownian motion. Hence (Y, Z)
is not a solution of (3). To put it more strictly, there is no classical solution of (3) on
[0, 1], since, due to local Lipschitz conditions, any such solution would have to coincide
with (Y, Z) on any interval [t, 1] with t > 0.

According to Jeulin, Yor [8], transformations of this type are related to a phe-
nomenon they call appauvrissement de filtrations. In fact, if 1

2
is replaced with a pa-

rameter λ, they show that the natural filtration of the transformed process gets poorer
than the one of the Wiener process, iff λ > 1

2
. Hence in the case we are interested in

the Wiener filtration is preserved.

Let us now reduce the factor of W 2
1 in the definition of ξ a bit, to show that solutions

exist in this setting. For k ∈ N, let

ξk =
W 2

1

2(1 + 1/k)
,

and consider the BSDE (3) with the generator f chosen above, and terminal condition
ξk. In this setting, we clearly have

E exp(γξk) < ∞ for 2α ≤ γ < 2α(1 + 1/k).

This shows that the condition of Briand, Hu [2] is satisfied. It is not hard to construct
the solutions of the corresponding BSDEs explicitly, in the same way as above. In fact,
for k ∈ N we may define fk(t) = 1

k
+ t, t ∈ [0, 1], and set

Zk
t =

Wt

fk(t)
, t ∈ [0, 1].

We may then repeat the product formula for Itô integrals argument used above to
obtain for t ≥ 0 ∫ 1

t

Zk
s dWs =

1

2

W 2
s

fk(s)
|1t +

1

2

∫ 1

t

W 2
s f ′k(s)

fk(s)2
ds (15)

=
1

2

W 2
1

fk(1)
− 1

2

W 2
t

fk(t)
+

1

2

∫ 1

t

(Zk
s )2ds.
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Hence we set

Y k
t =

1

2

W 2
t

fk(t)
, t ∈ [0, 1],

to identify the pair of processes (Y k, Zk) as a solution of the BSDE

Y k
t = ξk −

∫ 1

t

Zk
s dWs +

1

2

∫ 1

t

(Zk
s )2ds, t ∈ [0, 1]. (16)

We do not know at this moment whether (3) possesses more solutions. �

2.1 Exponentially integrable lower bounded terminal variable

Under the exponential integrability assumption E(exp(2αξ)) < ∞, we will now de-
rive measure solutions from given classical solutions. Leaving the difficult question of
uniqueness apart for a moment, we remark that with our simple generator, we obtain
an explicit solution given by the formula

Yt =
1

2α
ln Mt −

1

2α
ln M0, Zt =

1

2α

Ht

Mt

, (17)

where

Mt = E(exp(2αξ)|Ft) = M0 +

∫ t

0

HsdWs, t ∈ [0, T ].

In the sequel, we shall work with this explicit solution. In the following lemma, we
prove integrability properties for the square norm of Z which will be crucial for stating
the martingale property of M and other related processes later.

Lemma 2.1 For any p ≥ 1 we have

E
([∫ T

0

Z2
s ds

]p)
< ∞.

In particular,
∫ ·

0
ZsdWs is a uniformly integrable martingale.

Proof: Let t ∈ [0, T ]. By Itô’s formula, applied to N

1

2α
[ln Mt − ln M0] =

1

2α

[∫ t

0

Hs

Ms

dWs −
1

2

∫ t

0

(
Hs

Ms

)2

ds

]
=

∫ t

0

ZsdWs − α

∫ t

0

Z2
s ds.

Hence

α

∫ t

0

Z2
s ds = − 1

2α
[ln Mt − ln M0] +

∫ t

0

ZsdWs. (18)

By concavity of the ln and Jensen’s inequality

ln Mt = ln E(exp(2αξ)|Ft) ≥ E(2αξ|Ft).
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Using this in (18), we obtain

α

∫ t

0

Z2
s ds ≤ −E(ξ|Ft) +

1

2α
ln M0 +

∫ t

0

ZsdWs.

Taking p−norms in this inequality and using the inequality of Burkholder, Davis and
Gundy for the stochastic integral, we obtain with universal constants c1, c2, c3

E
([∫ t

0

Z2
s ds

]p)
≤ c1

[
E (|E(ξ|Ft)|p) + | ln M0|p + E

([∫ t

0

Z2
s ds

] p
2

)]

≤ c2

[
E(|ξ|p) + | ln M0|p + E

([∫ t

0

Z2
s ds

] p
2

)]
.

By a standard argument this entails

E
([∫ t

0

Z2
s ds

]p)
≤ c3[E(|ξ|p) + | ln M0|p + 1],

and finishes the proof. �

We shall now prove that (Y, Z) gives rise to a measure solution.

Theorem 2.1 Assume that (Y, Z) are defined as in (17). Then there exists a proba-
bility measure Q, equivalent to P, such that (Y, Z, Q) is a measure solution of (3).

Proof: Let

S =

∫ ·

0

Zs dWs.

Due to Lemma 2.1, we know that S is a uniformly integrable martingale. We may
write

αS − 1

2
α2〈S〉 = α

[∫ ·

0

ZsdWs − α

∫ ·

0

Z2
s ds

]
+

∫ ·

0

(α2Z2
s −

1

2
α2Z2

s ) ds (19)

= α(Y − Y0) +
1

2
α2

∫ ·

0

Z2
s ds.

Now define stopping times τn = T ∧ inf{t ≥ 0 : 〈S〉t ≥ n}. For any n ∈ N we have

E exp

(
αSτn −

1

2
α2〈S〉τn

)
= 1,

and consequently Fatou’s lemma implies

E exp

(
α[ξ − Y0] +

1

2
α2

∫ T

0

Z2
s ds

)
≤ lim inf

n→∞
E exp

(
αSτn −

1

2
α2〈S〉τn

)
= 1. (20)
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Using this and the positivity of the terminal variable ξ, we can now obtain the expo-
nential integrability property

E exp

[
1

2
α(ξ − Y0) +

1

2
α2

∫ T

0

Z2
s ds

]
< ∞. (21)

We shall now use (19) together with (20) to prove the exponential integrability of 1
2
αST .

In fact, we have
1

2
αST =

1

2
α(ξ − Y0) +

1

2
α2

∫ T

0

Z2
s ds.

Hence we obtain

E exp

(
1

2
αST

)
< ∞, (22)

and together with the uniform integrability of the martingale S, proved in Lemma 2.1,
this enables us to apply the criterion of Kazamaki (see Revuz, Yor [16], p. 332). Hence
we have proved the existence of a measure solution to our BSDE (3). �

As a by-product of our main result, we obtain the exponential integrability of the
quadratic variation of S.

Corollary 2.1 Under the conditions of Theorem 2.1 we have

E exp

(
1

2
α2

∫ T

0

Z2
s ds

)
< ∞.

Proof: This follows immediately from (21) and the lower boundedness of ξ. �

2.2 A quadratic BSDE with two solutions

Let us now come back to the question of uniqueness of solutions, and their measure
solution property. Briand, Hu [2] prove the existence of solutions (Y, Z) in the usual
sense, given that (13) is satisfied. In a setting with more general generators the nonlin-
ear z-part being bounded by αz2, they provide pathwise upper and lower bounds for
Y , given by the known explicit solution for this generator ( 1

2α
log E(exp(2αξ)|Ft)t∈[0,T ]

used above, and its negative counterpart (− 1
2α

log E(exp(−2αξ)|Ft)t∈[0,T ]. In a more re-
cent paper, Briand, Hu [3] also provide a uniqueness result for the same setting, which
is satisfied under the stronger integrability hypothesis

E(exp(γ|ξ|)) < ∞ (23)

for all γ > 0 and a convexity assumption concerning the generator. Let us start our
discussion of uniqueness and the measure solution property by giving some examples.

For b > 0, let τb = inf{t ≥ 0 : Wt ≤ bt − 1}. We first consider a BSDE with
random time horizon τb. Let the generator be further specified by α = 1

2
. Let ξ =

2a(b − a)τb − 2a, where a > 0. It will become clear along the way why this choice of
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terminal variable is made. In the first place, it is motivated by the striking simplicity
of the solutions we shall construct. We shall in fact give two explicit solutions of the
BSDE

Yt∧τb
= ξ −

∫ τb

t

ZsdWs +

∫ τb

t

1

2
Z2

s ds. (24)

Appropriate choices of a and b allow for terminal variables that are bounded below
as well as bounded above. The fact that the time horizon is random is not crucial.
Indeed, by using a time change, any solution of Equation (24) can be transformed into
a solution of a BSDE with the same generator and with time horizon 1. To this end
consider the time change ρ(t) = t

1+t
, t ∈ [0,∞], and observe that the inverse of ρ is

given by ρ−1(t) = t
1−t

, t ∈ [0, 1]. Let h(t) = 1
1−t

for all t ∈ [0, 1]. Then the process
defined by

W̃t =

∫ t

0

h−1(s)d(Wρ−1(s)), t ∈ [0, 1], (25)

is a Brownian motion on [0, 1]. Note that Wt =
∫ ρ(t)

0
h(s)dW̃s (and this is how we have

to define W , if W̃ is given). Moreover, the stopping time

τ̂b = inf

{
t ≥ 0 :

∫ t

0

h(s)dW̃s ≤
t

1− t
− 1

}
is equal to ρ(τb). We can now define a time changed analogue of Equation (24) with
time horizon 1.

Lemma 2.2 Let (Yt, Zt) be a solution of the BSDE (24), and let ξ̂ = 2a(b−a) τ̂b

1−τ̂b
−2a.

Then (yt, zt) = (Yρ−1(t), h(t)Zρ−1(t)) is a solution of the BSDE

yt = ξ̂ −
∫ 1

t

zsdW̃s +

∫ 1

t

1

2
z2

sds. (26)

Proof: Since stochastic integration and continuous time changes can be interchanged
(see Proposition 1.5, Chapter V in [16]), we have

yt = Yρ−1(t) =

∫ ρ−1(t)

0

ZsdWs −
1

2

∫ ρ−1(t)

0

Z2
s ds

=

∫ t

0

Zρ−1(s)dWρ−1(s) −
1

2

∫ t

0

Z2
ρ−1(s)dρ−1(s)

=

∫ t

0

Zρ−1(s)h(s)dW̃s −
1

2

∫ t

0

Z2
ρ−1(s)h

2(s)ds,

and hence the result. �

Let us first assess exponential integrability properties of ξ. For this, let γ > 0 be
arbitrary. Then we have

Eeγ|ξ| = Eeγ|2a(b−a)τb−2a| ≤ e2aγEeγ2a|b−a|τb .

13



Define the auxiliary stopping time

σb = inf{t ≥ 0 : Wt ≤ t− b}.

It is well known and proved by the scaling properties of Brownian motion that the laws
of τb and σb

b2
are identical (see Revuz, Yor [16]). Moreover, the Laplace transform of σb

is equally well known. According to Revuz, Yor [16] we therefore have for λ > 0

E(exp(−λτb)) = E(exp(− λ

b2
σb) = exp(−b[

√
1 +

2λ

b2
− 1]). (27)

Moreover, it is seen by analytic continuation arguments that this formula is even valid
for λ ≥ − b2

2
. Now choose λ = −2a|b− a|γ. Then the inequality

−2a|b− a|γ ≥ −1

2
b2

amounts to

γ ≤ b2

4a|b− a|
. (28)

This in turn means that we have exponential integrability of orders bounded by b2

4a|b−a| ,
in particular we may reach arbitrarily high orders by choosing a and b sufficiently close.
But no combination of a and b allows exponential integrability of all orders. In the light
of Briand, Hu [3] this means that the entire field of pairs of positive a and b promises
multiple solutions, and this is precisely what we will exhibit.

The first solution

It is clear from the definition that the pair (Yt, Zt), defined by Yt = 2aWt∧τb
−2a2(τb∧

t) and Z = 2a1[0,τb], is a solution of (24). To answer the question whether this defines
a measure solution, we have to investigate

E exp

[∫ τb

0

1

2
ZsdWs −

1

8

∫ τb

0

Z2
s ds

]
= E exp

[
aWτb

− a2

2
τb

]
= E(exp(a(b− a

2
)τb − a)).

Due to (27) we have

E(exp(a(b− a

2
)τb−a)) = exp(−b[

√
1− 2

b2
a(b− a

2
)−1]−a) = exp(−b[|1− a

b
|−1]−a),

and the latter equals 1 in case b ≥ a and exp(2(b− a)) < 1 in case a > b. This simply
means that our first solution is a measure solution of (26) provided b ≥ a, and it fails
to be one in case a > b. We will show that this first solution does not necessarily
correspond to the particular solution discussed in the beginning of the section.

14



The second solution

We show now that the BSDE (24) with the same terminal variable as above possesses
a second solution. By Lemma 2.2 there exists a second solution of (26) as well. Once
this is shown, for any possible degree γ of exponential integrability we will have exhib-
ited a negative random variable satisfying E(exp(γ|ξ|)) < ∞ for which (24) possesses
at least two solutions. This in turn will underline that Briand, Hu’s [3] uniqueness
result, valid under (23) cannot be improved by much. Note that the solution we will
exhibit is again of the explicit form (17) encountered earlier. Let Mt = E[eξ|Ft] for all
t ≥ 0. Due to the martingale representation property there exists a process H such

that Mt = M0 +
∫ t

0
HsdWs. We know that (ln Mτb∧t,

Hτb∧t

Mτb∧t
) is a solution of (24). We

will show below that

ln Mτb∧t = 2b− 4a + 2(b− a)Wτb∧t − 2(b− a)2(τb ∧ t), if 2a > b, (29)

ln Mτb
= 2aWτb∧t − 2a2τb ∧ t, if 2a ≤ b. (30)

This implies that the solution (ln Mτb∧t,
Hτb∧t

Mτb∧t
) is different from the solution (2aWτb∧t−

2a2(τb∧ t), 2a) obtained above in case 2a > b. Hence by Lemma 2.2 we obtain a second
solution of (26) in this case.

First note that

Mt = e−2aE[e2a(b−a)τb|Ft] (31)

= e−2a
(
e2a(b−a)τb1{τb≤t} + e2a(b−a)tE[e2a(b−a)[τb−t]|Ft]1{τb>t}

)
Let σb(x, t) = inf{s ≥ 0 : Ws+t −Wt ≤ b(s + t) − 1 − x} and observe that on the set
{τb > t} we have τb − t = σb(Wt, t). Therefore, by using again our knowledge on the
Laplace transforms of σ(x, t) (see [16]), we get

E[e2a(b−a)[τb−t]|Ft]1{τb>t} = E[e2a(b−a)σb(x,t)]
∣∣∣
x=Wt

1{τb>t}

= e−b(1+Wt−bt)[
√

1− 4a(1−a)

b2
−1]1{τb>t}

= e−b(1+Wt−bt)[|1− 2a
b
|−1]1{τb>t}.

Consequently,

Mt = e−2a
(
e2a(b−a)τb1{τb≤t} + e2a(b−a)te−b(Wt+1−bt)[|1− 2a

b
|−1]1{τb>t}

)
= e2a((1−a)(τb∧t)−1)1{τb≤t} + e−2(b−a)(Wt+1−bt)1{τb>t}.

Hence in case 2a > b

ln Mτb∧t = 2a((b− a)(τb ∧ t)− 1)− 2(a− b)(Wτb∧t + 1− (τb ∧ t))

= −4a + 2b + [−2b + 4a− 2a2](τb ∧ t)− 2(a− b)Wτb∧t

= 2b− 4a + 2(b− a)Wτb∧t − 2[b− a]2(τb ∧ t).

This confirms the first equation (29). Let finally 2a ≤ b. Then we have
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Mt = e−2a
(
e2a(b−a)τb1{τb≤t} + e2a(b−a)te2a(Wt+1−bt)1{τb>t}

)
= e2a((b−a)(τb∧t)+2a(Wτb∧t+1−bτb∧t)

= e2aWτb∧t−2a2τb∧t.

Hence in this case

ln Mτb∧t = 2aWτb∧t − 2a2τb ∧ t.

Note that in case 2a ≤ b we recover the solution already obtained as the first solution.
Let us finally show that this second solution is in fact a measure solution for any

possible combination of parameters.

Lemma 2.3 (ln Mτb∧t,
Hτb∧t

Mτb∧t
) can be extended to a measure solution of (24), hence

provides a measure solution of (26).

Proof: For the first solution in case a ≤ b, which is identical to the one considered
in case 2a ≤ b, we have already established the measure solution property. Let us
therefore consider the case 2a > b. Note that for all t, Mt∧τb

= e2b−4a +
∫ t∧τb

0
HsdWs.

Itô’s formula applied to e2(b−a)Wτb∧t−2[b−a]2(τb∧t) yields

Hs∧τb
= 2(b− a)e2(b−a)Wτb∧t−2[b−a]2(τb∧t).

As a consequence, we have

Zs∧τb
=

Hs∧τb

Ms∧τb

= 2(b− a)1[0,τb](s),

and therefore

E
(1

2

∫
ZdW

)
τb

= e(b−a)Wτb
− 1

2
(b−a)2τb

= e(b−a)(bτb−1)− 1
2
(b−a)2τb

= e(a−b)e
1
2
(b−a)(b+a)τb .

Again the explicit representation of the Laplace transform in (27) gives

EE
(1

2

∫
ZdW

)
τb

= e(a−b)Ee−
1
2
(b−a)(b+a)τb = e(a−b)e−b(

√
1−(1−a2

b2
)−1) = 1.

This implies the claimed result that our second solution (ln Mτb∧t,
Hτb∧t

M
b∧t

) is a measure

solution of (24). �
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Remarks:
1. We can summarize the findings of our investigations of the examples by stating

that there are three basic scenarios: a) for b ≥ 2a we obtained one solution which is a
measure solution at the same time; b) in the range 2a > b ≥ a we found two different
solutions both of which are measure solutions; c) if a > b we finally encountered two
solutions one of which is a measure solution, while the other one is not.

2. Note that our examples exhibiting solutions of (24) that are not measure solutions
are all for negative terminal variables ξ. Positive terminal variables arise in scenarios
a) or b), and therefore only produce multiple measure solutions.

A continuum of solutions

Let us now combine the first and second solutions to obtain a continuum of solutions
of our BSDE (24). To do this, we have to consider a still somewhat more general class
of stopping times. For c ∈ R, let

ρc = inf{t ≥ 0 : Wt ≤ t− c}.

We investigate the terminal variables

ξ = 2a(a− 1)ρc + d

with further constants a 6= 0, d ∈ R. Note first that the integrability properties of ξ are
the same as those obtained before for b = 1. According to the preceding paragraphs,
our BSDE (24) possesses the following two solutions

Z1 = 2a1[0,ρc], Y 1 = d1 + 2aWρc∧· − 2a2ρc ∧ ·, (32)

Z2 = 2(1− a)1[0,ρc], Y 2 = d2 + 2(1− a)Wρc∧· − 2(1− a)2ρc ∧ ·, (33)

with d1 = −2ac resp. d2 = −2(a − 1)c. Let us now take c = 1 and combine the two
solutions to obtain a continuum of new ones. To do this, we start with the equation

ρ1 = ρc + ρ1−c ◦ θρc ,

where thetat is the shift on Wiener space defined by

θt(ω) = Wt+·(ω)−Wt(ω),

and c ∈]0, 1[. It describes the first time to reach the line with slope 1 that cuts the
vertical at level −1, by decomposition with the intermediate time to reach the line
with slope 1 cutting the vertical at −c. We mix the two solutions on the two resulting
stochastic intervals, more precisely we put for c ∈]0, 1[, l ∈ R

Zc = 2a1[0,ρc] + 2(1− a)1[ρc,ρ1], (34)

Y c = l + 2aWρc∧· − 2a2ρc ∧ ·+ 2(1− a)[Wρ1∧· −Wρc∧·]− 2(1− a)2[ρ1 ∧ · − ρc ∧ ·].
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Since we have

Y c
ρ1

= l + 2aWρc − 2a2ρc + 2(1− a)[Wρ1 −Wρc ]− 2(1− a)2[ρ1 − ρc]

= l + 2a(1− a)ρ1 − 2ac− 2(1− a)(1− c),

we have to set
l − 2ac− 2(1− a)(1− c) = d

in order to obtain a solution of (24) with c = 1. According to the treatment of the
first and second solution, the constructed mixture is a measure solution if and only if
both components of the mixture are. This is the case for 2a(1 − a) > 0, whereas for
2a(1− a) < 0 we obtain a continuum of solutions that are no measure solutions.

Remarks:
1. This time, we may summarize our results by saying that there are two scenarios:

a) for 2a(1 − a) > 0 there is a continuum of measure solutions of (24), while for
2a(1− a) < 0 a continuum of non measure solutions is obtained.

2. Note that the initial conditions of our solutions continuum vary in a convex way
between −2a and −2(1− a) as c varies in ]0, 1[, spanning the whole interval.

We shall now point out that the measure solution property of the second solution
in case a > b exhibited in the example above is not a coincidence. In fact, it will turn
out that also for negative exponentially integrable ξ, solutions given by (17) provide
measure solutions. To prove this, we will reverse the sign of ξ by looking at our BSDE
from the perspective of an equivalent measure.

2.3 Exponentially integrable upper bounded terminal variable

Sticking with the positivity of α in the generator

f(s, z) = αz2, s ∈ [0, T ], z ∈ R

we shall now consider terminal variables ξ that fulfill the exponential integrability
condition (13), but are bounded above by a constant. Again, by a constant shift of the
solution component Y , we can assume that the upper bound is 0, i.e. ξ ≤ 0. So fix a
non-positive terminal variable ξ satisfying (13) for some γ > 2α, and denote by (Y, Z)
the pair of processes given by the explicit representation of (17) solving our BSDE
according to Briand, Hu [2]. With respect to the following probability measure, ξ will
effectively change its sign, so that we can hook up to the previous discussion. Recall
S =

∫ ·
0
ZsdWs.

Lemma 2.4 Let V = exp(2αS − 2α2〈S〉). Then V is a martingale of class (D), and
consequently

R = VT · P
is a probability measure equivalent to P. Moreover,

WR = W − 2α

∫ ·

0

Zsds

is a Brownian motion under R.
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Proof: By (3), we may write

2α[Y − Y0] = 2αS − 2α2〈S〉,

hence also
2α[ξ − Y0] = 2αST − 2α2〈S〉T .

According to Briand, Hu [2], Theorem 2, there exists δ > 2α such that

E( sup
t∈[0,T ]

exp(δ|Yt|)) < ∞, (35)

and therefore β > 1 with the property

E( sup
t∈[0,T ]

V β
t ) < ∞. (36)

This clearly implies that V is a martingale of class (D), and consequently R is a prob-
ability measure. Finally, Girsanov’s theorem implies that WR is a Brownian motion
under R. �

Now consider our BSDE under the perspective of the measure R with respect to the
Brownian motion WR. We may write

Y = ξ −
∫ T

·
ZsdWs + α

∫ T

·
Z2

s ds = ξ −
∫ T

·
ZsdWR

s − α

∫ T

·
Z2

s ds. (37)

But this just means that by switching signs in (Y, Z), we may return, under the new
measure R, to our old BSDE with ξ replaced with −ξ. So our measure change puts us
back into the framework of the previous subsection, and we may resume our arguments
there by setting

SR = −
∫ ·

0

ZsdWR
s .

We need an analogue of Lemma 2.1 to guarantee that R is a uniformly integrable
martingale.

Lemma 2.5 For any p ≥ 1 we have

ER

([∫ T

0

Z2
s ds

]p)
< ∞.

In particular, SR is a uniformly integrable martingale under R.

Proof: By definition of R, we have for any p > 1

ER

([∫ T

0

Z2
s ds

]p)
= E

(
exp(2α[ξ − Y0])

[∫ T

0

Z2
s ds

]p)
.

Now since ξ ≤ 0, the density exp(2α[ξ−Y0]) is bounded above. Therefore the asserted
moment finiteness follows from Lemma 2.1. �

We are in a position to prove the main result of this subsection.
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Theorem 2.2 Assume that that f satisfies f(s, z) = αz2, z ∈ R, s ∈ [0, T ], and that
ξ is bounded above and satisfies (13). Then there is a measure solution of (3) with a
measure Q that is equivalent to P.

Proof: We may assume ξ ≤ 0. Let us first show, in analogy to the proof of Theorem
2.1, that

V R = exp(αSR − 1

2
α2〈SR〉)

is a uniformly integrable martingale under R, using Kazamaki’s criterion. For this
purpose, let

τR
n = inf{t ≥ 0 : 〈SR〉t ≥ n} ∧ T, n ∈ N.

Then, due to 〈S〉 = 〈SR〉, we deduce for all n ∈ N that τn = τR
n . Since τR

n → T as
n →∞, even with τR

n = T for all but finitely many n, Fatou’s lemma allows to deduce

ER(VT ) ≤ lim inf
n→∞

ER(V R
τR
n
) ≤ 1. (38)

Moreover, by the form of the BSDE translated to WR under R,

αSR − 1

2
α2〈SR〉 = α[−

∫ ·

0

ZsdWR
s − 1

2
α

∫ ·

0

Z2
s ds]

= α[−
∫ ·

0

ZsdWR
s − α

∫ ·

0

Z2
s ds] +

1

2
α2

∫ ·

0

Z2
s ds

= α[−Y + Y0] +
1

2
α2

∫ ·

0

Z2
s ds.

Using the negativity of ξ and the identity just derived, we get the integrability property

ER exp

[
1

2
α(−ξ + Y0) +

1

2
α2

∫ T

0

Z2
s ds

]
< ∞. (39)

Using this and the positivity of the terminal variable ξ, we can now obtain the expo-
nential integrability property

E exp

[
1

2
α(ξ − Y0) +

1

2
α2

∫ T

0

Z2
s ds

]
< ∞. (40)

Again, we may now use (39) together with (38) to prove the exponential integrability
of 1

2
αSR

T . In fact, from the BSDE viewed with WR under R we have

1

2
αSR

T =
1

2
α(−ξ + Y0) +

1

2
α2

∫ T

0

Z2
s ds.

Hence we obtain

ER exp

(
1

2
αSR

T

)
< ∞. (41)

Now appeal to the uniform integrability of the martingale SR under R, proved in
Lemma 2.5, to see that the criterion of Kazamaki (see Revuz, Yor [16], p. 332) may
be applied. Hence VR is a uniformly integrable martingale under R.
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We have to show that this implies uniform integrability of

V = exp(αS − 1

2
α2〈S〉)

under P. To see this, note that

exp(αS − 1

2
α2〈S〉) = exp(2αS − 2α2〈S〉) · exp(−αS +

3

2
α2〈S〉)

= exp(2αS − 2α2〈S〉) · exp(αSR − 1

2
α2〈SR〉).

Hence for n ∈ N
E(Vτn1{τn<T}) = ER(V R

τR
n
1{τR

n <T}), (42)

and the latter expression tends to 0 as n → ∞ by the first part of the proof. Hence
the uniform integrability of V under P follows from the explosion criterion (9) already
used earlier. This completes the proof. �

Remark: The results of the preceding two subsections clearly call for similar ones for
our BSDE with exponentially integrable terminal variable that are not bounded. Due
to the nonlinearity of the generator of the BSDE, it seems impossible to derive such
properties by combining the results of Theorems 2.1 and 2.2.
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stochastiques linéaires. Séminaire de probabilités XXIV 1988/89, Lect. Notes
Math. 1426, 227- 265 (1990).

[9] O. Kallenberg. Foundations of modern probability. Springer: Berlin (1997).

[10] I. Karatzas and S. E. Shreve, Methods of mathematical finance, Springer, New
York, 1998; MR1640352 (2000e:91076)

[11] Kazamaki, N. “ Continuous Exponential Martingales and BMO”. Lecture Notes
in Mathematics 1579, Springer, Berlin, 1994.

[12] M. Kobylanski. Backward stochastic differential equations and partial differential
equations with quadratic growth. Annals of Probability 28(2) (2000), 558-602.

[13] J.-P. Lepeltier, J. San Martin Existence for BSDE with superlinear-quadratic co-
efficient. Stochastics and Stochastics Reports 63 (1998), 227-240.

[14] R. Liptser, A. Shiryaev Statistics of random processes. 1: General theory. Appli-
cations of Mathematics. 5. Berlin: Springer 2001.

[15] Pardoux, E.; Peng, S.G. “Adapted solution of a backward stochastic differential
equation.” Systems Control Lett. 14 (1990), 55-61.

[16] D. Revuz, M. Yor. Continuous Martingales and Brownian Motion. Third Edition.
Springer: Berlin 1999.

[17] B. Wong, C. Heyde. On the martingale property of stochastic exponentials. J. Appl.
Probability 41 (2004), 654-664.

22


