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From bounds on optimal growth
towards a theory of good-deal hedging

Dirk Becherer

Abstract. Good-deal bounds have been introduced as a way to obtain valuation bounds for deriva-
tive assets which are tighter than the arbitrage bounds. This is achieved by ruling out not only
those prices that violate no-arbitrage restrictions but also trading opportunities that are ‘too good’.
We study dynamic good-deal valuation bounds that are derived from bounds on optimal expected
growth rates. This leads naturally to restrictions on the set of pricing measure which are local in time,
thereby inducing good dynamic properties for the good-deal valuation bounds. We study good-deal
bounds by duality arguments in a general semimartingale setting. In a Wiener space setting where
asset prices evolve as Itô-processes, good-deal bounds are then conveniently described by back-
ward SDEs. We show how the good-deal bounds arise as the value function for an optimal control
problem, where a dynamic coherent a priori risk measure is minimized by the choice of a suitable
hedging strategy. This demonstrates how the theory of no-good-deal valuations can be associated to
an established concept of dynamic hedging in continuous time.
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1 Introduction

When pricing a contingent claim solely based on no-arbitrage arguments, the range of
possible arbitrage free prices can easily be too wide for practical purposes. This can
happen generically if the financial market is not taken as complete or, more generally,
if the payoff of the contingent claim cannot be perfectly synthesized by dynamical
trading. The approach of good-deal bounds has been developed to derive a tighter
range of no-good-deal prices, by using only a subset of martingale (pricing) measures
to value contingent claims. This subset is chosen such that some notion of too favorable
trading opportunities (good deals) is prevented, if the market is extended by additional
price processes which are obtained by using those martingale measures for the pricing
of contingent claims.

The most cited reference on the topic is probably [12], where no good deals are
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defined by bounds on Sharpe ratios. For comprehensive references on the topic we refer
to [9, 18, 7, 20]. Let us just mention here, that in [7] the authors also consider bounds
for Sharpe ratios in a continuous time model which permits for asset price jumps,
thereby extending [12]. The starting point of another stream of papers is given by a
set of acceptable financial positions. From there, no-good-deal price bounds are then
defined as the smallest amount which a seller of a claim must charge, respectively the
largest amount a buyer can pay, in order to obtain an acceptable position in the market,
see e.g. [9, 18]. The route taken in the present article is to look at bounds for expected
optimal growth rates, which corresponds to bounds on expected logarithmic utility.
In deriving dynamic good-deal bounds in continuous time from bounds on expected
utility, it is maybe closest in spirit to and has been motivated by [20], where a rigorous
study of such bounds has been presented in a Levy process setting for the case of
exponential utility. For important conceptual earlier contributions in this direction, see
[10, 11] and also references in [10, 20] on earlier work by S. Hodges. In [20] it has been
pointed out that restrictions on the no-good-deal set of martingale (pricing) measures
should be local in time, in order to achieve good dynamic properties of the good-deal
valuation bounds. However, the authors have concentrated on the case of exponential
utility from terminal wealth where additional, essentially technical, assumptions were
needed to ensure such local restrictions. Apparently, those do not arrises naturally
from the good-deal approach in this case. To ensure that their local restrictions imply
certain ‘global’ restrictions that have financial meaning in terms of bounds on utility,
the authors have therefore imposed additional structural assumptions, like preservation
of a Levy structure of the model under all no-good-deal pricing measures.

To arrive at local restrictions for the set of no-good-deal martingale measures in a
more endogenous way, it appears natural to start from bounds on expected optimal
growth, since this is linked to logarithmic utility which is know to be myopic. By this
choice, one also avoids to have good-deal bounds that depend on an exogenously given
time horizon, for which expected terminal utility is maximized. This is the starting
point for us in Section 3, where we consider the problem in a general semimartingale
model, after the model framework has been set in Section 2. To derive more explicit
results we specialize in Section 4 to a Wiener space setting with asset prices that are
Itô-processes, but need not be Markovian diffusions. In this setting, we obtain a conve-
nient dynamic description of good-deal bounds in terms of standard backward stochas-
tic differential equations (BSDEs) with generators that satisfy a Lipschitz property in
Section 5. It is well known that the good-deal approach is in essence an approach to
pricing, but that a theory on notions of hedging that can be linked to it still needs to
be further developed and, possibly even more so, constructive descriptions for respec-
tive hedging strategies are needed. This is emphasized in the concluding remarks in [7],
where the authors write “the task of developing such a [good-deal hedging] theory con-
stitutes a highly challenging open problem”. The final Section 5 discusses such links to
hedging, showing that a trading strategy, which corresponds to the (upper) good-deal
valuation bound, is given by a strategy that minimizes a suitable coherent risk measure
ρ (of good-deal type). The hedging strategy can then be defined as the minimizer. In
other words, the hedging strategy is the strategy that minimizes (maximizes) the upper
(lower) a priori ρ-valuation bounds for the seller (buyer) of a contingent claim, such
that the good-deal bounds arise as the tightest ‘a priori’ ρ-valuation bounds for the
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residual risk that can be obtained by optimal hedging in the market. For our mathe-
matical analysis, BSDE theory provides convenient methods to solve the optimization
problems involved and to describe both the valuation bounds and the optimal hedging
strategies. To our best knowledge, the connection between growth-optimal dynamic
good-deal bounds and a corresponding notion of hedging with respect to dynamic co-
herent risk measures has not been elaborated so far. Mathematically, this connection
fits well with the general theory for inf-convolutions of risk measures, see [4] for an
excellent exposition and references.

The contributions of this article are threefold. First, we show that restrictions on
optimal expected growth rates lead to good-deal valuation bounds with good dynamic
properties in a general model. Secondly, we describe the dynamics of the valuation
bounds and of a suitable hedging strategy in a Wiener space setting by BSDE solutions
where, finally, the corresponding hedging strategy is obtained as the minimizer of a
suitable a-priori risk measure of good-deal type.

2 General framework and preliminaries

Let (Ω,F ,F, P ) be a stochastic basis with fixed time horizon T̄ < ∞ and a filtration
F = (Ft)t∈[0,T̄ ] satisfying the usual conditions of right-continuity and completeness.
All semimartingales are taken to have right-continuous paths with left limits (RCLL
paths). For simplicity let F0 be trivial and F = FT̄ . Conditional expectations with
respect to Ft under P are denoted by Et[·] = EPt [·]. For random variables X we define
Et[X] as Et[X+] − Et[X−] where the latter is well defined, and as −∞ elsewhere.
Inequalities between random variables (processes) are meant to hold almost surely
(respectively P×dt almost everywhere). Equality between processes with RCLL paths
then means indistinguability. By convention, 0

0 is defined to be 0.
All prices of assets in our model for the financial market are expressed in terms of

a numeraire asset, whose (discounted) price is thus constant at one. A common choice
for the numeraire is a cash account where money can be deposited and lent from at
the same rate of interest; for such a choice, asset prices are expressed in units of one
Euro put into the cash account at time 0. Alternatively, if the numeraire is chosen to
be the zero coupon bond with maturity T̄ , then asset prices are expressed in T̄ -forward
units, i.e. in terms of Euros at time T̄ . We consider a financial market model with d+ 1
tradable assets, which comprise the numeraire asset and furthermore d risky assets,
whose price processes S = (Si)i=1,...,d are semimartingales. All Si are assumed to be
locally bounded from below. For example, a natural (globally uniform) lower bound
for stocks would be zero.

As usual, a (self-financing) portfolio strategy is defined by some initial capital V0

and a predictable and S-integrable Rd-valued process ϑ (i.e. ϑ ∈ L(S)), describing the
numbers of risky assets to be held dynamically over time. The wealth process of such
strategy is given by V = V0 + ϑ · S = V0 +

∫
ϑdS. Since we will be interested in the

returns Vt/Vs (s ≤ t ≤ T̄ ) of wealth processes that are strictly positive, it is convenient
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to normalize initial wealth to one by simple scaling. To this end, we define

N := N (S) := {N |N = 1 + θ · S , θ ∈ L(S), N > 0} (2.1)

as the family of all strictly positive wealth processes starting at one. These processes
are called tradable numeraires (with respect to S).

We denote byMe(N ) the set of all probability measures equivalent to P (Q ∼ P )
such that any N ∈ N is a local Q-martingale. It is easy to see that Q ∼ P is a local
martingale measure for S if and only if it is a local martingale measure for any N ∈ N .
Indeed, one inclusion of the identityMe(S) = Me(N ) follows from S being locally
bounded from below by adding a suitable constant and a simple scaling argument,
while the other inclusion follows from [1], Corollary 3.5.

Throughout the sequel, we assume that the market is free of arbitrage in the sense
that

Me :=Me(N (S)) 6= ∅. (2.2)

More precisely, condition (2.2) is equivalent to the property of ‘no free lunch with
vanishing risk’ introduced in [14], cf. Proposition 2.3 in [5].

Let us recall some properties about the set of numeraires N (S).

Lemma 2.0.1 1. N is convex.
2. For N1, N2 ∈ N and for stopping times T, τ with 0 ≤ T ≤ τ ≤ T̄ , A ∈ FT , the

process

N := I[[0,T ]]N
1 +I]]T,τ ]]

(
IA
N1
T

N2
T

N2 + IAcN1

)
+ I]]τ,T̄ ]]

(
IA
N1
T

N2
T

N2
τ

N1
τ

+ IAc

)
N1

is an element of N .
3. Every N ∈ N can be written as a stochastic exponential, and the set

L :=
{
L
∣∣∣L semimartingale, L0 = 0, E(L) ∈ N

}
contains 0 and is predictably convex, i.e., for any predictable [0, 1]-valued process
H and L1, L2 ∈ L, the process L := H · L1 + (1−H) · L2 is an element of L.

4. Any N ∈ N is bounded away from 0 uniformly in t: P [inft≤T̄ Nt > 0] = 1, and
is a strictly positive supermartingale under Q for any Q ∈Me.

Proof: Part 1 is immediate. Part 3 can be shown using that any N ∈ N , being a strictly
positive Q-martingale for Q ∈ Me(N ), can be written as a stochastic exponential
N = E(L) ≡ 1 + N− · L for L := (1/N−) · N . Letting L := H · L1 + (1 − H) · L2

for N i = E(Li) ∈ N , i = 1, 2, it is straightforward to show that N is in N . For part 2,
let H := I[[0,T ]] + I]]T,τ ]]IAc + I]]τ,T̄ ]] and L := H · L1 + (1 − H) · L2. Then one can
check that N = E(L) and the claim follows by part 3. Details on parts 2,3 are given in
[5], Lemma 2.5. For part 4, the second claim holds since any positive local martingale
is a supermartingale by Fatou’s lemma. The first claim then follows by the minimum
principle for positive supermartingales, which is an application of the optional stopping
theorem, see [23] II.3.

2
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Dynamic good-deal bounds: Preliminaries

For equivalent martingale measures Q ∈ Me we will for convenience often identify
the measure Q with its density process Zt = ZQt = Et[dQ/dP ], omitting indices like
Q when there is no ambiguity. To limit notations, we write compactly Z ∈Me for ZQ
of some Q ∈Me.

We denote by Q the set

Q := Q(S) :=
{
Q ∈Me(S)

∣∣E[− logZT̄ ] <∞
}
. (2.3)

The integrability condition in (2.3) requires that the relative entropy H(P |Q) of P with
respect to Q, that is

H(P |Q) := E[− logZT̄ ] = EQ
[

1
ZT̄

log
1
ZT̄

]
, (2.4)

is finite. For an equivalent martingale measure Q, it is usual to call H(P |Q) the reverse
relative entropy of Q, whereas H(Q|P ) is called the relative entropy of Q.

Let
h = (ht) ≥ 0

be a predictable process that is bounded, measurable and positive. For given h, let
Qngd := Qngd(S) denote the subset of those measures Q ∈Me(S) which satisfy that

ET

[
− log

Zτ
ZT

]
≤ 1

2
ET

[∫ τ

T

h2
u du

]
for all T ≤ τ ≤ T̄ , (2.5)

where T, τ are stopping times. Let us note here, that we have not included the factor
1/2 and the square into the function h to simplify formulae in the later sections, e.g. 5.

We shall write h(t) instead of ht (0 ≤ t ≤ T̄ ) if h is deterministic, depending only
on time but not on ω ∈ Ω. The simplest case is to take h(t) = h̄ ≥ 0 to be constant.
Permitting h to depend on time t and ω increases generality. In later sections, Qngd

will serve as a set of pricing measures which are taken into consideration to determine
a range of no-good-deal valuations. If, for instance, market prices of risk in the distant
future are considered to be of higher variability this could be captured by t 7→ h(t)
being increasing.

Clearly, we have Qngd ⊂ Q ⊂ Me. Going beyond condition (2.2), we will subse-
quently assume that Qngd contains at least one element Q̂, i.e. it is non-empty

Qngd 6= ∅. (2.6)

The next result collects properties of the density process Z for measures Q in Q.

Proposition 2.0.2 For any Q ∼ P with − logZT̄ ∈ L1(P ) the following holds.

1. The process (− logZt)t≤T̄ is a submartingale of class (D), that is the family
{− logZT } is uniformly P -integrable, with T ranging over the set of all stop-
ping times T ≤ T̄ .
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2. The process − logZ has a unique Doob-Meyer decomposition

− logZt = Mt +At , t ≤ T̄ , (2.7)

with M being a uniformly integrable martingale and A being an integrable in-
creasing predictable process with A0 = 0.

3. For any stopping times T ≤ τ ≤ T̄ , it holds

ET

[
− log

Zτ
ZT

]
= ET [Aτ −AT ] . (2.8)

Proof:

1. By assumption we have − logZT̄ ∈ L1(P ). For any stopping time T ≤ T̄ ,

−ET [ZT̄ ] + 1 ≤ −ZT + 1 ≤ − logZT ≤ ET [− logZT̄ ]

holds by Jensen’s inequality. Since the upper and lower bounds are uniformly
integrable martingales stopped at T , the family {− logZT } is of class (D). Using
again Jensen’s inequality, we obtain that − logZ is a supermartingale.

2. This follows by a version of the Doob-Meyer decomposition, see Theorem 8 in
ch.III of [22]. That A is integrable, means that E[AT̄ ] <∞.

3. This follows from part 2 since martingale increments vanish in expectation.

2

For any Q as in Proposition 2.0.2 with density process Z and corresponding A from
(2.7), we can define a finite measure µ = µQ on the predictable σ-field P by

µ(B) := E

[∫
1B dAt

]
, B ∈ P . (2.9)

The next result shows that µ corresponding Q ∈ Q is dominated by the measure

ν(B) :=
1
2
E

[∫
1Bh2

t dt

]
, B ∈ P , (2.10)

and thereby provides simpler criteria (2.11), (2.13) for Q being in Qngd, which are
formulated with respect to deterministic times only instead of stopping times as (2.5).

Proposition 2.0.3 If the measure Q ∼ P satisfies

Es

[
− log

Zt
Zs

]
≤ 1

2
Es

[∫ t

s

h2
udu

]
for all s ≤ t ≤ T̄ (2.11)

with s, t ranging over the set of all deterministic times, then

µ(B) ≤ ν(B) (2.12)

holds for all predictable sets B ∈ P . In particular, the conditions (2.11) and (2.5) are
equivalent, and for Q ∈Me(S) condition (2.11) implies that Q is in Qngd.
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In the case where ht = h(t) is deterministic, (2.11) simplifies to

Es

[
− log

Zt
Zs

]
≤ 1

2

∫ t

s

h2(u)du for all s ≤ t ≤ T̄ . (2.13)

Proof: By assumption (2.11), inequality (2.12) holds for predictable sets of the form
B = As × (s, t] with s < t ≤ T̄ and As ∈ Fs. The class of all such sets is a semi-
ring that generates the predictable σ-field P . Since both measures are finite and (2.12)
holds on the semi-ring, it follows that (2.12) also holds on the predictable σ-field P
generated by it. Indeed, the inequality extends directly from the semi-ring to P for the
outer measures that are generated from the restrictions of µ, ν onto the semi-ring. Since
these outer measures coincide with µ respectively ν on P by the extension theorems of
measure theory, (2.12) holds for B ∈ P . Hence, condition (2.11) implies (2.5) since
sets of the form B = AT× ]] T, τ ]] are in P . Necessity is obvious. The last claim
follows from the definition of Q. 2

Definition 2.0.4 A set S of probability measures, all elements of which are equivalent
to P , is called multiplicativity stable (m-stable) if for all elements Q1, Q2 ∈ S with
density processes Z1, Z2 and for all stopping times T ≤ T̄ , it holds that ZT̄ := Z1

T
Z2

T̄

Z2
T

is the density of some Q ∈ S.

This definition follows [13], wherem-stable sets of measures are studied in a general
framework. Examples for m-stable sets that play a role in the sequel are given by

Proposition 2.0.5 The setsMe, Q and Qngd are m-stable.

Proof: The arguments for Proposition 5 in [13] show thatMe is m-stable. This holds
also without S being locally bounded. The m-stability Q follows then by part 3 of
Proposition 2.0.2, which implies

E

[
− log

(
Z1
T

Z2
T̄

Z2
T

)]
≤ E[A1

T + (A2
T̄ −A

2
T )] <∞ .

To show that the property (2.5) definingQngd is consistent with m-stability ofQngd, let
τ ′ ≤ τ be stopping times. Letting T ′ = (T ∨ τ ′)∧ τ for T and Z as in Definition 2.0.4,
we obtain, using again part 3 of Proposition 2.0.2, that

Eτ ′

[
− log

Zτ
Zτ ′

]
= Eτ ′

[
A2
τ −A2

T ′ +A1
T ′ −A1

τ ′
]

≤ 1
2
Eτ ′

[∫ τ

τ ′
h2
u du

]
.

2

With respect to a given m-stable set S of equivalent measures, we define forX ∈ L∞
the upper and lower valuation bounds by

πut (X;S) = ess sup
Q∈S

EQt [X] , (2.14)

π`t (X;S) = ess inf
Q∈S

EQt [X] . (2.15)
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Clearly, π`(X;S) = −πu(−X;S) holds. Therefore, we can restrict the analysis to the
upper bounds πu in the sequel, without loss of generality.

The next results recalls that the family {πut (X)}t≤T̄ satisfies the properties of a
dynamic coherent risk measure (or a dynamic monetary coherent utility functional),
and can be represented by a process with good path properties. We will always choose
such a version in the sequel without further notice. Moreover, it shows that the family
of mappings X 7→ πuT (X) where T ranges over all stopping times T ≤ T̄ , exhibits
good dynamic consistency properties.

Proposition 2.0.6 Assume S 6= ∅ (e.g. S = Qngd). As mappings from L∞ to L∞(Ft)
the family X 7→ πut (X;S) (t ≤ T̄ ) has the following properties.

1. (Path properties) For any X ∈ L∞, there is a version of (πut (X))t≤T̄ having
RCLL paths and such that

πuT (X) = ess sup
Q∈S

EQT [X] for all stopping times T ≤ T̄ .

2. (Recursiveness) For any stopping times T ≤ τ ≤ T̄ , it holds that

πuT (X) = πuT (πuτ (X)) .

3. (Stopping-time consistency) For stopping times T ≤ τ ≤ T̄ ,
the inequality πuτ (X1) ≥ πuτ (X2) implies πuT (X1) ≥ πuT (X2).

4. (Supermartingale property) (πut (X)) is a supermartingale under any Q ∈ S.

5. (Coherent risk measure) For any stopping time T ≤ T̄ andmT , αT , λT ∈ L∞(FT )
with 0 ≤ αT ≤ 1, λT ≥ 0, the mapping X 7→ πuT (X) satisfies the properties:

• monotonicity: X1 ≥ X2 implies πuT (X1) ≥ πuT (X2)
• translation invariance: πuT (X +mT ) = πuT (X) +mT

• convexity: πuT (αTX1 + (1− αT )X2) ≤ αTπuT (X1) + (1− αT )πuT (X2)
• positive homogeneity: πuT (λTX) = λTπ

u
T (X)

6. No arbitrage consistency: If moreover S ⊂ Me, then πuT (X) = x+ ϑ · ST holds
for any X = x+ ϑ · ST̄ with ((ϑ · St)t≤T̄ ) being uniformly bounded.

Proposition 2.0.6 is analogous to Theorem 2.7 in [20] and a direct consequence of
results by Delbaen [13]. As the proof shows, it follows essentially from m-stability of
S.

Remark 2.0.7 In the literature on risk measures, those are often applied to the net
value Y of a position. Under such convention, one would rather call Y 7→ πu(−Y ) =
−π`(Y ) a dynamic coherent risk measure and call Y 7→ π`(Y ) a monetary coherent
utility functional. Clearly, the difference is only a matter of sign conventions, where
we take X = −Y as a liability instead of a net value. This should not cause confusion.
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Proof of Proposition 2.0.6: Since S is m-stable by assumption, part 1 follows by
Lemmata 22 and 23 from [13], and using his Theorem 12 yields the claims 2-4. Finally,
part 5 is immediate from part 1. Also part 6 follows from 1, since bounded local
martingales are uniformly integrable.

2

In the sequel, the aim is to study good-deal bounds with respect to optimal growth.
In the next section, those bounds are shown to be valuations bounds as above for S =
Qngd(S). This explains the terminology of the next definition.

Definition 2.0.8 The upper and lower good-deal bounds for X ∈ L∞ are defined by
(2.14) respectively (2.15) for S = Qngd(S). For brevity of notation, they are denoted
in the sequel by

πut (X) := πut (X;Qngd(S)) and π`t (X) := π`t (X;Qngd(S)) . (2.16)

3 Good-deal bounds for optimal growth rates: Duality
results

To motivate the subsequent results, let us suppose that the market is to be extended by
adding further tradable risky assets. From the general theory of no-arbitrage pricing,
it is know that each arbitrage-free price process of contingent claims with (discounted)
payoffs X ∈ L0(FT̄ ,Rd

′
) should in principle be of the form

S′t = S′t(X,Q) = EQt [X] , t ≤ T̄ , (3.1)

for some Q ∈ Me. Indeed, this ensures ‘no arbitrage’ for the extended market with
risky asset price processes

S̄ = (S, S′) = (S, S′(X,Q)) (3.2)

evolving in Rd+d′ , in the sense that Q ∈ Me(S̄) 6= ∅, subject to suitable integrability
assumptions. A sufficient condition to ensure that S̄ meets the same assumptions that
our general setting imposes on S is obviously that X ∈ L∞. A more general condition
is that all coordinates of X = (Xi)1≤i≤d′ are bounded from below and integrable with
respect to the Q ∈Me chosen in (3.1), i.e.

(Xi)− ∈ L∞ and Xi ∈ L1(Q) for all i = 1, . . . , d′, . (3.3)

Then S′(X,Q) is finite and bounded from below in each coordinate.
However, in incomplete markets the set Me generically contains not one unique

martingale measures but infinitely many. The price range, which would be obtained
from (3.1) by letting Q range over allMe is typically too wide for practical purposes.
In other words, the restrictions on prices that result from no-arbitrage arguments alone
will often lead to price bounds that are too wide. The leads naturally to the idea to let
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Q range over a suitable smaller set (say Qngd) to obtain tighter price bounds. To give
financial meaning to the desired tighter bounds, the general idea of good-deal bounds
is to let Q range over a subset ofMe which is taken such that price processes S′(X,Q)
do not permit trading opportunities that are ‘too good’ to be realistic. Prices within the
resulting range are then considered to be consistent with ‘no good deals’ while prices
outside the range might be interpreted as ‘good deals’ for either the seller or buyer,
depending whether they are above πu or below π`.

There are different possibilities for defining good deals, which can result in different
subsets of Me. We are going to show that our definition of Qngd is such that any
market extension S̄ = (S, S′) by price processes of the form (3.1) for Q ∈ Qngd does
only permit for (conditional) expected optimal growth of returns at a rate not exceeding
the bound h2

t/2 specified via h in the definition (2.5) of Qngd.
To show this, we are going to apply convex duality arguments. Recall that the con-

jugate function of U(x) = log x with x > 0 is

V (y) := sup
x>0

U(x)− xy = − log y − 1 , y > 0 . (3.4)

It follows that
U(x) ≤ V (y) + xy for all x, y > 0 , (3.5)

with equality holding for x = 1/y.
Any local martingale N̄ > 0 with respect to some Q ∈ Me is a Q-supermartingale.

Hence, N̄Z is a P -supermartingale. Letting x = N̄τ/N̄T and y = Zτ/ZT in (3.5) for
stopping times T ≤ τ ≤ T̄ , we obtain by taking conditional expectations that

ET

[
log

N̄τ
N̄T

]
≤ ET

[
− log

Zτ
ZT

]
+ ET

[
Zτ N̄τ
ZT N̄T

]
− 1 (3.6)

≤ ET

[
− log

Zτ
ZT

]
= EQT

[
ZT
Zτ

log
ZT
Zτ

]
,

and these inequalities become equalities for N̄ = 1/Z.

Theorem 3.0.9 1. For any Q ∈ Qngd with density process Z and any X satisfying
(3.3), it holds that any tradable numeraire N̄ = 1 + ϑ̄ · S̄ ∈ N (S̄) in the extended
market (3.2) satisfies

ET

[
log

N̄τ
N̄T

]
≤ ET

[
− log

Zτ
ZT

]
≤ 1

2
ET

[∫ τ

T

h2
udu

]
(3.7)

for all stopping times T ≤ τ ≤ T̄ .

2. The former inequality in (3.7) is sharp: For any Q ∈ Qngd with density process
Z, there exists a real-valued X satisfying (3.3) (with d′ = 1) such that N̄ :=
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S′(X,Q)/S′0(X,Q) inN (S̄) is a tradable numeraire in the extended market (3.2),
satisfying

ET

[
log

N̄τ
N̄T

]
= ET

[
− log

Zτ
ZT

]
(3.8)

for all stopping times T ≤ τ ≤ T̄ .

Proof: Equation (3.6) and the remark following it imply the claim. 2

The first part of the theorem shows that Qngd is defined such that all market exten-
sions (3.2) based on Q ∈ Qngd will respect the good-deal bounds on expected growth
rates specified via h. The second part shows that the duality relation is sharp, in that the
duality bound (3.6) is attained by a suitable market extension with respect to a given
Q. Whether the second inequality in (3.7) is sharp and might be attained for some Q
with equality, in general depends on the market model under consideration. For in-
stance, if Me were a singelton {Q̂} with Q̂ ∈ Qngd, the second inequality in (3.7)
easily becomes strict if h is taken somewhat larger.

4 A Financial Market Model with Itô-Processes

In the next sections, we are going to obtain more explicit results on good-deal valuation
bounds arrising from restrictions on expected growth rates, in comparison to the convex
duality results for general semimartingale models in the previous section. To this end,
we study a model where the dynamics of financial market prices S are described by Itô
processes on a Wiener space. This permits to use in Section 5 the well-developed the-
ory of backward stochastic differential equations (BSDEs) to describe the dynamics of
the good-deal valuation bounds and a corresponding notion of hedging more explictly.

An Itô process model

From the remainder of the paper, we strengthen the assumptions from Section 2 on the
underlying model, by assuming that the filtration F of our stochastic basis (Ω,F ,F, P )
is the filtration generated by an n-dimensional Brownian motion (Wiener process)
(Wt)t∈[0,T̄ ], completed by nullsets. It is well known that F is then right-continuous.
Furthermore, we assume there are d ≤ n risky assets whose price processes S =
(Sit)1≤i≤d are described by the unique solution to the stochastic differential equation
(SDE)

dSit = SitdR
i
t , t ≤ T̄ , 1 ≤ i ≤ d , (4.1)

with Si0 > 0, where the return process R = (Rit)1≤i≤d is given by the solution to the
SDE

dRt = γt dt+ σt dWt . (4.2)

We assume that γ and σ are predicable processes taking values in Rd and Rd×n. The
volatility process σ is taken to have full rank d, in the sense that

detσσtr 6= 0 (P × dt− a.e.). (4.3)
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Denoting the market price of risk process by

ξ := σtr(σσtr)−1γ (4.4)

one can write the SDE describing R compactly as

R0 = 0 , dRt = σt(ξt dt+ dWt) =: σtdŴt , t ≤ T̄ . (4.5)

We assume that there exists some ε ∈ (0,∞) such that, for h from (2.5), it holds

h− |ξ| > ε (dP × dt− a.e.) . (4.6)

By boundedness of h, this implies in particular that

the market price of risk process ξ is bounded. (4.7)

Each Si = Si0E(Ri) is a stochastic exponential and can be written explicitly as

Sit = Si0 exp
(∫ t

0

(σu)idWu +
∫ t

0

(σuξu)i − 1
2

(σuσtr
u )iidu

)
.

For subsequent analysis, it turns out to be more convenient to describe trading strategies
not in terms of numbers ϑ = (ϑit) of risky assets held, but instead by amounts of wealth
ϕ = (ϕit) invested in each of the risky assets. To this end, we define the set Φϕ of
permitted trading strategies to consist of those predictable processes ϕ = (ϕit) which
satisfy

E

[∫ T̄

0

|ϕtr
t σt|2dt

]
<∞ . (4.8)

The wealth process V that is obtained from initial wealth V0 by investing according
to ϕ ∈ Φ is given by the solution to the SDE

dVt = ϕtr
t dRt = ϕtr

t σt(ξtdt+ dWt) = ϕtr
t σtdŴt , (4.9)

where all occurring integral terms are being well defined thanks to

∫ T̄

0

|ξtr
t σ

tr
t ϕt|dt ≤

(∫ T̄

0

|σtr
t ϕt|2dt

) 1
2
(∫ T̄

0

|ξt|2dt

) 1
2

<∞ .

Remark 4.0.10 In the Itô process framework for the financial market S in this section
the risky asset prices are modeled as continuous processes. This is like in the contin-
uous time models in [12] or [10], and different from [7] where asset prices can also
have jumps. On the other hand, differently from [12, 10, 7] our dynamics (4.1) do
not impose any Markov structure on the evolution of S, neither alone nor jointly with
additional factor processes.
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Parameterization of strategies

Strategies ϕ in Φϕ have as clear financial meaning in terms of wealth invested in the
risky assets. Still, it will be technically convenient to re-parameterize strategies in
terms of integrands with respect to dŴ = ξtdt+ dWt. To this end, let

Ct := Im σtr
t , t ≤ T̄ ,

denote the image (range) of σtr
t ∈ Rn×d. With any ϕ ∈ Φ one can associate the image

of ϕ under σtr, i.e.
φt = σtr

t ϕt ∈ Ct , t ≤ T̄ ,
and write the evolution of wealth (4.9) conveniently as

dV = φtr(ξdt+ dW ) = φtrdŴ . (4.10)

We let Φ := Φφ :=
{
φ
∣∣φ = σtr

t ϕt , ϕ ∈ Φϕ
}

. Then, by definition of Φϕ,

Φ = Φφ =

{
φ
∣∣∣φ is predictable, φt ∈ Ct ∀t, E

[∫ T̄

0

|φt|2 dt

]
<∞

}
.

By applying the pseudo-inverse σtr+ := (σσtr)−1σ to φ = σtrϕ, one re-obtains ϕ =
σtr+

φ. Hence, the relations ϕ = σtr+
φ and φ = σtrϕ provide a bijection between

Φ = Φφ and Φϕ. This allows to consider Φ as the set of permitted trading strategies.
Let Πt = ΠCt

and Π⊥t = ΠC⊥t
denote the orthogonal projections onto Ct =

Im σtr
t = (Ker σt)⊥ and C⊥t = Ker σt = (Im σtr

t )⊥, respectively, that are given by

Πt : Rn → Ct , z 7→Πt(z) := σtr(σtσtr
t )−1σtz , (4.11)

Π⊥t : Rn → C⊥t , z 7→Π⊥t (z) := (Id−Πt)(z) . (4.12)

Clearly, any z in Rn = Ct⊕C⊥t = Im σtr
t ⊕Ker σt has a unique orthogonal decompo-

sition
z = Πt(z) + Π⊥t (z) = ΠIm σtr

t
(z) + ΠKer σt(z) in Ct ⊕ C⊥t . (4.13)

Equivalent martingale measures

In the current setting of a Brownian filtration, the equivalent martingale measures Q ∈
Me for S can be parameterized quite explicitely.

In order to construct a martingale measure, one can use the Girsanov transformation
to eliminate the drift of S. For instance, since ξ is bounded,

dQ̂

dP
:= E

(
−
∫
ξdW

)
T̄

clearly defines a probability measure Q̂, which is known as the minimal martingale
measure, see e.g. [25]. Under Q̂, the process

Ŵ0 = 0 , dŴt = dWt + ξt dt for t ≤ T̄ , (4.14)
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is Brownian motion.
More generally, the density process Z of any equivalent measure Q ∼ P must be a

stochastic exponential

Zt =
dQ

dP

∣∣∣
Ft

= E(L)t = E
(∫

λdW

)
t

, t ≤ T̄ ,

with dL := 1
Z dZ being a local martingale of the form L =

∫
λdW for some predictable

λ = λQ with
∫ T̄

0
|λ|2 dt <∞. By Girsanov’s theorem and Lévy’s characterization

WQ = W −
∫
λdt is a Q-Brownian Motion.

Since
σtdŴt = σt((ξt + λt)dt+ dWQ

t )

holds,Q is inMe if and only if σt(ξt+λt) = 0 holds (P×dt-a.e.), that is λQt = −ξt+ηt
with ηt = ηQt ∈ Ker σt = C⊥t . Hence, any equivalent martingale measureQ for S must
have a density process of the form

Zt :=
dQ

dP

∣∣∣∣
t

= E
(∫

λdW

)
t

= E
(
−
∫
ξ dW

)
t

E
(∫

η dW

)
t

, t ≤ T̄ , (4.15)

with λ = −ξ + η satisfying −ξ = Π·(λ) and η = Π⊥· (λ) (P × dt-a.e.). Since ση = 0
implies ηtrξ = 0, the second equality in (4.15) holds by Yor’s formula.

If d = n (as many risky assets as sources of noise), it thus holds that η = σ−10 = 0,
hence Q̂ is the unique equivalent local martingale measure for S. In that case, the
market is complete by the strong predictable representation theorem.

The next result summarizes the convenient parameterization of Q and Qngd.

Proposition 4.0.11 1. Any Q ∈ Q has a density process Z = ZQ of the form (4.15)
with a predictable process λ = −ξ + η with Πt(λt) = −ξt and Π⊥t (λt) = ηt,
satisfying

∫ T
0
|λ|2tdt < ∞. In particular, ξtrη = 0. The processes λ, η, ξ are

unique (P × dt-a.e.). For Q ∈ Qngd ⊂ Q, it holds in addition that |λ|2 =
|ξ|2 + |η|2 ≤ h2.

2. In turn, any predictable λ with |λ|2 ≤ h2 and Πt(λt) = −ξt (P × dt-a.e.) defines
a density process Z of the form (4.15) for some Q ∈ Qngd with η = Π⊥(λ).

3. For Q ∈ Q, the Doob-Meyer decomposition (2.7) for − logZ is given by

Mt =
∫ t

0

ξ − η dW , (4.16)

At =
1
2

∫ t

0

|λs|2 ds , t ≤ T̄ . (4.17)

Proof: Part 3 and the first claims of part 1 follows from the foregoing discussion,
and |λ| ≤ h (P × dt-a-e.) then holds by Proposition 2.0.3, which implies that the
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predictable set B = {|λ| > h} is a nullset with respect to P × dt for λ = λQ from
Q ∈ Qngd. Concerning part 2, assumption |λ|2 ≤ h2 and boundedness of h imply that
Z is a martingale and defines a measure Q ∼ P , which is martingale measure by the
foregoing discussion. The integrability condition (2.5) definingQngd is readily verified
for Q from |λ|2 = |ξ|2 + |η|2 ≤ h2. 2

Backward SDEs

This section introduces the notion and recalls some classical results on standard BSDEs
whose generator satisfies a Lipschitz condition, as stated in [15].

For p ∈ (1,∞), we denote by Sp
T̄

= Sp
T̄

(P ) the space of real valued adapted RCLL

processes Y with the norm ‖Y ‖Sp

T̄
:= E

[
supt≤T̄ |Yt|p

]1/p
< ∞. Let Hp

T̄
= Hp

T̄
(P )

denote the space of predictable Rn-valued processes Z with the norm ‖Z‖Hp

T̄
:=

E
[
(
∫ T̄

0
|Zt|2 dt)p/2

]1/p
<∞. Let BMO(P ) denote the subspace of those Z ∈ H2

T̄
(P )

which satisfy that there is some c ∈ R+ such that ET
[∫ T̄
T
|Zt|2 dt

]
< c for all stopping

times T . For any Z in BMO(P ), the process Z ·W is called a P -BMO martingale.
The abbreviation BMO stands for ‘bounded mean oscillation’, see Chapter X in [17].

A (simplified) standard generator of a BSDE is a measurable function

f : (Ω× [0, T̄ ]× Rn,P × B(Rn)) → (R,B(R))

which is such that ft(z) = f(ω, t, z) satisfies (ft(0))t≤T̄ ∈ H2
T̄

, and P × dt-a.e.

|ft(z)− ft(z′)| ≤ Lf |z − z′| for all z, z′ ∈ Rn ,

with some Lipschitz constant Lf < ∞. For given BSDE standard parameters (f,X),
which we take to be given by a standard generator f and a terminal condition X ∈
L2(P ), a solution to the BSDE

YT̄ = X and − dYt = ft(Zt)dt− Zt dWt , t ≤ T̄ , (4.18)

is a tuple (Y,Z) of processes in S2
T̄
×H2

T̄
, satisfying

Yt = X +
∫ T̄

t

fu(Zu) du−
∫ T̄

t

Z dW for all t ≤ T̄ . (4.19)

Since it is sufficient for our purposes, we consider simplified generators f , in compar-
ison to [15], that do not depend on Y .

Proposition 4.0.12 For given standard BSDE parameters (f,X), there exists a unique
solution (Y,Z) ∈ S2

T̄
×H2

T̄
to the BSDE (4.18).

This result holds by Theorems 2.1 and 5.1 in [15]. It ensures that unique solutions
exists for the BSDEs in subsequent sections. Let us note that, more generally, there
is even a unique (Y,Z) in Sp

T̄
× Hp

T̄
(1 < p < ∞) satisfying (4.19) if the BSDE data
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satisfy X ∈ Lp(P ) and condition (ft(0))t≤T̄ ∈ H2
T̄

is replaced by (ft(0))t≤T̄ ∈ H
p
T̄

,
see [15], Theorem 5.1.

The main argument for identifying solutions to optimal control problems in the se-
quel in terms of BSDE solutions is provided by the next result, which is a simplified
version of Proposition 3.1 in[15].

Proposition 4.0.13 For a family of standard parameters (f,X) and {(fα, X)}, with α
from an arbitrary index set, let (Y,Z) and (Y α, Zα) denote the solution to the corre-
sponding BSDEs. If there exists ᾱ such that

ft(Zt) = f ᾱt (Zt) = ess inf
α

fαt (Zt) , P × dt− a.e.,

then Yt = ess inf
α

Y αt = Y ᾱt holds for all t ≤ T̄ , P -a.s..

5 Good-deal valuation and hedging via BSDEs

In this section, we obtain a dynamic description for the good-deal valuation bounds,
that arise from no-good-deal restrictions on optimal expected growth rates. The valu-
ation bounds are given by the solutions to standard non-linear backward SDEs, whose
generator satisfies a Lipschitz condition. Moreover, we develop a corresponding notion
of hedging and show that also the hedging strategy is described by a BSDE.

Dynamic good-deal valuation bounds

In extension to Definition 2.0.8, let us define for X ∈ L2(P ) ⊃ L∞

πut (X) := ess sup
Q∈Qngd

EQt [X] , t ≤ T̄ . (5.1)

Using an L2 space for X fits conveniently with the present BSDE setting. As results in
the present section show, (5.1) induces a mapping L2(P ) → L2(P,Ft). Using results
from standard BSDE theory one can check that properties 1.-4. of Proposition 2.0.6 are
maintained for X 7→ πut (X) (t ≤ T̄ ) with X ∈ L2(P ) and that properties 5.-6. follow
from (5.1).

Lemma 5.0.14 Let Q ∼ P with density process dQ
dP |F =: D = E(

∫
λdW ) for a pre-

dictable and bounded process λ. Then there exists a unique solution (Y,Z) ∈ S2
T̄
×H2

T̄
to the linear BSDE

YT̄ = X , −dYt = −λtr
t Ztdt− Zt dWt , t ≤ T̄ , (5.2)

forX ∈ L2(P ). Moreover Y is aQ-martingale andWλ := W−
∫
λdt is aQ Brownian

motion, satisfying

Yt = EQt [X] = Y0 +
∫ t

0

Z dWλ , t ≤ T̄ .

IfX ∈ L∞, then Y is bounded andZ is inBMO(P ), i.e.Z ·W is a P -BMO martingale.
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Proof: Since λ is bounded, the parameters of the linear BSDE (5.2) are standard and it
has a unique solution (Y, Z) in S2

T̄
×H2

T̄
. By application of Itô’s formula, the process

DY is seen to be a local P -martingale. Because D is in Sp
T̄

(P ) for any p < ∞, DY is
in S2−ε

T̄
(P ) for any ε > 0 and thus a P -martingale. Hence, Y is a Q-martingale with

Yt = EQt [X]. If X ∈ L∞, Y − Y0 = Z · Wλ is bounded, so Z · Wλ is a Q-BMO
martingale. This implies that Z ·W is a P -BMO martingale by Theorem 3.6 from [19],
noting that dP/dQ|F = E(−λ ·Wλ) holds for λ ·Wλ being a Q-BMO martingale due
to the boundedness of λ. 2

Recall that the density process of any Q ∈ Qngd is determined by the predictable
process η = ηQ = Π⊥(λQ) from Proposition 4.0.11. For any η = ηQ let (Y η, Zη) ∈
S2
T̄
×H2

T̄
denote the solution to the BSDE

− dYt =
(
−ξtr

t Πt(Zt) + ηtr
t Π⊥t (Zt)

)
dt− Zt dWt , t ≤ T̄ ,

YT̄ = X . (5.3)

We are going to demonstrate that the good-deal bound πut (X) is described by the
solution to the BSDE

− dYt =
(
−ξtr

t Πt(Zt) +
√
h2
t − |ξt|2

∣∣Π⊥t (Zt)
∣∣) dt− Zt dWt , t ≤ T̄ ,

YT̄ = X . (5.4)

Theorem 5.0.15 For X ∈ L2(P ), let (Y,Z) and the family (Y η, Zη) (for η = ηQ with
Q ∈ Qngd) be the solutions to the standard BSDEs (5.4) and (5.3), respectively. Then,
there exists Q̄ = Qη̄ ∈ Qngd corresponding (by (4.15)) to

η̄ = ηQ̄ =

√
h2 − |ξt|2
|Π⊥t (Z)|

Π⊥t (Z)

such that
Yt = ess sup

η
Y ηt = Y η̄t , t ≤ T̄ , (5.5)

holds, with η ranging over all η = ηQ for Q ∈ Qngd. Moreover, the upper good-deal
bound for X is given by

πut (X) = ess sup
Q∈Qngd

EQt [X] = EQ̄t [X] = Yt , t ≤ T̄ . (5.6)

This result not surprising. Noting the definition of the good-deal bound as a supre-
mum of conditional expectation, the equality (5.6) is basically a special case of the
dual representation for g-conditional risk measures (respectively, for non-linear g-
expectations), which are defined by solutions to BSDEs with suitable generators g,
see [4]. We give a short direct proof in our setting, to show how Proposition 4.0.13
provides the essential argument for the equality (5.6) and to identify η̄ and Q̄ explictly
for πu.
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Proof: Comparing the BSDE generators in (5.4) and (5.3), evaluated at Z, one sees
that for any η the inequality

−ξtr
t Πt(Zt) + ηtr

t Π⊥t (Zt) ≤ −ξtr
t Πt(Zt) +

√
h2 − |ξt|2|Π⊥t (Zt)|

holds (P × dt-a.e.) by the definition of Qngd, since | − ξ + η|2 = |ξ|2 + |η|2 ≤ h2 with
equality holding for η̄ :=

√
h2 − |ξt|2Π⊥t (Z)/|Π⊥t (Z)|. By Proposition 4.0.13 thus

follows (5.5). By Lemma 5.0.14, we have Y ηt = EQt [X] for η = ηQ and Y η̄t = EQ̄t [X].
Hence, (5.5) and the definition of πu(X) imply (5.6). 2

Dynamic good-deal hedging

We are going to show in this section, that a hedging strategy which minimizes a suitable
dynamic coherent risk measure is naturally linked to the good-deal valuation bounds.

To this end, letPngd denote the set of those equivalent probability measuresQwhose
density process is of the form E(

∫
λdW ) for a predictable bounded process λ with

|λ| ≤ h, that is

Pngd :=
{
Q ∼ P

∣∣∣ dQ
dP

∣∣
F = E

(∫
λdW

)
for λ predictable with |λ| ≤ h

}
. (5.7)

The notation Pngd is motivated by the following observation. In Section 3, it has been
shown that the defining properties for Qngd(S) ensure two properties for any market
S̄ = (S, S′) (3.2) that is enlarged by an additional price process S′ which is obtained
by some pricing measure Q fromQngd. Firstly, the enlarged market is free of arbitrage
since Q ∈ Me(S). Secondly, it does not permit investment opportunities whose ex-
pected growth rates exceed the good-deal restrictions. How would the situation be, if
we would take a step back and reduce instead of increase the number of risky assets?
Suppose we start from a trivial initial market without risky assets S where only the
riskless numeraire asset with price 1 is tradable. Since Me(1) = {Q|Q ∼ P}, the
integrability condition in the definition (2.5) of Qngd(1) yields Qngd(1) = Pngd. That
means, Pngd is such that any market (1, S′), whose price processes S′ are given by
(3.1) for some Q ∈ Pngd, does not permit trading opportunities that are ‘too good’.

In analogy to the definition of πu(X) = πu(X;Qngd) in (2.16), we define

ρt(X) := ess sup
Q∈Pngd

EQt [X] , t ≤ T̄ , (5.8)

for X ∈ L2(P ). That is, ρ(X) = πu(X;Qngd(1)) is of the same ‘good-deal’-type as
πu(X) = πu(X;Qngd(S)) but defined with respect to 1 instead of S.

Due to m-stability of Pngd, the mapping ρ satisfies by Proposition 2.0.6 the same
good dynamic properties (on L∞) as πu and is thus a dynamic coherent risk measure.
By Proposition 5.0.16, X 7→ ρt(X) induces a mapping L2(P )→ L2(P,Ft) and, in the
same way as with πu, one can show that for ρ the properties stated in Proposition 2.0.6
for X ∈ L∞ even hold on L2(P ). By Pngd ⊃ Qngd = Qngd(S), it is clear that
ρ(X) ≥ πu(X). We are going to show that πut (X) is obtained from ρt

(
X −

∫ T̄
t
φdŴ

)
by minimizing over all permitted trading strategies φ ∈ Φ.
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To show firstly that ρt(X) is described by the solution to the BSDE

− dYt = h|Zt| dt− Zt dWt , t ≤ T̄ ,
YT̄ = X , (5.9)

we consider for any Q ∈ Pngd the BSDE

− dYt = λtr
t Zt dt− Zt dWt , t ≤ T̄ ,

YT̄ = X . (5.10)

where λ = λQ denotes the process in (5.7) that determines the density of Q.

Proposition 5.0.16 For X ∈ L2(P ), let (Y, Z) and the family (Y λ, Zλ) (for λ = λQ

with Q ∈ Pngd) be the solutions to the standard BSDEs (5.9) and (5.10), respectively.
Then, there exists Q̂ = Q

bλ ∈ Pngd corresponding (by (5.7)) to λ̂ = λ
bQ = hZ/|Z|, such

that
Yt = ess sup

λ
Y λt = Y

bλ
t , t ≤ T̄ , (5.11)

holds, with λ ranging over all λ = λQ for Q ∈ Pngd. Moreover,

ρt(X) = ess sup
Q∈Pngd

EQt [X] = E
bQ
t [X] = Yt , t ≤ T̄ . (5.12)

Since the proof for this result is very similar to the one of Theorem 5.0.15, we leave
the details to the reader.

To motivate the next result on hedging, consider an investor who holds a contingent
claim and is obliged to pay the liability X at maturity T̄ . If he measures his risk by the
‘a priori’ dynamic coherent risk measure ρt, he would assign at time t the monetary risk
ρt(X) to his liability if he had no access to the financial market S. By dynamic trading
over the remaining period (t, T̄ ] according to some strategy φ ∈ Φ, he can transform
his liability to X −

∫ T̄
t
φdŴ . Accessing his risk in terms of the risk measure ρt, he

should thus aim to trade according to some φ∗ which minimizes ρt
(
X −

∫ T̄
t
φdŴ

)
at any time t. We are going to show that this is a well-posed optimal control problem
whose value function turns out to be the good-deal bound πut (X) and whose optimal
strategy φ∗ can be obtained from the solution to the BSDE (5.4).

To this end, we consider for any permitted trading strategy φ ∈ Φ the solution
(Y φ, Zφ) to the BSDE

− dYt =
(
−ξtr

t φt + ht|φt − Zt|
)
dt− Zt dWt , t ≤ T̄ ,

YT̄ = X . (5.13)

This BSDE has a standard generator since h and ξ are bounded and φ ∈ Φ = H2
T̄

.

Theorem 5.0.17 For X ∈ L2(P ), let (Y, Z) and the family (Y φ, Zφ) (for φ ∈ Φ) be
the solutions to the standard BSDEs (5.4) and (5.13), respectively. Then the strategy

φ∗ =
|Π⊥(Z)|√
h2 − |ξ|2

ξ + Π(Z) (5.14)
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is in Φ and satisfies
Yt = ess inf

φ∈Φ
Y φt = Y φ

∗

t , t ≤ T̄ . (5.15)

Moreover, the upper good-deal bound for X is given by

πut (X) = Yt = ess inf
φ∈Φ

ρt

(
X −

∫ T̄

t

φdŴ

)
= ρt

(
X −

∫ T̄

t

φ∗ dŴ

)
(5.16)

for t ≤ T̄ , and φ∗ is the unique (P × dt) minimizer from Φ for the infimum in (5.16).

Remark 5.0.18 1. Equation 5.16 shows, that the hedging strategy (5.14) minimizes
the a priori risk measure ρt of the residual risk simultaneously for all t ≤ T̄ . Being
coherent, ρ is a monetary risk measure (see [2]) and the good deal bound can be
interpreted as the minimal capital required to make the position acceptable, after
optimal hedging according to φ∗.

2. By the relation π`(X) = −πu(−X) between lower and upper good-deal bounds,
the result also yields the lower good-deal bound and the corresponding hedging
strategy. Since the BSDE (5.4) is non-linear, upper and lower bounds as well as
the respective hedging strategies are different, in general.

3. By (5.16) and (5.14), not only the good deal bounds but also the hedging strategies
are given explicitly in terms of solutions (Y,Z) to the BSDE (5.4).

4. If X ∈ L2(P ) is replicable by some φX ∈ Φ, in the sense that X = c+ φX · ŴT̄

with c ∈ R, then the solution (Y,Z) to the linear BSDE −dYt = −ξtr
t Zt dt −

Zt dWt with YT̄ = X (see Lemma 5.0.14) satisfies Z = φX and Yt = EQt [X] =
c + φX · Ŵt for any Q ∈ Qngd. Since φXt ∈ Ct = Ker Π⊥t holds, uniqueness of
the BSDE solution and (5.14) imply that φ∗ = φX .

5. Since good-deal bounds (5.16) and the corresponding hedging strategies (5.14)
are given in terms of solutions to standard BSDEs, they can be computed by
available numerical methods for BSDEs. Monte Carlo simulation methods for
BSDEs are of particular relevance for problems in higher dimensions. We refer
to [8, 16, 6] and references therein for advances in this field.

Proof of Theorem 5.0.17: That φ∗ from (5.14) is indeed in Φ follows since Z is inH2
T̄

,
ξ is bounded (4.7), and |h| − |ξ| > ε holds by (4.6). Comparing the BSDE generators
evaluated at Z, we obtain by Lemma 6.0.20 that for any φ ∈ Φ the inequality

−ξtr
t φt + ht|φt − Zt| ≥ −ξtr

t Πt(Zt) +
√
h2
t − |ξt|2

∣∣Π⊥t (Zt)
∣∣

holds (P × dt-a.e.) with equality holding for φ∗. Hence, equation (5.15) follows by
Proposition 4.0.13. The first equality in (5.16) thus holds by Theorem 5.0.15 since
the BSDE solution is unique. To show the remaining equalities in (5.16), let Ỹt :=
Yt − φ∗ · Ŵt (t ≤ T̄ ). Noting that by definition of φ∗ and Lemma 6.0.20

−ξtr
t Π(Zt) +

√
h2
t − |ξt|2|Πt(Zt)|+ ξtr

t φ
∗
t = ht|Zt − φ∗t |
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holds, it follows that

−dỸt = −dYt + ξtr
t φ
∗
t dt+ φ∗t dWt = ht|Zt − φ∗t |dt− (Zt − φ∗t )dWt .

Hence, equation Ỹt = ρt(ỸT̄ ) holds and adding φ∗ · Ŵt on both sides we obtain
Yt = ρt

(
YT̄ −

∫ T̄
t
φ∗dŴ

)
. By analogous arguments one obtains the inequality Yt ≤

ρt

(
YT̄ −

∫ T̄
t
φdŴ

)
for any φ ∈ Φ. This yields the last equality for (5.16).

2

Equation (5.16) justifies to define the unique minimizer φ∗ as the good-deal hedging
strategy for X corresponding to the good-deal valuation bounds πu, with respect to the
dynamic coherent risk measure ρ and the strategy set Φ.

It is a natural idea to define a hedging strategy for a contingent claim as the optimal
strategy which minimizes some risk measure. Contributions in this direction can be
found in several papers, including [3, 4, 9, 18, 21], and the result of Theorem 5.0.17
with respect to ρ belongs to the same family. Mathematically, the result of Theo-
rem 5.0.17 fits well within the general theory for inf-convolutions of (BSDE-induced)
risk measures, see [3, 4]. Indeed, Theorem 5.0.17 proves via Lemma 6.0.20 that the
generator in the BSDE (5.4) for πu is equal to the inf-convolution of the generator in
the BSDE (5.9) for ρ with the (formal) generator −ξtZt, restricted to Z ∈ Ct, for the
risk measure that is induced by (super-)hedging opportunities in the market; see Sec-
tion 3.8 in [4]. In this sense, we have worked out a concrete solution to a dynamic
inf-convolution problem. In sections 3-4 of [21], a BSDE similar to (5.4) has been
obtained for a prototypical model where the martingale component of the risky asset
prices is given by independent Brownian motions. As with [3, 4], the focus of [21] is
on the minimization of risk measures but proofs make less use of BSDE theory.

Despite these close relations, the perspective for our problem is in the following
aspect opposite to that of the literature cited. For us, the starting point has been not a
given a-priori risk measure from which a so-called market-consistent risk measure is
to be found (see [4]) by optimal risk-sharing (hedging) with the market. Instead, we
have started from the good-deal bounds πu, which are already market consistent, and
have constructed a suitable ‘a priori risk’ measure ρ in order to find a dynamic notion
of good-deal hedging that can be associated to πu. By this complementary perspective,
we address the problem raised in the final conclusions of [7] about linking good-deal
valuation to a suitable theory of hedging, what seems to have not been elaborated in
the literature so far to our best knowledge.

Since πut (X) is the minimal risk (with respect to ρt) that is obtainable by optimal
hedging when holding the (liability) position X , the position X − Yt (Yt ∈ L2(P,Ft))
just becomes acceptable at t, in the sense that πut (X − Yt) ≤ 0, for Yt = πut (X).
Considering Yt = πut (X) as the minimal capital required at t (with respect to ρt) to
hold position X , the process πu0 − πut + φ∗ · Ŵt can be interpreted as the tracking
error of the hedging strategy φ∗ and it is of interest to study its properties, following
Remark 4.1 in [21]. In our setting, Theorem 5.0.17 readily yields

Corollary 5.0.19 Under the assumptions and notations of Theorem 5.0.17, the track-
ing error πu0 (X)−πut (X) +

∫ t
0
φ∗s dŴs (t ≤ T̄ ) of the good-deal hedging strategy φ∗ is
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a submartingale under any Q ∈ Pngd and a martingale unter the measure Qλ ∈ Pngd

corresponding (by (5.7)) to the bounded process

λt = −ht

|Π⊥t (Zt)|√
h2

t−|ξt|2
ξt −Π⊥t (Zt)∣∣∣∣ |Π⊥t (Zt)|√

h2
t−|ξt|2

ξt −Π⊥t (Zt)
∣∣∣∣ , t ≤ T̄ . (5.17)

Noting that positive signs of the tracking error correspond to gains and negative signs
to losses, the result can be interpreted as a robustness property of the hedging strategy
with respect to the family Pngd of probability measures as generalized scenarios (cf.
[2]), with Qλ being a worst case scenario in terms of the (conditional) expectation
of additional funding needed to maintain the capital requirements when holding on to
position X .

In the special case where the contingent claim X is replicable in the sense of part 4
of Remark 5.0.18, the tracking error vanishes (hence is a martingale under any mea-
sure) and equation (5.17) yields λ = 0 and thus Qλ = P .

Proof of Corollary 5.0.19: First, note that the tracking error process is in S2−ε
T̄

(Q)
(ε > 0) for any Q ∈ Pngd since it is in S2

T̄
(P ) and the density dQ/dP is in Lq for any

q <∞. Using Theorem 5.0.17, it follows from (5.14) and (5.4) with Yt = πut (X) that

−dYt+φ∗t dŴt =
h2
t√

h2
t − |ξt|2

|Π⊥t (Zt)|dt+

(
|Π⊥t (Zt)|√
h2
t − |ξt|2

ξt −Π⊥t (Zt)

)
dWt (5.18)

for t ≤ T̄ . Since the minimum

min
λt

λtr
t

(
|Π⊥t (Zt)|√
h2
t − |ξt|2

ξt −Π⊥t (Zt)

)
= − h2

t√
h2
t − |ξt|2

|Π⊥t (Zt)| ,

taken over all λt in Rn with |λt| ≤ ht, is attained (P×dt-a.e.) by the predictable process
λ from (5.17), the claim follows from (5.18) by a change of measure argument.

2

6 Appendix

This section states a result on a deterministic convex optimization problem, which is
needed for the proof of Theorem 5.0.17. We recall our convention that 0

0 = 0.

Lemma 6.0.20 Assume h > 0 and ξ, z ∈ Rn. With d ≤ n, let σ ∈ Rd×n be a matrix
with full rank d, and let Π and Π⊥ be the orthogonal projections on the linear sub-
spaces C := Im σtr respectively C⊥ = (Im σtr)⊥ = Ker σ in Rn. Let ξ ∈ C and
assume h > |ξ|.
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1. For f0(φ) := −ξtrφ+ h|φ− z|, the ordinary convex minimization program

min
φ
f0(φ) with φ ∈ Rn and linear constraint Π⊥(φ) = 0 (6.1)

attains its minimum value

f0(φ∗) = −ξtrΠ(z) +
√
h2 − |ξ|2 |Π⊥(z)| (6.2)

at the unique minimum

φ∗ =
|Π⊥(z)|√
h2 − |ξ|2

ξ + Π(z) in C . (6.3)

2. The maximization problem maxλ λtrz over λ ∈ Rn with constraint |λ| ≤ h attains
its maximum at λ∗ = h z

|z| with (λ∗)trz = h|z|.

Proof: 1. We prove that the Kuhn-Tucker conditions are satisfied. Since the convex
function f0 is differentiable for φ 6= z, its subgradient ∂f0(φ) at φ is simply the gradient

∂f0(φ) = −ξ +
h

|φ− z|
(φ− z) for φ 6= z.

Noting that

|φ∗ − z| =

∣∣∣∣∣ |Π⊥(z)|√
h2 − |ξ|2

ξ −Π⊥(z)

∣∣∣∣∣ =
h√

h2 − |ξ|2
|Π⊥(z)| ,

it follows that

∂f0(φ∗) = −
√
h2 − |ξ|2
|Π⊥(z)|

Π⊥(z) when φ∗ 6= z . (6.4)

At φ = z, the subgradient of f0 includes the closed ball in Rn with radius h − |ξ| > 0
around the origin, hence{

g ∈ Rn
∣∣ |g| ≤ h− |ξ|} ⊂ ∂f0(φ∗) when φ∗ = z . (6.5)

In either case, there exists by (6.4) and (6.5) a vector of Lagrange multipliers λ∗ ∈ Rn
such that

Π⊥(λ∗) ∈ ∂f0(φ∗) . (6.6)

The constraint Π⊥(φ∗) = 0 is satisfied by φ∗ since ξ and Π(z) are in C = Ker Π⊥.
Since (φ∗, λ∗) satisfies the Kuhn-Tucker conditions, optimality of φ∗ in (6.3) is ensured
by the Kuhn-Tucker theorem, see [24]. Direct computation yields (6.2). If Π⊥(z) = 0,
then f0 is strictly convex at φ∗ = z since h > |ξ|. Otherwise, if Π⊥(z) 6= 0, the
restriction of f0 onto C = Im Π = Ker Π⊥ is strictly convex, in particular at φ∗ from
(6.3). Overall, this implies uniqueness of the minimum.

2. This is obvious from |λtrz| ≤ |λ||z| ≤ h|z|.
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[20] S. Klöppel and M. Schweizer, Dynamic Utility-Based Good-Deal Bounds, Statistics and Deci-
sions 25 (2007), pp. 285–309.

[21] J. Leitner, Pricing and Hedging with Globally and Instantaneously Vanishing Risk, Statistics
and Decisions 25 (2007), pp. 311–332.

[22] P. Protter, Stochastic Integration and Differential Equations, Springer, Berlin, 2004.

[23] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion., Springer, Berlin, 1994.

[24] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.

[25] M. Schweizer, A Guided Tour through Quadratic Hedging Approaches, Option Pricing, In-
terest Rates and Risk Management (E. Jouini, J. Cvitanić, and M. Musiela, eds.), Cambridge
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