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Abstract

Durhuus and Jonsson (1995) introduced the class of “localhgtructible” (LC) 3-spheres
and showed that there are only exponentially-many comtiizitypes of simplicial LC
3-spheres. Such upper bounds are crucial for the convergeinmodels for 3D quantum
gravity.
We characterize the LC property fdrspheres (“the sphere minus a facet collapses to

a (d — 2)-complex”) and ford-balls. In particular, we link it to the classical notions of
collapsibility, shellability and constructibility, andbtain hierarchies of such properties for
simplicial balls and spheres. The main corollaries frora gtudy are:
— Not all simplicial 3-spheres are locally constructible.

(This solves a problem by Durhuus and Jonsson.)
— There are only exponentially many shellable simpliciapBeres with given number of

facets. (This answers a question by Kalai.)
— All simplicial constructible 3-balls are collapsible.

(This answers a question by Hachimori.)
— Not every collapsible 3-ball collapses onto its boundairyus a facet.

(This property appears in papers by Chillingworth and Licin)

1 Introduction

Ambjgrn, Boulatov, Durhuus, Jonsson, and others have widikedevelop a three-dimensional
analogue of the simplicial quantum gravity theory, as pitedi for two dimensions by Regge
[41]. (Seel[3] and/[42] for surveys.) The discretized vemsad quantum gravity considers sim-
plicial complexes instead of smooth manifolds; the metraperties are artificially introduced
by assigning length to any edge. (This approach is due to Weingarteh [46] and krasi/the-
ory of dynamical triangulations”.) A crucial path integaler metrics, the “partition function
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for gravity”, is then defined via a weighted sum over all tgatated manifolds of fixed topol-
ogy. In three dimensions, the whole model is convergent dritye number of triangulated
3-spheres withN facets grows not faster tha®l¥, for some constar. But does this hold?
How many simplicial spheres are there wNiacets, forN large?

Without the restriction to “local constructibility” thisracial question still represents a
major open problem, which was put into the spotlight also bpr®v [18, pp. 156-157].
Its 2D-analogue, however, was answered long time ago by Tddl] [45], who proved that
there are asymptotically fewer theﬁ@l\%)N combinatorial types of triangulated 2-spheres. (By
Steinitz’ theorem, cf. [48, Lect. 4], this quantity equieatly counts the maximal planar maps
onn > 4 vertices, which havdl = 2n— 4 faces, and also the combinatorial types of simplicial
3-dimensional polytopes witN facets.)

In the following, the adjective “simplicial” will often bernitted when dealing with balls,
spheres, or manifolds, as all the regular cell complexegahdedral complexes that we con-
sider are simplicial.

Why are 2-spheres “not so many”? Every combinatorial tygeafgulation of the 2-sphere
can be generated as follows (Figlte 1): First for some &ven4 build a tree ofN triangles
(which combinatorially is the same thing as a triangulatban (N + 2)-gon), and then glue
edges according to a complete matching of the boundary edgescessary condition in order
to obtain a 2-sphere is that such a matchinglaar. Planar matchings and triangulations of
(N + 2)-gons are both enumerated by a Catalan nur@Qep, and since the Catalan numbers
satisfy a polynomial boun@y = N%l(z,\'}') < 4N, we get an exponential upper bound for the
number of triangulations.

LK)
A
Figure 1:How to get an octahedron from a tree of 8 triangles (i.e.,amgulated 10-gon).

Neither this simple argument nor Tutte’s precise count caredsily extended to higher
dimensions. Indeed, we have to deal with three differerleras when trying to extend results
or methods from dimension two to dimension three:

(i) Many combinatorial types of simplicial 3-spheres ar¢ m@alizable as boundaries of con-
vex 4-polytopes; thus, even though we observe below that thie only exponentially-
many simplicial 4-polytopes withNl facets, the 3-spheres could still be more numerous.

(i) The counts of combinatorial types according to the nembof vertices and according to
the numbeiN of facets are not equivalent any more. We hame-30< N < %n(n— 3)
by the lower resp. upper bound theorem for simplicial 3-spfieWe know that there are
more than 2V" 3-spheres[[29][39], but less tha”r®°9" types of 4-polytopes with
vertices [16][1], yet this does not answer the question fooant in terms of the number
N of facets.

(iif) While it is still true that there are only exponentiglimany “trees ofN tetrahedra”, the
matchings that can be used to glue 3-spheres are not plapanane; thus, they could
be more than exponentially-many. If, on the other hand, wé&ioe ourselves to “local
gluings”, we generate only a limited family of 3-sphereswaswill show below.
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In the early nineties, new finiteness theorems by Cheégérajid Grove et al. [19] yielded a
new approach, namely, to coulmanifolds of “fluctuating topology” (not necessarily spbg)
but “bounded geometry” (curvature and diameter boundewh fbove, and volume bounded
from below). This allowed Bartocci et al.|[6] to bound for adymanifold the number of
triangulations withN or more facets, under the assumption that no vertex had eléugéer
than a fixed integer. However, for this it is crucial to redtthe topological type: Already
for d = 2, there are more than exponentially many triangulated 8Holds of bounded vertex
degree withN facets.

In 1995, the physicists Durhuus and Jonsson [13] introddbedclass of “locally con-
structible” (LC) 3-spheres. An LC 3-sphere (with N facetsaisphere obtainable from a tree of
N tetrahedra, by identifying pairs of adjacent triangleshie boundary. “Adjacent” means here
“sharing at least one edge”, and represents a dynamic esqeirt. Clearly, every 3-sphere is
obtainable from a tree dfl tetrahedra by matching the triangles in its boundary; atingrto
the definition of LC, however, we are allowed to match onlysehtriangles thadre adjacent —
or that havebecomeadjacent by the time of the gluing.

Durhuus and Jonsson proved an exponential upper bound omihieer of combinatorially
distinct LC spheres witiN facets. Based also on computer simulations ([4], see aBjoaiid
[2]) they conjectured that all 3-spheres should be LC. A tpasisolution of this conjecture
would have implied that spheres withfacets are at mo&N, for a constan€ — which would
have been the desired missing link to implement discretetgonagravity in three dimensions.

In the present paper, we show that the conjecture of Durhndslansson has a negative
answer: There are simplicial 3-spheres that are not LC.h(\t¥its, however, we do not re-
solve the question whether there are fewer tB8rsimplicial 3-spheres oN facets, for some
constant.)

On the way to this result, we provide a characterization osit@pliciald-complexes which
relates the “locally constructible” spheres defined by jptigts to concepts that originally arose
in topological combinatorics.

Main Theorem 1 (Theorem 2.1L) A simplicial d-sphere, & 3, is LC if and only if the sphere
after removal of one facet can be collapsed down to a compléixension d- 2. Furthermore,
there are the following inclusion relations between faeslof simplicial d-spheres:

{vertex decomposabje_ {shellablé C {constructiblé C {LC} C {all d-spheres.

The inclusions all hold with equality fad = 2: All 2-spheres are vertex-decomposable. We
use the hierarchy in conjunction with the following extemsand sharpening of Durhuus and
Jonsson’s theorem (who discussed only the dase).

Main Theorem 2 (Theoreni_4.4) For fixed d> 2, the number of combinatorially distinct sim-
plicial LC d-spheres with N facets grows not faster tredliN.

We will give a proof for this theorem in Sectih 4; the samestgpupper bound, with the same
type of proof, also holds for L@-balls withN facets.

Already in 1988 Kalail[209] constructed for evedy> 4 a family of more than exponentially
manyd-spheres om vertices; Lee[[33] later showed that all of Kalai’'s spheres shellable.
Combining this with Theorermh_4.4 and Theorem 2.1, we obtagrfahowing asymptotic result:



Corollary. For fixed d> 4, the number of shellable simplicial d-spheres grows mosnth
exponentially with respect to the number n of vertices, biyt exponentially with respect to the
number N of facets.

The hierarchy of Theorem 2.1 is not quite complete: It i$ st known whether constructible,
non-shellable 3-spheres exist (se€ [30] [14]). A shell8dphere that is not vertex-decompos-
able was found by Lockeberg in his 1977 Ph.D. work (repontef32, p. 742]; see also [23]).
Again, the 2-dimensional case is much simpler and compistdi’ed: All 2-spheres are vertex
decomposable (see [40]).

In order to show that not all spheres are LC we study in detaipbkcial spheres with a
“knotted triangle”; these are obtained by adding a cone tiverboundary of a ball with a
knotted spanning edge (as in Furch’s 1924 paper [15]; seeRilyy [8]). Spheres with a
knotted triangle cannot be boundaries of polytopes. Liskol35] had shown in 1991 that

a 3-sphere with a knotted triangle is not shellable if the ksattileasB-complicated.

Here “at least 3-complicated” refers to the technical rezaent that the fundamental group of
the complement of the knot has no presentation with lessfthargenerators. A concatenation
of three or more trefoil knots satisfies this condition. Id@PHachimori and Zieglel [25] [21]
demonstrated that Lickorish’s technical requirement tsnaeessary for his result:

a 3-sphere withanyknotted triangle is not constructible.

In the present work, we re-justify Lickorish’s technicasamption, showing that this is exactly
what we need if we want to reach a stronger conclusion, naraelypological obstruction to
local constructibility. Thus, the following result is ebtished in order to prove that the last
inclusion of the hierarchy in Theordm 2.1 is strict.

Main Theorem 3 (Theoren 2. 13) A 3-sphere with a knotted triangle is not LC if the knot is at
least3-complicated.

The knot complexity requirement is now necessary, as nostoactible spheres with a
single trefoil knot can still be LC (see Example 2.26).

The combinatorial topology al-balls and that ofl-spheres are of course closely related —
our study builds on the well-known connections and also aggsones.

Main Theorem 4 (Theoreni 3.1L) A simplicial d-ball is LC if and only if after the removal of a
facet it collapses down to the union of the boundary with alerof dimension at most-d2.
We have the following hierarchy:

collapsible onto

{ vertex } C {shellablé ¢ {constructiblé C {LC} C { (d— 2)-complex

decomp % C {all d-balls}.

All the inclusions of Main Theoreril 4 hold with equality fongplicial 2-balls. In the case
of d < 3, collapsibility onto ad — 2)-complex is equivalent to collapsibility. In particularew
settle a question of Hachimori (see elg.|[22, pp. 54, 66])thdreall constructible 3-balls are
collapsible.

Furthermore, we show in Corollary 3125 that some collagsi#hballs do not collapse onto
their boundary minus a facet, a property that comes up irsidalsstudies in combinatorial
topology (compare [34] [12]). In particular, a result of Gihgworth can be restated in our
language as “if for any geometric simplicial complaAxthe support (union)j| is a convex
3-dimensional polytope, thefl is necessarily an LC 3-ball”, see Theorém_3.28. Thus any
geometric subdivision of the 3-simplex is LC.
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1.1 Definitions and Notations
1.1.1 Simplicial regular CW complexes

In the following, we present the notion of “local constribdity” (due to Durhuus and Jonsson).
Although in the end we are interested in this notion as agpbefinite simplicial complexes,
the iterative definition of locally constructible complexdictates that for intermediate steps
we must allow for the greater generality of finite “simpliciagular CW complexes”. A CW
complex isregular if the attaching maps for the cells are injective on the baup@see e.g! [9]).

A regular CW-complex isimplicial if for every proper facd=, the interval|0,F] in the face
poset of the complex is boolean. Every simplicial complaexd(an particular, any triangulated
manifold) is a simplicial regular CW-complex.

The k-dimensional cells of a regular CW complé€xare calledk-faces the inclusion-
maximal faces are callefdcets and the inclusion-maximal proper subfaces of the faceds ar
calledridges The dimensionof C is the largest dimension of a facqiure complexes are
complexes where all facets have the same dimension. All g that we consider in the
following are finite, most of them are pure. dxcomplexis a d-dimensional complex. Con-
ventionally, the O-faces are callegrtices and the 1-facesedges (In the discrete quantum
gravity literature, the ridges are sometimes called “h&ige “bones”, whereas the edges are
sometimes referred to as “links”.) If the uni¢@| of all simplices ofC is homeomorphic to a
manifold M, thenC is atriangulationof M; if C is a triangulation of a-ball or of ad-sphere,
we will call C simply ad-ball (resp.d-spherg.

1.1.2 Knots

All the knots we consider arfame that is, realizable as 1-dimensional subcomplexes of some
triangulated 3-sphere. A knotis-complicatedf the fundamental group of the complement of
the knot in the 3-sphere has a presentation with 1 generators, but no presentation with
generators. By “at least-complicated” we meank:complicated for somk > m’. There exist
arbitrarily complicated knots: Goodrick [17] showed that tonnected sum of trefoil knots

is at leastm-complicated.

Another measure of how tangled a knot can be is the bridgifsée e.g.[31, p. 18] for the
definition). If a knot has bridge inddx the fundamental group of the knot complement admits
a presentation witb generators anld— 1 relations[[31, p. 82]. In other words, the bridge index
of at-complicated knot is at least 1. As a matter of fact, the connected sunt tkfoil knots
ist-complicated, and its bridge index is exadtly 1 [14].

1.1.3 The combinatorial topology hierarchy

In the following, we review the key properties from the irgtn
{shellablé C {constructiblé

valid for all simplicial complexes, and the inclusion

{shellablé C {collapsiblg

applicable only focontractiblesimplicial complexes, both known from combinatorial toggpy
(see [9, Sect. 11] for details).



Shellabilitycan be defined for pure simplicial complexes as follows:

— every simplex is shellable;

— ad-dimensional pure simplicial compl€xwhich is not a simplex is shellable if and only if
it can be written a€ = C, UC,, whereC; is a shellablal-complex,C; is ad-simplex, and
C1NC; is a shellabléd — 1)-complex.

Constructibilityis a weakening of shellability, defined by:

— every simplex is constructible;

— ad-dimensional pure simplicial compléX which is not a simplex is constructible if and
only if it can be written a€ = C, UC,, whereC, andC; are constructibld-complexes, and
C1NC; is a constructibléd — 1)-complex.

Let C be ad-dimensional simplicial complex. Aelementary collapsés the simultaneous
removal fromC of a pair of faceg o, %) with the following prerogatives:

— dimz=dimo+1,;

— o is aproper face of;

— 0o is not a proper face of any other face(@f

(The three conditions above are usually abbreviated inxtpesssion ¥ is a free face ob”;
some complexes have no free face)Clf.=C — = — g, we say that the compleX collapses
ontothe complexC’. We also say that the complé€xcollapses ontthe complexD, and write
C\ D, if C can be reduced tD by a finite sequence of elementary collapses. Theallapse
refers to a sequence of elementary collapsesolapsiblecomplex is a complex that can be
collapsed onto a single vertex.

SinceC’ :=C — 3 — o is a deformation retract &, each collapse preserves the homotopy
type. In particular, all collapsible complexes are cortbde. The converse does not hold in
general: For example, the so-called “dunce hat” is a cotitle2-complex without free edges,
and thus with no elementary collapse to start with. Howeter,implication “contractible=-
collapsible” holds for all 1-complexes, and also for shakacomplexes of any dimension.

A connected 2-dimensional complex is collapsible if andyahit does not contain a 2-
dimensional complex without a free edge. In particularZatimensional complexes, @\ D
andD is not collapsible, the® is also not collapsible. This holds no more for compleQaxf
dimension larger than two [27].

1.1.4 LC pseudomanifolds

By ad-pseudomanifoldpossibly with boundary] we mean a finite regular CW-compPethat
is pured-dimensional, simplicial, and such that eqdh- 1)-dimensional cell belongs to at most
two d-cells. Theboundaryof the pseudomanifol®, denoteddP, is the smallest subcomplex
of P containing all thed — 1)-cells of P that belong to exactly ond-cell of P.

According to our definition, a pseudomanifold needs not bienplecial complex; it might
be disconnected; and its boundary might not be a pseudoofénif

Definition 1.1 (Locally constructible pseudomanifoldjord > 2, letC be a pureal-dimensional

simplicial complex withN facets. Alocal constructiorfor C is a sequencé, To, ..., Tn, ..., Tk

(k > N) such thafT; is ad-pseudomanifold for eadrand

(1) Tyis ad-simplex;

(2) if i <N -1, thenT;. 1 is obtained fronil; by gluing a newd-simplex toT; alongside one of
the (d — 1)-cells indT;;



(3) if i > N, thenT, is obtained fromT; by identifying a pairog, 1 of (d — 1)-cells in the
boundarydT; whose intersection containgd — 2)-cell F;

(4) Tx=_C.

We say thaC is locally constructible or LC, if a local construction foC exists. With a little

abuse of notation, we will call each an LC pseudomanifold We also say that is locally

constructedhlong T, if T is the dual graph ofy, and thus a spanning tree of the dual graph

of C.

The identifications described in item (3) above are opematibat are not closed with re-
spect to the class of simplicial complexes. Local consipastwhere all steps are simplicial
complexes produce only a very limited class of manifoldsisisting ofd-balls with no inte-
rior (d — 3)-faces. (When in an LC step the identified boundary facetrsett inexactlya
(d —2)-cell, no(d — 3)-face is sunk into the interior, and the topology stays tmeesa

However, since by definition the local construction in thd emust arrive at a pseudoman-
ifold C thatis a simplicial complex, each intermediate stgpnust satisfy severe restrictions:
for eacht <d,

— distinctt-simplices that are not in the boundaryTpthare at most on@ — 1)-simplex;

— distinctt-simplices in the boundary @i that share more than orfe— 1)-simplex will need
to be identified by the time the construction®fs completed.

Moreover,

— if o,1 are the two(d — 1)-cells glued together in the step fromto Ti+1, 0 andt cannot
belong to the samé@-simplex ofT;; nor can they belong to twd-simplices that are already
adjacent inf;.

For example, in each step of the local construction of a 2&mmo two tetrahedra share more

than one triangle. Moreover, any two distinct interiormigées either are disjoint, or they share

a vertex, or they share an edge; but they cannot share tws atlgrethree; and they also cannot

share one edge and the opposite vertex. If we glued togetbdydundary triangles that belong

to adjacent tetrahedra, no matter what we did afterwardsyoutd not end up with a simplicial
complex any more. So,

a locally constructible3-sphere is a triangulate8-sphere obtained from a tree of
tetrahedra |y by repeatedly identifying two adjacent triangles in the hadary.

As we mentioned, the boundary of a pseudomanifold need natgseudomanifold. However,
if P is an LCd-pseudomanifold, thedP is automatically dd — 1)-pseudomanifold. Neverthe-
less,dP may be disconnected, and thus, in general, it is not LC.

All LC d-pseudomanifolds are simply connected; in cdse3, their topology is controlled
by the following result.

Theorem 1.2 (Durhuus—Jonsson [13]Every LC3-pseudomanifold P is homeomorphic to a
3-sphere with a finite number of “cacti &balls” removed. (A cactus @-balls is a tree-like
connected structure in which any t@eballs share at most one point.) Thus the bound2ipy

is a finite disjoint union of cacti d-spheres. In particular, each connected componetrois

a simply-connected-pseudomanifold.

Thus every closed 3-dimensional LC pseudomanifold is argphehile ford > 3 other
topological types such as products of spheres are possdseBenedetti [7]).



2 OnLC Spheres

In this section, we establish the following hierarchy ammmad in the introduction.

Theorem 2.1. For all d > 3, we have the following inclusion relations between farsild
simplicial d-spheres:

{vertex decomposabje_ {shellablé C {constructiblé C {LC} C {all d-spheres.

Proof. The first two inclusions, and strictness of the first one, aw@akn; the third one will fol-
low from Lemma2.28 and will be shown to be strict by ExanipBS2ogether with Lemnia Z.24;
finally, Corollary[2.22 will establish the strictness of tieirth inclusion for alld > 3. O

2.1 Somed-spheres are not LC

Let Sbe a simpliciad-sphered > 2), andT a spanning tree of the dual graph®fWe denote
by KT the subcomplex oBformed by all thed — 1)-faces ofSthat are not intersected Hy.

Lemma 2.2. Let S be any d-sphere with N facets. Then for every spanreegrtrof the dual
graph of S,

e KT is a contractible puréd — 1)-dimensional simplicial complex WiM facets;

e foranyfaceth of S, S-A \ K.

Any collapse of al-sphereSminus a facef) to a complex of dimension at modt- 1 proceeds
along a dual spanning trée To see this, fix a collapsing sequence. We may assume that the
collapse ofS— A is ordered so that the paif&d — 1)-face d-face) are removed first. Whenever
both the following conditions are met:

1. ois the(d — 1)-dimensional intersection of the fac&sandZ’ of S,

2. the pair(o, %) is removed in the collapsing sequenceSef A,
draw an oriented arrow from the center2fo the center oE’. This yields a directed spanning
treeT of the dual graph o8, whereA is the root. IndeedT is spanningoecause alll-simplices
of S— A are removed in the collapse; itagyclic because the center of eatfsimplex ofS— A
is reached by exactly one arrow; itéennectedbecause the only fre@ — 1)-faces ofS— A,
where the collapse can start at, are the préger1)-faces of the “missing simplex&. We will
say that the collapsing sequeraets along the tree Tin its top-dimensional part). Thus the
complexKT appears as intermediate step of the collapse: It is the eonutitained after the
(N — 1)st pair of faces has been removed fr&ms A.

Definition 2.3. By afacet-killing sequenctr ad-dimensional simplicial comple& we mean
a sequenc€y,Cy,...,C_1,C of complexes such that= fy(C), Co = C, andC;, 1 is obtained
by an elementary collapse that removes a fieee 1)-face o of C;, together with the unique
facetX containingo.

If Cis ad-complex, and is a lower-dimensional complex such ti@t\, D, there exists a
facet-killing sequencey, ..., G for C such that; \, D. In other words, the collapse 6fonto
D can be rearranged so that the paiid— 1)-face d-face) are removed first. In particular, for
anyd-complexC, the following are equivalent:

1. there exists a facet-killing sequence @r

2. there exists &-complexD with k < d — 1 such thaC \ D.
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What we argued before can be rephrased as follows:

Proposition 2.4. Let S be a d-sphere, adla d-simplex of S. Let C be a k-dimensional simpli-
cial complex, with kK d — 2. Then,

S—AN\,C < 3ITst K \,C

The right-hand side in the equivalence of Propositioh 2 gsdmt depend on thechosen. So,
for anyd-sphered, eitherS— A is collapsible for everh, or S— A is not collapsible for any.

s

Figure 2: (ABOVE): A facet-killing sequence 08— A, whereSis the
boundary of a tetrahedron & 2), andA one of its facets. (RSHT): The \:
1-complexKT [in black] onto whichS— A collapses, and the directed
spanning tred [in purple] along which the collapse above acts.

One more convention: by @aatural labelingof a rooted tre€l' on n vertices we mean a
bijectionb:V(T) — {1,...,n} such that ifv is the rootp(v) = 1, and ifvis not the root, there
exists a vertexv adjacent tos such thab(w) < b(v).

We are now ready to link the LC concept with collapsibilityaké ad-sphereS, a facetA
of S, and a rooted spanning tréeof the dual graph o§, with rootA. SinceSis given, fixingT
is really the same as fixing the manifdlg in the local construction d§; and at the same time,
fixing T is the same as fixing .

OnceT, Ty, andKT have been fixed, to describe the first part of a local constmuaif
S(thatis, Ty,...,Tn) we just need to specify the order in which the tetrahedr& lodive to be
added, which is the same as to give a natural labeliig &esides, natural labelings ®fare in
bijection with collapse$— A\, KT (thei-th facet to be collapsed is the nodeTofabeled + 1;
see Proposition 2.4).

What if we do not fixT? Suppos& andA are fixed. Then the previous reasoning yields a
bijection among the following sets:

1. the set of all facet-killing sequences®* A;

2. the set of “natural labelings” of spanning treesSpfooted atj;

3. the set of the first par{d1, ..., Ty) of local constructions fog, with T; = A.

Can we understand also the second part of a local constnUctionbinatorially”? Let us start
with a variant of the “facet-killing sequence” notion.

Definition 2.5. A pure facet-massacref a pured-dimensional simplicial compleR is a se-
quencePy, Py, ..., R_1, R of (pure) complexes such thiat= fy4(P), Py =P, andP_ 1 is obtained
by B removing:
(a) a free(d — 1)-faceo of B, together with the unique fac&tcontainingo, and
(b) all inclusion-maximal faces of dimension smaller tlththat are left after the removal of
type (a) or, recursively, after removals of type (b).



In other words, the (b) step removes lower-dimensionat$aaetil one obtains a pure complex.
Sincet = f4(P), R has no facets of dimensiahleft, nor inclusion-maximal faces of smaller
dimension; henc& is empty. The otheR’s are pure complexes of dimensidn Notice that
the stepP — P 1 is not a collapse, and does not preserve the homotopy typeniergl. Of
courseP, — P 1 can be “factorized” in an elementary collapse followed bymoval of a
finite number ofk-faces, withk < d. However, this factorization is not unique, as the next
example shows.

Example 2.6. Let P be a full triangle. P admits three different facet-killing collapses (each
edge can be chosen as free face), but it admits only one metrfsassacre, namef/0.

Lemma 2.7. Let P be a pure d-dimensional simplicial complex. Every ti&iléng sequence
of P naturally induces a unique pure facet-massacre of P.pAte facet-massacres of P are
induced by some (possibly more than one) facet-killing sece.

Proof. The map consists in taking a facet-killing sequefige..., G, and “cleaning up” the
Ci by recursively killing the lower-dimensional inclusionaximal faces. As the previous ex-
ample shows, this map is not injective. It is surjective aially because the removed lower-
dimensional faces are of dimension “too small to be relévaimt fact, their dimension is at
mostd — 1, hence their presence can interfere only with the freeokfes of dimension at
mostd — 2; so the list of all removals of the forrf(d — 1)-face d-face) in a facet-massacre
yields a facet-killing sequence. O

Theorem 2.8.Let S be a d-sphere; fix a spanning tree T of the dual graph ofh®.s&cond
part of a local construction for S along T corresponds bijeety to a facet-massacre of'K

Proof. Fix SandT; Ty andKT are determined by this. Let us start with a local constructio
(T1,.--,Tn—1,) TN, - - -, Tk for SalongT. Topologically,S= Tyn/~, where~ is the equivalence
relation determined by the gluing (two distinct pointsTaf are equivalent if and only if they
will be identified in the gluing). MoreoveK ™ = 3Ty /~, by the definition oK.

Define Ry := Ky = dTn/~, andPj := dTnyj/~. We leave it to the reader to verify that
k—N and fq(KT) are the same integer (see Lemma 2.2), which we cdligih particular
Po=0Tx/~=0S/~=0.

In the first LC stepTn — Tne1, We remove from the boundary a free ridgéogether with
the unique paio’, o” of facets ofdTy sharingr. At the same timet and the newly formed
face o are sunk into the interior. This stePply — 0Ty 1 haturally induces an analogous
stepdTn;j/~ — 0Tntj+1/~, namely, the removal af and of the (unique!)d — 1)-faceo
containing it.

In the j-th LC step,0Tnyj — dTn+j+1, We remove from the boundary a ridgéogether
with a pairo’, 0” of facets sharing; moreover, we sink into the interior a lower-dimensional
faceF if and only if we have just sunk into the interior all faces tainingF. The induced step
from 0Ty, j/~ to dTn4j+1/~ is precisely a “facet-massacre” step.

For the converse, we start with a “facet-massagxe” .., Pp of KT, and we hav®, = K1 =
0Tn/~. The uniqueg(d — 1)-face gj killed in passing fronP; to P, 1 corresponds to a unique
pair of (adjacent!)(d — 1)-facesoj, oj’ in dTn+j. Gluing them together is the LC move that
transformsIy j into Ty j11. O
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Remark 2.9. Summing up:

— The first part of a local construction along a tieeorresponds to a facet-killing collapse of
S—A (that ends irk ™).

— The second part of a local construction along a fremrresponds to a pure facet-massacre
of KT.

— Asingle facet-massacre Bf' corresponds to many facet-killing sequencek bf

— By Propositioi 24, there exists a facet-killing sequeocK" if and only if KT collapses
onto some(d — 2)-dimensional compleg. ThisC is necessarily contractible, likeT .

SoSis locally constructible alond if and only if KT collapses onto som@ — 2)-dimensional
contractible compleg, if and only if KT has a facet-killing sequence. What if we do notTix

Theorem 2.10.Let S be a d-sphere (d 3). Then the following are equivalent:

1. SisLC;

2. for some spanning tree T of S,TKs collapsible onto soméd — 2)-dimensional (con-
tractible) complex C;

3. there exists dd — 2)-dimensional (contractible) complex C such that for evewgetA of S,
S—-ANC;

4. for some faceh of S, S- Ais collapsible onto ¢d — 2)-dimensional contractible complex C.

Proof. Sis LC if and only if it is LC along some tre€; thus(1) < (2) follows from Remark
[2.9. Besides(2) = (3) follows from the fact thaS— A \ KT (LemmalZ.2), wherK' is
independent of the choice &. (3) = (4) is trivial. To show(4) = (2), take a collapse of
S— A onto somgd — 2)-complexC; by Lemmé& 2.4, there exists some tie¢along which the
collapse acts) so th&— A\, KT andKT \ C. O

Corollary 2.11. Let S be &-sphere. Then the following are equivalent:
1. SisLC;

2. KT is collapsible, for some spanning tree T of the dual graph;of S
3. S—Ais collapsible for every facet of S;

4. S—Ais collapsible for some facét of S.

Proof. This follows from the previous theorem, together with thet finat all contractible 1-
complexes are collapsible. O

We are now in the position to exploit results by Lickorish aboollapsibility.

Theorem 2.12(Lickorish [35]). Let £ be a knot on m edges in theskeleton of a simplicie3-
sphere S. Suppose that@ is collapsible, wheré is some tetrahedron in-SL. Then|] — | £|
is homotopy equivalent to a connected cell complex with ecelltand at most m-cells. In
particular, the fundamental group ¢8 — | £| admits a presentation with m generators.

Now assume that a certain sph&eontaining a knotg is LC. By Corollary[2.11,S— A
is collapsible, for any tetrahedrah not in the knot£. Hence by Lickorish’s criterion the
fundamental groupr (|S| — | £]) admits a presentation withh generators.

Theorem 2.13. Any 3-sphere with a3-complicated3-edge knot is not LC. More generally, a
3-sphere with an m-gonal knot cannot be LC if the knot is attleasomplicated.
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Example 2.14.As in the construction of the classical “Furch—-Bing ball5[}. 73] [8, p. 110]
[49], we drill a hole into a finely triangulated 3-ball alongrgple pike dive of three consecutive
trefoils; we stop drilling one step before destroying thegarty of having a ball (see Figurée 3).
If we add a cone over the boundary, the resulting sphere hasea edge knot which is a
connected sum of three trefoil knots. By Goodrick|[17] thamected sum ofn copies of the
trefoil knot is at leastn-complicated. So, this sphere has a knotted triangle, thédmental
group of whose complement has no presentation with 3 gemeratiences cannot be LC.

7z )L

Figure 3: Furch-Bing ball with a (corked) tubular hole along a tripiefoil knot. The cone over the
boundary of this ball is a sphere thaiist LC.

From this we get a negative answer to the Durhuus—Jonssgectoie:
Corollary 2.15. Not all simplicial 3-spheres are LC.

Lickorish proved also a higher-dimensional statementichllg by taking successive sus-
pensions of the 3-sphere in Example 2.14.

Theorem 2.16(Lickorish [35]). For each d> 3, there exists a PL d-sphere S such thatSis
not collapsible for any facehk of S.

To exploit our Theorerh 2.10 we need a sph@gseich thatS— A is not even collapsible to a
(d—2)-complex. To establish that such a sphere exists, we strendtickorish’s result.

Definition 2.17. Let K be ad-manifold, A anr-simplex inK, andA the barycenter of. Con-
sider the barycentric subdivisiat(K) of K. Thedual A® of A is the subcomplex a$d(K)
given by all flags

ACACALC---CA

wherer = dimA, and dimA; . ; = dimA; + 1 for each.

A* is a cone with apeA, and thus collapsible. We also have the following knownltdsae
e.g. Hudson[28, Lemma 1.19]).

12



Lemma 2.18. Let K be a PL d-manifold (without boundary), and let A be a $axpn K of
dimensionr. Then

e A"isa(d—r)-ball, and

e if Ais aface of an(r + 1)-simplex B, then Bis a (d —r — 1)-subcomplex of A*.

We have observed in Lemnla PR.2 that for afwgphereS and any facefA the ballS— A is
collapsible onto gd — 1)-complex: In other words, via collapses one can alwaysogetdi-
mension down. To gdtvo dimensions down is not so easy: Our Theoteml|2.10 stateSthAt
is collapsible onto &d — 2)-complex precisely whe8is LC.

This “number of dimensions down you can get by collapsingi’ loa related to the minimal
presentations of certain homotopy groups. The idea of tketheorem is that if one can get
k dimensions down by collapsing a manifold minus one facedn tthe(k — 1)-th homotopy
group of the complement of arfy — k)-subcomplex of the manifold cannot be too complicated
to present.

Theorem 2.19.Let t, d with0 <t < d -2, and let K be a PL d-manifold (without bound-
ary). Suppose that Kk A collapses onto a t-complex, for some fagedf K. Then, for each
t-dimensional subcompleXof K, the homotopy group

Ty—t—1 (K[ —|£])
has a presentation with exactly(£) generators, whileg(|K| — |£|) is trivial fori <d —t— 1.

Proof. As usual, we assume that the collaps&of A is ordered so that:
— first all pairs((d — 1)-face d-face) are collapsed,;
— then all pairg(d — 2)-face (d —1)-face) are collapsed,;

— finally, all pairs(t-face (t + 1)-face) are collapsed.
Let us put together all the faces that appear above, mainggiheir order, to form a single list
of simplices

AL A2, ..., Aom-_1,AoMm.

In such a listA; is a free face ofAy; Az is a free face ofA, with respect to the complex
K —A; — Ay; and so on. In general)y_1 is a face ofAy for eachi, and in addition, ifj > 2i,
Azi_1 is not a face of\;.

We setXy = Ag ;= A and define a finite sequeneg, ..., Xy of subcomplexes add(K) as
follows:

Xj:=|J{A"st.i€{0,...,2j} andA ¢ £}, for j e {1,...,M}.

None of theAy’s can be ing, becauset is t-dimensional and dirAy > dimAgy =t + 1.
However, exactlyf;(£) of the Ay_1's are ing. Consider howX; differs fromX;_1. There are
two cases:

o If Agj_1isnoting,

By Lemmd 2.1B, setting= dimAyj_1, A;_; is a(d —r)-ball that contains in its boundary
the (d —r — 1)-ball A;. Thus|X;] is just|X;_1| with a (d —r)-cell attached via a cell in its
boundary, and such an attachment does not change the hgntypep

13



o If Ayj_1isin g, then
Xj=Xj_1 U Aéj-

As this occurs only when difyj_1 =t, we have that dimyj =t +1 and dimﬁgj =d-t-1;

hencelX|| is just|X;_1| with a (d —t — 1)-cell attached via its whole boundary.
Only in the second case the homotopy typgXyf changes at all, and this second case occurs
exactly f;(£) times. SinceXg is one point, it follows thaiXy is homotopy equivalent to a
bouquet off;(£) many(d —t — 1)-spheres.

Now let us list by (weakly) decreasing dimension the faceK dfiat do not appear in the
previous listAy, A, ..., Aom—_1,Aom. We name the elements of this list

Aom+1,Aom+-2, AF

(wheres 9, fi(K) = F +1 because all faces appearig . .., Ar).
Correspondingly, we recursively define a new sequence afasuplexes o6d(K) setting
Yo := Xv and
v o= d Yho1 if Aomyn € £,
h-= { Yho1 U Ajy.p,  Otherwise.

Since dimAgyh < dimAgyy1 =t, we have thatX;| is just |X,_1| with possibly a cell of
dimension at lead —t attached via its whole boundary. Let us consider the honyojopups
of theYy 's : Recall thatYp was homotopy equivalent to a bouquetfgfe) (d —t — 1)-spheres.
Clearly, for allh,

m(Yn) =0 for eachj € {1,...,d -t —1}.

Moreover, the higher-dimensional cell attachedMp ;| to get|Y;| corresponds to the addition
of relators to a presentation @f_;_1(Y,_1) to get a presentation afy_;_1(Ys). This means
that for allh the groupry_;_1(Yh) is generated by (at most)(£) elements.

The conclusion follows from the fact that, by constructidpy_r is the subcomplex of
sd(K) consisting of all simplices a$d(K) that have no face if; and one can easily prove (see
[35, Lemma 1]) that such a complex is a deformation retragkof- | £|. O

Corollary 2.20. Let S be a d-sphere with @ — 2)-dimensional subcomple&. If the funda-
mental group of§ — |£| has no presentation withyf>(£) generators, then S is not LC.

Proof. Sett =d— 2 in Theoreni 2.119, and apply Theorem 2.10. O

Corollary 2.21. Fix an integer d> 3. Let S be 8-sphere with an m-gonal knot in its 1-skeleton,
so that the knot is at leagt- 29-3)-complicated. Then th@ — 3)-rd suspension of S is a PL
d-sphere that is not LC.

Proof. Let S be the(d — 3)-rd suspension 08, and let£’ be the subcomplex & obtained

taking the(d — 3)-rd suspension of ther-gonal knotg. Since|§ — |£| is a deformation retract
of |S| —|£/], they have the same homotopy groups. In particular, thedmgshtal group of
|S|—|£| has no presentation with- 29-3 generators. Now’ is (d — 2)-dimensional, and

fao(£) =297 fy(£) =m- 2",

whence we conclude via Corolldry 2120. O
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Corollary 2.22. For every d> 3, not all d-spheres are LC.

Theoren2.19 can be used in connection with the existencekabts, that is, 2-spheres
embedded in a 4-sphere in a knotted way (see Kawauchi [319G]),1to see that there are
many non-LC 4-spheres beyond those that arise by suspesfsdespheres. Thus, being “non-
LC” is not simply induced by classical knots.

2.2 Many spheres are LC

Next we show that all constructible manifolds are LC.

Lemma 2.23.Let C be a d-pseudomanifold. If C can be splitin the forems C; UC,, where G
and G are LC d-pseudomanifolds and GC; is a strongly connecte@ — 1)-pseudomanifold,
thenC is LC.

Proof. Notice first thatC; "Cy, = dC1 N JC,. In fact, every ridge o€ belongs to at most two
facets ofC, hence everyd — 1)-face o of C; NC; is contained in exactly ong-face ofC; and
in exactly onad-face ofCo.

EachC; is LC; let us fix a local construction for each of them, and dalihe tree along
which G is locally constructed. Choose sorfte— 1)-face o in C; NC,, which thus specifies a
(d— 1)-face in the boundary d; and ofC,. LetC’ be the pseudomanifold obtained attaching
C; to C, along the two copies offi. C’ can be locally constructed along the tree obtained by
joining T; andT, by an edge across: Just redo the same moves of the local constructions of
theGC’'s. SoC’is LC.

If C;NC, consists of one simplex only, th€ = C and we are already done. Otherwise, by
the strongly connectedness assumption, the fac&isC, can be labeled,d, ..., m, so that:

¢ the facet labeled by 0 ig;

e each facet labeled by> 1 is adjacent to some facet labelpdith j < k.

Now for eachi > 1, glue together the two copies of the facetsideC’. All these gluings are
local because of the labeling chosen, and we eventually oBtairhus,C is LC. O

Since all constructible simplicial complexes are pure @nahgly connected [9], we obtain
for simplicial d-pseudomanifolds that

{constructiblé C {LC}.

The previous containment is strict: L&t andC, be two LC simplicial 3-balls on 7 vertices
consisting of 7 tetrahedra, as indicated in Figdre 4.

[ B\

Figure 4:Gluing the simplicial 3-balls along the shaded 2-dimenai@ubcomplex gives an LC, non-
constructible 3-pseudomanifold.
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Glue them together in the shaded strongly connected suldegnmptheir boundary (which
uses 5 vertices and 4 triangles). The resulting simplicshglexC, on 9 vertices and 14
tetrahedra, is LC by Lemmia 2]23, but the link of the top vertean annulus, and hence not
LC. However, the comple& is not constructible, since the link of the top vertex is noh-c
structible. AlsoC is not 2-connected, it retracts to a 2-sphere. Sogdkideudomanifolds are
not necessarilyd — 1)-connected. Since all constructiidlecomplexes ar¢d — 1)-connected,
and alld-pseudomanifolds are eithedasphere or al-ball [24, Prop. 1.4, p. 374], the previous
argument produces many examplesigiseudomanifolds with boundary that are LC, but not
constructible.

None of these examples, however, will be a sphere (or a bgg. will prove in Theo-
rem[3.17 that there are LC 3-balls that are not constru¢tisdeshow now that fod-spheres,
for everyd > 3, the containmenfconstructiblé C {LC} is strict.

Lemma 2.24. Suppose that 3—sphereS_ is LC but not constructible. Then for all>d 3, the
(d —3)-rd suspension db is a d-sphere that is also LC but not constructible.

Proof. WhenevelSis an LC spherey« Sis an LC(d + 1)-ball. (The proof is straightforward
from the definition of “local construction”.) Thus the susg®n (v« S)U (wx S) is also LC
by Lemmal2.2B. On the other hand, the suspension of a norraotikle sphere is a non-
constructible spheré [25, Corollary 2]. O

Of course, we should better show that the 3-spf§3'ne the assumption of Lemnia 2]24
really exists. This will be established in Example 2.26ngsCorollary 2.111 as follows.

Lemma 2.25. Let B be a3-ball, v an external point, and B v dB the 3-sphere obtained by
adding to B a cone over its boundary. If B is collapsible, tBenv« dB is LC.

Proof. By Corollary(2.11, and sincB is collapsible, all we need to prove is tH@U v dB) —
(vx o) collapses ont®, for some triangler in the boundary oB.

As all 2-balls are collapsible, ardB — o is a 2-ball, there is some vert&in dB such that
0B — o\, P. This naturally induces a collapsewf dB — v g ontodB U v« P, according to
the correspondence

ois afreeface ok < vxoisafreeface ofrxZ.

Collapsing the edgex P down toP, we getv«dB — v« o\, dB.

In the collapse given here, the pairs of faces removed ad# ik form(vx o,vx X); thus,
the (d — 1)-faces indB are removed together with subfaces (and not with supefféacdke
collapse. This means that the freeness of the fac@8iis not needed; so when we glue back
B the collapse/« dB — v o ™\, dB can be read offaB U vxdB — vxo \, B. O

Example 2.26.In [36], Lickorish and Martin described a collapsible 3ib&lwith a knotted
spanning edge. This was also obtained independently by tdamand Jerrard [26]. The knot
is an arbitrary 2-bridge index knot (for example, the trefoot). MergingB with the cone over
its boundary, we obtain a knotted 3-sph&mwhich is LC (by Lemma 2.25; see also [35]) but
not constructible (because it is knotted; see [25] [22, .54

Remark 2.27. In his 1991 paper [35, p. 530], Lickorish announced (withanatof given) that
“with a little ingenuity” one can get a sphe$avith a 2-complicated triangular knot (the double
trefoil), such thaS— A is collapsible. Such a sphere is LC by Corollary 2.11.
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Example 2.28.The triangulated knotted 3-sph(—$}\356 realized by Lutz[[37] has only 13 ver-
tices and 56 facets. Since the removal of a facet msfc%% collapsible (F. H. Lutz, personal
communication; se€ [7]), the sphe3d, 4 is LC but not constructible.

Corollary 2.29. For each d> 3, not all LC d-spheres are constructible. In particular, a
knotted3-sphere can be LC (but it is not constructible) if the knotustjl-complicated or
2-complicated.

The knot in the 1-skeleton of the bdlin Exampld 2.26 consists of a path on the boundary
of B together with a “spanning edge”, that is, an edge in theimtef B with both extremes
on dB. This edge determines the knot, in the sense that any ottieop@B between the two
extremes of this edge closes it up into an equivalent knot.tf&se reasons such an edge is
called aknotted spanning edg&lore generally, &notted spanning arns a path of edges in the
interior of a 3-ball, such that both extremes of the path fi¢he boundary of the ball, and any
boundary path between these extremes closes it into dknot.

The Examplé 2.26 can then be generalized by adopting thehdé&amstrom and Jerrard
used to prove their “Theorem B"[26, p. 331], as follows.

Theorem 2.30.Let K be any2-bridge knot (e.g. the trefoil knot). For any positive indegn,
there exists a collapsiblg-ball B, with a knotted spanning arc of m edges, such that the knot
is the connected union of m copies of K.

Proof. By the work of Lickorish—Martin[[36] and Hamstrom—Jerra6] (see also Example
[2.26) there exists a collapsible 3-b@liwith a knotted spanning eddge y|, the knot bein.
So if m= 1 we are already done. Otherwise, tgtand gy be triangles indC containing the
vertexx resp.y.

Fix a collapse ofC. After possibly modifying the triangulation & a bit, we can assume
that bothoy and gy are removed in pairs of the type (edge, triangle) in the pskaofC: In
fact, suppose thaty is removed together with a tetrahedrbpin the collapse ofC. Let us
subdivideoy stellarly into three trianglesy, 0>, andos (with X € g1): the tetrahedrorzy is
therefore subdivided into three tetrahedfia X5, X3, where eaclwo;j is contained ir¥;. LetC’
be the new triangulation obtained. It still has a knottechsjpag edge. Moreover, a collapse of
C’ can be read off from the collapse®f by replacing the elementary collap@®, ) with the
six elementary collapses

(02,22),(03,23),(Z1NZ2,21), (02N 03,22N 23), (01N 03,21 N 23), (01N 02, 01).

So, up to replacin@ with C' and gy with g1, we can assume thag is removed together with
an edge; the same holds fay.

Now takem copiesC(V, ..., C™ of the ballC, and glue them all together by identifying the
boundary facets” of C0) with the boundary faceti ™ of C(+D for alli € {1,...,m—1}.
Let us callBn, be the resulting 3-ball. All the spanning edges of @i#'s are concatenated in

Bm to yield a knotted spanning arc mfedges, the knot being equivalent to theple connected
union ofK with himself. By construction, eadd) admits a collapse in whicts’ anday' are
collapsed away together with an edge; thus, the “freene‘ss;ﬁ'band G§') is irrelevant for the

collapsibility of C). Hence B is collapsible. O

LAccording to this definition, the relative interior of a kted spanning arc is allowed to intersect the boundary
of the 3-ball; this is the approach of Hachimori and Ehreghio{14].
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Corollary 2.31. A 3-sphere with an m-complicatédh+ 2)-gonal knot can be LC.

Proof. Let Sy, = BnU (v dBpy), whereBy, is the 3-ball constructed in the previous theorem. By
Lemma2.2bSy is LC, and the spanning arc of edges is closed up mto form an(m+ 2)-
gon. 0]

The sphere§y, are neither vertex decomposable, nor shellable, nor agsigite, because
of the following result about the bridge index.

Theorem 2.32(Ehrenborg, Hachimori, Shimokawa [14] [24]puppose that &-sphere (or a
3-ball) S contains a knot of m edges.

— If the bridge index of the knot excee@sthen S is not vertex decomposable;

— If the bridge index of the knot exceeflsthen S is not constructible.

The bridge index of &complicated knot is at least- 1, so if a knot is at leas}-complicated,
its bridge index automatically exceeds Thus, Ehrenborg—Hachimori-Shimokawa’s theorem,
the results of Hachimori and Ziegler in_[25], the previousmples, and our present results
blend into the following new hierarchy.

Theorem 2.33. A 3-sphere with a non-trivial knot consisting of
3 edgesl-complicated is not constructible, but can be LC.
3 edges2-complicated is not constructible, but can be LC.
3 edges3-complicated or more is not LC.
4 edgesl-complicated is not vertex decomposable, but can be shellab
4 edges2-complicated is not constructible, but can be LC.
4 edges3-complicated is not constructible.
4 edgesd4-complicated or more is not LC.
5 edges]1-complicated is not vertex decomposable, but can be shellab
5 edges2- or 3-complicated is not constructible, but can be LC.
5 edgesd-complicated is not constructible.
5 edgesb-complicated or more is not LC.
6 edges1-complicated can be vertex decomposable.
6 edges?2-, 3-, or 4-complicated is not constructible, but can be LC.
6 edgesb-complicated is not constructible
6 edgesp-complicated or more is not LC.

m edges, k-complicated, withkT is not vertex decomposable.
m edges, k-complicated, witikZ is not constructible.

m edges, k-complicated, withkkm—2 can be LC.
m edges, k-complicated, with)km is not LC.

The same conclusions are valid for 3-balls that contain d,kmbere the result “is not LC”,
wherever it occurs, may be strengthened into “is not coilde’s (See Lemma 2,25, Corol-
lary[3.12, and[25].)

We do not know whether fam > 3 a 3-sphere with am-complicatedm+ 1)-gonal knot
can be LC. However, an LC sphere with a 2-complicated tritardgunot was found by Lickorish
(see Remark 2.27).
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One may also derive from Zeeman'’s theorem (“given any sicigdlball, there is a positive
integerr so that itsr-th barycentric subdivision is collapsible” [47, Chapteand Ill]) that any
3-sphere will become LC after sufficiently many barycensubdivisions. On the other hand,
there is no fixed numberof subdivisions that is sufficient to malkdl 3-spheres LC. (For this
use sufficiently complicated knots, together with Theolreh32

3 OnLCBalls

The combinatorial topology ad-balls and ofd-spheres are intimately related: Removing any
facetA from a PLd-sphereSwe obtain ad-ball S— A, and adding a cone over the boundary of
ad-ball B we obtain ad-sphereSs. We do have a combinatorial characterization ofd-Galls,
which we will reach in Theorem 3.10; it is a bit more compledtbut otherwise analogous to
the characterization of L@-spheres as given in Main Theoréin 1.

Theorem 3.1. For simplicial d-balls, we have the following hierarchy:

collapsible onto

{ vertex } C {shellablé ¢ {constructiblé C {LC} C { (d— 2)-complex

decomp % C {all d-balls}.

Proof. The first two inclusions are known. We have already seen thabastructible com-
plexes are LC (Lemma 2.23). Every Ldzball is collapsible onto &d — 2)-complex by Corol-
lary[3.11.

Let us see next that all inclusions are strict ¢b= 3: For the first inclusion this follows
from Lockeberg’s example of a 4-polytope whose boundaryotsvertex decomposable. For
the second inclusion, take Ziegler's non-shellable baifr[49], which is constructible by
construction. A non-constructible 3-ball that is LC will Ipeovided by Theorerh 3.17. A
collapsible 3-ball that is not LC will be given in Theorém &.2Finally, Bing and Goodrick
showed that not every 3-ball is collapsible [8][17].

To show that the inclusions are strict for dI> 3, we argue as follows. For the first four
inclusions we get this from the cade= 3, since
— cones are always collapsible,

— the conerx B is vertex decomposable resp. shellable resp. constradtibhd only ifB is,

— and in Proposition 3.26 we will show that B is LC if and only ifBis.

For the last inclusion and > 3, we look at thad-balls obtained by removing a facet from a
non-LCd-sphere. These exist by Corolldry 2.21; they do not collaypge a(d — 2)-complex
by Theorent 2.70. O

3.1 Local constructions ford-balls

We begin with a relative version of the notions of “facetikil) sequence” and “facet massacre”,
which we introduced in Subsectibn P.1.

Definition 3.2. Let P a pured-complex. LetQ be a proper subcomplex & either pured-
dimensional or empty. Aacet-killing sequence dP,Q) is a sequenc@,Py,...,R_1,R of
simplicial complexes such that= fq(P) — f4(Q), Po = P, andP 1 is obtained byR removing
a pair(o,X) such thato is a free(d — 1)-face ofZ that does not lie ifQ (which also implies

thatZ ¢ Q).
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Itis easy to see th& has the sam@ — 1)-faces a®). The version of facet killing sequences
given in Definitior 2.8 is a special case of this one, namedyctiise whe is empty.

Definition 3.3. Let P a pured-dimensional simplicial complex. L&) be either the empty

complex, or a purd-dimensional proper subcomplexef A pure facet-massacre P, Q) is a

sequencé, P, ...,R_1,R of (pure) complexes such thiat= f4(P) — f4(Q), Po =P, andPR ;1

is obtained byR removing:

(a) apair(o,2) such thato is a free(d — 1)-face ofx that does not lie ifQ, and

(b) all inclusion-maximal faces of dimension smaller tlththat are left after the removal of
type (a) or, recursively, after removals of type (b).

Necessarilyg = Q (and whenQ = 0 we recover the notion of facet-massacrePothat we
introduced in Definitiom 2]5). It is easy to see that a $%ep— B 1 can be factorized (not in
an unigue way) in an elementary collapse followed by a refmaifaces of dimensions smaller
thand that make$ ; a pure complex. Thus, a single pure facet-massadie @) corresponds
to many facet-killing sequences @ Q).

We will apply both definitions to the paiP,Q) = (KT,dB), whereKT is defined for balls
as follows.

Definition 3.4. If B be ad-ball with N facets, and’ is a spanning tree of the dual graphBf
defineKT as the subcomplex @& formed by all(d — 1)-faces ofB that are not hit by .

Lemma 3.5. Under the previous notations,

KT is a pure(d — 1)-dimensional simplicial complex, containid@ as a subcomplex;
KT has D+ 5 facets, where b is the number of facet®B, and D:= dN-N+2;

for any d-simplexA of B, B—A \ K';

KT is homotopy equivalent to @ — 1)-dimensional sphere.

We introduce another convenient piece of terminology.

Definition 3.6 (seepage)Let B be a simpliciald-ball. A seepagés a (d — 1)-dimensional
subcomplexC of B whose(d — 1)-faces are exactly given by the boundaryBof

A seepage is not necessarily pure; actually there is onlypaneseepage, namehB itself.
SinceKT containsdB, a collapse oK™ a seepage must remove all tfte— 1)-faces ofKT that
are not indB: This is what we called a facet-killing sequencgKf , dB).

Proposition 3.7. Let B be a d-ball, and a d-simplex of B. Let C be a seepaged8f. Then,
B—A\,C < 3Tst K \,C.

Proof. Analogous to the proof of Proposition 2.4. The crucial agstion is that no face ofB
is removed in the collapse (since all boundary faces at@et$ent in the final compleX). [

If we fix a spanning tred of the dual graph oB, we have then a 1-1 correspondence
between the following sets:

1. the set of collapseB—A \ K';

2. the set of “natural labelings” af, whereA is labeled by 1;

3. the set of the first par{d1, ..., Tn) of local constructions foB, with T; = A,
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Theorem 3.8. Let B be a d-ball; fix a faceh, and a spanning tree T of the dual graph of B,
rooted atA. The second part of a local construction for B along T cormggs bijectively to a
facet-massacre KT ,dB).

Proof. Let us start with a local constructidfy, ..., Ty—1,] Tn,. .., Tk for B alongT. Topolog-
ically, B = Ty/~, where~ is the equivalence relation determined by the gluing, Ehd=
0Tn/~.

KT hasD +§ facets (see Lemma 3.5), and all of them, exceptitfacets in the boundary,
represent gluings. Thus we have to describe a sequgnce, R witht =D — %. But the local
constructionTy, ..., Tn—1,) TN, - - -, Tk produced (which hash facets in the boundary) froifiy
(which has D facets in the boundary, cf. Lemrna#.1)kn- N steps, each removing a pair of
facets from the boundary. SoD2- 2(k — N) = b, which impliesk — N = .

DefinePy := Ky = 9Ty /~, andPj := dTnj/~. Inthe first LC step]y — Tn.1, We remove
from the boundary a free ridge together with the unique padr’, ¢’ of facets ofd Ty sharing
r. At the same timer and the newly formed face are sunk into the interior; so obviously
neitherag norr will appear indB. This stepdTy — JdTn.1 naturally induces an analogous
stepdTnyj/~ — 0Tntj+1/~, namely, the removal af and of the uniquéd — 1)—face o
containing it, withr not in 9B.

The rest is analogous to the proof of Theofem 2.8. O

Thus,B can be locally constructed along a tieé and only if KT collapses onto some seepage.
What if we do not fix the tred@ or the facet\?

Lemma 3.9. Let B be a d-ball; leto be a(d — 1)-face in the boundaryB, and letZ be the
unique facet of B containing. Let C be a subcomplex of B. If C contadhB, the following are
equivalent:

1. B—Z \, C;

2. B—-2-0 N C—o;

3. B\, C—-o.

Theorem 3.10.Let B be a d-ball. Then the following are equivalent:

BisLC;

KT collapses onto some seepage C, for some spanning tree T aiidhgraph of B;
there exists a seepage C such that for every fAa#tB one has B-A \ C;

B—A \ C, for some faceh of B, and for some seepage C;

there exists a seepage C such that for every facetdB one has B\, C— o;

B \, C— o, for some facet of B, and for some seepage C;

oA wWNE

Proof. The equivalences & 2 < 3 < 4 are established analogously to the proof of Theorem
2.10. Finally, Lemma&a3]9 implies that=3 5= 6 = 4. O

Corollary 3.11. Every LC d-ball collapses onto @ — 2)-complex.

Proof. By Theoreni_3.10, the ball collapses onto the union of the boundanBahinus a facet
with some(d — 2)-complex. The boundary d minus a facet is &d — 1)-ball; thus it can be
collapsed down to dimensiah— 2, and the additiongld — 2)-complex will not interfere. [

Corollary 3.12. Let S be a PL d-sphere. Then S is LC if and only-f35is an LC d-ball for
some facek of S.
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Proof. If Sis LC, then by Theorern 2.10 for some spanning ffeef the dual graph oS the
complexKT is collapsible onto somgd — 2)-complex. Letz be a facet oSthat corresponds
to a leaf node off: Thed-ball S— X collapses ontd& T, and in the collapse only one facet of
the boundary ok, which is also the boundary &— %, is removed. By Theorem 3110, this is
sufficient to conclude th&8— > is LC.

The converse may be deduced in many different ways. O

Corollary 3.13. Let B be a3-ball. Then the following are equivalent:
BisLC;

KT\ 9B, for some spanning tree T of the dual graph of B;
B—A N\, dB, for every facel of B;

B—A X\ dB, for some faceh of B;

B \, dB— g, for every facetr of 9B;

B \, dB— g, for some facet of 9B.

ok wNPE

Figure 5:A seepage of a 3-ball.

Proof. WhenB has dimension 3, any seepdgef 0B is a 2-complex containingB, plus some
edges and vertices. If a complex homotopy equivalent$? eollapses ont€, thenC is also
homotopy equivalent t&?, thusC can only bedB with some trees attached (see Figure 5),
which implies thatC \, JB. O

Corollary 3.14. All LC 3-balls are collapsible.
Proof. If Bis LC, it collapses to some 2-balB — g, but all 2-balls are collapsible. O
Corollary 3.15. All constructible3-balls are collapsible.

For example, Ziegler’s ball, Grinbaum’s ball, and Rudivedl are collapsible (see [49]).

Remark 3.16. The locally constructible 3-balls witN facets are precisely the 3-balls that
admit a “special collapse”, namely such that after the fishentary collapse, in the nedt— 1
collapses, no triangle @B is collapsed away. Such a collapse acts along a dual (difetrese

of the ball, whereas a generic collapse acts along an agyejh that might be disconnected.

One could argue that maybe “special collapses” are not geatial: Perhaps every collapsi-
ble 3-ball has a collapse that removes only one boundamngiean its top-dimensional phase?
This is not so: We will produce a counterexample in the nelsssation (Theorem 3.24).

Theorem 3.17.For every d> 3, not all LC d-balls are constructible.

Proof. Ford = 3 the result follows from Corollarly 3.12 together with thestence of knotted
LC 3-spheres (by Example 2]26), and the fact that a 3-bah wiknotted triangle cannot be
constructible[[25, Thm. 1]. IB is a non-constructible L@-ball andv is a new vertex, then« B

is a non-constructibléd + 1)-ball, which yields the claim fod > 3. O
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3.2 3-Balls without interior vertices.

Here we show that a simplicial 3-ball with all vertices on th@undary cannot contain any
knotted spanning edge if itis LC, but might contain someis itollapsible. We use this fact to
establish our hierarchy fat-balls (Theorenh 3]1).

Let us fix some notation first. Recall that by Theofem 1.2, eacimected component of the
boundary of a simplicial LC 3-pseudomanifold is homeomarpb a simply-connected union
of 2-spheres, any two of which share at most one point. Letallsptnch pointsthe points
shared by two or more spheres in the boundary of an LC 3-pseaifold.

Definition 3.18. [Steps of types (i)-(ix) in LC constructions] Any admis&ldtep in a local
construction of a 3-pseudomanifold falls into one of thédi@ing nine types:

(i) attaching a tetrahedron along a triangle;

(i) identifying two boundary triangles that share exadtlgdge;
(i) identifying two boundary triangles that share 1 edgel $he opposite vertex;
(iv) identifying two b. t. that share 2 edges that meet in a&pipoint;

(v) identifying two b. t. that share 2 edges that do not meetpinch point;

(vi) identifying two b. t. that share 3 edges, all of whosetieess are pinch points;
(vii) identifying two b. t. that share 3 edges, two of whosetiees are points;
(viii) identifying two b. t. that share 3 edges, one of whosetices is a pinch point;
(ix) identifying two b. t. that share 3 edges, none of whos#iees is a pinch point.

For example, the firsN — 1 steps of any local construction of a 3-pseudomanifold Wth
tetrahedra are all of type (i); the last step in the local tmiesion of a 3-sphere is necessarily
of type (ix).

The following table summarizes the distinguished effethe steps:

steptype  no. of interior vertices  no. of connected compisnaithe boundary

0) +0 +0
(i) +0 +0
(iii) +0 +0(%)
(iv) +0 +1
(V) +1 +0
(vi) +0 +3
(vii) +1 +2
(viii) +2 +0
(ix) +3 -1

where the asterisk recalls that a type (iii) sedmostdisconnects the boundary, pinching itin a
point.

Now, let B be an LC 3-ballwithoutinterior vertices. Steps of type (v), (viii) or (ix) sink
respectively one, two or three vertices into the interiorfleey cannot occur in the local con-
struction ofB. Furthermore, any identification of type (vi), (vii) or (iv)creases the number
of connected component in the boundary, hence it must bewell by at least one step of
type (ix), which destroys a connected component of the baryndret (ix) is forbidden, so no
identification of type (vi), (vii), or (iv) can occur. Fingilthe “pinching step” (iii) needs to be
followed by one of the steps (vi), (vii), (viii) or (iX) in o to restore the ball topology — but
such steps are forbidden. This leads us to the following Lamm
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Lemma 3.19. Let B be an LG3-pseudomanifold. The following are equivalent:
(1) in some local construction for B all steps are of type (i) a; (i

(2) in every local construction for B all steps are of type (i) oy;(

(3) B is a3-ball without interior vertices.

We will use Lemm&_3.19 to obtain examples of non-LC 3-balls.alveady know that non-
collapsible balls are not LC, by Corolldry 3]114: so a 3-bathva knotted spanning edge cannot
be LC if the knot is the sum of two or more trefoil knots. (SesoaBing [8] and Goodrick [17].)
What about balls with a spanning edge realizing a singleitrkefhot?

Proposition 3.20. An LC3-ball without interior vertices does not contain any kndtgpanning
edge.

Proof. An LC 3-ball B without interior vertices is obtained from a tree of tetratzevia local
gluings of type (ii), by Lemma_3.19. A tree of tetrahedra hasmerior edge. Each type (i)
step preserves the existing spanning edges (because ihdbssk vertices into the interior),
and creates one more spanning edgelearly unknotted (because the other two edges of the
sunk triangle form a boundary path that “closes up” the eglgato anS' bounding a disc
insideB). It is easy to verify that the subsequent type (ii) stepsdesaich edge spanning and
unknotted. O

Remark 3.21. The presence of knots/knotted spanning edges is not thebatyuction to local
constructibility. Bing’s thickened house with two room$ [80] is a 3-ballB with all vertices

on the boundary, so that every interior triangleBbhas at most one edge on the boundary
0B. WereB LC, every step in its local construction would be of type (by Lemmd_3.1B); in
particular, the last triangle to be sunk into the interioBafould have exactly two edges on the
boundary ofB. Thus Bing’s thickened house with two rooms cannot be LCnéfi does not
contain a knotted spanning edge.

Example 3.22.Furch’s 3-ball[15, p. 73] [8, p. 110] can be triangulatechaitt interior vertices
(see e.g.[]20]). Since it contains a knotted spanning edg@rbpositiori 3.20 Furch’s ball is
not LC.

Remark 3.23. In [21, Lemma 2], Hachimori claimed that any 3-b@llobtained from a con-
structible 3-ballC’ via a type (ii) step is constructible. This would imply by Lema[3.19 that
all LC 3-balls without interior vertices are constructipighich is stronger than Proposition
since constructible 3-balls do not contain knottedhspay edges [25, Lemma 1]. Unfor-
tunately, Hachimori’s proof [21, p. 227] is not satisfagtof C' = C; UC, is a constructible
decomposition o/, andC; is the subcomplex of with the same facets @/, C =C;UC;
need not be a constructible decompositionGor(For example, if the two glued triangles both
lie on 9C3, and if the two vertices that the triangles do not have in comiie inC; NC,, then
C1NCyis not a 2-ball and one @, andC; is not a 3-ball.)

At present we do not know whether Hachimori's claim is truemeBC’ admit a different
constructible decomposition that survives the type (8p8t On this depends the correctness of
the algorithm[[21, p. 227][22, p. 101] to testnstructibilityof 3-balls without interior vertices
by cutting them open along triangles with exactly two bougdadges. However, we point
out that Hachimori’s algorithm can be validly used to dedide local constructibilityof 3-
balls without interior vertices: In fact, by Lemrna 3119, Higorithm proceeds by reversing the
LC-construction of the ball.
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We can now move on to complete the proof of our Thedrem 3. hired by Propositiof 3.20,
we show that &ollapsible3-ball without interior vertices may contain a knotted spag edge.
Our construction is a tricky version of Lickorish—Martirfsee Example 2.26).

Theorem 3.24.Not all collapsible3-balls are LC.

Proof. Start with a largenx mx 1 pile of cubes, triangulated in the standard way, and talegaw
two distant cubes, leaving only their bottom squaXesndY. The 3-complexC obtained can
be collapsed vertically onto its square basis; in partigulas collapsible, and has no interior
vertices.

Let C' be a 3-ball with two tubular holes drilled away, but where ¢agh hole has been
corked at a bottom with a 2-disk, and (2) the tubes are disihintertwined, so that a closed
path that passes through both holes and between thesesaavke top resp. bottom face@f

yields a trefoil knot (see Figuteé 6).
1 J

Figure 6:C andC’ are obtained from a 3-ball drilling away two tubular holesgd dhen “corking” the
holes on the bottom with 2-dimensional membranes.

C andC’ are homeomorphic. Any homeomorphism inducesCobm collapsible triangu-
lation with no interior vertices.X andY correspond via the homeomorphism to the corking
membranes of’, which we will call correspondingl)’ andY’. To get fromC’ to a ball with a
knotted spanning edge we will carry out two more steps:

(i) create a single edg#’,y] that goes fronX’ to Y’;
(i) thicken the “bottom” ofC’ a bit, so tha€’ becomes a 3-ball arj#, y'] becomes an interior
edge (even if its extremes are still on the boundary).
We perform both steps by adding cones over 2-disks to the emBSuch steps preserve
collapsibility, but in general they produce interior vees; thus we choose “specific” disks with
few interior vertices.
(i) Providedmis large enough, one finds a “nice” stip, P, . . ., F of triangles on the bottom
of C’, such thaF, UFR,U- - - U is a disk without interior vertice$; has a single vertex
in the boundary oK', while R/ has a single vertex in the boundary o¥’, and the whole
strip intersect¥X’UY’ only in X andy’. Then we add a cone @, setting

C, = CU(y*(FlURU---UR_1)).

(An explicit construction of this type is carried out in [3%p. 164-165].) Thus one obtains
a collapsible 3-comple®; with no interior vertex, and with a direct edge frothto Y'.

(i) Let R be a 2-ball inside the boundary Gf that contains in its interior the 2-complex
X'UY'U[X,y], and such that every interior vertex Bflies either inX’ or inY’. Take a
new pointZ and define&C; := C;U(Z xR).

As Z x R collapses ontd, it is easy to verify thatC, is a collapsible 3-ball with a knotted
spanning edgé<, y]. By Proposition-3.20C; is not LC. O
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Corollary 3.25. There exists a collapsiblg-ball B such that for any boundary facet, the
ball B does not collapse oni@B — 0.

Theoreni3.24 can be extended to higher dimensions by takingsc In fact, even though
the link of an LC complex need not be LC, the link of an LC closat is indeed LC.

Proposition 3.26. Let C be a d-pseudomanifold and v a new point. C is LC if and ibmy C
is LC.

Proof. The implication “if C is LC, thenv«C is LC” is straightforward.

For the converse, assumeandT; . ; are intermediate steps in the local constructionsat,
so that passing frorf; to Ti,; we glue together two adjacefd — 1)-faceso’, a” of 9T;. Let
F be any(d — 2)-face of T;. If F does not contaiw, thenF is in the boundary of/«C, so
F € dTi.1. ThereforeF cannot belong to the intersection@fandag”, which is sunk into the
interior of Ty 1.

So, every(d — 2)-face in the intersectioo’ N o” must contain the vertex This implies
thato’ = vx S ando” = vxS’, with S andS’ distinct(d — 2)-faces.S andS’ must share some
codimension-one face, otherwiséando’ would not be adjacent. So from a local construction
of v« C we can read off a local construction ©f O

Corollary 3.27. For every d> 3, not all collapsible d-balls are LC.

Proof. All cones are collapsible. B is a non-LCd-ball, thenv« B is a non-LC(d + 1)-ball by
Proposition 3.26. O

We conclude this chapter observing that Chillingworthisafem, “every geometric trian-
gulation of a convex 3-dimensional polytope is collapsifbdan be strengthened as follows.

Theorem 3.28(Chillingworth [12]). Every 3-ball embeddable as a convex subset of the Eu-
clidean3-spaceR3 is LC.

Proof. The argument of Chillingworth for collapsibility runs shimg thatB ~\, dB— o, where
o is any triangle in the boundary & Now Theoreni_3.13 ends the proof. O

Thus any subdivided 3-simplex is LC. If Hachimori’s claintige (see Remark 3.23), then
any subdivided 3-simplex with all vertices on the boundaralso constructible. (So far we
can only exclude the presence of knotted spanning edges$ed& Lemma 3.19.) However, a
subdivided 3-simplex might be non-shellable even if it Hagatices on the boundary (Rudin’s
ball is an example).

4 Upper bounds on the number of LCd-spheres.

For fixedd > 2 and a suitable constaBthat depends od, there are less tha@N combinatorial

types ofd-spheres withN facets. Our proof for this fact is@dimensional version of the main

theorem of Durhuus & Jonssdn [13], and allows us to determimexplicit constant, for any

d. It consists of two different phases:

1. we observe that there are less treed-simplices than planted plamkary trees, which are
counted by orded Fuss—Catalan numbers;

2. we count the number of “LC matchings” according to ridgethie tree of simplices.
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4.1 Counting the trees ofd-simplices.

We will here establish that there are less tRg(N) := m (dNN) trees ofN d-simplices.

Lemma 4.1. Every tree of N d-simplices héd — 1)N + 2 boundary facets of dimension-dl
and N— 1 interior faces of dimension € 1.
It has %((d —1)N + 2) faces of dimension € 2, all of them lying in the boundary.

By rootedtree of simplices we mean a tree of simplig@sogether with a distinguished
facetd of dB, whose vertices have been labele@,1..,d. Rooted trees odl-simplices are in
bijection with “planted planeal-ary trees”, that is, plane rooted trees such that everyleai-
vertex has exactld (left-to-right-ordered) sons; cf. [38].

Proposition 4.2. There is a bijection between rooted trees of N d-simplices@anted plane
d-ary trees with N non-leaf vertices, which in turn are cathby the Fuss—Catalan numbers
Cyq(N) = m (dNN). Thus, the number of combinatorially-distinct trees of Iinhplices
satisfies

m d—l' Cy4(N) < #{treesof N d-simplices < Cy4(N).

Proof. Given a rooted tree al-simplices with a distinguished facétin its boundary, there is
a unique extension of the labeling of the vertice®db a labeling of all the vertices by labels
1,2,....,d+1, such that no two adjacent vertices get the same label. &acisd-simplex
receives alll + 1 labels exactly once.

Now, label eaci{d — 1)-face by the unique label that none of its vertices has. Wiihwe
get an edge-labeled rootdeary tree whose non-leaf vertices correspond toNhegsimplices;
the root corresponds to tltksimplex that containg, and the labeled edges correspond to all
the(d — 1)-faces other tha. We get a plane tree by ordering the down-edges at each abn-le
vertex left to right according to the label of the correspagdd — 1)-face.

The whole process is easily reversed, so that we can get edrtrate ofd-simplices from
an arbitrary planted plarg:ary tree.

There are exactlfCy(N) = m (dNN) planted planed-ary trees withN interior ver-

tices (see e.g. Aval [5]; the integes(N) are the “Catalan numbers”, which appear in many
combinatorial problems, see e.g. Stanley [43, Ex. 6.19) #hee ofN d-simplices has exactly
(d—1)N+2 boundary facets, so it can be rooted in exagfth— 1)N + 2) d! ways, which how-
ever need not be inequivalent. This explains the first inlguaaimed in the lemma. Finally,
combinatorially-inequivalent trees dfsimplices also yield inequivalent rooted trees, whence
the second inequality follows. O

Corollary 4.3. The number of trees of N d-simplices, for N large, is bounded b
dN d \d-1 N
<N) ~ (d'(m> ) < (de)™.

4.2 Counting the matchings in the boundary.

We know from the previous section that there are exponéntiazhny trees oN d-simplices.
Our goal is to find an exponential upper bound for the LC spghebtainable by a matching of
adjacent facets in the boundary of one fixed tree of simplices
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Theorem 4.4.Fix d > 2. The number of combinatorially distinct LC d-spheres (ord-Galls)
with N facets, for N large, is not larger than

_ 2d2-d\ N
(d-(g%)" 25
Proof. Let us fix a tree olN d-simplicesB. We adopt the word “couple” to denote a pair of
facets in the boundary @& that are glued to one another during the local constructid o

Let us seD = %(2+ N(d — 1)), which is an integer. By Lemnia 4.1, the boundary of the
tree ofN d-simplices contains2 facets, so each perfect matching is just a sdD gfairwise
disjoint couples. We are going to partition every perfectaheng into “rounds”. The first round
will contain couples that are adjacent in the boundary otitbe of simplices. Recursively, the
(i+1)-th round will consist of all pairs of facets thia¢comeadjacent only after a pair of facets
are glued together in theth round.

Selecting a pair of adjacent facets is the same as choosmildpe between them; and by
Lemmd 4.1, the boundary contaidB ridges. Thus the first round of identifications consists in
choosingn; ridges out ofdD, wheren; is some positive integer. After each identification, at
mostd — 1 new ridges are created; so, after this first round of ideatibns, there are at most
(d —1)ny new pairs of adjacent facets.

In the second round, we identifyn2 of these newly adjacent facets: as before, it is a matter
of choosingn, ridges, out of the at mogt — 1)n; just created ones. Once this is done, at most
(d—1)n, ridges are created. And so on.

We proceed this way until all thel2facets in the boundary & have been matched (aftér
steps, say). Clearly, +...+ns = D, and since the;’s are positive integerd, < D must hold.
This means there are at most

5w () ()

Ny,...,N¢
n>15%n=D
Niz1 < (d—1)n;

possible perfect matchings @ — 1)-simplices in the boundary of a tree Mfd-simplices.

We sharpen this bound by observing that not all ridges mayhbsan in the first round of
identifications. For example, we should exclude those 8dlgat belong to just twd-simplices
of B. An easy double-counting argument reveals that in a tresedmplices, the number of

ridges belonging to at least@simplices is smaller or equal thd}] (dzl). So in the upper

bound above we may replace the first fac(tﬁ'l?) with the smaller facto(% (nd}l)).

To bound the sum from above, we u@%; <2"andny+---+nf_1 <nNyg+---+ng =D,
while ignoring the conditions;;; < (d — 1)n;. Thus we obtain the upper bound

2 ¥ () +Y(d-1>+(d-1) i (D—1> _ o a@-dd-1)
f—1 )
=1

Thus the number of ways to fold a tree Nfd-simplices into a sphere via a local construc-

2_
tion sequence is smaller tharf 2 N, Combining this with Proposition 4.2, we conclude the
proof for the case ofl-spheres. We leave the adaption of the proofdidralls (or general LC
d-pseudomanifolds) to the reader. O
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The upper bound of Theordm #.4 can be simplified in many wayse¥ample, fod > 16

itis smaller than\g/zldz. From Theorer 414 we obtain explicit upper bounds:
e there are less than 216 .C 3-spheres withN facets,
e there are less than 61N T.C 4-spheres witiN facets,
and so on. We point out that these upper bounds are not sisane avercounted both on the
combinatorial side and on the algebraic side. Withen2, Tutte’s upper bound is asymptotically
3.08V, whereas the one given by our formula iS\16/hend = 3, however, our constant is
smaller than what follows from Durhuus—Jonsson’s origargliment:
— we improved the matchings-bound from 8g¢ 32V;
— for the count of trees of tetrahedra we obtain an essgnshtrp bound of 5V, (The
value implicit in the Durhuus—Jonsson argument [13, p. 18#rger since one has to take
into account that different trees of tetrahedra can havedh® unlabeled dual graph.)

Corollary 4.5. For any fixed d> 2, there are exponential lower and upper bounds for the
number of LC d-spheres on N facets.

Proof. We have just obtained an upper bound; we also get a lower biooimdProposition 4.2/
Corollary[4.3, since the boundary of a tree(df+ 1)-simplices is a stacked-sphere, and for
d > 2 the stacked-sphere determines the tree(df+ 1)-simplices uniquely. O
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