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Abstract
In this paper we consider a class of BSDE with drivers of quadratic growth, on a

stochastic basis generated by continuous local martingales. We first derive the Markov
property of a forward-backward system (FBSDE) if the generating martingale is a strong
Markov process. Then we establish the differentiability of a FBSDE with respect to
the initial value of its forward component. This enables us to obtain the main result
of this article which from the perspective of a utility optimization interpretation of
the underlying control problem on a financial market takes the following form. The
control process of the BSDE steers the system into a random liability depending on
a market external uncertainty and this way describes the optimal derivative hedge of
the liability by investment in a capital market the dynamics of which is described by
the forward component. This delta hedge is described in a key formula in terms of a
derivative functional of the solution process and the correlation structure of the internal
uncertainty captured by the forward process and the external uncertainty responsible
for the market incompleteness. The formula largely extends the scope of validity of the
results obtained by several authors in the Brownian setting, designed to give a genuinely
stochastic representation of the optimal delta hedge in the context of cross hedging
insurance derivatives generalizing the derivative hedge in the Black-Scholes model. Of
course, Malliavin’s calculus needed in the Brownian setting is not available in the general
local martingale framework. We replace it by new tools based on stochastic calculus
techniques.
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1 Introduction

In recent years Backward Stochastic Differential Equations (BSDE for short) with drivers
of quadratic growth have emerged in several fields of application such as in the study of
properties of PDEs (see e.g. [14, 4]). Closer to the subject of this work, they were employed
for providing a genuinely stochastic approach to describe optimal investment strategies in
a financial market in problems of hedging derivatives or liabilities of a small trader whose
business depends on market external risk such as the one created by weather or energy
demand. The latter scenario was addressed for instance in [8, 2, 3, 13]. A small trader
such as an energy retailer has a natural source of income deriving from his usual business.
For instance, he may have a random position of revenues from heating oil sales at the
end of a heating season. To (cross) hedge his risk arising from the partly market external
uncertainty present in the temperature process during the heating season, for example via
derivatives written on temperature, he decides to invest in the capital market the inherent
uncertainty of which is only correlated with this index process. If the agent values his total
income at terminal time by exponential utility, or his risk by the entropic risk measure, he
may be interested in finding an optimal investment strategy that maximizes his terminal
utility resp. minimizes his total risk. The description of such strategies, even under convex
constraints for the set of admissible ones, is classical and may be achieved by convex duality
methods, and formulated in terms of the analytic Hamilton-Jacobi-Bellman equation. In a
genuinely stochastic approach, [8] interpreted the martingale optimality principle by means
of BSDE with drivers of quadratic growth, to come up with a solution of this optimal
investment problem even under constraints that are not necessarily convex, just closed.
The optimal investment strategy is described by the control process in the solution pair
of such a BSDE with an explicitly known driver. Using this approach the authors of [3]
investigate utility indifference prices and delta hedges for derivatives or liabilities written
on non-tradable underlyings such as temperature in incomplete financial market models. A
sensitivity analysis of the dependence of the optimal investment strategies on the initial
state of the Markovian forward process modeling the external risk process provides an
explicit delta hedging formula from the representation of indifference prices in terms of
forward-backward systems of stochastic differential equations (FBSDE). In the framework
of a Brownian basis, this analysis requires to account for parametric as well as variational
differentiability of the solutions of the BSDE part in the sense of Malliavin’s calculus (see
[2, 3, 4]). Related optimal investment problems have been investigated in situations in which
the Gaussian basis is replaced by the one of a continuous martingale ([12] and [13], see also
[9]).

In this paper we intend to present the utility indifference based explicit description of a
delta hedge extending the one of the Black-Scholes formula just sketched by a sensitivity
analysis of related systems of FBSDE on such a more general stochastic basis created by
a continuous local martingale. As the backward component of our system, we consider a
BSDE of the form (1.1) driven by a continuous local martingale M with

Yt = B −
∫ T

t
ZsdMs +

∫ T

t
f(s, Ys, Zs)dCs −

∫ T

t
dLs +

∫ T

t
d〈L, L〉s, t ∈ [0, T ], (1.1)

where the generator f is assumed to be quadratic in z, the terminal condition B is bounded,

2



C is an increasing process and L is a martingale orthogonal to M . A solution of (1.1) is
given by the triplet (Y, Z, L). The forward component of our system will be of the form

Xs = x +
∫ s

0
σ(r, Xr, Mr)dMr +

∫ s

0
b(r, Xr, Mr)dCr, s ∈ [0, T ]. (1.2)

We first prove in Theorem 3.4 that the solution processes Y and Z satisfy the Markov
property, provided the terminal condition B is a smooth function of the terminal value
of the forward process (1.2), and that the local martingale M is a strong Markov process.
There is a subtlety in this setting which goes beyond causing a purely technical complication.
In fact, only the pair (X,M) is a Markov process (as proved for example in [16, 5, 17]).
Just if M has independent increments, it is a stand-alone Markov process. We next show
in Theorem 4.6 that the process Y is differentiable with respect to the initial value of the
forward component (1.2) and that the derivatives of Y and Z again satisfy a BSDE. The two
properties thus proved will combine to allow us to state and prove the main contribution
of this paper to the delta hedge representation problem (Theorem 5.2) generalizing the
formula obtained in the Gaussian setting and for quadratic generators in [3, Theorem 6.7]
and in [10, Corollary 4.1] for the Lipschitz case. More precisely we show that there exists a
deterministic function u such that

Zs = ∂2u(s, Xs, Ms)σ(s, Xs, Ms) + ∂3u(s, Xs, Ms), (1.3)

where Ys = u(s, Xs, Ms), s ∈ [0, T ], and ∂i denotes the partial derivative with respect to the
i-th variable (see Theorem 5.2). In addition we show that if M has independent increments
and the coefficients of the forward process do not depend on M , then Ys = u(s, Xs) and
equality (1.3) becomes Zs = ∂2u(s, Xs)σ(s, Xs) which coincides with the formula known for
the case in which M is the Brownian motion. To the best of our knowledge relation (1.3)
was known only in the Brownian setting and the proof used in the literature relies on the
representation of the stochastic process Z as the trace of the Malliavin derivative D (i.e.
Zs = DsYs, s ∈ [0, T ]) relative to the underlying Brownian motion. Since Malliavin’s calculus
is not available for general continuous local martingales, we propose a new approach based
on stochastic calculus techniques, in which directional variational derivatives of Malliavin’s
calculus are replaced by absolute continuity properties of mixed variation processes of local
martingales. Our main result will provide an extension of the probabilistic representation
of the optimal delta hedge of [3], obtained there in the Brownian setting, to more general
scenarios in which pricing rules are based on general continuous local martingales. Before
entering into the technical details leading to a derivation of our main result, let us sketch in
some more details this important application of our results in the chosen general setting.

Indeed, using the exponential utility based indifference price approach for pricing and
hedging derivatives in incomplete markets sketched above, we interpret relation (1.3) as a
delta hedge formula. It is shown in [3] that it can be expressed by the gradient of the
indifference price and the correlation. Let us explain, how this structure translates into our
local martingale framework, with the more complex Markovian properties. More precisely
consider an n-dimensional process describing non-tradable risk

Rt,r,m
s = r +

∫ s

t
σ(u, Rt,r,m

u , M t,m
u )dMu +

∫ s

t
b(u, Rt,r,m

u , M t,m
u )dCu, s ∈ [t, T ],
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where σ and b are measurable functions. Now an agent aims to price and hedge a derivative
of the form F (Rt,r,m

T ), with F being a bounded and measurable function. The hedging
instrument is a financial market consisting of k risky assets in units of the numeraire that
evolve according to the following SDE

dSs = Ss

(
β(s, Rt,r,m

s , M t,m
s )dMs + α(s, Rt,r,m

s , M t,m
s )dCs

)
, s ∈ [t, T ],

where α ∈ Rk×1 and β ∈ Rk×d are measurable processes. Note that the price processes of
tradable assets S are linked to the risk process via the martingale M , its quadratic variation,
β and σ. We assume k ≤ d in order to exclude arbitrage opportunities. The preferences
of the agent are represented through the exponential utility function with risk aversion
coefficient κ > 0, i.e.

U(x) = −e−κx, x ∈ R.

The agent wants to maximize his expected utility from trading in the market. His value
function is given by

V F (x, t, r, m) = sup
λ

E

[
U(x +

k∑
i=1

∫ T

t
λ(i)

s

dS
(i)
s

S
(i)
s

+ F (Rt,r,m
T ))

]
,

where x is his initial capital and λ(i) denotes the momentary value of his portfolio fraction
invested in the i-th asset. The problem of optimization of this value function can be reduced
to solving a quadratic BSDE whose generator has been given in [8] for the Brownian case and
then extended to our setting in [13]. A way to price and hedge the derivative F (Rr,t,m

T ) is to
consider the indifference price p(t, r, m) given by V F (x− p(t, r,m), t, r,m) = V 0(x, t, r, m).
According to [3] the indifference price can be expressed as p(t, r,m) = Y F,t,r,m − Y 0,t,r,m,
where (Y F,t,r,m, ZF,t,r,m, LF,t,r,m) is the solution of the BSDE

Y F,t,r,m
s =F (Rt,r,m)−

∫ T

s
ZF,t,r,m

u dMu +
∫ T

s
f(u, Rt,r,m

u , M t,m
u , ZF,t,r,m

u )dCu

−
∫ T

s
dLF,t,r,m

u +
∫ T

s
d〈LF,t,r,m, LF,t,r,m〉u, t ∈ [0, T ], (1.4)

where the generator f is explicitly obtained through the martingale optimal principle in
[8, 13]. To implement utility indifference, we next have to describe the optimal strategies
λ̂F and λ̂0. In [8] it is shown that λ̂F β(·, Rt,r,m, M t,m) (and λ̂0β(·, Rt,r,m, M t,m)) are given by
a projection of a linear function of ZF,t,rq∗ (and respectively Z0,t,rq∗) on the constraint set.
Since Rt,r,m is not tradable directly β plays the role of a filter for trading in the market. Due
to [3] the optimal strategy to hedge F (Rt,r,m

T ) can be decomposed into a pure trading part
λ̂0 and the optimal hedge ∆, which is the part of the strategy that replicates the derivative
F (Rt,r,m

T ). Using the Markov property given in Theorem 3.4, we see that there exists a
deterministic function uF such that Y F,t,r = uF (·, Rt,r,m, M t,m). Moreover, the projection
mentioned above can be explicitly expressed and following [3, proof of Theorems 4.2 and
4.4] we have

λ̂F
s − λ̂0

s = (ZF,t,r,m
s − Z0,t,r,m

s )q∗sβ
∗(ββ∗)−1β(s, Rt,r,m

s , M t,m
s ), s ∈ [t, T ].
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This leads to

∆(t, r,m) = (λ̂F − λ̂0)β∗(ββ∗)−1(t, r,m) = (ZF,t,r,m
t − Z0,t,r,m

t )q∗t β
∗(ββ∗)−1(t, r,m).

Using formula (1.3) we derive

∆(t, r,m) = [∂2p(t, r,m)σ(t, r, m) + ∂3p(t, r, m)] q∗t β
∗(ββ∗)−1(t, r,m). (1.5)

We emphasize that, as a consequence of the particular form of the driver f in (1.4), relation
(1.5) is replaced by (1.6), if M has independent increments and if the coefficients σ, b, β
and α do not depend on M (see Remarks 5.3 ii) and iii)); with

∆(t, r) = [∂2p(t, r)σ(t, r)] q∗t β
∗(ββ∗)−1(t, r). (1.6)

Finally, note that for technical reasons presented later we obtain formulae (1.3) and (1.5)
under condition (MRP) (see Section 4.2). However we believe that this condition is not
necessary for deriving (1.5) (we refer to the concluding remarks).

We believe that our techniques are not restricted to the setting of continuous local mar-
tingales. We will investigate in a forthcoming paper how to obtain a relation of the type
(1.3) for BSDE driven by a mixture of continuous and Poisson processes. We finally em-
phasize that the local martingale M considered in this paper is not assumed to satisfy the
martingale representation property.

To present our results, we proceed as follows. In Section 2 we state the main notations
and assumptions used in the paper. We discuss the Markov property of an FBSDE in Section
3. Then in Section 4 we give sufficient conditions on the FBSDE to be differentiable in the
initial values of its forward component. The final Section 5 is devoted to the representation
formula (1.3).

2 Preliminaries

Notations

Let (Mt)t∈[0,T ] be a continuous, square-integrable, d-dimensional local martingale with M0 =
0 which is defined on a probability basis (Ω,F , (Ft)t∈[0,T ], P) where T is a fixed positive real
number. We assume that the filtration (Ft)t∈[0,T ] is continuous and complete and thus every
square integrable P-martingale is of the form Z·M+L, where Z is a predictable d-dimensional
process and L a R-valued martingale strongly orthogonal to M . From the Kunita-Watanabe
inequality it follows that there exists a continuous, (Ft)-adapted, bounded and increasing
real-valued process (Ct)t∈[0,T ] and a Rd×d-valued predictable process (qt)t∈[0,T ] such that the
quadratic variation process 〈M,M〉 can be written as

〈M, M〉t =
∫ t

0
qrq

∗
rdCr, t ∈ [0, T ].

By P we denote the predictable σ-field of Ω × [0, T ]. Given an arbitrary non-negative and
progressively measurable real-valued process (αt)t∈[0,T ] we define A by At :=

∫ t
0 α2

sdCs, 0 ≤
t ≤ T . For any β > 0 and p ∈ [1,∞) we set
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• S∞ := {X| X : Ω× [0, T ] → R, bounded and continuous},

• Sp :=
{

X| X : Ω× [0, T ] → R, predictable and E
[
supt∈[0,T ] |Xt|p

]
< ∞

}
,

• Lp(d〈M,M〉⊗dP) :=
{

Z| Z : Ω× [0, T ] → R1×d, predictable and E
[(∫ T

0 |qsZ
∗
s |2dCs

) p
2

]
< ∞

}
.

• M2 :=
{

X| X : Ω× [0, T ] → R, martingale and E
[∫ T

0 |Xs|2dCs

]
< ∞

}
.

• Lp := {ξ| ξ : Ω → R, FT −measurable and E [|ξ|p] < ∞},

• L2
β :=

{
ξ| ξ : Ω → R, FT −measurable and E

[
eβAT |B|2

]
< ∞

}
,

• L∞ := {ξ| ξ : Ω → R, FT −measurable and bounded},

• H2
β(Rd) :=

{
ϕ| ϕ : Ω× [0, T ] → Rd×1, predictable, ‖ϕ‖2

β := E
[∫ T

0 eβAt |ϕt|2dCt

]
< ∞

}
,

• S2
β :=

{
ϕ| ϕ : Ω× [0, T ] → Rd×1, continuous, ‖ϕ‖2

β := E
[
supt∈[0,T ] e

βAt |ϕt|2
]

< ∞
}

.

Throughout this paper we will make use of the notation (M t,m)s∈[t,T ] (t < T , m ∈ Rd×1)
which refers to the martingale

M t,m
s := m + Ms −Mt

defined with respect to the filtration (F t
s)s∈[t,T ] with F t

s := σ({Mu − Mt, t ≤ u ≤ s}).
Obviously, all the preceding definitions can be introduced with M t,m in place of M and will
inherit the superscript t,m. For convenience, we write Mm := M0,m. Furthermore M (i),
i = 1, . . . , d, denotes the entries of the vector M . The euclidean norm is denoted by | · | and
with E we refer to the stochastic exponential.

FBSDE driven by continuous martingales

In this subsection we present the main hypotheses needed in this paper.
Let us fix x ∈ Rn×1 and m ∈ Rd×1. First we consider the process Xx,m := (Xx,m

t )t∈[0,T ]

which is defined as a solution of the following stochastic differential equation (SDE)

Xx,m
t = x +

∫ t

0
σ(s, Xx,m

s , Mm
s )dMs +

∫ t

0
b(s, Xx,m

s , Mm
s )dCs, t ∈ [0, T ], (2.1)

where the coefficients σ : [0, T ] × Rn×1 × Rd×1 → Rn×d and b : [0, T ] × Rn×1 × Rd×1 →
Rn×1 are Borel-measurable functions. By [6, Theorem 1] and [16, Theorem 3.1], where
independently the same result is proved, this SDE has a unique solution if it satisfies the
following hypothesis:

(HSDE) The functions σ and b are continuous in (s, x,m) and there exists a K > 0 such that
for all x1, x2 ∈ Rn×1 and m ∈ Rd×1

|σ(s, x1, m)− σ(s, x2, m)|+ |b(s, x1, m)− b(s, x2, m)| ≤ K|x1 − x2|, s ∈ [0, T ].
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Next we give properties of BSDE which depend on the forward process Xx,m. More precisely
we consider BSDE of the form

Y x,m
t =F (Xx,m

T )−
∫ T

t
Zx,m

r dMr +
∫ T

t
f(r, Xx,m

r , Mm
r , Y x,m

r , Zx,m
r q∗r )dCr −

∫ T

t
dLx,m

r

+
κ

2

∫ T

t
d〈Lx,m, Lx,m〉r, (2.2)

where F : Rn×1 → R and f : Ω × [0, T ] × Rn×1 × Rd×1 × R × R1×d → R are B(Rn×1)-
respectively P ⊗B(Rn×1)⊗B(Rd×1)⊗B(R)⊗B(R1×d)-measurable functions. A solution of
the BSDE with terminal condition F (Xx,m

T ), a constant κ and generator f is defined to be
a triple of processes (Y x,m, Zx,m, Lx,m) ∈ S∞×L2(d〈M,M〉⊗dP)×M2 satisfying (2.2) and
such that 〈Lx,m, M i〉 = 0, i = 1, . . . , d, and P-a.s.

∫ T
0 |f(r, Xx,m

r , Mm
r , Y x,m

r , Zx,m
r q∗r )|dCr <

∞.

Let S := Rn×1 × Rd×1 × R × R1×d and assume that (HSDE) holds. Under the following
conditions existence and uniqueness of a solution of the backward equation (2.2) was recently
discussed in [13, Theorem 2.5]:

(H1) The function F is bounded.

(H2) The generator f is continuous in (y, z) and there exists a nonnegative predictable
process η such that

∫ T
0 ηsdCs ≤ a, where a is a positive constant. Furthermore there

exist positive numbers b and γ, such that dCs ⊗ dP-a.s.

|f(s, x,m, y, z)| ≤ ηs + bηs|y|+
γ

2
|z|2, with γ ≥ |κ|, γ ≥ b, (x, m, y, z) ∈ S.

An additional assumption is needed to obtain uniqueness (see [13, Theorem 2.6]):

(H3) For every β ≥ 1 we have
∫ T
0 |f(s, 0, 0)|dCs ∈ Lβ(P). In addition, there exist two

constants µ and ν, a nonnegative predictable process θ satisfying
∫ T
0 |qsθs|2dCs ≤ cθ

(cθ ∈ R), such that dCs ⊗ dP-a.s.

(y1−y2)(f(s, x,m, y1, z)−f(s, x,m, y2, z)) ≤ µ|y1−y2|2, (x, m, yi, z) ∈ S, i = 1, 2, and

|f(s, x,m, y, z1)−f(s, x,m, y, z2)| ≤ ν(|qsθs|+|z1|+|z2|)|z1−z2|, (x, m, y, zi) ∈ S, i = 1, 2.

In this paper we will deal with martingales of bounded mean oscillation, briefly called BMO-
martingales. We refer the reader to [11] for a survey. Furthermore we need the following
hypothesis:

(H4) There exist a R-valued predictable process A bounded below by one and a R1×d-valued
predictable process B such that A1∗Rd ·M and B ·M are BMO martingales satisfying
dCs ⊗ dP-a.s.

(y1−y2)(f(s, x,m, y1, z)−f(s, x,m, y2, z)) ≤ |qsAs1Rd ||y1−y2|2, (x, m, yi, z) ∈ S, i = 1, 2, and

|f(s, x,m, y, z1)− f(s, x,m, y, z2)| ≤ |qsB
∗
s ||z1 − z2|, (x, m, y, zi) ∈ S, i = 1, 2.
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Throughout this paper we also consider another type of BSDE. Again this BSDE is associ-
ated to the forward process Xx,m solving (2.1), i.e.

Ux,m
t = F (Xx,m

T )−
∫ T

t
V x,m

s dMs +
∫ T

t
f(s, Xx,m

s , Mm
s , Ux,m

s , V x,m
s q∗s)dCs +

∫ T

t
dNx,m

s ,

(2.3)

t ∈ [0, T ]. This type of BSDE has been studied by El Karoui and Huang in [9]. Existence
and uniqueness results are derived under the following assumptions on terminal condition
F (Xx,m

T ) and generator f :

(L1) The function F satisfies F ◦Xx,m
T ∈ L2

β.

(L2) The generator f satisfies dCs ⊗ dP-a.s.

|f(s, x,m, y1, z1)−f(s, x,m, y2, z2)| ≤ rs|y1−y2|+θs|z1−z2|, (x, m, yi, zi) ∈ S, i = 1, 2,

where r and θ are two non-negative predictable processes. Let α2
s = rs + θ2

s . We
assume dCs ⊗ dP-a.s. that α2

s > 0 and f(·,0,0)
α ∈ H2

β.

We conclude this section by presenting assumptions which will be useful in Section 4, where
we find sufficient conditions for a FBSDE to be differentiable in its initial values (x, m) ∈
Rn×1×Rd×1. To simplify the notation we introduce for each pair (σ, b) of forward coefficients
the second order differential operator L =

∑n
i=1 bi(·)∂i + 1

2

∑n
i,j=1[(σq)(σq)∗]ij(·)∂ij :

(D1) The coefficients σ and b have locally Lipschitz partial derivatives.

(D2) The function F is twice differentiable and such that ∇F · σ and LF have locally
Lipschitz partial derivatives.

(D3) The generator f is differentiable in x, m, y and z and there exist a constant C > 0 and
a nonnegative predictable process θ satisfying

∫ T
0 |qsθs|2dCs ≤ cθ (cθ ∈ R), such that

the partial derivatives satisfy dCs ⊗ dP-a.s.

|∂if(s, x,m, y, z)| ≤ C(|qsθs|+ |z|), (x, m, y, z) ∈ S, i = 2, . . . , 5.

(D4) The generator f is differentiable in x, m, y and z and there exist a constant C > 0
and a nonnegative predictable process θ satisfying

∫ T
0 |qsθs|2dCs ≤ cθ (cθ ∈ R), such

that the partial derivative ∂5f is Lipschitz in (x, m, y, z) and for all i = 2, . . . , 4 the
following inequality holds dCs ⊗ dP-a.s.

|∂if(s, x1, m1, y1, z1)− ∂if(s, x2, m2, y2, z2)|
≤ C(|qsθs|+ |z1|+ |z2|)(|x1 − x2|+ |m1 −m2|+ |y1 − y2|+ |z1 − z2|),

for all (xj , mj , yj , zj) ∈ S, j = 1, 2.
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3 The Markov property of FBSDE

For a fixed initial time t ∈ [0, T ) and initial values x ∈ Rn×1 and m ∈ Rd×1 we consider a
SDE of the form

Xt,x,m
s = x +

∫ s

t
σ(u, Xt,x,m

u , M t,m
u )dMu +

∫ s

t
b(u, Xt,x,m

u , M t,m
u )dCu, s ∈ [t, T ], (3.1)

where M is a local martingale as in Section 2 with values in Rd×1, σ : [0, T ]×Rn×1×Rd×1 →
Rn×d and b : [0, T ]× Rn×1 × Rd×1 → Rn×1. Throughout this chapter the coefficients σ and
b satisfy (HSDE) and hence (3.1) has a unique solution Xt,x,m. Before stating and proving
the main results of this section we recall the following proposition whose first point is
presented in [5, Theorem (8.11)] (see also [17, V.Theorem 35]) and the second part is a
direct application of [15, Theorem 5.3].

Proposition 3.1. i) If M is a strong Markov process then (M t,m
s , Xt,x,m

s )s∈[t,T ] is a
strong Markov process.

ii) If M is a strong Markov process with independent increments and if the coefficients σ
and b do not depend on M , that is if X satisfies

Xt,x
s = x +

∫ s

t
σ(u, Xt,x

u )dMu +
∫ s

t
b(u, Xt,x

u )dCu

in place of (3.1) then the process (Xt,x
s )s∈[t,T ] itself is a strong Markov process.

Note that in [2, 3, 10] the martingale considered was a standard Brownian motion which
is the paradigm of situation ii) of the Proposition above. In fact this case presents at least
two major advantages. Firstly, the process X is a Markov process itself and secondly, the
quadratic variation of M is deterministic.

This section is organized as follows. We first prove in Proposition 3.2 that the solution of
a Lipschitz BSDE associated to a forward SDE of the form (3.1) is already determined by
the solution Xt,x,m of (3.1) and the Markov process M t,m. In Theorem 3.4 we then extend
this result to quadratic BSDE.

Consider a BSDE of the form

U t,x,m
s =F (Xt,x,m

T )−
∫ T

s
V t,x,m

r dMr +
∫ T

s
f(r, Xt,x,m

r , M t,m
r , U t,x,m

r , V t,x,m
r q∗r )dCr

−
∫ T

s
dN t,x,m

r , s ∈ [t, T ]. (3.2)

We suppose that the driver does not depend on Ω and hence is a deterministic Borel measur-
able function f : [0, T ]×Rn×1×Rd×1×R×R1×d → R. If F and f satisfy hypotheses (L1) and
(L2) then the BSDE (3.2) admits a unique solution (U t,x,m, V t,x,m, N t,x,m) ∈ S2

β ×H2
β ×M2

(see [9, Theorem 6.1]). By Be(Rn×1×Rd×1) we denote the σ-algebra generated by the family
of functions (x, m) 7→ E

[∫ T
t φ(s, Xt,x,m

s , M t,m
s )dCs

]
, where φ : Ω× [0, T ]×Rn×1×Rd×1 → R

is predictable, continuous and bounded.
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Proposition 3.2. Assume that M is a strong Markov process and that (L1) and (L2) are
in force. Then there exist deterministic functions u : [0, T ]×Rn×1 ×Rd×1 → R, B([0, T ])⊗
Be(Rn×1 × Rd×1)-measurable and v : [0, T ] × Rn×1 × Rd×1 → R1×d, B([0, T ]) ⊗ Be(Rn×1 ×
Rd×1)-measurable such that

U t,x,m
s = u(s, Xt,x,m

s , M t,m
s ), V t,x,m

s = v(s, Xt,x,m
s , M t,m

s ), s ∈ [t, T ]. (3.3)

Remark 3.3. Before turning to the proof of Proposition 3.2 we stress the following point.
Assume M and X are as in Proposition 3.1 ii) and that the driver f in (3.2) does not
depend on M , then Proposition 3.2 boils down to: there exist deterministic functions u :
[0, T ]×Rn×1 → R, B([0, T ])⊗Be(Rn×1)-measurable and v : [0, T ]×Rn×1 → R1×d, B([0, T ])⊗
Be(Rn×1)-measurable such that

U t,x
s = u(s, Xt,x

s ), V t,x
s = v(s, Xt,x

s ), s ∈ [t, T ].

Proof of Proposition 3.2. Consider the following sequence (Uk,t,x,m, V k,t,x,m, N t,x,m)k≥0 of
BSDE

U0,t,x =V 0,t,x = 0,

Uk+1,t,x
s =F (Xt,x,m

T ) +
∫ T

s
f(r, Xt,x,m

r , M t,m
r , Uk,t,x,m

r , V k,t,x,m
r q∗r )dCr

−
∫ T

s
V k+1,t,x,m

r dMr −
∫ T

s
dN t,x,m

r . (3.4)

We recall an estimate obtained in [9, p. 35]. Let β > 0 and let α be as in Section 2. Then

‖α(Uk+1,t,x,m − Uk,t,x,m)‖2
β + ‖q(V k+1,t,x,m − V k,t,x,m)∗‖2

β

≤ ε‖α(Uk,t,x,m − Uk−1,t,x,m)‖2
β + ‖q(V k,t,x,m − V k−1,t,x,m)∗‖2

β,

where ε is a constant depending on β which can be chosen such that ε < 1. Applying the
result recursively we obtain

‖α(Uk+1,t,x,m − Uk,t,x,m)‖2
β + ‖q(V k+1,t,x,m − V k,t,x,m)∗‖2

β

≤ εk
(
‖α(U1,t,x,m − U0,t,x,m)‖2

β + ‖q(V 1,t,x,m − V 0,t,x,m)∗‖2
β

)
.

Since
∑∞

k=0 ‖α(Uk+1,t,x,m − Uk,t,x,m)‖2
β + ‖q(V k+1,t,x,m − V k,t,x,m)∗‖2

β < ∞ the sequence
(Uk,t,x,m, V k,t,x,m, N t,x,m)k converges dCs⊗ dP-almost surely to (U t,x,m, V t,x,m, N t,x,m) as k
tends to infinity.

We show by induction on k ≥ 1 the following property (Pk):

(Pk) there exist deterministic functions Φk : [0, T ]×Rn×1×Rd×1 → R, B([0, T ])⊗Be(Rn×1×
Rd×1)-measurable and Ψk : [0, T ]×Rn×1×Rd×1 → R1×d, B([0, T ])⊗Be(Rn×1×Rd×1)-
measurable such that Uk,t,x,m

s = Φk(s, Xt,x,m
s , M t,m

s ) and V k,t,x,m
s = Ψk(s, Xt,x,m

s , M t,m
s ),

for t ≤ s ≤ T, k ∈ N.
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Proof of (P1): From the definition of U1,t,x,m and since N t,x,m is a martingale we have for
s ∈ [t, T ]

U1,t,x,m
s = E

[
U1,t,x,m

s |F t
s

]
= E

[
F (Xt,x,m

T )−
∫ T

s
f(r, Xt,x,m

r , M t,m
r , 0, 0)dCr

∣∣F t
s

]
. (3.5)

The Markov property and Doob-Dynkin’s Lemma give

U1,t,x,m
s = E

[
F (Xt,x,m

T )−
∫ T

s
f(r, Xt,x,m

r , M t,m
r , 0, 0)dCr

∣∣F t
s

]
= E

[
F (Xt,x,m

T )−
∫ T

s
f(r, Xt,x,m

r , M t,m
r , 0, 0)dCr

∣∣(Xt,x,m
s , M t,m

s )
]

= Φ1(s, Xt,x,m
s , M t,m

s )

where Φ1 : [0, T ]× Rn×1 × Rd×1 → R. Now let

R1,t,x,m
s = U1,t,x,m

s +
∫ s

t
f(r, Xt,x,m

r , M t,m
r , 0, 0)dCr −N t,x,m

s + N t,x,m
t , s ∈ [t, T ].

Then for s ∈ [t, T ]

R1,t,x,m
s =

∫ s

t
V 1,t,x,m

r dMr (3.6)

and hence R1,t,x,m is a strongly additive (in the sense of [5, p. 169]) square integrable
martingale. By [5, Theorem (6.27)] there exists a function Ψ1 : [0, T ]×Rn×1×Rd×1 → R1×d

such that

〈R1,t,x,m, R1,t,x,m〉s =
∫ s

t
Ψ1(r, Xt,x,m

r , M t,m
r )d〈M,M〉rΨ1(r, Xt,x,m

r , M t,m
r )∗, (3.7)

and from the definition of R1,t,x,m we know

〈R1,t,x,m, R1,t,x,m〉s =
∫ s

t
V 1,t,x,m

r d〈M,M〉r(V 1,t,x,m
r )∗, s ∈ [t, T ]. (3.8)

But (3.7) and (3.8) imply

V 1,t,x,m
s = Ψ1(s, Xt,x,m

s , M t,m
s ), dCs ⊗ dP− a.e.

Let k ≥ 1. We prove (Pk) =⇒ (Pk+1): We have for s ∈ [t, T ]

Uk+1,t,x,m
s = E

[
Uk+1,t,x,m

s |F t
s

]
= E

[
F (Xt,x,m

T )−
∫ T

s
f(r, Xt,x,m

r , M t,m
r , Uk,t,x,m

r , V k,t,x,m
r q∗r )dCr

∣∣F t
s

]
= E

[
F (Xt,x,m

T )−
∫ T

s
f(r, Xt,x,m

r , M t,m
r , Φk(r, Xt,x,m

r , M t,m
r ), Ψk(r, Xt,x,m

r , M t,m
r )q∗r )dCr

∣∣F t
s

]
= E

[
F (Xt,x,m

T )−
∫ T

s
fk(r, Xt,x,m

r , M t,m
r )dCr

∣∣F t
s

]
,
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where fk(r, y, z) := f(r, y,Φk(r, y, z), Ψk(r, y, z)q∗r ). Using the same argument as in step
k = 1 we deduce that there exists a function Φk+1 : [0, T ]× Rm×1 × Rd×1 → R such that

Uk+1,t,x,m
s = Φk+1(s, Xt,x,m

s , M t,m
s ).

For s ∈ [t, T ] let

Rk+1,t,x,m
s = Uk+1,t,x,m

s +
∫ s

t
fk(r, Xt,x,m

r , M t,m
r )dCr −N t,x,m

s + N t,x,m
t .

Following the same procedure as in step k = 1, and omitting the details, we deduce that
there exists a function Ψk+1 : [0, T ]× Rn×1 × Rd×1 → R1×d such that

V k+1,t,x,m
s = Ψk+1(s, Xt,x,m

s , M t,m
s ).

Let
u(r, y, z) := lim sup

k→∞
Φk(r, y, z), v(r, y, z) := lim sup

k→∞
Ψk(r, y, z).

Since the sequence (Uk,t,x, V k,t,x, N t,x,m)k converges dCs⊗dP-almost surely to (U t,x,m, V t,x,m, N t,x,m)
as k tends to infinity we have for s ∈ [t, T ]

u(s, Xt,x,m
s , M t,m

s ) =(lim sup
k→∞

Φk)(s, Xt,x,m
s , M t,m

s ) = lim sup
k→∞

(Φk(s, Xt,x,m
s , M t,m

s ))

= lim sup
k→∞

Uk,t,x,m
s = U t,x,m

s .

Similarly we obtain
v(s, Xt,x,m

s , M t,m
s ) = V t,x,m

s .

¤

We conclude this section by extending Proposition 3.2 to a quadratic FBSDE. More precisely
we consider the following BSDE

Y t,x,m
s =F (Xt,x,m

T )−
∫ T

s
Zt,x,m

u dMu +
∫ T

s
f(u, Xt,x,m

u , M t,m
u , Y t,x,m

u , Zt,x,m
u q∗u)dCu

−
∫ T

s
dLt,x,m

u +
κ

2
d〈Lt,x,m, Lt,x,m〉u, s ∈ [t, T ], (3.9)

where the forward process Xt,x,m is a solution of (3.1). Again we suppose that the driver
f does not depend on Ω and hence is a deterministic Borel measurable function f : [0, T ]×
Rn×1×Rd×1×R×R1×d → R. If F satisfies (H1) and f hypotheses (H2) and (H3) then the
BSDE (3.9) admits a unique solution (Y t,x,m, Zt,x,m, Lt,x,m) ∈ S∞×L2(d〈M, M〉⊗dP)×M2

(see [13, Theorem 2.5]).

Theorem 3.4. For t ∈ [0, T ] we assume that M is a strong Markov process and that
(H1)-(H3) hold. Then there exist deterministic functions u : [0, T ] × Rn×1 × Rd×1 → R,
B([0, T ]) ⊗ Be(Rn×1 × Rd×1)-measurable and v : [0, T ] × Rn×1 × Rd×1 → R1×d, B([0, T ]) ⊗
Be(Rn×1 × Rd×1)-measurable such that

Y t,x,m
s = u(s, Xt,x,m

s , M t,m
s ), Zt,x,m

s = v(s, Xt,x,m
s , M t,m

s ), s ∈ [t, T ]. (3.10)

12



Remark 3.5. As mentioned in Remark 3.3, in the framework of Proposition 3.1 ii) and if
the driver f in (3.9) does not depend on M , Theorem 3.4 simplifies to: there exist determin-
istic functions u : [0, T ]×Rn×1 → R, B([0, T ])⊗Be(Rn×1)-measurable and v : [0, T ]×Rn×1 →
R1×d, B([0, T ])⊗ Be(Rn×1)-measurable such that

Y t,x
s = u(s, Xt,x

s ), Zt,x
s = v(s, Xt,x

s ), s ∈ [t, T ].

Proof of Theorem 3.4. Existence and uniqueness of the solution of (3.9) under hypotheses
(H1)-(H3) have been obtained in [13, Theorems 2.5 and 2.6]. More precisely it is shown in
the proof of [13, Theorem 2.5] that the solution of a quadratic BSDE can be derived as the
limit of solutions of a sequence of BSDE with Lipschitz generators. We follow this proof
and begin by relaxing condition (H2). Indeed consider the following assumption (H2’).

(H2’) The generator f is continuous in (y, z) and there exists a predictable process η such
that η ≥ 0 and

∫ T
0 ηsdCs ≤ a, where a is a positive constant. Furthermore there exists

a constant γ > 0 such that dCs ⊗ dP-a.s.

|f(s, x,m, y, z)| ≤ ηs +
γ

2
|z|2, with γ ≥ |κ|, (x, m, y, z) ∈ S.

Assume that one can prove existence of a solution of (3.9) if f satisfies (H2’) instead of
(H2). Let fK be the generator f truncated in Y at a well-chosen level K (according to [13,
Lemma 3.1]). More precisely, set fK(s, x,m, y, z) := f(s, x,m, ρ(y)K , z) with

ρK(y) :=


−K, if y < −K,

y, if |y| ≤ K,

K, if y > K.

It is shown in [13, proof of Theorem 2.5, Step 1] that fK satisfies (H2’). Hence by hypothesis
there exists a triple of stochastic processes (Y t,x,m

K , Zt,x,m
K , Lt,x,m

K ) which solves (3.9) with
generator fK . Due to a comparison argument and since fK and f coincide along the sample
paths of the solution (Y t,x,m

K , Zt,x,m
K , Lt,x,m

K ), it also solves (3.9) with f satisfying (H2). As
a consequence our proof is finished if we show that (3.10) holds for a generator f satisfying
(H2’).

The next step is to consider a BSDE which is equivalent to the BSDE (3.9) and is obtained
via an exponential coordinate change. We only give a brief survey and refer to [13, proof of
Theorem 2.5, Step 2] for a complete treatment. Setting U t,x,m := eκY t,x,m

transforms (3.9)
into the following BSDE

U t,x,m
s =eκF (Xt,x,m

T ) −
∫ T

s
V t,x,m

r dMr +
∫ T

s
g(r, Xt,x,m

r , M t,m
r , U t,x,m

r , V t,x,m
r q∗r )dCr

−
∫ T

s
dN t,x,m

r , s ∈ [t, T ]. (3.11)

We refer to a solution of this BSDE as (U t,x,m, V t,x,m, N t,x,m). The new generator

g(s, x,m, u, v) :=
(

κuf

(
s, x,m,

ln u

κ
,

v

κu

)
− 1

2u
|v|2
)

1]0,∞[(u),
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(x, m, u, v) ∈ S, satisfies (H2’) and the triple (Y t,x,m, Zt,x,m, Lt,x,m) with

Y t,x,m :=
log(U t,x,m)

κ
, Zt,x,m :=

V t,x,m

κU t,x,m
, Lt,x,m :=

1
κU t,x,m

·N t,x,m (3.12)

is well defined and is solution to (3.9) with generator f satisfying (H2).
To derive the existence of a solution of (3.11) an approximating sequence of BSDE with

Lipschitz generator gp and terminal condition e(κF (Xt,x,m
T )) is introduced in such a way that

gp converges dCs⊗dP-almost surely to g as p tends to infinity. We do not specify the explicit
expression for gp, since it does not matter for our purposes, and besides the aforementioned
properties we only need that the sequence is increasing in y, implying the same property for
the solution component (Up,t,x,m)p∈N. For more details we refer to [13, proof of Theorem
2.5, step 3].

Let p ≥ 1. We consider the BSDE (3.11) with generator gp and terminal condition
e(κF (Xt,x,m

T )). Since gp is Lipschitz continuous we know from [9, Theorem 6.1] that a unique
solution (Up,t,x,m, V p,t,x,m, Np,t,x,m) exists. Now we can apply Proposition 3.2 which provides
deterministic functions ap and bp such that

Up,t,x,m
s = ap(s, Xt,x,m

s , M t,m
s ) and V p,t,x,m

s = bp(s, Xt,x,m
s , M t,m

s ), s ∈ [t, T ].

A subsequence, for convenience again denoted by (Up,t,x,m, V p,t,x,m, Np,t,x,m)p∈N, converges
almost surely (with respect to dCs ⊗ dP) to the solution (U t,x,m, V t,x,m, N t,x,m) of (3.11).
Letting

a(s, y,m) := lim inf
p→∞

ap(s, y,m), b(s, y,m) := lim inf
p→∞

bp(s, y,m),

(s, y,m) ∈ [0, T ]×Rd×1 ×Rn×1, we conclude that U t,x,m
s = a(s, Xt,x,m

s , M t,m
s ) and V t,x,m

s =
b(s, Xt,x,m

s , M t,m
s ), s ∈ [t, T ]. Since (Up,t,x,m)p∈N is increasing, we may set

u :=
ln a

κ
, v :=

b

κa
.

Hence the result follows by (3.12). ¤

4 Differentiability of FBSDE

In this section we derive differentiability of the FBSDE of (2.1)-(2.2) with respect to the
initial data x and m. The presence of the quantity 〈L, L〉 in the equation, where we recall
that L is part of the solution of (2.2), prevents us from extending directly the usual tech-
niques presented for example in [2, 3, 4]. Under an additional assumption (MRP) defined
in Section 4.2 we deduce the differentiability of (2.2) from the one of the auxiliary BSDE
(4.1).

4.1 Differentiability of an auxiliary FBSDE

As mentioned above we first prove the differentiability of an auxiliary BSDE which will
allow us to deduce the result for (2.2) in Section 4.2.
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For every (x, m) ∈ R(n+d)×1 let us consider the following forward backward system of equa-
tions

Xx,m
t = x +

∫ t

0
σ(r, Xx,m

r , Mm
r )dMr +

∫ t

0
b(r, Xx,m

r , Mm
r )dCr,

Y x,m
t = F (Xx,m

T )−
∫ T

t
Zx,m

r dMr +
∫ T

t
f(r, Xx,m

r , Mm
r , Y x,m

r , Zx,m
r q∗r )dCr, (4.1)

where M is a continuous local martingale in Rd×1 satisfying the martingale representation
property and C, q, σ, b, F, f are as described in Section 2. A solution of this system is given
by the triple (Xx,m, Y x,m, Zx,m) ∈ Sp×S∞×L2(d〈M,M〉⊗dP) of stochastic processes. Note
that the system (4.1) has a unique solution if the coefficients σ and b of the forward com-
ponent satisfy (HSDE) and the terminal condition F and the generator f of the backward
part satisfy (H1)-(H3).

In this section we will give sufficient conditions for the system (4.1) to be differentiable
in (x, m) ∈ R(n+d)×1. Before turning to the backward SDE of the system we provide some
material about the differentiability of the forward component obtained in [17, V.7].

Proposition 4.1. Assume that σ and b satisfy (D1). Then for almost all ω ∈ Ω there exists
a solution Xx,m(ω) of (4.1) which is continuously differentiable in x and m. In addition
the derivatives Dx

ik := ∂
∂xk

X(i)x,m, i, k = 1, . . . n, and Dm
ik := ∂

∂mk
X(i)x,m, i = 1, . . . n,

k = 1, . . . d, satisfy the following SDE for t ∈ [0, T ]

Dx
ikt =δik +

d∑
α=1

n∑
j=1

∫ t

0
∂1+jσiα(s, Xx,m

s , Mm
s )Dx

jksdM (α)
s

+
n∑

j=1

∫ t

0
∂1+jb

(i)(s, Xx,m
s , Mm

s )Dx
jksdCs, (4.2)

Dm
ikt =

d∑
α=1

n∑
j=1

∫ t

0
∂1+jσiα(s, Xx,m

s , Mm
s )Dm

jksdM (α)
s +

n∑
j=1

∫ t

0
∂1+jb

(i)(s, Xx,m
s , Mm

s )Dm
jksdCs

+
d∑

α=1

∫ t

0
∂1+n+kσiα(s, Xx,m

s , Mm
s )dM (α)

s +
∫ t

0
∂1+n+kb

(i)(s, Xx,m
s , Mm

s )dCs (4.3)

and ∂
∂mk

M (j)m = δkj, k, j = 1, . . . , d. Furthermore for all p > 1 there exists a positive
constant C such that the following estimate holds

E

[
sup

t∈[0,T ]
|Xx,m

t −Xx′,m′

t |2p

]
≤ C(|x− x′|2 + |m−m′|2)p. (4.4)

Proof. Let
(
X̃x,m

t

)
t∈[0,T ]

be the stochastic process with values in R(1+n+d)×1 defined as

X̃x,m
t =

 t
Xx,m

t

Mm
t

 .
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This process is the solution of the SDE

dX̃x,m
t = σ̃(X̃x,m

t )dM̃t, X̃x,m
0 = (0, x,m)

with

σ̃(X̃x,m
t ) =

 1 0 0
0 σ(X̃x,m

t ) b(X̃x,m
t )

0 Id 0

 , M̃t =

 t
Mt

Ct

 .

According to [17, Theorem V.39] the derivatives Dx, Dm and ∂
∂mk

M (j)m, k, j = 1, . . . , d,
exist and are continuous in x and m. In addition, formula [17, (D) p. 312] leads to (4.2)
and (4.3). The estimate (4.4) follows immediately from [17, (∗ ∗ ∗), p. 309]. ¤

We now focus on the BSDE of system (4.1). Let x̃ := (x, m) ∈ R(n+d)×1 and ei, i =
1, ..., n + d, the unit vectors in R(n+d)×1. For all x̃, h 6= 0 and i ∈ {1, . . . , n + d} let
ξx̃,h,i = 1

h(F (X x̃+hei
T )−F (X x̃

T )). The following Lemma will be needed later in order to prove
the differentiability of the backward component. To simplify the notation we suppress the
superscript i from now on.

Lemma 4.2. Let (D1) and (D2) be satisfied. Then for every p > 1 there exists a constant
C > 0, such that for all x̃, x̃′ ∈ R(n+d)×1, h, h′ 6= 0

E
[
|ξx̃,h − ξx̃′,h′ |2p

]
≤ C(|x̃− x̃′|2 + |h− h′|2)p (4.5)

Proof. We know from Itô’s formula

F (X x̃
t ) =F (X x̃

0 ) +
∫ t

0
∇F (X x̃

s )σ(s, X x̃
s , Mm

s )dMs

+
∫ t

0

(
n∑

i=1

∂iF (X x̃
s )bi(s, X x̃

s , Mm
s )

+
1
2

n∑
i,j=1

∂ijF (X x̃
s )[(σq) · (σq)∗]ij(s, X x̃

s , Mm
s )

 dCs.

Hence F (X x̃
t ) is a SDE with coefficients σ̂(s, x,m) = ∇F (x)σ(s, x,m) and b̂(s, x,m) =∑n

i=1 ∂iF (x)bi(s, x,m) + 1
2

∑n
i,j=1 ∂ijF (x)[(σq) · (σq)∗]ij(s, x,m). By (D2) the coefficients σ̂

and b̂ have locally Lipschitz partial derivatives and thus with (4.4) the estimate (4.5) follows.
¤

The next Lemma shows that we can choose the family (Y x̃) to be continuous in x̃ ∈ R(n+d)×1.

Lemma 4.3. Let (H1)-(H3) and (D1)-(D3) be satisfied. Then for all p > 1 there exists a
constant C > 0, such that for all x̃, x̃′ ∈ R(n+d)×1

E

[
sup

t∈[0,T ]
|Y x̃

t − Y x̃′
t |2p

]
+ E

[(∫ T

0
|qt(Z x̃

t − Z x̃′
t )∗|2dCt

)p
]
≤ C|x̃− x̃′|2p. (4.6)

Furthermore for almost all ω ∈ Ω there exists a solution Y x̃(ω) of (4.1) which is continuous
in x̃ ∈ R(n+d)×1.
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Proof. Let δY := Y x̃− Y x̃′ , δZ := Z x̃−Z x̃′ , δM := Mm−Mm′
and δX := X x̃−X x̃′ . We

also set for s ∈ [0, T ]

AZ
r :=

∫ 1

0
∂5f(r, X x̃

r , Mm
r , Y x̃

r , Z x̃′
r q∗r + ζ(Z x̃

r − Z x̃′
r )q∗r )dζ

AY
r :=

∫ 1

0
∂4f(r, X x̃

r , Mm
r , Y x̃′

r + ζ(Y x̃
r − Y x̃′

r ), Z x̃′
r q∗r )dζ

AM
r :=

∫ 1

0
∂3f(r, X x̃

r , Mm′
r + ζ(Mm

r −Mm′
r ), Y x̃′

r , Z x̃′
r q∗r )dζ

AX
r :=

∫ 1

0
∂2f(r, X x̃′

r + ζ(X x̃
r −X x̃′

r ), Mm′
r , Y x̃′

r , Z x̃′
r q∗r )dζ.

Considering the difference δY of the backward component in (4.1) we see that for t ∈ [0, T ]

δYt =F (X x̃
T )− F (X x̃′

T )−
∫ T

t
δZrdMr

+
∫ T

t
[f(r, X x̃

r , Mm
r , Y x̃

r , Z x̃
r q∗r )− f(r, X x̃′

r , Mm′
r , Y x̃′

r , Z x̃′
r q∗r )]dCr

=F (X x̃
T )− F (X x̃′

T )−
∫ T

t
δZrdMr +

∫ T

t
(δZrq

∗
rA

Z
r + δYrA

Y
r + δM∗

r AM
r + δX∗

r AX
r )︸ ︷︷ ︸

=:g(r,δYr,δZrq∗r )

dCr

holds. Note that (δY, δZ) can be seen as a BSDE whose generator g satisfies (H4) and whose
terminal condition F (X x̃

T ) − F (X x̃′
T ) is bounded (see (H1)). More precisely we derive with

(D3) and [13, Lemma 3.1]the existence of a constant C such that for all y, y1, y2 ∈ R and
z, z1, z2 ∈ R1×d dCr ⊗ dP-a.s.

|g(r, y, z1)− g(r, y, z2)| ≤|AZ
r ||z1 − z2|

≤C(|qrθr|+ |Z x̃′
r q∗r |+ |(Z x̃

r − Z x̃′
r )q∗r |)|z1 − z2| and

|g(r, y1, z)− g(r, y2, z)| ≤|AM
r ||y1 − y2|

≤C(|qrθr|+ |Z x̃′
r q∗r |)|y1 − y2|.

Hence we can apply the apriori estimates of Lemma A.1 and hence we know that for every
p > 1 there exist constants q > 1 and C > 0 such that

E

[
sup

t∈[0,T ]
|δYt|2p

]
+ E

[(∫ T

0
|qtδZ

∗
t |2dCt

)p
]

(4.7)

≤ CE

[
|F (X x̃

T )− F (X x̃′
T )|2pq +

(∫ T

0
|δM∗

r AM
r + δX∗

r AX
r |dCr

)2pq
] 1

q

.

By condition (D3) and Hölder’s inequality we get

E

[(∫ T

0
|δM∗

r AM
r + δX∗

r AX
r |dCr

)2pq
]

17



≤ CE

[(∫ T

0
|δMr|2dCr

)2pq
] 1

2

E

[(∫ T

0
(|qrθr|+ |Z x̃′

r q∗r |)2dCr

)2pq
] 1

2

+ CE

[(∫ T

0
|δXr|2dCr

)2pq
] 1

2

E

[(∫ T

0
(|qrθr|+ |Z x̃′

r q∗r |)2dCr

)2pq
] 1

2

Note that E
[(∫ T

0 |qrθr|2dCr

)2pq
]

is bounded by (D3). Furthermore E
[(∫ T

0 |Z x̃′
r q∗r |2dCr

)2pq
]

is bounded, as is seen by applying Lemma A.1. Hence

E

[(∫ T

0
|δM∗

r AM
r + δX∗

r AX
r |dCr

)2pq
]
≤C|m−m′|2pq + CE

( sup
t∈[0,T ]

|δXt|2CT

)2pq
 1

2

≤C
(
|m−m′|2pq + |x̃− x̃′|2pq

)
,

where the last inequality is due to (4.4). Combining (4.7), condition (D2) and the last
inequality we obtain

E

[
sup

t∈[0,T ]
|δYt|2p

]
+ E

[(∫ T

0
|qsδZ

∗
s |2
)p
]
≤ C|x̃− x̃′|2p.

Now Kolmogorov’s Lemma (see Theorem 73, Chapter IV in [17]) implies that there exists a
version of (Y x̃) which is continuous in x̃ for almost all ω ∈ Ω. ¤

For all h 6= 0, x̃ ∈ R(n+d)×1, t ∈ [0, T ] let U x̃,h
t = 1

h(Y x̃+hei
t −Y x̃

t ), V x̃,h
t = 1

h(Z x̃+hei
t −Z x̃

t ),
∆x̃,h

t = 1
h(X x̃+hei

t − X x̃
t ), $x̃,h

t = 1
h(M x̃+hei

t − M x̃
t ) (where it is implicit that M x̃ depends

only on the component m of x̃ = (x, m)), and ξx̃,h = 1
h(F (X x̃+hei

T )−F (X x̃
T )). We define δU

by δU = U x̃,h − U x̃′,h′ and the processes δV , δ∆, δ$, and δξ in an analogous way. We give
estimates on the differences of difference quotients of the family (Y x̃).

Lemma 4.4. Let (H1)-(H3) and (D1)-(D3) be satisfied. Then for each p > 1 there exists a
constant C > 0 such that for any x̃, x̃′ ∈ R(n+d)×1 and h, h′ 6= 0

E

[
sup

t∈[0,T ]
|U x̃,h

t − U x̃′,h′

t |2p

]
≤ C(|x̃− x̃′|2 + |h− h′|2)p. (4.8)

Proof. This proof is similar to the one of Lemma 4.3. By definition of U x̃,h and of U x̃′,h′

we have

U x̃,h
t =ξx̃,h −

∫ T

t
V x̃,h

r dMr (4.9)

+
∫ T

t

1
h

[
f(r, X x̃+hei

r , M x̃+hei
r , Y x̃+hei

r , Z x̃+hei
r q∗r )− f(r, X x̃

r , M x̃
r , Y x̃

r , Z x̃
r q∗r )

]
dCr.
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As in the proof of Lemma 4.3 we decompose the integrand in the last term of the RHS of
the equality above by writing

1
h

(f(r, X x̃+hei
r , M x̃+hei

r , Y x̃+hei
r , Z x̃+hei

r q∗r )− f(r, X x̃
r , M x̃

r , Y x̃
r , Z x̃

r q∗r ))

=V x̃,h
t q∗r (A

Z)x̃,h
r + U x̃,h

t (AY )x̃,h
r + $x̃,h

r
∗
(AM )x̃,h

r + ∆x̃,h(AX)x̃,h
r ,

where AZ , AY , AM , AX are defined as in the proof of Lemma 4.3, for instance

(AZ)x̃,h
r :=

∫ 1

0
∂5f(r, X x̃+hei

r , M x̃+hei
r , Y x̃+hei

r , Z x̃
r q∗r + θ(Z x̃+hei

r − Z x̃
r )q∗r )dθ.

Taking the difference of two equations of the form (4.9) we obtain that (δU, δV ) satisfies the
BSDE

δUt =δξ −
∫ T

0
δVrdMt +

∫ T

t
δVrq

∗
r (A

Z)x̃,h
r + δUr(AY )x̃,h

r +
[
q∗r ((A

Z)x̃,h
r − (AZ)x̃′,h′

r )V x̃′,h′
r

(4.10)

+ U x̃′,h′
r ((AY )x̃,h

r − (AY )x̃′,h′
r ) + $x̃,h

r
∗
(AM )x̃,h

r −$x̃′,h′
r

∗
(AM )x̃′,h′

r

+ ∆x̃,h∗(AX)x̃,h
r −∆x̃′,h′∗(AX)x̃′,h′

r

]
dCr.

The generator of this BSDE satisfies condition (H4) due to assumption (D3) (details are
similar to those of the proof of Lemma 4.3 and are left to the reader). By Lemma A.1 for
every p > 1 there exist constants q > 1 and C > 0 such that

E

[
sup

t∈[0,T ]
|δUt|2p +

(∫ T

0
|qsδV

∗
s |2dCs

)p
]

≤ CE
[
|δξ|2pq +

(∫ T

0
|q∗r ((AZ)x̃,h

r − (AZ)x̃′,h′
r )||V x̃′,h′

r |+ |U x̃′,h′
r ||((AY )x,h

r − (AY )x̃′,h′
r )|

+|$x̃,h
r

∗
(AM )x̃,h

r −$x̃′,h′
r

∗
(AM )x̃′,h′

r |+ |∆x̃,h∗(AX)x̃,h
r −∆x̃′,h′∗(AX)x̃′,h′

r |dCr

)2pq
]1/q

.

We estimate separately each part of the right hand side of the inequality presented. First,
by Cauchy-Schwarz’ inequality we have

E

[(∫ T

0
|q∗r ((AZ)x̃,h

r − (AZ)x̃′,h′
r )||V x̃′,h′

r |dCr

)2pq
]

≤ E

[(∫ T

0
|q∗r ((AZ)x̃,h

r − (AZ)x̃′,h′
r )|2dCr

)2pq
]1/2

E

[(∫ T

0
|V x̃′,h′

r |2dCr

)2pq
]1/2

≤ CE

[(∫ T

0
|q∗r ((AZ)x̃,h

r − (AZ)x̃′,h′
r )|2dCr

)2pq
]1/2
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since E
[(∫ T

0 |V x̃′,h′
r |2dCr

)2pq
]

is bounded by Lemma A.1. Then hypothesis (D4) and a

combination of Lemma 4.3 and (4.4) lead to the following estimate, in which the constant
C may change from line to line

E

[(∫ T

0
|q∗r ((AZ)x̃,h

r − (AZ)x̃′,h′
r )||V x̃′,h′

r |dCr

)2pq
]

≤ CE
[(∫ T

0
|q∗r (Z x̃

r − Z x̃′
r )|2 + |X x̃+hei

r −X x̃′+h′ei
r |2 + |M x̃+hei

r −M x̃′+h′ei
r︸ ︷︷ ︸

=x̃+hei−x̃′−h′ei

|2

+ |Y x̃+hei
r − Y x̃′+h′ei

r |2 + |q∗r (Z x̃+hei
r − Z x̃′+h′ei

r )|2dCr

)2pq]1/2

≤ C
(
|x̃− x̃′|2 + |h− h′|2

)pq
.

Similarly we derive the estimate

E

[(∫ T

0
|U x̃′,h′

r ||(AY )x,h
r − (AY )x̃′,h′

r |dCr

)2pq
]
≤ C

(
|x̃− x̃′|2 + |h− h′|2

)pq
.

We next estimate, with constants C allowed to change from line to line

E

[(∫ T

0
|$x̃,h

r
∗
(AM )x̃,h

r −$x̃′,h′
r

∗
(AM )x̃′,h′

r |dCr

)2pq
]

≤ CE

∫ T

0
|$x̃,h

r −$x̃′,h′
r︸ ︷︷ ︸

=0

||(AM )x̃,h
r |dCr

2pq+ CE

∫ T

0
|$x̃′,h′

r︸ ︷︷ ︸
=ei

||(AM )x̃,h
r − (AM )x̃′,h′

r |dCr

2pq
≤ CE

[(∫ T

0
|(AM )x̃,h

r − (AM )x̃′,h′
r |dCr

)2pq
]

≤ CE

[(∫ T

0
(|qrθr|+ |Z x̃

r q∗s |+ |Z x̃′
r q∗s |)2dCr

)2pq
]1/2

E
[(∫ T

0
(|X x̃+hei

r −X x̃′+h′ei
r |

+|Y x̃
r − Y x̃′

r |+ |(Z x̃
r − Z x̃′

r )q∗r |+ |M x̃
r −M x̃′

r |+ |M x̃+hei
r −M x̃′+h′ei

r |)2dCr

)2pq
]1/2

,

where the last inequality is due to hypotheses (D4) and Hölder’s inequality. An application of

the a priori estimates from Lemma A.1 implies that E
[(∫ T

0 (|qrθr|+ |Z x̃
r q∗r |+ |Z x̃′

r q∗r |)2dCr

)2pq
]

is bounded. Then with the estimates (4.4) and (4.6) we obtain

E

[(∫ T

0
|$x̃,h

r
∗
(AM )x̃,h

r −$x̃′,h′
r

∗
(AM )x̃′,h′

r |dCr

)2pq
]

≤ CE
[(∫ T

0
|X x̃+hei

r −X x̃′+h′ei
r |2 + |Y x̃

r − Y x̃′
r |2 + |(Z x̃

r − Z x̃′
r )q∗r |2
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+|M x̃
r −M x̃′

r |2 + |M x̃+hei
r −M x̃′+h′ei

r |2dCr

)2pq
]1/2

≤ C(|x̃− x̃′|2 + |h− h′|2)pq.

We now consider the last term whose treatment is quite similar to the one of the term just
discussed. We therefore give the main computations without providing detailed arguments.
We have, with constants C the value of which may change from line to line

E

[(∫ T

0
|∆x̃,h

r
∗
(AX)x̃,h

r −∆x̃′,h′
r

∗
(AX)x̃′,h′

r |dCr

)2pq
]

≤ CE

[(∫ T

0
|∆x̃,h

r −∆x̃′,h′
r |2dCr

)2pq
]1/2

E

[(∫ T

0
|(AX)x̃,h

r |2dCr

)2pq
]1/2

+ CE

[(∫ T

0
|∆x̃′,h′

r ||(AX)x̃,h
r − (AX)x̃′,h′

r |dCr

)2pq
]

.

Using (D3) and Lemma A.1 we deduce that E
[(∫ T

0 |(AX)x̃,h
r |2dCr

)2pq
]

is bounded. Using

hypothesis (D4) and estimate (4.4) again we obtain

E

[(∫ T

0
|∆x̃,h

r
∗
(AX)x̃,h

r −∆x̃′,h′
r

∗
(AX)x̃′,h′

r |dCr

)2pq
]

≤ CE

[(∫ T

0
|∆x̃,h

r −∆x̃′,h′
r |2dCr

)2pq
]1/2

+ CE
[(∫ T

0

(
|qrθr|+ |Z x̃′

r q∗r |+ |Z x̃
r q∗r |

)(
|X x̃

r −X x̃′
r |+ |X x̃+hei

r −X x̃′+h′ei
r |+ |M x̃

r −M x̃′
r |

+|Y x̃
r − Y x̃′

r |+ |(Z x̃
r − Z x̃′

r )q∗r |
)

dCr

)2pq
]

≤ C(|x̃− x̃′|2 + |h− h′|2)pq.

We derive the estimate

E
[
|δξ|2pq

]
≤ C(|x̃− x̃′|2 + |h− h′|2)pq

immediately from (4.5). This completes the proof of (4.8). ¤

Proposition 4.5. Let (H1)-(H3) and (D1)-(D4) be satisfied. Then there exists a solu-
tion (X x̃, Y x̃, Z x̃) of (4.1), such that X x̃(ω) and Y x̃(ω) are continuously differentiable in
x̃ ∈ R(n+d)×1 for almost all ω ∈ Ω. Furthermore there exist processes ∂

∂xZx,m, ∂
∂mZx,m ∈

L2(d〈M, M〉⊗dP) such that the derivatives (Ux
k , V x

ik) := ( ∂
∂xk

Y x,m, ∂
∂xk

Z(i),x,m), i = 1, . . . , d,

k = 1, . . . , n, and (Um
k , V m

ik ) := ( ∂
∂mk

Y x,m, ∂
∂mk

Z(i),x,m), i, k = 1, . . . , d, solve the following
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BSDE for t ∈ [0, T ]

Ux
kt =

n∑
j=1

∂jF (Xx,m
T )Dx

jkT −
d∑

α=1

∫ T

t
V x

iαsdM (α)
s

+
n∑

j=1

∫ T

t
∂1+jf(s, Xx,m

s , Mm
s , Y x,m

s , Zx,m
s q∗s)D

x
jksdCs

+
∫ T

t
∂1+n+d+1f(s, Xx,m

s , Mm
s , Y x,m

s , Zx,m
s q∗s)U

x
ksdCs

+
n∑

j=1

∫ T

t
∂1+n+d+1+jf(s, Xx,m

s , Mm
s , Y x,m

s , Zx,m
s q∗s)

∂

∂xk
qjksZ

(j),x,mdCs,

Um
kt =

d∑
j=1

∂n+jF (Xx,m
T )Dm

jkT −
d∑

α=1

∫ T

t
V m

iαsdM (α)
s

+
n∑

j=1

∫ T

t
∂1+jf(s, Xx,m

s , Mm
s , Y x,m

s , Zx,m
s )Dm

jksdCs

+
∫ T

t
∂1+n+kf(s, Xx,m

s , Mm
s , Y x,m

s , Zx,m
s q∗s)dCs

+
∫ T

t
∂1+n+d+1f(s, Xx,m

s , Mm
s , Y x,m

s , Zx,m
s q∗s)U

m
ksdCs

+
n∑

j=1

∫ T

t
∂1+n+d+1+jf(s, Xx,m

s , Mm
s , Y x,m

s , Zx,m
s q∗s)qjksV

m
jksdCs.

Proof. From 4.4 and Kolmogorov’s Lemma (see Theorem 73, Chapter IV in [17]) we deduce
that there exists a family of solutions (Y x̃) of (4.1) which is continuously differentiable in x̃
for almost all ω ∈ Ω. Finally from equation (4.10) taking h → 0 the BSDE follows. ¤

4.2 Differentiability of FBSDE

Now we come back to the initial FBSDE (2.1)-(2.2). In order to obtain the differentiability
of this system we require the following additional assumption:

(MRP) There exists a continuous L2-martingale N := (Nt)t∈[0,T ] on (Ω,F , P) strongly orthog-
onal to M (〈M i, N〉 = 0, i = 1, . . . , d) such that the pair (M,N) has the martingale
representation property.

The presence of the additional bracket 〈L, L〉 in the BSDE prevents us from applying the
usual techniques for differentiability as for example in [2, 3, 4]. More precisely, under (MRP)
we can show that the BSDE in (2.2) can be written as

Y x,m
t = F (Xx,m

T )−
∫ T

t
Zx,m

r dMr−
∫ T

t
Ux,m

r dNr+
∫ T

t
h(r, Xx,m

r , Mm
r , Y x,m

r , Zx,m
r q∗r , U

x,m
r )dC̃r,

(4.11)
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t ∈ [0, T ], where C̃ and h are defined as in section A.1. Due to hypotheses (MRP) and the
orthogonality of the martingales L and M , the representation of L as L = U ·N where U is a
predictable square integrable stochastic process is obtained. So the solution (Y,Z, L) of the
backward part (2.2) becomes (Y,Z, U) in (4.11). The bracket 〈L, L〉 is then a component
of the new generator h, which is quadratic in U . We refer to the beginning of Section A.1,
where a discussion of the technical aspects of this claim is given. Now we can write the
system (2.1)-(2.2) as

Xx,m
t = x +

∫ t

0
σ̃(s, Xt,x,m

s , M t,m
s )dM̃s +

∫ t

0
b̃(s, Xx,m

s , Mm
s )dC̃s,

Y x,m
t = F (Xx,m

T )−
∫ T

t
Z̃x,m

s dM̃s +
∫ T

t
h(s, Xx,m

s , Mm
s , Y x,m

s , Z̃x,m
s q̃∗s)dC̃s,

t ∈ [0, T ], where M̃ , q̃, Z̃, are defined as in Section A.1 and σ̃ :=
(
σ 0

)
, b̃ := b ×

1+(
Pd

i=1〈M i,M i〉s+〈N,N〉s)2

1+(
Pd

i=1〈M i,M i〉s)2 . A solution (Xx,m, Y x,m, Z̃x,m) ∈ Sp×S∞×L2(d〈M̃, M̃〉⊗dP) of

this system exists for σ, b satisfying (HSDE) and F , h satisfying (H1)-(H3). Therefore we
obtain the following result.

Theorem 4.6. Let (H1)-(H3) and (D1)-(D4) be satisfied. Then there exists a solution
(X x̃, Y x̃, Z̃ x̃) of (2.1)-(2.2), such that X x̃(ω) and Y x̃(ω) are continuously differentiable in
x̃ ∈ R(n+d)×1 for almost all ω ∈ Ω.

Proof. The Theorem follows from Proposition 4.5. ¤

5 Representation formula

In this Section we provide the representation formula (1.3) which generalizes the one ob-
tained in [2, 3], where M is a Brownian motion. We recall that in the Gaussian setting the
proof of this formula is based on the representation of the stochastic process Z as the trace
of the Malliavin derivative of Y . In the general martingale setting of this paper, however,
Malliavin’s calculus is not available. Therefore we propose a new proof based on stochastic
calculus techniques. We also stress that the last term in formula (1.3) vanishes if we assume
that M has independent increments, σ and b do not depend on M in (2.1) and that the
driver f in (2.2) is free of M .

Proposition 5.1. Let u be as in (3.10), that is, Y t,x,m
s = u(s, Xt,x,m

s , M t,m
s ), s ∈ [t, T ].

Under the hypotheses of Theorem 3.4 and Theorem 4.6 we have

i) x 7→ u(t, x,m) ∈ C 1(Rn×1), (t, m) ∈ [0, T ]× Rd×1,

ii) m 7→ u(t, x,m) ∈ C 1(Rd×1), (t, x) ∈ [0, T ]× Rn×1.

Proof.

i) Fix (t, m) in [0, T ]×Rd×1. As already mentioned, Y t,x,m
t is deterministic and u(t, x,m) =

Y t,x,m
t . By differentiability of Y t,x,m with respect to x (Theorem 4.6), we obtain that

x 7→ u(t, x,m) belongs to C 1(Rn×1).
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ii) The proof is similar to i).

¤

We present the main result of this paper. We introduce the following assumption (ACL)
which will be used in the proof of Theorem 5.2.

(ACL) For every t ∈ [0, T ] and h > 0 the law of the vector (Mt, Xt, Mt+h −Mt, Xt+h −Xt)
has an absolutely continuous law with respect to the Lebesgue measure on Rd×1 ×
Rn×1 × Rd×1 × Rn×1.

Theorem 5.2. Let the assumptions of Theorem 3.4 and Theorem 4.6 be in force. Assume
in addition that hypothesis (ACL) is satisfied. Then for all s ∈ [t, T ] we have dCs⊗dP−a.e

Zt,x,m
s = ∂2u(s, Xt,x,m

s , M t,m
s )σ(s, Xt,x,m

s , M t,m
s ) + ∂3u(s, Xt,x,m

s , M t,m
s ), (5.1)

where ∂2u(s, Xt,x,m
s , M t,m

s ) :=
(
∂1+ju(s, Xt,x,m

s , M t,m
s )

)
1≤j≤n

and ∂3u(s, Xt,x,m
s , M t,m

s ) :=(
∂1+n+ju(s, Xt,x,m

s , M t,m
s )

)
1≤j≤d

.

Remark 5.3. i) The technique used in the following proof is independent on the as-
sumptions made in Section 3 and 4. More precisely only the validity of Proposition
5.1 is required to prove Theorem 5.2.

ii) An interesting particular case of Theorem 5.2 is given when X and M are like in
Proposition 3.1 ii) and when f in (3.9) does not depend on M . In this situation
equation (5.1) becomes:

Zt,x
s = ∂2u(s, Xt,x

s )σ(s, Xt,x
s ), dCs ⊗ dP− a.e

which coincides with the representation formula derived in [2, 3] when M is a standard
Brownian motion.

iii) In contradistinction, one can be interested in knowing when u in Theorem 5.2 does not
depend trivially on M in other words when the third term in (5.1) does not vanish.
This is related to the Markov property given for Y and we exhibit in Section A.3 an
explicit example where u depends non-trivially on M .

iv) We think that the assumption (ACL) is not necessary but we use it in order to avoid
some technicalities and to keep the length of the present paper within limit.

Proof of Theorem 5.2. Fix s in [t, T ]. For simplicity of notations we will drop the superscript
(t, x,m). Assume for a moment that the following equality holds

〈u(·, X·, M·), M·〉s =
∫ s

t
[∂2u(r, Xr, Mr)σ(r, Xr, Mr) + ∂3u(r, Xr, Mr)]d〈M,M〉r, (5.2)

24



and denote by 〈u(·, Xs, Ms), M·〉s the vector
(
〈u(·, X·, M·), M

(1)
· 〉s, . . . , 〈u(·, X·, M·), M

(d)
· 〉s

)
.

Then since (Y, Z) is solution of (3.9) we have that

〈Y, M〉s =
∫ s

t
Zrd〈M,M〉r, s ∈ [t, T ]. (5.3)

The conclusion of the theorem then follows from the fact that Ys = u(s, Xs, Ms), s ∈ [t, T ],
and from relations (5.2) and (5.3). The rest of the proof is therefore devoted to show relation
(5.2).

Let r ≥ 1 and π(r) := {t(r)j , j = 1, . . . , r + 1} be a deterministic subdivision of [t, s] whose

mesh |π(r)| tends to zero as r goes to infinity with t
(r)
0 = t and t

(r)
r+1 = s. For simplicity of

notation the superscript (r) will be abandoned. In addition we denote the increments of the
stochastic process M on [tj , tj+1] as ∆jM . Let i ∈ {1, . . . , d}. We have that

〈u(·, X·, M·), M
(i)
· 〉s

P= lim
r→∞

r∑
j=0

(
u(tj+1, Xtj+1 , Mtj+1)− u(tj , Xtj , Mtj )

)
∆jM

(i)

P= lim
r→∞

[ r∑
j=0

(
u(tj+1, Xtj+1 , Mtj+1)− u(tj , Xtj+1 , Mtj+1)

)
∆jM

(i)

+
r∑

j=0

(
u(tj , Xtj+1 , Mtj+1)− u(tj , Xtj , Mtj )

)
∆jM

(i)

]
P
=: lim

r→∞

[
S

(i)
r,1 + S

(i)
r,2

]
. (5.4)

We treat the two previous parts separately. Assume for sake of clarity that the second term
converges and more precisely that the relation (5.5) below holds:

lim
r→∞

S
(i)
r,2 = lim

r→∞

r∑
j=0

(
u(tj , Xtj+1 , Mtj+1)− u(tj , Xtj , Mtj )

)
∆jM

(i)

P=
(∫ s

t
[∂2u(r, Xr, Mr)σ(r, Xr, Mr) + ∂3u(r, Xr, Mr)]d〈M,M〉r

)(i)

. (5.5)

Then if the convergence (5.5) holds it follows by relations (5.3) and (5.4) that the limit

lim
r→∞

S
(i)
r,1 = lim

r→∞

r∑
j=0

(
u(tj+1, Xtj+1 , Mtj+1)− u(tj , Xtj+1 , Mtj+1)

)
∆jM

(i)

exists in probability and is equal to
(∫ s

t Hrd〈M, M〉r
)(i) where H is defined as

Hr := Zr − ∂2u(r, Xr, Mr)σ(r, Xr, Mr) + ∂3u(r, Xr, Mr), r ∈ [t, s].
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Considering
(∫ tj+1

tj
Hrd〈M, M〉r

)(i)
for j and r as above, we have that

(
u(tj+1, Xtj+1 , Mtj+1)− u(tj , Xtj+1 , Mtj+1)

)
∆jM

(i) = ∆jM
(i)

d∑
k=1

H
(k)
tj

∆jM
(k)+Rj,r (5.6)

where Rj,r is a remaining such that limr→∞
∑r

j=0Rj,r = 0. From the representation of

Z obtained in Theorem 3.4, there exists a deterministic function α(k) such that H
(k)
tj

=
α(k)(tj , Xtj , Mtj ). Let us consider the part of the left hand side of equality (5.6) which actu-
ally contributes to the density H. That is there exists a deterministic function β continuous
in its two last variables such that

β(tj , tj+1, Xtj+1 , Mtj+1)∆jM
(i) = ∆jM

(i)
d∑

k=1

α(k)(tj , Xtj , Mtj )∆jM
(k) (5.7)

and(
u(tj+1, Xtj+1 , Mtj+1)− u(tj , Xtj+1 , Mtj+1)− β(tj , tj+1, Xtj+1 , Mtj+1)

)
∆jM

(i) = Rj,r.

Since for fixed j and r the random vector (Mtj , ∆jM,Xtj , ∆jX) has absolutely continuous
law with respect to the Lebesgue measure (by assumption (ACL)), relation (5.7) shows that

β(tj , tj+1, x + ξ1, m + ξ2) =
d∑

k=1

α(k)(tj , x,m)ξ(k)
2 (5.8)

for almost all (x, m, ξ1, ξ2) in Rn×1×Rd×1×Rn×1×Rd×1. Let (ξ2,p)p≥1 be a sequence in Rd×1

such that limp→∞ ξ2,p = 0. Replacing ξ2 by (ξ2,p)p≥1 in (5.8) shows that the deterministic
functions α and β vanish. As a consequence, Htj in equation (5.6) is equal to zero and

lim
r→∞

S
(i)
r,1

P= 0.

It remains to show that relation (5.5) holds.
Proof of (5.5):

lim
r→∞

S
(i)
r,2

P= lim
r→∞

r∑
j=0

(
u(tj , Xtj+1 , Mtj+1)− u(tj , Xtj , Mtj )

)
∆jM

(i)

P= lim
r→∞

[ r∑
j=0

(
u(tj , Xtj+1 , Mtj )− u(tj , Xtj , Mtj )

)
∆jM

(i)

+
r∑

j=0

(
u(tj , Xtj+1 , Mtj+1)− u(tj , Xtj+1 , Mtj )

)
∆jM

(i)

]
. (5.9)

In addition we can write

u(tj , Xtj+1 , Mtj )− u(tj , Xtj , Mtj )
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=
n∑

k=1

(
u(tj , X

(1)
tj

, . . . , X
(k−1)
tj

, X
(k)
tj+1

, . . . , X
(n)
tj+1

, Mtj )− u(tj , X
(1)
tj

, . . . , X
(k−1)
tj

, X
(k)
tj

, . . . , X
(n)
tj+1

, Mtj )
)

.

Each term of this sum can be written as

u(tj , X
(1)
tj

, . . . , X
(k−1)
tj

, X
(k)
tj+1

, . . . , X
(n)
tj+1

, Mtj )− u(tj , X
(1)
tj

, . . . , X
(k−1)
tj

, X
(k)
tj

, . . . , X
(n)
tj+1

, Mtj )

= ( ¯∂2u)(∆jX
(1), . . . ,∆jX

(n))∗ (5.10)

where ¯∂2u :=
(
∂1+ku(tj , X

(1)
tj

, . . . , X
(k−1)
tj

, X̄
(k)
tj

, X
(k+1)
tj+1

, . . . , X
(n)
tj+1

, Mtj )
)

1≤k≤n
and X̄

(k)
tj

is

a suitable random point in the interval [X(k)
tj
∧X

(k)
tj+1

, X
(k)
tj
∨X

(k)
tj+1

]. Similarly we obtain

u(tj , Xtj+1 , Mtj+1)− u(tj , Xtj+1 , Mtj ) = ( ¯∂3u)(∆jM
(1), . . . ,∆jM

(d))∗ (5.11)

with ¯∂3u :=
(
∂1+n+ku(tj , Xtj+1 , M

(1)
tj

, . . . ,M
(k−1)
tj

, M̄
(k)
tj

, M
(k+1)
tj+1

, . . . ,M
(d)
tj+1

)
)

1≤k≤d
. Com-

bining relations (5.9), (5.10) and (5.11) we conclude

lim
r→∞

S
(i)
r,2

P= lim
r→∞

r∑
j=0

[( ¯∂2u)(∆jX
(1), . . . ,∆jX

(n))∗∆jM
(i) + ( ¯∂3u)(∆jM

(1), . . . ,∆jM
(d))∗∆jM

(i)]

P= lim
r→∞

r∑
j=0

[
∂2u(tj , Xtj , Mtj )(∆jX

(1), . . . ,∆jX
(n))∗∆jM

(i)

+ ∂3u(tj , Xtj , Mtj )(∆jM
(1), . . . ,∆jM

(d))∗∆jM
(i) + R(i, j, r)

]
, (5.12)

where R(i, j, r) is defined as

R(i, j, r) =
(
( ¯∂2u)− ∂2u(tj , Xtj , Mtj )

)
(∆jX

(1), . . . ,∆jX
(n))∗∆jM

(i)

+
(
( ¯∂3u)− ∂3u(tj , Xtj , Mtj )

)
(∆jM

(1), . . . ,∆jM
(d))∗∆jM

(i).

Since

lim
r→∞

r∑
j=0

[∂2u(tj , Xtj , Mtj )(∆jX
(1), . . . ,∆jX

(n))∗∆jM
(i) + ( ¯∂3u)(∆jM

(1), . . . ,∆jM
(d))∗∆jM

(i)]

P=
(∫ s

t

[
∂2u(r, Xr, Mr)σ(r, Xr, Mr) + ∂3u(r, Xtj , Mtj )

]
d〈M,M〉r

)(i)

(5.13)

relation (5.2) follows from equations (5.12) and (5.13) provided the following equation (5.14)
holds:

lim
r→∞

∣∣∣∣∣∣
r∑

j=0

R(i, j, r)

∣∣∣∣∣∣ P= 0. (5.14)

We conclude the proof by showing relation (5.14). Let

A(r) := sup
z∈[t,s],|a−b|≤|π(r)|,k=1,...,n

{|∂1+ku(z, Xa, Mz)− ∂1+ku(z, Xb, Mz)|} and
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B(r) := sup
z∈[t,s],|a−b|≤|π(r)|, |c−d|≤|π(r)|,k=1...,d

{|∂1+n+ku(z, Xc, Ma)− ∂1+n+ku(z, Xd, Mb)|}.

For 1 ≤ i ≤ d, r ∈ N we have

r∑
j=0

|R(i, j, r)|

≤ CA(r)
r∑

j=0

n∑
k=1

|∆jX
(k)∆jM

(i)|+ CB(r)
r∑

j=0

d∑
k=1

|∆jM
(k)∆jM

(i)|

≤ C

2
A(r)

r∑
j=0

n∑
k=1

[
|∆jX

(k)|2 + |∆jM
(i)|2

]
+

C

2
B(r)

r∑
j=0

d∑
k=1

[
|∆jM

(k)|2 + |∆jM
(i)|2

]

≤ C

2
A(r)

n∑
k=1

 r∑
j1=1

|∆j1X
(k)|2 +

r∑
j2=1

|∆j2M
(i)|2

+
C

2
B(r)

d∑
k=1

 r∑
j1=1

|∆j1M
(k)|2 +

r∑
j2=1

|∆j2M
(i)|2

 .

According to Proposition 5.1 we have that

lim
r→∞

A(r) = lim
r→∞

B(r) = 0, P− a.s.

On the other hand {
limr→∞

∑r
j=0 |∆jX

(k)|2 P= 〈X(k), X(k)〉z,
limr→∞

∑r
j=0 |∆jM

(k)|2 P= 〈M (k), X(k)〉z,

which concludes the proof. ¤

Concluding remarks

In this paper we prove the representation formula (1.3) for the control process of a quadratic
growth BSDE driven by a continuous local martingale. This can be used for giving an explicit
representation of the delta hedge in utility indifference based hedging of insurance derivatives
with exponential preferences. We also provide the Markov property and differentiability of
the FBSDE (2.1)-(2.2) in the initial state parameter of its forward part. This last property is
obtained under an additional assumption (MRP). As explained at the beginning of Section
4, this hypothesis allows us to deduce the differentiability of (2.2) from the one of the BSDE
(4.1) which differs from the former by the absence of the quantity 〈L, L〉 that prevents us
from employing existing proofs of differentiability. However, we think that differentiability
should hold without this assumption, and that different techniques have to be developed for
achieving this goal.

Additionally, as already mentioned in this paper Malliavin’s calculus has been used by
several authors to recover formula (5.1) in the Brownian framework. Our alternative method
is valid in this setting and it seems to us that it could present advantages in some practical
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situations. Actually, Malliavin’s calculus is known for its efficiency in several topics however
it also requires usually more regularity than the problems requires intrinsically. In [1] the
authors study the quadratic hedging problem of contingent claims with basis risk when the
hedging instrument and the underlying of the contingent are related via a random correlation
process. As exposed in [1] the hedging strategy is described via a representation formula of
the form (5.1) for the control process of the backward part of a FBSDE driven by a Brownian
motion. In their case the coefficient of the forward process depends on a correlation process
ρ which is itself solution of a Brownian SDE. As explained in a comment in [1, Section 3.4]
the use of Malliavin’s calculus imposes to assume that the derivatives of the coefficients of
the SDE defining ρ have bounded derivatives. This additional regularity is not necessary in
our approach and this would allow one to consider other examples of correlation processes
with only locally Lipschitz bounded derivatives.
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A Appendix

In the first section of this appendix we provide the transformation of a BSDE of the form
(2.2) which is needed in section 4, and give a priori estimates on the solution of the trans-
formed BSDE with respect to its terminal condition and its generator. Then in Section A.3
we present an explicit example of situation described in Proposition 3.1 ii).

A.1 Transformation of the BSDE (2.2) under (MRP)

We start giving a justification that under (MRP) the BSDE of the form

Yt = B −
∫ T

t
ZsdMs +

∫ T

t
f(s, Ys, Zsq

∗
s)dCs −

∫ T

t
dLs +

κ

2

∫ T

t
d〈L, L〉s (A.1)

can be transformed into a BSDE of the form

Yt = B −
∫ T

t
Z̃sdM̃s +

∫ T

t
h(s, Ys, Z̃sq̃

∗
s)dC̃s, (A.2)

where for all s ∈ [0, T ]

M̃s :=
(

Ms

Ns

)
, q̃s :=

(
qs 0
0 1

)
, C̃s := arctan

(
d∑

i=1

〈M (i), M (i)〉s + 〈N, N〉s

)
,
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Z̃s :=
(
Zs Us

)
. The precise definition of h will follow from the subsequent calculations.

Recall that

dCs =
∑d

i=1 d〈M (i), M (i)〉s

1 +
(∑d

i=1〈M (i), M (i)〉s
)2 .

We have for t ∈ [0, T ]∫ T

t
f(s, Ys, Zsq

∗
s)dCs +

κ

2

∫ T

t
d〈L, L〉s

=
∫ T

t
f(s, Ys, Zsq

∗
s)dCs +

κ

2

∫ T

t
U2

s d〈N, N〉s

=
∫ T

t
f̃(s, Ys, Zsq

∗
s)

∑d
i=1 d〈M (i), M (i)〉s

1 +
(∑d

i=1〈M (i), M (i)〉s + 〈N, N〉s
)2

+
∫ T

t
g(Us)

d〈N, N〉s

1 +
(∑d

i=1〈M (i), M (i)〉s + 〈N, N〉s
)2 ,

where for s ∈ [t, T ]

f̃(·, s, Ys, Zsq
∗
s) := f(·, s, Ys, Zsq

∗
s)×

1 +
(∑d

i=1〈M (i), M (i)〉s + 〈N, N〉s
)2

1 +
(∑d

i=1〈M (i), M (i)〉s
)2

and

g(·, Us) :=
κ

2
U2

s

1 +

(
d∑

i=1

〈M (i), M (i)〉s + 〈N, N〉s

)2
 .

Hence∫ T

t
f(s, Ys, Zsq

∗
s)dCs +

κ

2

∫ T

t
d〈L, L〉s

=
∫ T

t

(
f̃(s, Ys, Zsq

∗
s)ϕ1(s) + g(Us)ϕ2(s)

) ∑d
i=1 d〈M (i), M (i)〉s + d〈N, N〉s

1 +
(∑d

i=1〈M (i), M (i)〉s + 〈N, N〉s
)2

=
∫ T

t

(
f̃(s, Ys, Zsq

∗
s)ϕ1(s) + g(Us)ϕ2(s)

)
dC̃s,

where ϕ1 and ϕ2 are two predictable, with respect to the random measure
Pd

i=1 d〈M(i),M(i)〉·+d〈N,N〉·
1+(

Pd
i=1〈M(i),M(i)〉·+〈N,N〉·)2

square integrable functions obtained from Riesz’s representation theorem (see e.g. [7,
p. 176]). As a consequence, letting h(·, s, Ys, Zsq

∗
s , Us) := f̃(·, s, Ys, Zsq

∗
s)ϕ1(s)+g(·, Us)ϕ2(s)

we obtain that (A.1) can be written as

Yt = B −
∫ T

t
ZsdMs −

∫ T

t
UsdNs +

∫ T

t
h(s, Ys, Zsq

∗
s , Us)dC̃s

and the generator h will satisfy hypotheses (H4). In particular h preserves the growth in
the variables y, z, u. Hence we arrive at BSDE (A.2).
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A.2 Apriori estimates

Now we assume that M itself satisfies the martingale representation theorem. We consider
the following BSDE

Yt = B −
∫ T

t
ZsdMs +

∫ T

t
f(s, Ys, Zsq

∗
s)dCs, (A.3)

where M, q, C are defined as in Section 2. Suppose that the terminal condition B is a
bounded real-valued random variable and the generator f satisfies assumption (H4). The
following a priori inequality is crucial for our differentiability and representation results.

Lemma A.1. We assume that for every β ≥ 1 we have
∫ T
0 |f(s, 0, 0)|dCs ∈ Lβ(P). Let

p > 1. Then there exist constants q > 1, C > 0 depending only on T , p and on the
BMO-norm of H ·M (H being defined below) such that

E

[
sup

t∈[0,T ]
|Yt|2p

]
+ E

[(∫ T

0
|qsZ

∗
s |2dCs

)p
]

≤ CE

[
|B|2pq +

(∫ T

0
|f(s, 0, 0)|dCs

)2pq
] 1

q

.

Proof. In the following, constants appearing in inequalities will be denoted by C and may
change from line to line. We follow [4, Lemmata 7-8 and Corollary 9] (see also [3, Lemma
6.1]) which have been designed for the Brownian setting. However, as we will show below
their arguments can be extended to the case of continuous local martingales. We proceed
in two steps.
In Step 1, we provide the estimate on Y . Let

Js =

{
f(s,Ys,Zsq∗s )−f(s,0,Zsq∗s )

Ys
, if Ys 6= 0,

0, otherwise, and

Hs =

{
f(s,0,Zsq∗s )−f(t,0,0)

|qsZ∗s |2
Zs, if |qsZ

∗
s |2 6= 0,

0, otherwise.

Then BSDE (A.3) has the form

Yt = B −
∫ T

t
ZsdMs +

∫ T

t
(JsYs + (qsH

∗
s )(qsZ

∗
s )∗ + f(s, 0, 0)) dCs, t ∈ [0, T ]. (A.4)

Due to (H4) we have |qH∗| ≤ |qB∗| and it follows that H ·M is a BMO(P) martingale. By
[11, Theorem 2.3] the measure Q defined by dQ = E(H ·M)T dP is a probability measure.
Girsanov’s theorem implies that

K = Z ·M −
∫ ·

0
(qsH

∗
s )(qsZ

∗
s )∗dCs

is a local Q-martingale. This means that there exists an increasing sequence of stopping
times (τn)n∈N such that K·∧τn is a Q-martingale for any n ∈ N. Letting e = e

R ·
0 JsdCs we
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have with Itô’s formula for t ∈ [0, τn]

etYt = eT B −
∫ τn

t
esdKs +

∫ τn

t
esf(s, 0, 0)dCs.

Taking the conditional expectation on both sides gives

etYt = EQ
[
eT B +

∫ τn

t
esf(s, 0, 0)dCs|Ft

]
.

By [11, Theorem 3.1] there exists a r > 1 such that E(H ·M)T ∈ L
r

r−1 (P) and the reverse
Hölder inequality holds, i.e. there exists a constant C (depending on r) such that

E(H ·M)−1
t E

[
E(H ·M)

r
r−1

T |Ft

] r−1
r ≤ C.

Since Js ≤ As and hence es/et ≤
∫ T
0 |qrAr1Rd |2dCr for all s ≥ t, these two facts lead to

|Yt| ≤ E(H ·M)−1
t E

[
E(H ·M)T (

eT

et
|B|+

∫ T

0

es

et
|f(s, 0, 0)|dCs)|Ft

]
≤ E(H ·M)−1

t E
[
E(H ·M)T

∫ T

0
|qsAs1Rd |2dCs

(
|B|+

∫ T

0
|f(s, 0, 0)|dCs

)
|Ft

]

≤ E(H ·M)−1
t E

[
E(H ·M)

r
r−1

T |Ft

] r−1
r E

[(∫ T

0
|qsAs1Rd |2dCs

)r (
|B|+

∫ T

0
|f(s, 0, 0)|dCs

)r

|Ft

] 1
r

≤ CE

[(∫ T

0
|qsAs1Rd |2dCs

)r (
|B|+

∫ T

0
|f(s, 0, 0)|dCs

)r

|Ft

] 1
r

.

Let p > 1. Then

sup
t∈[0,T ]

|Yt|2p ≤ C sup
t∈[0,T ]

(
E

[(∫ T

0
|qsAs1Rd |2dCs

)r (
|B|+

∫ T

0
|f(s, 0, 0)|dCs

)r

|Ft

]) 2p
r

.

Now apply Doob’s Lp-inequality to obtain

E

[
sup

t∈[0,T ]
|Yt|2p

]
≤ CE

(E

[(∫ T

0
|qsAs1Rd |2dCs

)r (
|B|+

∫ T

0
|f(s, 0, 0)|dCs

)r

|FT

]) 2p
r


≤ CE

[(∫ T

0
|qsAs1Rd |2dCs

)2p(
|B|+

∫ T

0
|f(s, 0, 0)|dCs

)2p
]

.

As above there exists a q > 1 such that E(A1Rd · M)T ∈ L
q

q−1 (P) and Hölder inequality
entails

E

[
sup

t∈[0,T ]
|Yt|2p

]
≤ CE

[(
|B|+

∫ T

0
|f(s, 0, 0)|dCs

)2pq
] 1

q

.
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In Step 2, we give an estimate on Z. Assumption (H4) and Young’s inequality imply for
s ∈ [0, T ], y ∈ R, z ∈ R1×d

2yf(s, y, qsz
∗) ≤ 2|y|f(s, 0, 0) + 2|qsAs1Rd |y2 + 2|qsB

∗
s |2|y|2 +

1
2
|qsz

∗|2.

Let us define the following sequence of stopping times

τ r = inf{t ∈ [0, T ] :
∫ t

0
|qsZ

∗
s |2dCs ≥ r} ∧ T, r ∈ N.

Now we apply Itô’s formula to Y 2 with the result

|Y0|2 ≤|Yτr |2 − 2
∫ τr

0
YsZsdMs

+
∫ τr

0
(2|Ys|f(s, 0, 0) + 2|qsAs1Rd |Y 2

s + 2|qsB
∗
s |2|Ys|2 +

1
2
|qsZ

∗
s |2)dCs −

∫ τr

0
|qsZ

∗
s |2dCs.

Since τ r ≤ T , we deduce

1
2

∫ τr

0
|qsZ

∗
s |2dCs ≤|Yτr |2 + 2

∣∣∣∣∫ τr

0
YsZsdMs

∣∣∣∣
+
∫ T

0
(2|Ys||f(s, 0, 0)|+ 2|qsAs1Rd ||Ys|2 + 2|qsB

∗
s |2|Ys|2)dCs

≤ sup
t∈[0,T ]

|Yt|2 + 2
∣∣∣∣∫ τr

0
YsZsdMs

∣∣∣∣
+ 2 sup

t∈[0,T ]
|Yt|

∫ T

0
|f(s, 0, 0)|dCs + 2 sup

t∈[0,T ]
|Yt|2

∫ T

0
(|qsAs1Rd |2 + |qsB

∗
s |2)dCs.

Then the inequalities of Burkholder-Davis-Gundy and Young give for p > 1

E

[(∫ τr

0
|qsZ

∗
s |2dCs

)p
]

≤ C

(
E

[
sup

t∈[0,T ]
|Yt|2p

]
+ E

[(∫ T

0
Y 2

s |qsZ
∗
s |2dCs

)p/2
]

+ E

[(∫ T

0
|f(s, 0, 0)|dCs

)2p
]

+ E

[
sup

t∈[0,T ]
|Yt|2p

{
1 +

(∫ T

0
(|qsAs1Rd |2 + |qsB

∗
s |2)dCs

)p
}])

≤ C

(
(C + 1)E

[
sup

t∈[0,T ]
|Yt|2p

]
+ E

[
1

2C

(∫ T

0
|qsZ

∗
s |2dCs

)p
]

+ E

[(∫ T

0
|f(s, 0, 0)|dCs

)2p
]

+ E

[
sup

t∈[0,T ]
|Yt|2p

]
C

)
.
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In the last inequality we have applied the inequalities of Young and Hölder and used that
A1Rd ·M and B ·M are BMO-martingales. Now Fatou’s Lemma gives

E

[(∫ T

0
|qsZ

∗
s |2dCs

)p
]
≤C

(
E

[
sup

t∈[0,T ]
|Yt|2p

]
+ E

[(∫ T

0
|f(s, 0, 0)|dCs

)2p
])

≤CE

[(
|B|+

∫ T

0
|f(s, 0, 0)|dCs

)2pq
]1/q

,

where we have also used Hölder’s inequality to state

E

[(∫ T

0
|f(s, 0, 0)|dCs

)2p
]
≤ E

[(∫ T

0
|f(s, 0, 0)|dCs

)2pq
]1/q

.

¤

A.3 Additional material on Markov processes

We provide an example where the function u in Theorem 3.4 does not depend trivially on
M .

Let M := (Mt)t∈[0,T ] be a continuous martingale with non-independent increments which is
a Markov process with respect to a filtration (Ft)t∈[0,T ]. Let X := (Xt)t∈[0,T ] be the solution
of the SDE

dXt =
∫ t

0
σ(a, Xa)dMa, t ∈ [0, T ] and X0 = 0,

with

σ(a, x) =

{
1 + x, if a ≥ T

2

0, if a < T
2 .

Note that the coefficient σ is Lipschitz in x for every a and that it is right continuous with
left limits in a for every x; as a consequence X admits an unique solution by [17, V. Theorem
35]. Consider a simple BSDE of the form (3.9) with f ≡ 0, κ = 0 and F (x) := log(1 + x).
Note that F is not bounded but in this special case the existence of a solution to the BSDE
is assured. Our aim is to show that E[F (XT )|Ft] is not a trivial function of M for t ∈ [0, T ].
By Itô’s formula we have

F (XT ) = log(1 + Xt) +
∫ T

t
(1 + Xs)−1dXs −

1
2
(〈M,M〉T − 〈M, M〉t),

and hence

E[F (XT )|Ft] = log(1 + Xt)−
1
2

E[〈M,M〉T − 〈M, M〉t|Ft]

= log(1 + Xt)−
1
2

E[M2
T −M2

t |Ft]
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= log(1 + Xt)−
1
2

E[M2
T −M2

t |Mt]

since M is a Markov process. Choose 0 < t < T
2 . By definition of X, the last term on the

right hand side above cannot be expressed as a non-trivial deterministic function of (t, Xt)
since Ms cannot be deduced from Xs for s < T

2 . However this term is deterministic and
only depends on t if M has independent increments. This gives an example of a situation
where the function u in Theorem 3.4 does not depend trivially on M .
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