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Abstract

We investigate solutions of backward stochastic di�erential equations (BSDE)
with time delayed generators driven by Brownian motions and Poisson ran-
dom measures, that constitute the two components of a Lévy process. In this
new type of equations, the generator can depend on the past values of a solu-
tion, by feeding them back into the dynamics with a time lag. For such time
delayed BSDE, we prove existence and uniqueness of solutions provided we
restrict on a su�ciently small time horizon or the generator possesses a su�-
ciently small Lipschitz constant. We study di�erentiability in the variational
or Malliavin sense and derive equations that are satis�ed by the Malliavin
gradient processes. On the chosen stochastic basis this addresses smoothness
both with respect to the continuous part of our Lévy process in terms of the
classical Malliavin derivative for Hilbert space valued random variables, as well
as with respect to the pure jump component for which it takes the form of an
increment quotient operator related to the Picard di�erence operator.
Keywords: backward stochastic di�erential equation, time delayed generator,
Poisson random measure, Malliavin's calculus, canonical Lévy space, Picard
di�erence operator.

2



1 Introduction
Introduced in [18], backward stochastic di�erential equations have been thoroughly
studied in the literature during the last decade, see [11] or [13] and references therein.
Viewed from the perspective of Peng who interprets their key structural feature as
a nonlinear conditional expectation, the close link to the stochastic calculus of vari-
ations or Malliavin's calculus becomes apparent. In fact, in a Clark-Ocone type
formula, the control component of the solution pair of a BSDE with a classical glob-
ally Lipschitz generator without time delay on a Gaussian basis turns out to be the
Malliavin trace of the other component, see Proposition 5.3 in [11] or Theorem 3.3.1
in [13]. Not only this observation attributes an important role to Malliavin's calculus
in the context of stochastic control theory and BSDE. As the simplest example, let
us recall that hedging strategies in complete market models corresponds to Malliavin
derivatives of wealth processes, see [15]. The �ne structure and sensitivity proper-
ties of solutions of BSDE or systems of forward and backward stochastic di�erential
equations have been approached by means of the stochastic calculus of variations
(see [2] and [1]). Let us mention that Malliavin's calculus has been applied to prove
regularity of trajectories and thus to provide a �rst numerical scheme for BSDE
with generators of quadratic growth, see for instance [14]. More generally, it has
been established as a key tool in the numerics of control theory and mathematical
�nance, for instance to enhance the convergence speed of discretization schemes for
solutions of BSDE, see [9], [16]. BSDE have proved to be an e�cient and powerful
tool in a variety of applications in stochastic control and mathematical �nance. In
all of these applications, variational smoothness of their solutions is fundamental for
describing their properties.

In this spirit, and with the aim of clarifying smoothness in the sense of the
stochastic calculus of variations and related properties of BSDE in a more general
setting, in this paper we study the equations with dynamics given for t ∈ [0, T ] by

Y (t) = ξ +

∫ T

t

f(s, Ys, Zs, Us)ds−
∫ T

t

Z(s)dW (s)−
∫ T

t

U(s, z)M̃(ds, dz).

An equation of this type will be called BSDE with time delayed generator. It is
driven by a Lévy process, the components of which are given by a Brownian mo-
tion and a Poisson random measure. In this new type of equations, a generator
f at time s depends in some measurable way on the past values of a solution
(Ys, Zs, Us) = (Y (s + u), Z(s + u), U(s + u, .))−T≤u≤0. Very recently, time delayed
BSDE driven by Brownian motion and with Lipschitz continuous generators have
been investigated for the the �rst time in [7], and in more depth in [8]. We would like
to refer the interested reader to the accompanying paper [8], where existence and
uniqueness questions are treated, and examples given in which multiple solutions
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or no solutions at all exist. Further, several solution properties are investigated,
including the comparison principle, measure solutions, the inheritance property of
boundedness from terminal condition to solution, as well as the BMO martingale
property for the control component. We would like to point out that all results from
[8] can be extended and proved in the setting of this paper.

Our main �ndings are the following. First, we prove that a unique solution ex-
ists, provided that the Lipschitz constant of the generator is su�ciently small, or the
equation is considered on a su�ciently small time horizon. This is the extension of
Theorem 2.1 from [8] to be expected. Secondly, we establish Malliavin's di�erentia-
bility of the solution of a time delayed BSDE, both with respect to the continuous
component of the Lévy process, which coincides with the classical Malliavin deriva-
tive for Hilbert-valued random variables, as well as with respect to the pure jump
part, in terms of an increment quotient operator related to Picard's di�erence op-
erator. We prove that the well-known connection between (Z, U) and the Malliavin
trace of Y still holds in the case of time delayed generators.

BSDE without time delays and driven by Poisson random measures have already
been thoroughly investigated in the literature, see [4], [5] or [21]. But contrary to the
case with a Gaussian basis, smoothness results in the sense of Malliavin's calculus
have not been established yet in a systematic way. To the best of our knowledge,
only in [6], variational di�erentiability of a solution of a forward-backward SDE with
jumps with respect to the Brownian component is considered while di�erentiability
with respect to the jump component is neglected.

This paper is structured as follows. Section 2 deals with the existence and unique-
ness problem. In Section 3 we survey concepts of the canonical Lévy space and
variational di�erentiation, and prove some technical lemmas. The main theorem
concerning Malliavin smoothness of a solution, and the interpretation of the latter
in terms of a Malliavin trace is proved in Section 4.

2 Existence and uniqueness of a solution
We consider a probability space (Ω,F ,P) with a �ltration F = (Ft)0≤t≤T , where
T < ∞ is a �nite time horizon. We assume that the �ltration F is the natural
�ltration generated by a Lévy process L := (L(t), 0 ≤ t ≤ T ) and that F0 contains
all sets of P-measure zero, so that the usual conditions are ful�lled. As usual, by
B(X) we denote the Borel sets of a topological space X, while λ stands for Lebesgue
measure.
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It is well-known that a Lévy process satis�es the Lévy-Itô decomposition

L(t) = at + σW (t) +

∫ t

0

∫

|z|≥1

zN(ds, dz) +

∫ t

0

∫

0<|z|<1

z(N(ds, dz)− ν(dz)ds),

for 0 ≤ t ≤ T , with a ∈ R, σ ≥ 0. Here W := (W (t), 0 ≤ t ≤ T ) denotes a
Brownian motion and N a random measure on [0, T ]× (R−{0}), so that W and N

are independent. The random measure N

N(t, A) = ]{0 ≤ s ≤ t;4L(s) ∈ A}, 0 ≤ t ≤ T, A ∈ B(R− {0}),

counts the number of jumps of a given size. It is called Poisson random measure
since, for t ∈ [0, T ] and a Borel set A such that its closure does not contain zero,
N(t, A) is a Poisson distributed random variable. The σ-�nite measure ν, de�ned
on B(R − {0}), appears in the compensator λ ⊗ ν of the random measure N . The
compensated Poisson random measure (or martingale-valued measure) is denoted
by Ñ(t, A) = N(t, A)− tν(A), t ∈ [0, T ], A ∈ B(R−{0}). In this paper we deal with
the random measure

M̃(t, A) =

∫ t

0

∫

A

zÑ(ds, dz)

=

∫ t

0

∫

A

zN(ds, dz)−
∫ t

0

∫

A

zν(dz)ds, 0 ≤ t ≤ T, A ∈ B(R− {0}).

It can be considered as a compensated compound Poisson random measure as, for
a �xed t ∈ [0, T ] and a Borel set A the closure of which does not contain zero,∫ t

0

∫
A

zN(ds, dz) is a compound Poisson distributed random variable. Finally, we
introduce the σ-�nite measure

m(A) =

∫

A

z2ν(dz), A ∈ B(R− {0}).

For details concerning Lévy processes, Poisson random measures and integration
with respect to martingale-valued random measures we refer the reader to Chapter
2 and Chapter 4 of [3].

Let us now turn to the main subject of this paper. We study solutions (Y, Z, U) :=

(Y (t), Z(t), U(t, z))0≤t≤T,z∈(R−{0}) of a BSDE with time delayed generator, the dy-
namics of which is given by

Y (t) = ξ +

∫ T

t

f(s, Ys, Zs, Us)ds

−
∫ T

t

Z(s)dW (s)−
∫ T

t

∫

R−{0}
U(s, z)M̃(ds, dz), 0 ≤ t ≤ T. (2.1)

The generator f depends on the past values of the solution, fed back into the system
with a time delay, denoted by Ys := (Y (s + v))−T≤v≤0, Zs := (Z(s + v))−T≤v≤0 and
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Us := (U(s + v, .))−T≤v≤0, 0 ≤ s ≤ T . We always set Z(t) = U(t, .) = 0 and
Y (t) = Y (0) for t < 0. Note that the measure M̃ , not Ñ , is taken to drive the jump
noise. The reason for this is that we adopt the concepts of Malliavin calculus on the
canonical Lévy space from [22], which is formulated in terms of multiple stochastic
integrals with respect to M̃ .

We shall work with the function spaces of the following de�nition.

De�nition 2.1. 1. Let L2
−T (R) denote the space of measurable functions z :

[−T, 0] → R satisfying ∫ 0

−T

|z(t)|2dt < ∞.

2. Let L2
−T,m(R) denote the space of product measurable functions u : [−T, 0] ×

(R− {0}) → R satisfying
∫ 0

−T

∫

R−{0}
|u(t, z)|2m(dz)dt < ∞.

3. Let L∞−T (R) denote the space of bounded, measurable functions y : [−T, 0] → R
such that

sup
t∈[−T,0]

∣∣y(t)
∣∣2 < ∞.

4. Let L2(R) denote the space of FT -measurable random variables ξ : Ω → R
which ful�ll

E
[∣∣ξ

∣∣2] < ∞.

5. Let H2
T (R) denote the space of predictable processes Z : Ω × [0, T ] → R such

that
E

[ ∫ T

0

∣∣Z(t)
∣∣2dt

]
< ∞.

6. Let H2
T,m(R) denote the space of predictable processes U : Ω × [0, T ] × (R −

{0}) → R satisfying

E
[ ∫ T

0

∫

R−{0}

∣∣U(t, z)
∣∣2m(dz)dt

]
< ∞.

7. Finally, let S2
T (R) denote the space of F-adapted, product measurable processes

Y : Ω× [0, T ] → R satisfying

E
[

sup
t∈[0,T ]

∣∣Y (t)
∣∣2] < ∞.
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The spaces H2
T (R),H2

T,m(R) and S2
T (R) are endowed with the norms

∥∥Z
∥∥2

H2
T

= E
[ ∫ T

0

eβt
∣∣Z(t)

∣∣2dt
]
,

∥∥U
∥∥2

H2
T,m

= E
[ ∫ T

0

∫

R−{0}
eβt

∣∣U(t, z)
∣∣2m(dz)dt

]
,

∥∥Y
∥∥2

S2T
= E

[
sup

t∈[0,T ]

eβt
∣∣Y (t)

∣∣2],

with some β > 0.

Predictability of Z means measurability with respect to the predictable σ-algebra,
which we denote by P , while predictability of U means measurability with respect to
the product P⊗B(R−{0}). In the sequel let us simply write S2(R)×H2(R)×H2

m(R)

instead of S2
T (R)×H2

T (R)×H2
T,m(R).

We start with establishing existence and uniqueness of a solution of (2.1) under
the following hypotheses:

(A1) the terminal value ξ ∈ L2(R),

(A2) m is a �nite measure, i.e.
∫
R−{0} z2ν(dz) < ∞,

(A3) the generator f : Ω × [0, T ] × L∞−T (R) × L2
−T (R) × L2

−T,m(R) → R is prod-
uct measurable, F-adapted and Lipschitz continuous in the sense that for a
probability measure α on ([−T, 0],B([−T, 0])) and with a constant K > 0

|f(ω, t, yt, zt, ut)− f(ω, t, ỹt, z̃t, ũt)|2

≤ K
( ∫ 0

−T

|y(t + v)− ỹ(t + v)|2α(dv) +

∫ 0

−T

|z(t + v)− z̃(t + v)|2α(dv)

+

∫ 0

−T

∫

R−{0}
|u(t + v, z)− ũ(t + v, z)|2m(dz)α(dv)

)
,

holds for P⊗λ-a.e. (ω, t) ∈ Ω× [0, T ], for any (yt, zt, ut), (ỹt, z̃t, ũt) ∈ L∞−T (R)×
L2
−T (R)× L2

−T,m(R),

(A4) E
[ ∫ T

0
|f(t, 0, 0, 0)|2dt

]
< ∞,

(A5) f(ω, t, ., ., .) = 0 for ω ∈ Ω, t < 0.

For convenience, in the notation of f the dependence on ω is omitted and we write
f(t, ., ., .) for f(ω, t, ., ., .) etc. We remark that f(t, 0, 0, 0) in (A4) should be under-
stood as the value of the generator f(t, yt, zt, ut) at yt = zt = ut = 0. We would
like to point out that assumption (A5) in fact allows us to take Y (t) = Y (0) and
Z(t) = U(t, .) = 0 for t < 0 as a solution of (2.1). Finally, let us recall that under
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(A2) and for an integrand U ∈ H2
m(R), the stochastic integral with respect to the

martingale-valued measure M̃
∫ t

0

∫

R−{0}
U(s, z)M̃(ds, dz), 0 ≤ t ≤ T,

is well-de�ned in the Itô sense, see Chapter 4.1 in [3].
First let us notice that for (Y, Z, U) ∈ S2(R)×H2(R)×H2

m(R) the generator is
well-de�ned and integrable as a consequence of

∫ T

0

|f(t, Yt, Zt, Ut)|2dt ≤ 2

∫ T

0

|f(t, 0, 0, 0)|2dt + 2K(

∫ T

0

∫ 0

−T

|Y (t + v)|2α(dv)dt

+

∫ T

0

∫ 0

−T

|Z(t + v)|2α(dv)dt +

∫ T

0

∫ 0

−T

∫

R−{0}
|U(t + v, z)|2m(dz)α(dv)dt)

= 2

∫ T

0

|f(t, 0, 0, 0)|2dt + 2K

∫ 0

−T

∫ T+v

v

|Y (w)|2dwα(dv)

+2K

∫ 0

−T

∫ T+v

v

|Z(w)|2dwα(dv)

+2K

∫ 0

−T

∫ T+v

v

∫

R−{0}
|U(w, z)|2m(dz)dwα(dv)

≤ 2

∫ T

0

|f(t, 0, 0, 0)|2dt + 2K
(
T sup

w∈[0,T ]

|Y (w)|2

+

∫ T

0

|Z(w)|2dw +

∫ T

0

∫

R−{0}
|U(w, z)|2m(dz)dw

)
< ∞, P− a.s., (2.2)

where we apply (A3), Fubini's theorem, use the assumption that Z(t) = U(t, .) = 0

and Y (t) = Y (0) for t < 0 and the fact that the measure α is a probability measure.
The main theorem of this section is an extension of Theorem 2.1 from [8]. Al-

though the extension is quite natural, the proof is given for completeness and con-
venience of the reader. The key result follows from the following a priori estimates.

Lemma 2.1. Let (Y, Z, U), (Ỹ , Z̃, Ũ) ∈ S2(R)×H2(R)×H2
m(R) denote solutions of

(2.1) with corresponding parameters (ξ, f) and (ξ̃, f̃) which satisfy the assumptions
(A1)-(A5). Then the following inequalities hold

‖Z − Z̃‖2
H2 + ‖U − Ũ‖2

H2
m

≤ eβTE
[∣∣ξ − ξ̃

∣∣2] +
1

β
E

[ ∫ T

0

eβt|f(t, Yt, Zt, Ut)− f̃(t, Ỹt, Z̃t, Ũt)|2dt
]
, (2.3)

‖Y − Ỹ ‖2
S2 (2.4)

≤ 8eβTE
[∣∣ξ − ξ̃

∣∣2] + 8TE
[ ∫ T

0

eβt|f(t, Yt, Zt, Ut)− f̃(t, Ỹt, Z̃t, Ũt)|2dt
]
.
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Proof:
The inequality (2.3) follows by a straightforward extension of Lemma 3.2.1 from
[13], by only adding an additional stochastic integral with respect to M̃ . In order to
prove the second inequality, �rst notice that for t ∈ [0, T ]

Y (t)− Ỹ (t) = E
[
ξ − ξ̃ +

∫ T

t

(f(s, Ys, Zs, Us)− f̃(s, Ỹs, Z̃s, Ũs))ds|Ft

]
,

and

e
β
2
t|Y (t)− Ỹ (t)|

≤ e
β
2
TE

[∣∣ξ − ξ̃
∣∣|Ft

]
+ E

[ ∫ T

0

e
β
2
s|f(s, Ys, Zs, Us)− f̃(s, Ỹs, Z̃s, Ũs)|ds|Ft

]
,

hold P-a.s.. Doob's martingale inequality and Cauchy-Schwarz' inequality yield the
second estimate. The reader may also consult Proposition 2.2 in [4] or Proposition
3.3 in [5], where similar estimates for BSDE with jumps are derived. ¤

Theorem 2.1. Assume that (A1)-(A5) hold. For a su�ciently small time horizon
T or for a su�ciently small Lipschitz constant K of the generator f , more precisely
if for some β > 0

δ(T, K, β, α) := (8T +
1

β
)K

∫ 0

−T

e−βvα(dv) max{1, T} < 1,

the backward stochastic di�erential equation (2.1) has a unique solution (Y, Z, U) ∈
S2(R)×H2(R)×H2

m(R).

Proof:
We follow the classical Picard type iteration scheme (see Theorem 2.1 in [11] or
Theorem 3.2.1 in [13]) to prove existence and uniqueness of a solution.

Let Y 0(t) = Z0(t) = U0(t, z) = 0, (t, z) ∈ [0, T ]× (R− {0}).
Step 1) We show that the recursive de�nition

Y n+1(t) = ξ +

∫ T

t

f(s, Y n
s , Zn

s , Un
s )ds

−
∫ T

t

Zn+1(s)dW (s)−
∫ T

t

∫

R−{0}
Un+1(s, z)M̃(ds, dz), 0 ≤ t ≤ T, (2.5)

makes sense. More precisely, we show that given (Y n, Zn, Un) ∈ S2(R) × H2(R) ×
H2

m(R), equation (2.5) has a unique solution (Y n+1, Zn+1, Un+1) ∈ S2(R)×H2(R)×
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H2
m(R).

Applying inequality (2.2), we can conclude that

E
[ ∫ T

0

|f(t, Y n
t , Zn

t , Un
t )|2dt

] ≤ 2E
[ ∫ T

0

|f(t, 0, 0, 0)|2dt
]

+2K
(
T‖Y n‖S2 + ‖Zn‖H2 + ‖Un‖H2

m

)
< ∞.

As in the case of BSDE without time delays, the martingale representation, see The-
orem 13.49 in [12], provides a unique process Zn+1 ∈ H2(R) and a unique predictable
process Ūn+1 satisfying

E
[ ∫ T

0

∫

R−{0}
|Ūn+1(t, z)|2ν(dz)dt

]
< ∞,

so that

ξ +

∫ T

0

f(t, Y n
t , Zn

t , Un
t )dt = E

[
ξ +

∫ T

0

f(t, Y n
t , Zn

t , Un
t )dt

]

+

∫ T

0

Zn+1(t)dW (t) +

∫ T

0

∫

R−{0}
Ūn+1(t, z)Ñ(dt, dz), P− a.s.

For (t, z) ∈ [0, T ] × (R − {0}) we get Un+1(t, z) = Ūn+1(t,z)
z

∈ H2
m(R), and have the

required representation

ξ +

∫ T

0

f(t, Y n
t , Zn

t , Un
t )dt = E

[
ξ +

∫ T

0

f(t, Y n
t , Zn

t , Un
t )dt

]

+

∫ T

0

Zn+1(t)dW (t) +

∫ T

0

∫

R−{0}
Un+1(t, z)(t)M̃(dt, dz), P− a.s..

Finally, we take Y n+1 as a progressively measurable, càdlàg modi�cation of

Y n+1(t)(ω) = E
[
ξ +

∫ T

t

f(s, Y n
s , Zn

s , Un
s ))ds|Ft

]
, ω ∈ Ω, t ∈ [0, T ].

Similarly as in Lemma 2.1, Doob's martingale inequality, Cauchy-Schwarz' inequal-
ity and the estimates (2.2) yield that Y n+1 ∈ S2(R).

Step 2) We prove the convergence of the sequence (Y n, Zn, Un) in S2(R)×H2(R)×
H2

m(R).
The estimates (2.3) and (2.4) provide the inequality

∥∥Y n+1 − Y n
∥∥2

S2 +
∥∥Zn+1 − Zn

∥∥2

H2 +
∥∥Un+1 − Un

∥∥2

H2
m

≤ (8T +
1

β
)E

[ ∫ T

0

eβt|f(t, Y n
t , Zn

t , Un
t )− f(t, Y n−1

t , Zn−1
t , Un−1

t )|2dt
]
. (2.6)
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By applying the Lipschitz condition (A3), Fubini's theorem, changing variables and
using the assumption ∀n ≥ 0 Y n(s) = Y n(0) and Zn(s) = Un(s, .) = 0 for s < 0, we
can derive

E
[ ∫ T

0

eβt|f(t, Y n
t , Zn

t , Un
t )− f(t, Y n−1

t , Zn−1
t , Un−1

t )|2dt
]

≤ KE
[ ∫ T

0

eβt

∫ 0

−T

|Y n(t + v)− Y n−1(t + v)|2α(dv)dt

+

∫ T

0

eβt

∫ 0

−T

|Zn(t + v)− Zn−1(t + v)|2α(dv)dt

+

∫ T

0

eβt

∫ 0

−T

∫

R−{0}
|Un(t + v, z)− Un−1(t + v, z)|2m(dz)α(dv)dt

]

= KE
[ ∫ 0

−T

e−βv

∫ T

0

eβ(t+v)|Y n(t + v)− Y n−1(t + v)|2dtα(dv)

+

∫ 0

−T

e−βv

∫ T

0

eβ(t+v)|Zn(t + v)− Zn−1(t + v)|2dtα(dv)

+

∫ 0

−T

e−βv

∫ T

0

∫

R−{0}
eβ(t+v)|Un(t + v, z)− Un−1(t + v, z)|2m(dz)dtα(dv)

]

= KE
[ ∫ 0

−T

e−βv

∫ T+v

v

eβw|Y n(w)− Y n−1(w)|2dwα(dv)

+

∫ 0

−T

e−βv

∫ T+v

v

eβw|Zn(w)− Zn−1(w)|2dwα(dv)

+

∫ 0

−T

e−βv

∫ T+v

v

∫

R−{0}
eβw|Un(w, z)− Un−1(w, z)|2m(dz)dwα(dv)

]

≤ K

∫ 0

−T

e−βvα(dv)
(
T

∥∥Y n − Y n−1
∥∥2

S2 +
∥∥Zn − Zn−1

∥∥2

H2 +
∥∥Un − Un−1

∥∥2

H2
m

)
.

(2.7)

From (2.6) and (2.7), we obtain
∥∥Y n+1 − Y n

∥∥2

S2 +
∥∥Zn+1 − Zn

∥∥2

H2 +
∥∥Un+1 − Un

∥∥2

H2
m

≤ δ(T, K, β, α)
(∥∥Y n − Y n−1

∥∥2

S2 +
∥∥Zn − Zn−1

∥∥2

H2 +
∥∥Un − Un−1

∥∥2

H2
m
),(2.8)

with
δ(T, K, β, α) = (8T +

1

β
)K

∫ 0

−T

e−βvα(dv) max{1, T}.

For β = 1
T
we have

δ(T, K, β, α) ≤ 9TKe max{1, T}.

For su�ciently small T or su�ciently small K, the inequality (2.8) provides a unique
limit (Y, Z, U) ∈ S2(R)×H2(R)×H2

m(R) of the converging sequence (Y n, Zn, Un)n∈N,
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which satis�es the �xed point equation

Y (t) = E
[
ξ +

∫ T

t

f(s, Ys, Zs, Us)ds|Ft

]
, P− a.s., 0 ≤ t ≤ T.

Step 3) We de�ne the solution component Ȳ of (4.1) as a progressively measurable,
càdlàg modi�cation of

Ȳ (t)(ω) = E
[
ξ +

∫ T

t

f(s, Ys, Zs, Us)ds|Ft

]
, ω ∈ Ω, t ∈ [0, T ],

where (Y, Z, U) is the limit constructed in Step 2). ¤

We point out that in general under the assumptions (A1)-(A5), existence and
uniqueness may fail to hold for bigger time horizon T or bigger Lipschitz constant
K. See [8] for examples. However, for some special classes of generators existence
and uniqueness may be proved for an arbitrary time horizon and for arbitrary global
Lipschitz constants. These include generators independent of y with a delay measure
α supported on [−γ, 0] with a su�ciently small time delay γ, following Theorem 2.2
in [8], or generators considered in [7] consisting of separate components in z and u,
following Theorem 1 in [7].

3 Malliavin's calculus for canonical Lévy processes
There are various ways to develop Malliavin's calculus for Lévy processes. In this
paper we adopt the approach from [22] based on a chaos decomposition in terms of
multiple stochastic integrals with respect to the random measure M̃ . In this setting,
we will construct a suitable canonical space, on which a variational derivative with
respect to the pure jump part of a Lévy process can be computed in a pathwise
sense.

In this section we give an overview of the approach of Malliavin's calculus on
canonical Lévy space according to [22] (see [22] for details). We then prove some
technical results concerning the commutation of integration and variational di�er-
entiation, which are needed in the next section.

We assume that the probability space (Ω,F ,P) is the product of two canonical
spaces (ΩW×ΩN ,FW×FN ,PW×PN), and the �ltration F = (Ft)t∈[0,T ] the canonical
�ltration completed for P. The space (ΩW ,FW ,PW ) is the usual canonical space for a
one-dimensional Brownian motion, with the space of continuous functions on [0, T ],
the σ-algebra generated by the topology of uniform convergence and Wiener mea-
sure. The canonical representation for a pure jump Lévy process (ΩN ,FN ,PN) we
use is based on a �xed partition (Sk)k≥1 of R−{0} such that 0 < ν(Sk) < ∞, k ≥ 1.

12



Accordingly, it is given by the product space
⊗

k≥1(Ω
k
N ,Fk

N ,Pk
N) of spaces of com-

pound Poisson processes on [0, T ] with intensities ν(Sk) and jump size distribu-
tions supported on Sk, k ≥ 1. Since trajectories of compound Poisson processes
can be described by �nite families ((t1, z1), ..., (tn, zn)), where (t1, ..., tn) denotes
the jump times and (z1, ..., zn) the corresponding sizes of jumps, one can take
Ωk

N =
⋃

n≥0([0, T ] × (R − {0}))n, with ([0, T ] × (R − {0})0 representing an empty
sequence, the σ-algebra Fk

N =
∨

n≥0 B(([0, T ] × (R − {0}))n), and the measure Pk
N

de�ned in such a way that for B = ∪n≥0Bn, Bn ∈ B(([0, T ]× (R− {0}))n), we have

Pk
N(B) = e−ν(Sk)T

∞∑
n=0

(ν(Sk))
n(dt⊗ ν1{Sk}

ν(Sk)
)⊗n(Bn)

n!
.

Now consider the �nite measure q de�ned on [0, T ]× R by

q(E) =

∫

E(0)

dt +

∫

E′
z2ν(dz)dt, E ∈ B([0, T ]× R),

where E(0) = {t ∈ [0, T ]; (t, 0) ∈ E} and E ′ = E − E(0), and the random measure
Q on [0, T ]× R

Q(E) =

∫

E(0)

dW (t) +

∫

E′
zÑ(dt, dz), E ∈ B([0, T ]× R).

For n ∈ N and a simple function hn = 1E1×...×En , with pairwise disjoints sets
E1, ..., En ∈ B([0, T ] × R), a multiple two-parameter integral with respect to the
random measure Q

In(hn) =

∫

([0,T ]×R)n

h((t1, z1), ...(tn, zn))Q(dt1, dz1) · ... ·Q(dtn, dzn)

can be de�ned as

In(hn) = Q(E1)...Q(En).

The integral can be extended to the space L2
T,q,n(R) of product measurable, deter-

ministic functions h : ([0, T ]× R)n → R satisfying

‖h‖2
L2

T,q,n
=

∫

([0,T ]×R)n

|hn((t1, z1), ..., (tn, zn))|2q(dt1, dz1) · ... · q(dtn, dzn) < ∞.

The chaotic decomposition property yields that any F -measurable square integrable
random variable H on the canonical space has a unique representation

H =
∞∑

n=0

In(hn), P− a.s., (3.1)
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with functions hn ∈ L2
T,q,n(R) that are symmetric in the n pairs (ti, zi), 1 ≤ i ≤ n.

Moreover,

E
[
H2

]
=

∞∑
n=0

n!‖hn‖2
L2

T,q,n
. (3.2)

In this setting it is possible to study two-parameter annihilation operators (Malliavin
derivatives) and creation operators (Skorokhod integrals).

De�nition 3.1. 1. Let D1,2(R) denote the space of F-measurable random vari-
ables H ∈ L2(R) with the representation H =

∑∞
n=0 In(hn) satisfying

∞∑
n=1

nn!‖hn‖2
L2

T,q,n
< ∞.

2. The Malliavin derivative DH : Ω × [0, T ] × R → R of a random variable
H ∈ D1,2(R) is a stochastic process de�ned by

Dt,zH =
∞∑

n=1

nIn−1(hn((t, z), ·), valid for q − a.e.(t, z) ∈ [0, T ]× R,P− a.s..

3. Let L1,2(R) denote the space of product measurable and F-adapted processes
G : Ω× [0, T ]× R→ R satisfying

E
[ ∫

[0,T ]×R |G(s, y)|2q(ds, dy)
]

< ∞,

G(s, y) ∈ D1,2(R), for q − a.e.(s, y) ∈ [0, T ]× R,

E
[ ∫

([0,T ]×R)2
|Dt,zG(s, y)|2q(ds, dy)q(dt, dz)

]
< ∞.

In terms of the components of the representation of G(s, y) =
∑∞

n=0 In(gn((s, y), .),
for q-a.e. (s, y) ∈ [0, T ]× R, the above conditions are equivalent to

∞∑
n=1

(n + 1)(n + 1)!‖ĝn‖2
L2

T,q,n+1
< ∞,

where ĝn denotes the symmetrization of gn with respect to all n + 1 pairs of
variables.
The space L1,2(R) is a Hilbert space endowed with the norm

||G||2L1,2 = E
[ ∫

[0,T ]×R
|G(s, y)|2q(ds, dy)

]

+E
[ ∫

([0,T ]×R)2
|Dt,zG(s, y)|2q(ds, dy)q(dt, dz)

]
.
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4. The Skorokhod integral with respect to the random measure Q of a process
G : Ω× [0, T ]×R→ R with the representation G(s, y) =

∑∞
n=0 In(gn((s, y), .),

for q − a.e.(s, y) ∈ [0, T ]× R, satisfying
∞∑

n=0

(n + 1)!‖ĝn‖2
L2

T,q,n+1
< ∞,

is de�ned as
∫

[0,T ]×R
G(s, y)Q(ds, dy) =

∞∑
n=0

In+1(ĝn+1), P− a.s.

The following practical rules of di�erentiation hold. Consider a random variable
H de�ned on ΩW×ΩN . The derivative Dt,0H is with respect to the Brownian motion
component of the Lévy process, and we can apply classical Malliavin's calculus for
Hilbert space-valued random variables. If for PN -a.e. ωN ∈ ΩN the random variable
H(., ωN) is di�erentiable in the sense of classical Malliavin's calculus, then we have
the relation

Dt,0H(ωW , ωN) = DtH(., ωN)(ωW ), λ− a.e.t ∈ [0, T ],PW × PN − a.s., (3.3)

where Dt denotes the classical Malliavin derivative on the canonical Brownian space,
see Proposition 3.5 in [22]. In order to de�ne Dt,zF for z 6= 0, which is a derivative
with respect to the pure jump part of the Lévy process, consider the following
increment quotient operator

Ψt,zH(ωW , ωN) =
H(ωW , ωt,z

N )−H(ωW , ωN)

z
, (3.4)

where ωt,z
N transforms a family ωN = ((t1, z1), (t2, z2), ...)) ∈ ΩN into a new family

ωt,z
N = ((t, z), (t1, z1), (t2, z2), ...)) ∈ ΩN , by adding a jump of size z at time t into the

trajectory. According to Propositions 5.4 and 5.5 in [22], for H ∈ L2(R) such that
E

[ ∫ T

0

∫
R−{0}

∣∣Ψt,zH
∣∣2m(dz)dt

]
< ∞ we have the relation

Dt,zH = Ψt,zH, for λ⊗m− a.e.(t, z) ∈ [0, T ]× (R− {0}),P− a.s.. (3.5)

The operator (3.4) is closely related to Picard's di�erence operator, introduced
in [19], which is just the numerator of (3.4). It is possible to de�ne Malliavin's
derivative for pure jump processes in such a way that it coincides with Picard's
di�erence operator, see [10]. We point out once again that we adopt the approach of
[22], and de�ne multiple two-parameter integrals with respect to the random measure
M̃ and not with respect to Ñ , to obtain di�erentiation rules (3.3) and (3.5).

We now discuss some technical problems arising in the next section in the context
of the main theorem of this paper. The subsequent lemmas are extensions of classical
Malliavin di�erentiation rules to the setting of the canonical Lévy space.
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Lemma 3.1. Assume that H ∈ D1,2(R). Then, for 0 ≤ s ≤ T , E
[
H|Fs

] ∈ D1,2(R)

and

Dt,zE
[
H|Fs

]
= E

[
Dt,zH|Fs

]
1{t ≤ s}, for q − a.e.(t, z) ∈ [0, T ]× R,P− a.s..

Proof:
The proof is a straightforward extension of the proof of Proposition 1.2.8 from [17].
Details are left to the reader. ¤

We next provide a proof of the commutation of Lebesgue's integration and vari-
ational di�erentiability, which is commonly used.

Lemma 3.2. Let G : Ω × [0, T ] × R → R be a product measurable and F-adapted
process, η on [0, T ]× R a �nite measure, so that the conditions

E
[ ∫

[0,T ]×R |G(s, y)|2η(ds, dy)
]

< ∞,

G(s, y) ∈ D1,2(R), for η − a.e.(s, y) ∈ [0, T ]× R, (3.6)
E

[ ∫
([0,T ]×R)2

|Dt,zG(s, y)|2η(ds, dy)q(dt, dz)
]

< ∞.

are satis�ed. Then
∫
[0,T ]×RG(s, y)η(ds, dy) ∈ D1,2(R) and the di�erentiation rule

Dt,z

∫

[0,T ]×R
G(s, y)η(ds, dy) =

∫

[0,T ]×R
Dt,zG(s, y)η(ds, dy)

holds for q-a.e. (t, z) ∈ [0, T ]× R,P-a.s..

Proof:
As for η-a.e. (s, y) ∈ [0, T ] × R the random variable G(s, y) is Fs-measurable and
square integrable, the chaotic decomposition property on the canonical space (3.1)
provides a unique representation

G(s, y) =
∞∑

n=0

In(gn((s, y), .)), η − a.e.(s, y) ∈ [0, T ]× R, P− a.s..

By part 3 of de�nition 3.1, the assumptions (3.6) yield
∫

[0,T ]×R

∞∑
n=1

nn!‖gn((s, y), .)‖2
L2

T,q,n
η(ds, dy) < ∞. (3.7)

For N ∈ N let GN be a measurable version of the partial sum of the �rst N + 1

components given by

GN(s, y) =
N∑

n=0

In(gn((s, y), .)), η − a.e.(s, y) ∈ [0, T ]× R, P− a.s..
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We �rst prove that
∫
[0,T ]×RGN(s, y)η(ds, dy) ∈ D1,2(R) and the claimed di�erentia-

tion rule holds.
By canonical extension arguments, a Fubini type property holds for any single chaos
component, and therefore∫

[0,T ]×R
GN(s, y)η(ds, dy)

=

∫

[0,T ]×R

N∑
n=0

∫

([0,T ]×R)n

gn((s, y), (t1, z1), ..., (tn, zn))

·Q(dt1, dz1)...Q(dtn, dzn)η(ds, dy)

=
N∑

n=0

∫

([0,T ]×R)n

∫

[0,T ]×R
gn((s, y), (t1, z1), ..., (tn, zn))

·η(ds, dy)Q(dt1, dz1)...Q(dtn, dzn) =
N∑

n=0

In(hn) := HN , (3.8)

with

hn((t1, z1), ..., (tn, zn)) =

∫

[0,T ]×R
gn((s, y), (t1, z1), ..., (tn, zn))η(ds, dy)

for (t1, z1), ..., (tn, zn) ∈ ([0, T ] × (R \ {0}))n. Notice that by Cauchy-Schwarz' in-
equality, �niteness of η, the assumption (3.7) and Fubini's theorem we obtain

∞∑
n=1

nn!‖hn‖2
L2

T,,q,n
< ∞. (3.9)

For any N ∈ N, moreover, HN ∈ D1,2(R), hence
∫

[0,T ]×RGN(s, y)η(ds, dy) ∈ D1,2(R),
and, by linearity and de�nition

Dt,zH
N = Dt,z

∫

[0,T ]×R
GN(s, y)η(ds, dy)

=
N∑

n=1

n

∫

[0,T ]×R
gn((s, y), (t, z), (t2, z2, )..., (tn, zn))η(ds, dy)Q(dt2, dz2)...Q(dtn, dzn)

=

∫

[0,T ]×R

N∑
n=1

ngn((s, y), (t, z), (t2, z2, )..., (tn, zn))Q(dt2, dz2)...Q(dtn, dzn)η(ds, dy)

=

∫

[0,T ]×R
Dt,zG

N(s, y)η(ds, dy), q − a.e.(t, z) ∈ [0, T ]× R.

The di�erentiation rule is proved for GN .
Finally, by (3.9) we have

E
[|HN −HM |2] +

∫

[0,T ]×R
E

[|Dt,zH
N −Dt,zH

M |2]q(dt, dz)

≤
M∑

n=N+1

nn!‖hn‖2
L2

T,q,n
→ 0, N, M →∞.
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By closeability of the operator D we conclude that the unique limit H is Malliavin
di�erentiable. The convergences GN → G P⊗ η-a.e. and DGN → DG P⊗ η⊗ q-a.e.
together with Lebesgue's dominated convergence theorem, justi�ed by the �rst and
third assumption in (3.6), give

E
[|

∫

[0,T ]×R
GN(s, y)η(ds, dy)−

∫

[0,T ]×R
G(s, y)η(ds, dy)|2]

+

∫

[0,T ]×R
E

[|
∫

[0,T ]×R
Dt,zG

N(s, y)η(ds, dy)−
∫

[0,T ]×R
Dt,zG(s, y)η(ds, dy)|2]q(dt, dz) → 0.

This implies the claimed equation. ¤

We �nally discuss the commutation relation of the Skorokhod stochastic integral
with the variational derivative.

Lemma 3.3. Assume that G : Ω × [0, T ] × R → R is a predictable process and
E

[ ∫
[0,T ]×R |G(s, y)|2q(ds, dy)

]
< ∞ holds. Then

G ∈ L1,2(R) if and only if
∫
[0,T ]×RG(s, y)Q(ds, dy) ∈ D1,2(R).

Moreover, if
∫

[0,T ]×RG(s, y)Q(ds, dy) ∈ D1,2(R) then, for q-a.e (t, z) ∈ [0, T ]× R,

Dt,z

∫

[0,T ]×R
G(s, y)Q(ds, dy) = G(t, z) +

∫

[0,T ]×R
Dt,zG(s, y)Q(ds, dy), P− a.s.,

and
∫
[0,T ]×RDt,zG(s, y)Q(ds, dy) is a stochastic integral in Itô sense.

Proof:
By square integrability of G, for q-a.e (s, y) ∈ [0, T ] × R, the chaotic decomposi-
tion property yields the unique representation G(s, y) =

∑∞
n=0 In(gn((s, y), .), gn ∈

L2
T,q,n+1, n ≥ 0. Square integrability and predictability of G implies that the stochas-

tic integral
∫

[0,T ]×RG(s, y)Q(ds, dy) is well-de�ned in the Itô sense and the Skorokhod
integral, which coincides under the given assumptions with the Itô integral (see The-
orem 6.1 in [22]) can be de�ned by the series expansion

∫
[0,T ]×RG(s, y)Q(ds, dy) =∑∞

n=0 In+1(ĝn) according to De�nition 3.1.4. The Skorokhod integral is Malliavin
di�erentiable if and only if

∑∞
n=1(n + 1)(n + 1)!‖ĝn‖2

L2
T,q,n+1

< ∞, see De�nition
3.1.2. This series converges if and only if G ∈ L1,2(R), by De�nition 3.1.3.
Following Section 6 in [22], we can conclude that the required di�erentiation rule
holds. To prove that the integral

∫
[0,T ]×RDt,zG(s, y)Q(ds, dy) is well-de�ned in the

Itô sense, it is su�cient to show that the integrand (ω, s, y) 7→ Dt,zG(s, y)(ω) is a
predictable mapping on Ω× [0, T ]×R, as square integrability is already satis�ed by
G ∈ L1,2(R). For q-a.e. (s, y) ∈ [0, T ]× R, predictability of G implies that

G(s, y) =
∞∑

n=0

In(gn((s, y), .) =
∞∑

n=0

In(gn((s, y), .)1⊗n
[0,s)(.)), P− a.s.,
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and applying De�nition 3.1.2 of the Malliavin derivative yields

Dt,zG(s, y) =
∞∑

n=0

nIn−1(gn((s, y), (t, z), .)1⊗n
[0,s)((t, z), .)),

for q ⊗ q − a.e.((t, z), (s, y)) ∈ ([0, T ]× R)2,P− a.s.,

from which the required predictability of the integrand follows. As a by-product, let
us note that (ω, s, y, t, z) 7→ Dt,zG(s, y)(ω) is jointly measurable. ¤

4 Variational di�erentiability of a solution
The main goal of this paper is to investigate Malliavin's di�erentiability of a solution
of a backward stochastic di�erential equation with a time delayed generator. In this
section, additionally to (A1)-(A5), we assume that

(A6) the generator f is of the following form

f(t, yt, zt, ut)

:= f
(
ω, t,

∫ 0

−T

y(t + v)α(dv),

∫ 0

−T

z(t + v)α(dv)

∫ 0

−T

∫

R−{0}
u(t + v, z)m(dz)α(dv)

)
,

with a product measurable function f : Ω× [0, T ]×R×R×R→ R, which is
Lipschitz continuous in the last three variables for P⊗λ-a.e. (ω, t) ∈ Ω× [0, T ],
more precisely the generator satis�es (A3) with the same constant K,

(A7) the terminal value is Malliavin di�erentiable, i.e. ξ ∈ D1,2(R), and

E
[ ∫

[0,T ]×R
|Ds,zξ|2q(ds, dz)

]
< ∞,

lim
ε↓0
E

[ ∫ T

0

∫

|z|≤ε

|Ds,zξ|2m(dz)ds
]

= 0,

(A8) for P ⊗ λ-a.e. (ω, t) ∈ Ω × [0, T ], the mapping (y, z, u) 7→ f(ω, t, y, z, u)

is continuously di�erentiable in (y, z, u), with uniformly bounded and con-
tinuous partial derivatives fy, fz, fu; we set fy(ω, t, ., ., .) = fz(ω, t, ., ., .) =

fu(ω, t, ., ., .) = 0 for ω ∈ Ω, t < 0;
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(A9) for (t, y, z, u) ∈ [0, T ]× R× R× R we have f(·, t, y, z, u) ∈ D1,2(R) and

E
[ ∫

[0,T ]×R

∫ T

0

∣∣Ds,zf(·, t, 0, 0, 0)
∣∣2dt q(ds, dy)

]
< ∞,

∣∣Ds,zf(ω, t, ŷ, ẑ, û)−
∣∣Ds,zf(ω, t, ỹ, z̃, ũ

)∣∣
≤ L

(|ŷ − ỹ|+ |ẑ − z̃|+ |û− ũ|),

(s, z) ∈ [0, T ]× R, (ŷ, ẑ, û) ∈ R× R× R, (ỹ, z̃, ũ) ∈ R× R× R, for P⊗ λ-a.e.
(ω, t) ∈ Ω× [0, T ].

The assumptions (A7)-(A9) are classical when dealing with Malliavin's di�erentia-
bility, see Proposition 5.3 in [11] and Theorem 3.3.1 in [13] in the case of BSDEs
driven by Brownian motions. We also remark that the generator in (A6) depends
on

∫ 0

−T

∫
R−{0} u(t + v, z)m(dz)α(dv), which corresponds to a standard form of de-

pendence appearing in BSDE without delays and with jumps, see Proposition 2.6
and Remark 2.7 in [4].

We can state our main theorem.

Theorem 4.1. Assume that (A1)-(A9) hold and that time horizon T and Lipschitz
constant K of the generator f are su�ciently small, such that for some β > 0

δ := δ(T, K, β, α) = (8T +
1

β
)K

∫ 0

−T

e−βvα(dv) max{1, T} < 1.

1. There exists a unique solution (Y, Z, U) ∈ S2(R) × H2(R) × H2
m(R) of the time

delayed BSDE

Y (t) = ξ

+

∫ T

t

f
(
ω, r,

∫ 0

−T

Y (r + v)α(dv),

∫ 0

−T

Z(r + v)α(dv),

∫ 0

−T

∫

R−{0}
U(r + v, z)m(dz)α(dv)

)
dr

−
∫ T

t

Z(r)dW (r)−
∫ T

t

∫

R−{0}
U(r, y)M̃(dr, dy), 0 ≤ t ≤ T. (4.1)

2. There exists a unique solution (Y s,0, Zs,0, U s,0) ∈ S2(R)×H2(R)×H2
m(R) of the

time delayed BSDE

Y s,0(t) = Ds,0ξ +

∫ T

t

f s,0(r)dr −
∫ T

t

Zs,0(r)dW (r)

−
∫ T

t

∫

R−{0}
U s,0(r, y)M̃(dr, dy), 0 ≤ s ≤ t ≤ T, (4.2)
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with the generator

f s,0(r)

= Dt,0f
(
ω, r,

∫ 0

−T

Y (r + v)α(dv),

∫ 0

−T

Z(r + v)α(dv),

∫ 0

−T

∫

R−{0}
U(r + v, y)m(dy)α(dv)

)

+ fy

(
ω, r,

∫ 0

−T

Y (r + v)α(dv),

∫ 0

−T

Z(r + v)α(dv),

∫ 0

−T

∫

R−{0}
U(r + v, y)m(dy)α(dv)

)

·
∫ 0

−T

Y s,0(r + v)α(dv)

+ fz

(
ω, r,

∫ 0

−T

Y (r + v)α(dv),

∫ 0

−T

Z(r + v)α(dv),

∫ 0

−T

∫

R−{0}
U(r + v, y)m(dy)α(dv)

)

·
∫ 0

−T

Zs,0(r + v)α(dv)

+ fu

(
ω, r,

∫ 0

−T

Y (r + v)α(dv),

∫ 0

−T

Z(r + v)α(dv),

∫ 0

−T

∫

R−{0}
U(r + v, y)m(dy)α(dv)

)

·
∫ 0

−T

∫

R−{0}
U s,0(r + v, y)m(dy)α(dv). (4.3)

There exists a unique solution (Y s,z, Zs,z, U s,z) ∈ S2(R) × H2(R) × H2
m(R) of the

time delayed BSDE

Y s,z(t) = Ds,zξ +

∫ T

t

f s,z(r)dr −
∫ T

t

Zs,z(r)dW (r)

−
∫ T

t

∫

R−{0}
U s,z(r, y)M̃(dr, dy), 0 ≤ s ≤ t ≤ T, z 6= 0, (4.4)
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with the generator

f s,z(r)

=

{
f
(
ωs,z, r, z

∫ 0

−T

Y s,z(r + v)α(dv) +

∫ 0

−T

Y (r + v)α(dv),

z

∫ 0

−T

Zs,z(r + v)α(dv) +

∫ 0

−T

Z(r + v)α(dv),

z

∫ 0

−T

∫

R−{0}
U s,z(r + v, y)m(dy)α(dv) +

∫ 0

−T

∫

R−{0}
U(r + v, x)m(dy)α(dv)

)

−f
(
ω, r,

∫ 0

−T

Y (r + v)α(dv),

∫ 0

−T

Z(r + v)α(dv),

∫ 0

−T

∫

R−{0}
U(r + v, y)m(dy)α(dv)

)}
/z, (4.5)

where we set

Y s,z(t) = Zs,z(t) = U s,z(t, y) = 0, (y, z) ∈ (R− {0})× R,P− a.s., t < s ≤ T.(4.6)

Then (Y, Z, U) ∈ L1,2(R)× L1,2(R)× L1,2(R) and
(Y s,z(t), Zs,z(t), U s,z(t, y))0≤s,t≤T,(y,z)∈(R−{0})×R is a version of
(Ds,zY (t), Ds,zZ(t), Ds,zU(t, y))0≤s,t≤T,(y,z)∈(R−{0})×R.

We recall that Dt,0f(r, ., ., ., .) appearing as the �rst term in (4.3) is the Malliavin
derivative of f with respect to ω, whereas ωs,z appearing in (4.5) is de�ned in (3.4).
Proof:
We follow the idea of the proofs of Proposition 5.3 in [11], or Theorem 3.3.1 in [13].
Let us denote by C a �nite constant which may change from line to line.
Step 1) Given β > 0, we prove existence of unique solutions of the equations
(4.1), (4.2) and (4.4) for a time horizon T and a Lipschitz constant K ful�lling
δ(T, K, β, α) < 1.
The existence of a unique solution (Y, Z, U) ∈ S2(R) × H2(R) × H2

m(R) of (4.1)
follows from Theorem 2.1, since the assumptions (A1)-(A5) are satis�ed. Under
the additional assumptions (A7)-(A9), the time delayed BSDE (4.2) and (4.4),
with the generators (4.3) resp. (4.5), ful�ll the conditions of Theorem 2.1. In par-
ticular the corresponding generators are Lipschitz continuous with the same Lip-
schitz constant K that the generator f possesses. It is easy to see that the gen-
erators (4.3) and (4.5) have the same Lipschitz constant K in the sense of (A3).
Hence, δ(T,K, β, α) < 1 holds simultaneously for all BSDEs (4.1), (4.2) and (4.4)
and we conclude that for q-a.e. (s, z) ∈ [0, T ] × R there exists a unique solution
(Y s,z, Zs,z, U s,z) ∈ S2(R)×H2(R)×H2

m(R) of (4.2) or (4.4) satisfying (4.6).

22



Step 2) Consider a sequence (Y n, Zn, Un)n∈N which converges to (Y, Z, U). We shall
deduce from (Y n, Zn, Un) ∈ L1,2(R) × L1,2(R) × L1,2(R) that (Y n+1, Zn+1, Un+1) ∈
L1,2(R) × L1,2(R) × L1,2(R), and that E

[ ∫
[0,T ]

supt∈[0,T ] |Ds,zY
n(t)|2q(ds, dz)

]
< ∞

implies E
[ ∫

[0,T ]×R supt∈[0,T ] |Ds,zY
n+1(t)|2q(ds, dz)

]
< ∞.

For that purpose, we study the Picard iterations

Y n+1(t) = ξ +

∫ T

t

fn(r)dr

−
∫ T

t

Zn+1(r)dW (r)−
∫ T

t

∫

R−{0}
Un+1(r, y)M̃(dr, dy), 0 ≤ t ≤ T, (4.7)

where we denote

fn(r)

= f(r,

∫ 0

−T

Y n(r + v)α(dv),

∫ 0

−T

Zn(r + v)α(dv),

∫ 0

−T

∫

R−{0}
Un(r + v, y)m(dy)α(dv)).

We �rst establish Malliavin's di�erentiability of
∫ T

t
fn(r)dr by applying Lemma 3.2.

Notice that Y n(t) ∈ D1,2(R), for λ-a.e. t ∈ [−T, T ]. Similarly to (2.2), we can derive
∫ T

0

E
[ ∫ 0

−T

|Y n(r + v)|2α(dv)
]
dr = E

[ ∫ 0

−T

∫ T

0

|Y n(r + v)|2drα(dv)
]

= E
[ ∫ 0

−T

∫ T+v

v

|Y n(w)|2dwα(dv)
] ≤ TE

[
sup

w∈[0,T ]

|Y n(w)|2)] < ∞

together with
∫ T

0

E
[ ∫

[0,T ]×R

∫ 0

−T

|Ds,zY
n(r + v)|2α(dv)q(ds, dz)

]
dr

≤ TE
[ ∫

[0,T ]×R
sup

w∈[0,T ]

|Ds,zY
n(w)|2q(ds, dz)

]
< ∞.

This provides the assumptions of Lemma 3.2, and for λ-a.e. r ∈ [0, T ] we have∫ 0

−T
Y n(r + v)α(dv) ∈ D1,2(R), and furthermore

Ds,z

∫ 0

−T

Y n(r + v)α(dv) =

∫ 0

−T

Ds,zY
n(r + v)α(dv), P− a.s.,

for q ⊗ λ-a.e. (s, z, r) ∈ [0, T ]× R× [0, T ]. In an analogous way we derive

Ds,z

∫ 0

−T

Zn(r + v)α(dv) =

∫ 0

−T

Ds,zZ
n(r + v)α(dv),

Ds,z

∫ 0

−T

∫

R−{0}
Un(r + v, y)m(dy)α(dv) =

∫ 0

−T

∫

R−{0}
Ds,zU

n(r + v, y)m(dy)α(dv),

23



holds P-a.s. for q ⊗ λ-a.e. (s, z, r) ∈ [0, T ] × R × [0, T ]. We claim that for λ-a.e.
r ∈ [0, T ] the random variable fn(r) ∈ D1,2(R) and for q ⊗ λ-a.e. (s, z, r) ∈ [0, T ]×
R× [0, T ] we have

Ds,0f
n(r)

= Dt,0f
(
·, r,

∫ 0

−T

Y n(r + v)α(dv),

∫ 0

−T

Zn(r + v)α(dv),

∫ 0

−T

∫

R−{0}
Un(r + v, y)m(dy)α(dv)

)

+ fy

(
·, r,

∫ 0

−T

Y n(r + v)α(dv),

∫ 0

−T

Zn(r + v)α(dv),

∫ 0

−T

∫

R−{0}
Un(r + v, y)m(dy)α(dv)

)

·
∫ 0

−T

Ds,0Y
n(r + v)α(dv)

+ fz

(
·, r,

∫ 0

−T

Y n(r + v)α(dv),

∫ 0

−T

Zn(r + v)α(dv),

∫ 0

−T

∫

R−{0}
Un(r + v, y)m(dy)α(dv)

)

·
∫ 0

−T

Ds,0Z
n(r + v)α(dv)

+ fu

(
·, r,

∫ 0

−T

Y n(r + v)α(dv),

∫ 0

−T

Zn(r + v)α(dv),

∫ 0

−T

∫

R−{0}
Un(r + v, y)m(dy)α(dv)

)

·
∫ 0

−T

∫

R−{0}
Ds,0U

n(r + v, y)m(dy)α(dv), (4.8)

and for z 6= 0

Ds,zf
n(r)

=

{
f
(
·s,z, r, z

∫ 0

−T

Ds,zY
n(r + v)α(dv) +

∫ 0

−T

Y n(r + v)α(dv),

z

∫ 0

−T

Ds,zZ
n(r + v)α(dv) +

∫ 0

−T

Zn(r + v)α(dv),

z

∫ 0

−T

∫

R−{0}
Ds,zU

n(r + v, y)m(dy)α(dv) +

∫ 0

−T

∫

R−{0}
Un(r + v, x)m(dy)α(dv)

)

−f
(
·, r,

∫ 0

−T

Y n(r + v)α(dv),

∫ 0

−T

Zn(r + v)α(dv),

∫ 0

−T

∫

R−{0}
Un(r + v, y)m(dy)α(dv)

)}
/z. (4.9)
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(4.8) follows from the chain rule for the operator Ds,0, as for Theorem 2 in [20],
whereas (4.9) follows from Proposition 5.5 in [22] provided that

E
[ ∫ T

0

|fn(r)|2dr
]

< ∞,

E
[ ∫ T

0

∫ T

0

∫

R−{0}
|Ds,zf

n(r)|2m(dz)dsdr
]

< ∞,

hold. The �niteness of the �rst integral is obvious. The second integral can be shown
to be �nite by applying the Lipschitz continuity of the generator (A3), the Lipschitz
continuity of the derivative of the function f with respect to ω and its square inte-
grability (A9), as well as the assumption (Y n, Zn, Un) ∈ L1,2(R)×L1,2(R)×L1,2(R).
Moreover,

E
[ ∫ T

0

∫ T

0

|Ds,0f
n(r)|2drds

]
< ∞,

and by Lemma 3.2 again we derive that for 0 ≤ t ≤ T we have ξ +
∫ T

t
fn(r)dr ∈

D1,2(R) with Malliavin derivative

Ds,zξ +

∫ T

t

Ds,zf
n(r)dr, q − a.e.(s, z) ∈ [0, T ]× R, (4.10)

where Ds,zf
n is de�ned in (4.8) and (4.9). If we combine this result with Lemma

3.1, we can conclude

Y n+1(t) = E
[
ξ +

∫ T

t

fn(r)dr|Ft

] ∈ D1,2(R), 0 ≤ t ≤ T,

and from the equation(4.7) we derive
∫ T

t

Zn+1(r)dW (r) ∈ D1,2(R), 0 ≤ t ≤ T, (4.11)

and
∫ T

t

∫

R−{0}
Un+1(r, y)M̃(dr, dy) ∈ D1,2(R), 0 ≤ t ≤ T. (4.12)

Therefore Lemma 3.3 yields (Zn+1, Un+1) ∈ L1,2(R)× L1,2(R).
This allows us to di�erentiate the recursive equation (4.7) and obtain for q-a.e.(s, z) ∈
[0, T ]× R

Ds,zY
n+1(t) = Ds,zξ +

∫ T

t

Ds,zf
n(r)dr −

∫ T

t

Ds,zZ
n+1(r)dW (r)

−
∫ T

t

∫

R−{0}
Ds,zU

n+1(r, y)M̃(dr, dy), s ≤ t ≤ T, (4.13)
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and

Ds,zY
n+1(t) = Ds,zZ

n+1(t) = Ds,zU
n+1(t, y) = 0, t < s, y ∈ (R− {0}). (4.14)

Note that the time delayed BSDE (4.13) with generator (4.8) or (4.9) ful�lls the as-
sumptions of Theorem 2.1 with zero corresponding Lipschitz constant. We conclude
that for q-a.e.(s, z) ∈ [0, T ]×R there exists a unique solution (Ds,zY

n+1, Ds,zZ
n+1, Ds,zU

n+1) ∈
S2 × H2 × H2

m of (4.13) satisfying (4.14). By applying Lemma 2.1, with ξ̃ = 0 and
f̃ = f , together with the estimate (2.7), with δ = δ(T, K, β, α) < 1 we derive the
inequality

∥∥Ds,zY
n+1

∥∥2

S2 +
∥∥Ds,zZ

n+1
∥∥2

H2 +
∥∥Ds,zU

n+1
∥∥2

H2
m

≤ 9eβTE
[|Ds,zξ|2

]
+ δ

(∥∥Ds,zY
n
∥∥2

S2 +
∥∥Ds,zZ

n
∥∥2

H2 +
∥∥Ds,zU

n
∥∥2

H2
m

)
. (4.15)

This in turn yields E
[ ∫

[0,T ]×R supt∈[0,T ] |Ds,zY
n+1(t)|2q(ds, dz)

]
< ∞, and in partic-

ular, Y n+1 ∈ L1,2(R).

Step 3) We establish the integrability of the solution Y s,z(t), Zs,z(t), U s,z(t, y) with
respect to the product measure q on ([0, T ]× R)2.
Take (s, z) ∈ [0, T ] × R. Consider the unique solution (Y s,z, Zs,z, U s,z) ∈ S2(R) ×
H2(R) × H2

m(R) of the equation (4.2) or (4.4). Lemma 2.1, with ξ̃ = 0 and f̃ = f

together with the estimates (2.7) and (2.8) yield the inequality
∥∥Y s,z

∥∥2

S2 +
∥∥Zs,z

∥∥2

H2 +
∥∥U s,z

∥∥2

H2
m

≤ 9eβTE
[|Ds,zξ|2

]
+ δ

(∥∥Y s,z
∥∥2

S2 +
∥∥Zs,z

∥∥2

H2 +
∥∥U s,z

∥∥2

H2
m

)
,

so that under δ = δ(T,K, β, α) < 1 we obtain for q-a.e. (s, z) ∈ [0, T ]× R
∥∥Y s,z

∥∥2

S2 +
∥∥Zs,z

∥∥2

H2 +
∥∥U s,z

∥∥2

H2
m
≤ CE

[|Ds,zξ|2
]
, (4.16)

and we arrive at

E
[ ∫

([0,T ]×R)2
|Y s,z(t)|2q(dt, dy)q(ds, dz)

]
< ∞,

E
[ ∫

([0,T ]×R)2
|Zs,z(t)|2q(dt, dy)q(ds, dz)

]
< ∞,

E
[ ∫

([0,T ]×R)2
|U s,z(t, y)|2q(dt, dy)q(ds, dz)

]
< ∞.

Step 4) We show convergence of (Y n, Zn, Un)n∈N in L1,2(R)× L1,2(R)× L1,2(R).
From Theorem 2.1 we already know that (Y n, Zn, Un)n∈N converges in S2(R) ×
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H2(R) × H2
m(R). We have to prove that the corresponding Malliavin derivatives

converge. The convergence

lim
n→∞

∫

[0,T ]×R

(∥∥Y s,z −Ds,zY
n+1

∥∥2

H2

+
∥∥Zs,z −Ds,zZ

n+1
∥∥2

H2 +
∥∥U s,z −Ds,zU

n+1
∥∥2

H2
m

)
q(ds, dz) = 0,

for z = 0 can be proved in the similar way as in the case of a BSDE without delay
driven by a Brownian motion, see for example Theorem 3.3.1 in [13]. We only prove
the convergence for z 6= 0.
Lemma 2.1, applied to the time delayed BSDE (4.4), and (4.13) with (4.14), yield
the inequality

∥∥Y s,z −Ds,zY
n+1

∥∥2

S2 +
∥∥Zs,z −Ds,zZ

n+1
∥∥2

H2 +
∥∥U s,z −Ds,zU

n+1
∥∥2

H2
m

≤ (8T +
1

β
)E

[ ∫ T

s

eβr|f s,z(r)−Ds,zf
n(r)|2dr], (4.17)

for q-a.e. (s, z) ∈ [0, T ]× R.
First, by the Lipschitz continuity condition (A3) for the generator f and the Lips-
chitz continuity condition (A9) for the derivative of the function f with respect to
ω we obtain for λ⊗m⊗λ-a.e. (s, z, r) ∈ [0, T ]× (R−{0})× [0, T ] the following two
estimates

|f s,z(r)−Ds,zf
n(r)|2

≤ C
( ∫ 0

−T

|Y s,z(r + v)|2α(dv) +

∫ 0

−T

|Zs,z(r + v)|2α(dv)

+

∫ 0

−T

∫

R−{0}
|U s,z(r + v, y)|2m(dy)α(dv)

∫ 0

−T

|Ds,zY
n(r + v)|2α(dv) +

∫ 0

−T

|Ds,zZ
n(r + v)|2α(dv)

+

∫ 0

−T

∫

R−{0}
|Ds,zU

n(r + v, y)|2m(dy)α(dv)

+

∫ 0

−T

|Y n(r + v)− Y (r + v)|2α(dv) +

∫ 0

−T

|Zn(r + v)− Z(r + v)|2α(dv)

+

∫ 0

−T

∫

R−{0}
|Un(r + v, y)− U(r + v, y)|2m(dy)α(dv)

)
, (4.18)
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and for any λ > 0

|f s,z(r)−Ds,zf
n(r)|2

≤ (
1 +

1

λ

)2
K

( ∫ 0

−T

|Y s,z(r + v)−Ds,zY
n(r + v)|2α(dv)

+

∫ 0

−T

|Zs,z(r + v)−Ds,zZ
n(r + v)|2α(dv)

+

∫ 0

−T

∫

R−{0}
|U s,z(r + v, y)−Ds,zU

n(r + v, y)|2m(dy)α(dv)
)

+
(
1 + λ

)(
2 +

1

λ

)
K

( ∫ 0

−T

|Y (r + v)− Y n(r + v)|2α(dv)

+

∫ 0

−T

|Z(r + v)− Zn(r + v)|2α(dv)

+

∫ 0

−T

∫

R−{0}
|U(r + v, y)− Un(r + v, y)|2m(dy)α(dv)

)
/z2. (4.19)

Note that
∫

[0,T ]×(R−{0})

(∥∥Y s,z −Ds,zY
n+1

∥∥2

S2

+
∥∥Zs,z −Ds,zZ

n+1
∥∥2

H2 +
∥∥U s,z −Ds,zU

n+1
∥∥2

H2
m

)
q(ds, dz)

= lim
ε↓0

∫ T

0

∫

|z|>ε

(∥∥Y s,z −Ds,zY
n+1

∥∥2

H2

+
∥∥Zs,z −Ds,zZ

n+1
∥∥2

H2 +
∥∥U s,z −Ds,zU

n+1
∥∥2

H2
m

)
m(dz)ds. (4.20)

We prove that this convergence is uniform in n.
Choose ε > 0 su�ciently small. By assumption (A7) we can �nd ε̄ such that

E
[ ∫ T

0

∫

|z|≤ε̄

|Ds,zξ|2m(dz)ds
]

< ε,

and
∫

|z|≤ε̄

m(dz) < ε.
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Take arbitrary 0 < ε1 < ε2 ≤ ε̄. By applying the inequality (4.17), the estimate
(4.18) and by similar calculations as in (2.7) we can derive

∫ T

0

∫

ε1<|z|≤ε2

(∥∥Y s,z −Ds,zY
n+1

∥∥2

S2

+
∥∥Zs,z −Ds,zZ

n+1
∥∥2

H2 +
∥∥U s,z −Ds,zU

n+1
∥∥2

H2
m

)
m(dz)ds

≤ C

∫ T

0

∫

ε1<|z|≤ε2

E
[ ∫ T

s

eβr|f s,z(r)−Ds,zf
n(r)|2dr

]
m(dz)ds

≤ C
{ ∫ T

0

∫

ε1<|z|≤ε2

(∥∥Y s,z
∥∥2

S2 +
∥∥Zs,z

∥∥2

H2 +
∥∥U s,z

∥∥2

H2
m

)
m(dz)ds

+

∫ T

0

∫

ε1<|z|≤ε2

(∥∥Ds,zY
n
∥∥2

S2 +
∥∥Ds,zZ

n
∥∥2

H2 +
∥∥Ds,zU

n
∥∥2

H2
m

)
m(dz)ds

+

∫ T

0

∫

ε1<|z|≤ε2

(∥∥Y n − Y
∥∥2

S2 +
∥∥Zn − Z

∥∥2

H2 +
∥∥Un − U

∥∥2

H2
m

)
m(dz)ds

}
.

(4.21)

To estimate the �rst term on the right hand side of (4.21), notice that the inequality
(4.16) yields

∫ T

0

∫

ε1<|z|≤ε2

(∥∥Y s,z
∥∥2

S2 +
∥∥Zs,z

∥∥2

H2 +
∥∥U s,z

∥∥2

H2
m

)
m(dz)ds

≤ CE
[ ∫ T

0

∫

ε1<|z|≤ε2

|Ds,zξ|2m(dz)ds
]

< Cε. (4.22)

Recalling δ = δ(T, K, β, α) < 1 and applying the inequality (4.15) we estimate the
second term in (4.21) by

∫ T

0

∫

ε1<|z|≤ε2

(∥∥Ds,zY
n
∥∥2

S2 +
∥∥Ds,zZ

n
∥∥2

H2 +
∥∥Ds,zU

n
∥∥2

H2
m

)
m(dz)ds

≤ 9eβTE
[ ∫ T

0

∫

ε1<|z|≤ε2

|Ds,zξ|2m(dz)ds
]

+δ

∫ T

0

∫

ε1<|z|≤ε2

(∥∥Ds,zY
n−1

∥∥2

S2 +
∥∥Ds,zZ

n−1
∥∥2

H2 +
∥∥Ds,zU

n−1
∥∥2

H2
m

)
m(dz)ds

<
9eβT ε

1− δ

+δn

∫ T

0

∫

ε1<|z|≤ε2

(∥∥Ds,zY
0
∥∥2

S2 +
∥∥Ds,zZ

0
∥∥2

H2 +
∥∥Ds,zU

0
∥∥2

H2
m

)
m(dz)ds. (4.23)

The estimate of the third term follows from the contraction inequality (2.8)
∫ T

0

∫

ε1<|z|≤ε2

(∥∥Y n − Y
∥∥2

S2 +
∥∥Zn − Z

∥∥2

H2 +
∥∥Un − U

∥∥2

H2
m

)
m(dz)ds

≤ δnT
(∥∥Y 0 − Y

∥∥2

S2 +
∥∥Z0 − Z

∥∥2

H2 +
∥∥U0 − U

∥∥2

H2
m

)
ε. (4.24)
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Choosing Y 0 = Z0 = U0 = 0 and combining (4.22)-(4.24) gives the uniform conver-
gence of (4.20).
Next, by applying the inequality (4.17), the estimate (4.19) and similar calculations
as in (2.7) and (2.8) we can derive
∫ T

0

∫

|z|>ε

(∥∥Y s,z −Ds,zY
n+1

∥∥2

S2

+
∥∥Zs,z −Ds,zZ

n+1
∥∥2

H2 +
∥∥U s,z −Ds,zU

n+1
∥∥2

H2
m

)
m(dz)ds

≤ (
8T +

1

β

) ∫ T

0

∫

|z|>ε

E
[ ∫ T

s

eβr|f s,z(r)−Ds,zf
n(r)|2dr]m(dz)ds

≤ δ
{(

1 +
1

λ

)2
∫ T

0

∫

|z|>ε

(∥∥Y s,z −Dt,zY
n
∥∥2

S2

+
∥∥Zs,z −Ds,zZ

n
∥∥2

H2 +
∥∥U s,z −Ds,zU

n
∥∥2

H2
m

)
m(dz)ds

+
(
1 + λ

)(
2 +

1

λ

)(∥∥Y n − Y
∥∥2

S2 +
∥∥Zn − Z

∥∥2

H2 +
∥∥Un − U

∥∥2

H2
m

) ∫

|z|>ε

ν(dz)
}

,

and we choose λ su�ciently large such that δ̃ := δ
(
1 + 1

λ

)2
< 1.

Due to the convergence of (Y n, Zn, Un)n∈N, for a su�ciently small ε > 0 we can �nd
N su�ciently large such that for all n ≥ N

(
1 + λ

)(
2 +

1

λ

)(∥∥Y n − Y
∥∥2

S2 +
∥∥Zn − Z

∥∥2

H2 +
∥∥Un − U

∥∥2

H2
m

) ∫

|z|>ε

ν(dz) < ε.

We derive the recursion for n ≥ N

∫ T

0

∫

|z|>ε

(∥∥Y s,z −Ds,zY
n+1

∥∥2

S2

+
∥∥Zs,z −Ds,zZ

n+1
∥∥2

H2 +
∥∥U s,z −Ds,zU

n+1
∥∥2

H2
m

)
m(dz)ds

< δ̃
{∫ T

0

∫

|z|>ε

(∥∥Y s,z −Ds,zY
n
∥∥2

S2

+
∥∥Zs,z −Ds,zZ

n
∥∥2

H2 +
∥∥U s,z −Ds,zU

n
∥∥2

H2
m

)
m(dz)ds}+ δε

< δ̃n−N

∫ T

0

∫

|z|>ε

(∥∥Y s,z −Ds,zY
N

∥∥2

S2

+
∥∥Zs,z −Ds,zZ

N
∥∥2

H2 +
∥∥U s,z −Ds,zU

N
∥∥2

H2
m

)
m(dz)ds +

δε

1− δ̃
,

and �nally we conclude that

lim
n→∞

∫ T

0

∫

|z|>ε

(∥∥Y s,z −Ds,zY
n+1

∥∥2

S2

+
∥∥Zs,z −Ds,zZ

n+1
∥∥2

H2 +
∥∥U s,z −Ds,zU

n+1
∥∥2

H2
m

)
m(dz)ds = 0.
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The equation

lim
n→∞

∫

[0,T ]×(R−{0})

(∥∥Y s,z −Ds,zY
n+1

∥∥2

S2

+
∥∥Zs,z −Ds,zZ

n+1
∥∥2

H2 +
∥∥U s,z −Ds,zU

n+1
∥∥2

H2
m

)
q(ds, dz) = 0

now follows by interchanging the limits in n and ε in (4.20).

Step 4) Since the space L1,2(R) is a Hilbert space and the Malliavin derivative is
a closed operator, see Theorem 12.6 in [10], the claim that (Y, Z, U) ∈ L1,2(R) ×
L1,2(R) × L1,2(R) and (Y s,z(t), Zs,z(t), U s,z(t, y))0≤s,t≤T,(y,z)∈(R−{0})R is a version of
the derivative (Ds,zY (t), Ds,zZ(t), Ds,zU(t, y))0≤s,t≤T,(y,z)∈(R−{0})R follows, and �n-
ishes the proof. ¤

The following Corollary shows that the interpretation of the solution component
(Z,U) in terms of the Malliavin trace of Y still holds for BSDE with time delayed
generators.

Corollary 4.1. Under the assumptions of Theorem 4.1, we have
(
(Dt,0Y )P(t)

)
0≤t≤T

is a version of
(
Z(t)

)
0≤t≤T

,(
(Dt,zY )P(t)

)
0≤t≤T,z∈(R−{0}) is a version of

(
U(t, z)

)
0≤t≤T,z∈(R−{0}),

where (·)P denotes the predictable projection of a process.

Proof:
The solution of (4.1) satis�es

Y (s) = Y (0)

−
∫ s

0

f
(
r,

∫ 0

−T

Y (r + v)α(dv),

∫ 0

−T

Z(r + v)α(dv),

∫ 0

−T

∫

R−{0}
U(r + v, y)m(dy)dv

)
dr

+

∫ s

0

Z(r)dW (r) +

∫ s

0

∫

R−{0}
U(r, y)M̃(dr, dy), 0 ≤ s ≤ T. (4.25)

By di�erentiating (4.25) we obtain according to Lemma 3.3 for q-a.e. (u, z) ∈ [0, T ]×
R

Du,0Y (s) = Z(u)−
∫ s

u

Du,0f(r)dr +

∫ s

u

Du,0Z(r)dW (r)

+

∫ s

u

∫

R−{0}
Du,0U(r, y)M̃(dr, dy), 0 ≤ u ≤ s ≤ T,
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and for z 6= 0

Du,zY (s) = U(u, z)−
∫ s

u

Du,zf(r)dr +

∫ s

u

Du,zZ(r)dW (r)

+

∫ s

u

∫

R−{0}
Du,zU(r, y)M̃(dr, dy), 0 ≤ u ≤ s ≤ T,

where the derivative operators Du,z are de�ned by(4.3) and (4.5). Since the mappings
s 7→ ∫ s

u
Du,zf(r)dr,s 7→ ∫ s

u
Du,zZ(r)dW (r) are P-a.s. continuous and the mapping

s 7→ ∫ s

u

∫
R−{0} Du,zU(r, y)M̃(dr, dy) is P-a.s. càdlàg (see Theorems 4.2.12 and 4.2.14

in [3]), taking the limit s ↓ u yields

Du,0Y (u) = Z(u), for λ− a.e.u ∈ [0, T ],P− a.s.,

Du,zY (u) = U(u, z) for λ⊗m− a.e.(u, z) ∈ [0, T ]× (R− {0}),P− a.s..

As Y ∈ S2(R) has P−a.s. càdlàg F-adapted trajectories, for 0 ≤ u ≤ T we have the
representation

Y (u) =
∞∑

n=0

In(gn((u, 0), .) =
∞∑

n=0

In(gn((u, 0), .)1⊗n
[0,u](.)), gn ∈ L2

T,q,n+1, n ≥ 0,

with càdlàg mappings u 7→ gn((u, 0), .). By De�nition 3.1.2 of the Malliavin deriva-
tive we arrive at

Du,zY (u) =
∞∑

n=0

nIn−1(gn((u, 0), (u, z), .)1⊗n
[0,u]((u, z), .)), for q − a.e.(u, z) ∈ [0, T ]× R.

For δ{0} × m-a.e. z ∈ R, we conclude that the mapping (u, ω) 7→ Du,zY (u)(ω) is
F-adapted and measurable and has a progressively measurable (optional) modi�-
cation. Moreover, notice that the optional process u 7→ Du,zY (u) and its unique
predictable projection u 7→ (Du,zY )P(u) are modi�cations of each other, see Theo-
rem 5.5 in [12]. Finally, we remark that there exists a P ×B(R) measurable version
of (ω, u, z) 7→ (Du,zY )P(u)(ω), see Lemma 2.2 in [1]. This completes the proof. ¤
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