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Abstract

We develop a generic method for constructing a weak static minimum
variance hedge for a wide range of derivatives that may involve optimal ex-
ercise features or contingent cash flow streams, to provide a hedge along a
sequence of future hedging dates. The optimal hedge is constructed using
a portfolio of pre-selected hedge instruments which could be derivatives
with different maturities. The hedge portfolio is weakly static in that
it is initiated at time zero, does not involve intermediate re-balancing,
but hedges may be gradually unwound over time. We study the static
hedging of a convertible bond to demonstrate the method by an example
that involves equity and credit risk. We investigate the robustness of the
hedge performance with respect to parameter and model risk by numerical
experiments.
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1 Introduction

Consider an agent (the hedger) who holds a primary derivatives position with
exposure to market risk factors like equity and credit risk. The derivatives
may involve various optimal exercise and other exotic features, giving rise to
risky contingent payoffs at a sequence of future dates. In hoping to achieve a
hedge that is more robust with respect to model risk, the agent decides on a
static hedging strategy and selects appropriate hedging instruments to capture
perceived risk factors. Those instruments will typically include other derivatives
of various type. Not expecting to find a perfect hedge, the agent seeks an optimal
approximating one that makes the residual risk small. He must then compute
the notionals for his hedges, covering all hedging dates, and assess the robustness
of his hedge. This motivates the problems to be addressed in this paper.
In general, hedging a primary contingent claim means to replicate its pay-

off (approximatively) by trading other securities, in order to eliminate (reduce)
the risk. The general property of static hedging is that it does not involve re-
balancing, in contrast to dynamic hedging. In this paper, a portfolio is called
static if its hedging positions are not re-balanced after portfolio initiation, but
portfolio constituents may be sold over time, before they expire. hedging. A
classical result on static hedging is that any European claim, whose payoff is a
function of a (single) underlying, may be statically hedged to arbitrary accuracy
using calls and puts of maturity matching the claim if all strikes are tradable,
see Breeden and Litzenberger (1978). This (strong) static hedge is model risk
free. Let us emphasise, that the static hedging methods discussed in the sequel
are not model risk free, but all rely to a greater or lesser extent on model as-
sumptions. Many articles have studied the static hedging of barrier options, see
Andersen et al. (2002); Brown et al. (2001); Carr et al. (1998); Derman et al.
(1995); Giese and Maruhn (2007); Nalholm and Poulsen (2006). Most results
are concerned with the replication of the barrier option by static hedging with
European vanilla options. To achieve this, they exploit the specific structure
of the option and certain model assumptions like a deterministic future volatil-
ity surface, continuously evolving prices, or the availability of infinitely many
vanilla options, cf. Joshi (2003). Hence, the results do not transfer easily to
derivatives of other types, and incorporate model risk, see Nalholm and Poulsen
(2006). For stochastic volatility models, the said assumptions are typically not
satisfied and replication by vanilla options is no longer possible. This calls for
another more generally applicable notion of hedging. For results on over-hedging
(super-replication) under less restrictive model requirements, we refer to Brown
et al. (2001); Andersen et al. (2002); Giese and Maruhn (2007), while references
for approximative (minimum variance) hedging are given below. Less seems to
have been written about static hedging for (and with) derivatives other than
barrier and European options. The only result on static hedging of options in-
volving optimal exercise features that we are aware of is in Jäckel and Rebonato
(2001). Their model assumptions are markedly different from ours, assuming a
deterministic volatility surface restricted to a single underlying.
In comparison to the cited literature, our aim here is to develop a generic

static hedging method that is applicable to a wider range of derivatives, both
as hedge instruments and also as primary derivatives to be hedged, for a broad
range of models, without imposing particular assumptions. To achieve this we
adopt for our purpose of weak static hedging the approximate hedging approach

2



by Bouleau and Lamberton (1989); Föllmer and Sondermann (1986), as a com-
putationally feasible method that is quite generally applicable. This method
can be seen as ‘market-based’ minimum variance hedging where the residual
risk of the hedged portfolio is minimised under the (empirical) pricing measure;
see Remark 2.1 for further comments. The examples in the above, in Föllmer
and Schweizer (1990) or Lamberton and Lapeyre (1993) are on dynamic hedging
of European options where the hedging instruments could be other European
options of the same maturity. In contrast, our contribution is to develop a
(weak) static version of minimum variance hedging with possibly more exotic
derivatives for a sequence of multiple future hedge dates. To investigate the
performance and the robustness of the static hedges with respect to parameter
and model risk, we conduct what may be described as a controlled experiment.
We assume knowledge of a hypothetical real world model against which the
performance of the hedge can be measured, while the computation of the static
hedge is performed in a different hedger’s model. The robustness of the static
hedge against parameter and model risk is demonstrated under variation of the
hedge model parameters, and by evaluating the hedge performance in the real
world model. Two qualitatively different but computationally tractable models
are developed for the hedge and real world models. The hedger’s model is an
extension of the classical displaced diffusion model from Rubinstein (1983), that
includes credit risk into a one factor model for both equity and credit risk, yet
maintains closed analytic formulas for the risk neutral transition probabilities
over distinct periods. The model is designed to have just enough parameters
such that it can be calibrated to the term structures of given market prices of
liquid, vanilla equity and credit derivative securities. In contrast, the model
associated with the real world is a time homogeneous two factor model that
can be viewed as an affine extension of Heston’s stochastic volatility model to
include credit risk. The qualitative difference puts the hedger’s model at a dis-
advantage. This is intended to study the model robustness of the hedges. By
numerical experiments we study the performance of the static hedge for a con-
vertible bond. We show that this contingent claim may be robustly hedged by
vanilla equity and credit derivative securities. The statically hedged position
exhibits little parameter and model risk.
The paper is organised as follows. Section 2 describes a method for comput-

ing an optimal weak static hedge for a portfolio of primary instruments, by using
backward induction over multiple hedge dates in combination with co-initial re-
gression. Section 3 introduces the (DD+) model that will be used to compute
a hedge. Section 4 describes the extended Heston (EH) model, representing the
real world, and the pricing of instruments. Section 5 applies the method to
hedge a convertible bond and assesses the hedge performance. Section 6 sum-
marises and concludes, highlighting, in particular, that choosing appropriate
hedge instruments is essential to achieve a robust weak static hedge.

2 The Weak Static Minimum Variance Hedge

2.1 The General Framework

By ‘static hedging’ we mean, throughout this paper, a portfolio of hedging in-
struments, including derivatives, that is initiated at time zero, does not involve
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re-balancing and may only change by selling its constituent instruments, possi-
bly before their expiry. In this sense, the hedging method can be called weak
static, following the classification in Joshi (2003), chapter 10.7.
Below, we list general requirements of the method for the model, for the

derivatives that can be hedged, and for the possible hedging instruments. Given
assumptions A1-A4 are met, it is possible, in principle, to use the weak static
hedge methods that are presented in the sequel.

A1. The information flow (in continuous time) is modelled by the filtration
(Ft)t≥0 of a filtered probability space (Ω,F,(Ft),P). With some finite
time horizon T , the model has occurrence times 0 = t0 < ∙ ∙ ∙ < tK = T to
include (in approximation) all derivative cash flow payment dates, hedging
dates and maturities of calibration securities to be considered.

A2. The model is constructed from some state process (Xt)t∈[0,T ] taking values

in a polish space like Rd, which is a discrete time Markov process at times
tk, i.e. (Xtk)k=0,...,K is Markov with respect to (Ftk)k=0,...,K .

A3. We consider (derivative) securities of some maturity tn, whose structure
permits computation of their no-arbitrage value at any time tk as a con-
ditional expectation under the (risk neutral) pricing measure P as follows

Vtk =

{
fk(Xtk ,E[f̂k(Xtk , Vtk+1)|Ftk ]) , 0 ≤ k < n,

fn(Xtn) , k = n ,
(2.1)

for derivative specific functions fk and f̂k.

A4. All involved securities prices Vtk are square integrable (under P).

By A2-3, Vtk = vk(Xtk) for suitable functions vk. Intuitively, (2.1) requires that
the time-tk value of a derivative’s future cash flows depends on values of Xt on
or after tk only. For most derivatives, like subsequent examples in this paper,
f̂k(Xtk , Vtk+1) = Vtk+1 is sufficient, but (2.1) is more general.
For example let Xtk include the stock price process Stk underlying a call

option with strike K and expiry tn. Then, the function from A3 is

fk =

{
(Stk −K)

+, : k = n

max
(
e−rk(Xtk )(tk+1−tk)E[Vtk+1 |Ftk ] , 1A(Stk −K)

+
)
: k < n.

(2.2)

where 1A = 1 if the option is American (Bermudan type) and 0 if European,
with rk denoting the interest rate. Barrier options fit into the framework when
the barrier is discretely monitored (in approximation). Similarly, one can deal
with a unit currency convertible bond of maturity tn, fixed coupon c paid at
dates Coup = {tci , i = 1, ..., Nc}, accruing over time Δt, that may be converted
to ζ stocks on dates Conv = {tvj , j = 1, ..., Nv}, using

fk =






max(1 + cΔt, ζStn)1{τ>tn} +R1{tn−1<τ≤tn} : k = n,

max
(
e−rk(tk+1−tk)E[Vtk+1 |Ftk ] + cΔt1{tk∈Coup},

ζStk1{tk∈Conv}

)
1{τ>tk} +R1{tk−1<τ≤tk} : k < n,

(2.3)
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where τ denotes the time of default of the bond issuer, with suitable Xt =
(St, 1t<τ ). Now consider a credit default swap of unit currency notional where
protection premium coupon s is paid on dates tci , accruing over time Δt, for
protection against default losses (1−R). Under the simplifying assumption that
default payments are made at the next model time after default, one can take

fk =






−sΔt1{τ>tn} + (1−R)1{tn−1<τ≤tn} : k = n,
(
e−rk(tk+1−tk)E[Vtk+1 |Ftk ]− sΔt1{tk∈Coup}

)
1{τ>tk}

+(1−R)1{tk−1<τ≤tk} : k < n.

(2.4)

Forward starting and cliquet options are derivatives with moderate path
dependence in that they are dependent on the history of the underlying at
only a small number of times. To see that they fit with A3, consider forward
starting options with maturities tn whose strike are struck ATM at time tn−`,
with an offset of ` ≥ 1 periods (` ≤ n). With Markovian stock price (Stk) and
Xtk = (St(k−`)∧0 , . . . , Stk), the forward starting call paying (Stn − Stn−`)

+ at

maturity tn is valued consistently with A3 by fk = e
−rk(tk+1−tk)E[Vtk+1 |Ftk ] at

tk for k < n. Derivatives with more path dependence such as Asian options
whose payoff is based on some averaging process At of an underlying process St,
may satisfy specifications A2,3 by enlarging the state space, e.g. to Xt = (St, At).
In the sequel we consider a portfolio of one or more primary instruments that

is to be statically hedged by a suitable portfolio of preselected instruments. It is
natural, though not necessary, to think of the hedge instruments as liquid vanilla
derivatives which are less exotic than the primary instruments to be hedged. In
later sections, hedge instruments will be vanilla derivatives that are European
call and put options, credit default swaps and zero coupon bonds. One could
also use other hedge instruments, e.g. American or forward starting options.
The method to be suggested does not require that the hedging instruments
expire at the hedging date for which they are employed, and allows different
forward start dates of the hedge instruments. Yet, the examples in the paper
will be predominantly spot starting options which expire at the hedging dates
to which they are associated.

Remark 2.1. Since our task is hedging exclusively our model is specified under
the pricing measure P, understanding that P is to be inferred by calibration
to present market prices (see examples later). Given that the real market has
chosen the pricing measure for our model, the pricing problem is solved a priori,
as noted in Bouleau and Lamberton (1989). To find on optimal approximative
hedge, we use the criterion from Föllmer and Sondermann (1986) and Bouleau
and Lamberton (1989). Minimising the hedging P/L variance under P is a
tractable criterion that permits hedge computations using a range of possibly
complex derivatives. The residual hedging error that remains, being small under
the pricing measure in a mean square sense, could be hedged dynamically af-
terwards. If one would start with P as the ‘statistical’ real probability measure,
the valuations in (2.1) would involve the stochastic discount factor (pricing ker-
nel). But for typical models, the real dynamics (drifts) of the processes would
be hard, if not impossible, to estimate reliably.
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2.2 The Weak Static Hedging Method

To fix notation, let us first describe the simple minimum variance hedge for a
single horizon tk, which will serve as a building block for the static hedge that
uses a strip of derivatives to hedge a given exotic at multiple future hedge dates.
Let Πk denote a portfolio comprising Nk primary instruments at time tk.

Let Hk be the time-tk value of this portfolio and H
i
k, i ≤ Nk, the value of each

primary instrument. Assume that all the primary instruments are of maturity
greater than or equal to tk. By A2-3 the value of this portfolio may be expressed
as a function of the Markov process X at time tk, i.e.

Hk(Xtk) =

Nk∑

i=1

Hik(Xtk) . (2.5)

At time tk, let dk hedge instruments be available of maturity tk or greater, with
values Y ik = Y

i
k (Xtk) for i ≤ dk. Let θ

i
k > 0 (or < 0) denote a long (or short)

position in the ith hedge instrument. The hedging portfolio then has value

Yk(Xtk) =

dk∑

i=1

θikY
i
k (Xtk) = θk.Yk . (2.6)

For illustration, take interest rates as deterministic with average rate of interest
over time interval [0, t] being R(0, t). The objective of the static hedge is to
select θk ∈ Rdk to minimise the variance of the total value (profit and loss P/L)
Hk + θk.Yk − eR(0,tk)tk(H0 + θk.Y0) of the hedged portfolio at time tk, where
the last term comprises the cost of financing, with H0 = e

−R(0,tk)tkE[Hk] and
Y0 = e

−R(0,tk)tkE[Yk]. With ΔYk := Yk − E[Yk] and ΔHk := Hk − E[Hk] one
can write the time-tk profit and loss compactly as ΔHk + θk.ΔYk. The hedge
portfolio θk is chosen to solve the minimisation problem

θk = arg min
θ∈Rdk

E[(ΔHk + θ.ΔYk)
2] = min

θ∈Rdk
Var[(Hk + θ.Yk)] . (2.7)

The first-order condition for the minimum yields a system of linear equations

Cov(ΔYk)θk +Cov(Hk, Yk) = 0 (2.8)

to be solved for θk. In (2.8), Cov(ΔYk) is the dk×dk-covariance matrix of ΔYk,
and Cov(ΔHk,ΔYk) is the covariance vector

(
E[ΔHkΔY ik ]

)
i=1,...,dk

. Assuming

Cov(ΔYk) is non-singular one may solve for unique optimal hedge notionals
θk using standard methods, once the covariances in (2.8) are computed. If

Cov(Y
(k)
k ) is singular then some tk-hedging instruments are redundant, and one

cannot expect the hedge to be unique. Note that the static hedging notional θk
is linear with respect to the risky position Hk that is to be approximated.

We consider now the static minimum variance hedge of a portfolio Π of
primary instruments at multiple future hedging horizons. With reference to
the single hedge date results above, let us now state the general existence and
uniqueness result for the static hedge portfolio of this work.
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Proposition 2.2. Assume A1-4. For hedging horizons 0 < T1 ∙ ∙ ∙ < TM , be-
ing a subset of the times from A1, there exist θ∗k ∈ R

dk , 1 ≤ k ≤ M , that
simultaneously solve the (weak) static minimum variance hedging problem

min
θk∈Rdk

Var



Hk +
∑

j>k

θj .Y
(j)
k + θk.Y

(k)
k



 for all k = 1 . . .M (2.9)

for a given primary instrument with value process (Hk)k=1,...,M and dj ∈ N pres-

elected time-Tj hedge instruments, j = 1, ...,M , with value processes (Y
(j)
k )k=1,...,j

in Rdj . For any k, the minimising argument θ∗k for (2.9) exists and θ
∗
kY
(k)
k is

unique a.s.. The hedging notionals θ∗k are unique if and only if the covariance

matrix Cov(Y
(k)
k ) for the time-Tk hedge instruments is non-singular.

The variance minimising portfolio is found by solving systems of linear equa-
tions like (2.8) by backward induction for TM , . . . , T1, to construct the solution
to the co-initial regression problems (2.9) for multiple horizons. For comparison,
static variance minimisation for a single time horizon (Breeden and Litzenberger
(1978)) uses simple linear regression but no backward induction, while dynamic
minimum variance hedging (Föllmer and Schweizer (1990)) involves sequential
regression. Though mathematically straightforward to obtain, the proposed
weak static notion of minimum variance hedging for multiple horizons is new
to the literature, to the best of our knowledge. We note that Derman et al.
(1995), Jäckel and Rebonato (2001) and Joshi (2003) contain similar ideas, in
that they also use backward induction to construct a static hedge. The main
difference is, that they aim for (perfect) replication, while we only seek to min-
imise the variance of the hedging error to obtain an optimal approximate hedge.
Such a weaker notion of hedging is useful since static replication is only possible
under particular assumptions (cf. section 1), not in general. Since variances
are model-dependent, robustness with respect to model risk is an issue to be
considered in later sections.

Proof. With h := HM−E[HM ] and x := Y
(M)
M −E[Y (M)M ] theMth minimisation

problem is

θ∗M = arg min
θ∈RdM

||xT θ − h||22 = arg min
θ∈RdM

E[(xT θ − h)2]. (2.10)

For x ∈ L2(Rdk), the space Kk = {xT θ : θ ∈ Rdk} is a finite dimensional (hence
closed) subspace of the Hilbert space of square integrable random variables. So
there is a unique orthogonal projection xT θ∗M ∈ K

M of h onto KM , solving
(2.10). The existence of the minimising argument for (2.9) follows by backward
induction. If θ∗i exist for k < i ≤ M then the kth minimisation problem for
θ∗k ∈ Rdk may be written in the form of (2.10) with h = H̃k − E[H̃k] and

x = Y
(k)
k −E[Y (k)k ] for known square integrable H̃k = Hk+

∑
i>k θi.Y

(k)
i . So by

induction θ∗k exist for all k =M, ..., 1, minimising (2.9).
To prove the uniqueness condition, suppose θ∗ and θ∗ + δ in Kk minimise

(2.9) for some k. By uniqueness of the orthogonal projection of h onto Kk, it
holds that xT θ∗ = xT (θ∗ + δ), and so

0 = ||xT δ||22 = E[δ
T (xxT )δ] = δTCov(x)δ .

In view of (2.8), it follows that δ 6= 0 is only possible when Cov(x) is singular.
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The static hedging idea can be described as follows. Hold a suitable position
in hedge instruments of maturity TM or greater to minimise the variance of
profit and loss from the primary instruments at time TM . Perform a backward
valuation to obtain the value of the primary and hedge instruments at time
TM−1 and use pre-selected hedge instruments available for maturity TM−1 to
minimise the profit and loss of this new portfolio. Repeat this procedure until
the closest hedge date to today is reached. The initial value of the statically

hedged portfolio Π given Xt0 = x is given by Π(x) = H0(x) +
∑M
j=1 θj .Y

(j)
0 (x).

The hedge portfolio is set up at time zero and the hedge instruments are grad-
ually unwound at the hedging times that they are associated to, possibly before
their expiry. Intuitively, hedge instruments for hedge date tk are pre-selected
to hedge contingent cash flows or exercise optionalities close to the time inter-
val [tk, tk+1) where those originate. Clearly, hedge instruments need to capture
major risk factors of the primary instrument; this should include the timing of
contingent cash flows and exercise optionalities. European options, e.g., may
serve as hedging instruments for primary instruments with a suitable weak form
of paths dependence (e.g. barrier or American options with otherwise European
payoff profiles); It would then be natural to use those European options with
maturity tk as hedge instruments for that hedge date.
To answer a potential question: for any hedge date, why not consider all

available unexpired European options as hedge instruments? Then, theoreti-
cally, the variance of the hedge error (2.9) would be minimised over ALL hedge
instruments. Such a minimisation problem is likely to become mathematically
ill-posed. Practically, the number of hedge instruments should be reasonably
small. And those hedges should be selected that are closest to the risks that
have not already been hedged (at later dates).

Remark 2.3. Implementation and calibration issues.
1. One needs to evaluate the (conditional) expectations in (2.1) and (2.8)

for all instruments in question. Unless instruments in question have closed form
pricing formulas valuations need to be obtained numerically. To compute the
risk neutral transition probability kernels P(Xtk+1 ∈ dx|Xtk = x) and P(Xtk ∈
dx), it is computationally efficient if Xtk is such that these kernels are given in
closed form. Section 3 uses this for a lattice implementation.
2. The backward valuation may be computed by analytic or numerical meth-

ods, or by Monte Carlo simulation for high dimensional problems. Monte Carlo
is particulary straightforward in the special case of static hedging of European
options for a single horizon, see e.g. Pellizzari (2005).
3. The problem (2.8) can be ill conditioned. The covariance matrix and

vector computed will involve certain numerical errors, and hedging instruments
may be highly correlated. Some regularisation should be used, like truncated
singular value decomposition or Tikhonov regularisation.

3 The Extended Displaced Diffusion Model

We describe stock price dynamics by an extension of the displaced diffusion
model by Rubinstein (1983). Stock prices evolve according to a generalised dis-
placed diffusion model with time varying coefficients, which is further extended
to incorporate default of the stock issuer. A simple variant, called DD+, with
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piecewise constant parameters is used later as the basis for a model that serves
as the hedger’s model in this paper. Like the classical model by Rubinstein
(1983), our DD+ extension maintains analytic tractability in periods with con-
stant coefficients. For jump diffusion models in general, see also Merton (1990).

General Model Framework

Consider a model for equity and credit derivative securities based on a single
underlying state variable, the (defaultable) stock price St. Assume that (St) is
an adapted process defined on the complete probability space (Ω,F ,P) with fil-
tration F = (Ft)t≥0 satisfying the usual conditions. P is taken as the risk neutral
measure under which security prices discounted by the risk free savings account
Bt = exp(

∫ t
0
r(s)ds) are martingales. Interest rates r(t) ≥ 0 are deterministic.

To define (St), consider first an auxiliary process Xt evolving as

dXt =
(
r(t) + λt)

)
Xtdt+ σ̃(t,Xt)dWt, t > 0 , (3.11)

where X0 = S0 = S(0) is the initial spot price of the stock, W is a stan-
dard (P,F)-Brownian motion and λt = λ(t, ω) is the predictable (P,F)-intensity
of a doubly stochastic Poisson process1 Nt, also adapted to F. The time-
inhomogeneous coefficient σ̃ is assumed affine in X with deterministic param-
eters σ(t), q(t) given by σ̃(t,Xt) = σ(t)

(
q(t)X (t) + (1 − q(t))F (t)

)
for some

deterministic function F (t) (to be specified later (3.15)). As such the dynamics
of X are similar to the displaced diffusion dynamics in Rubinstein (1983). If q(t)
is piecewise continuous and q(t) < 1 for some t then P(inft∈[0,T ] Xt ≤ 0) > 0.
Let us define stopping times τN := inf{t > 0 : Nt = 1 > N0 ≡ 0} associated

to the first jump of N and τD := inf{t ∈ [0, T ] : Xt ≤ 0} for the first hitting
time of zero by Xt, with the usual convention inf ∅ =∞. Then, let

τ := τD ∧ τN ≡ min{τD, τN}, (3.12)

be the time of default of the stock issuer and define the defaultable stock price
process as St = Xt1{τ>t}. Note that St/Bt is a (P,F)-local martingale.

Remark 3.1. Further salient features of the model are: (i) There are two
sources of default: jump to default, which occurs at the totally inaccessible
time τN , and diffusion to default which occurs at the predictable time τD.
(ii) Parameter q(t) varies the weight between normal and lognormal stock

returns. Like in Rubinstein (1983), it can be seen as a skew parameter since it
primarily controls the model’s implied volatility skews.
(iii) One obtains a stock price model as in Andersen and Buffum (2003),

when taking q(t) ≡ 1 and an intensity of the form λt = a(t)fλ(St) for 0 ≤ t < τ ,
where a(t) is a deterministic function and

fλ(St) = (St/S0)
−p (3.13)

for some p ≥ 0; the intensity is then inversely related to the stock price and the
volatility of short-term spreads equals (−)p times the equity volatility.
(iv) If intensities are not state dependent, i.e. fλ ≡ 1, and qk do not de-

pend on k, our model is an extension of the classical displaced diffusion model

1That means, conditional on knowing the information H := σ({λt : t ≥ 0}), the process
Nt is still a Poisson process with (known) intensity (λt) under information flow (Ft ∨H)t≥0.
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with ‘skew’ from Rubinstein (1983), that includes default and excludes negative
values of the underlying, while maintaining closed form solutions for prices of
European vanilla options of any maturity. To see this, note that such param-
eterisation is a special case of the DD+ specification below. By (3.17), Xt in
St = Xt1{τ>t} is then a shifted lognormal random variable, independent of τ .

The Extended Displaced Diffusion Model DD+

We are going to use a simple version (i.e, piecewise constant parameters) of
the displaced diffusion dynamics as a model capable of matching valuations of
options and credit default swaps to their market prices. We now specify this
version and refer to it as the extended displaced diffusion model DD+. Let the
time dependent coefficients of (3.11) be piecewise constant so that r(t) = rk,
q(t) = qk, σ(t) = σk, a(t) = ak for t ∈ (tk−1, tk]. The intensity is also piecewise
constant and taken to be a function of the stock price at the beginning of each
period, i.e. λt = akfλ(Stk−1) (see (3.13)). The auxiliary process X satisfies

dXt = (rk + akfλ(sk−1))Xtdt+ σk(qkXt + (1− qk)F
k
t )dWt (3.14)

for t ∈ (tk−1, tk] over the kth period, with Xtk−1 =: sk−1 and

F kt := Ftk−1 exp {(rk + akfλ(sk−1))(t− tk−1)} , (3.15)

Ftk−1 := S0 exp

{∑k−1

j=1
(rj + aj))(tj − tj−1)

}

. (3.16)

By choosing F kt thus, applying Ito’s Lemma to X̃t := qkXt + (1− qk)F
k
t shows

that X̃t is lognormal (conditionally on Xtk−1 =: sk−1), and satisfies

dX̃t = (rk + akfλ(sk−1))X̃tdt+ σkqkX̃tdWt , t ∈ (tk−1, tk] . (3.17)

Therefore, with y
(k)
t := σkqk(Wt −Wtk−1)− σ

2
kq
2
k(t− tk−1)/2, and using (3.15)

it follows

X̃t = X̃tk−1e
(rk+akfλ(sk−1))(t−tk−1)+y

(k)
t = X̃tk−1

F kt
Ftk−1

ey
(k)
t . (3.18)

Rearranging terms, it follows for t ∈ (tk−1, tk] that

y
(k)
t = log

( X̃t
F kt

)
− log

( X̃tk−1
Ftk−1

)

= log
(
qk
Xt
F kt
+ 1− qk

)
− log

(
qk
Xtk−1
Ftk−1

+ 1− qk
)

(3.19)

= log
(
qk

Xt
Ftk−1e

(rk+akfλ(sk−1))(t−tk−1)
+ 1− qk

)
− log

(
qk
Xtk−1
Ftk−1

+ 1− qk
)

=: Ŷk(Xtk ;Xtk−1), (3.20)

for 0 < qk < 1, similar results can be obtained for qk ≥ 1 and qk ≤ 0. This
relation between Xt and the (conditional) Gaussian y

(k)
t is used in the imple-

mentation of the (DD+) model described in the sequel.

10



The DD+ Model Implementation

The DD+ model facilitates numerical treatment, since transition probabilities
are available in a simple analytical form over each period. Those will be derived
next, see (3.22) below, and then applied for a recombining lattice implemen-
tation of the (discretised) stock price dynamics (3.14). The lattice should be
seen as numerical approximation to compute prices and hedges, rather than a
stochastic model in its own right. At each time slice for each lattice node of
possible levels of the stock price, transition probabilities to nodes at the next
time slice are to be approximated accordingly.
Recall the discretisation of time 0 = t0 < ∙ ∙ ∙ < tK = T . For later purposes

these times can be thought of as (moderately many) expiries of calibration and
hedge instruments. At each time tk, we discretise the stock price distribution

to take values S
(j)
tk
> 0 for j = −Ndk to N

u
k , increasing in j, and to be zero in

default. Let us note here that, in order to incorporate default time information
into the underlying Markov state, several states associated to default will be used

later. Let ΔS
(j)
tk
= S

(j+1)
tk

− S(j)tk denote the spacing of discretised prices. The
approximating transition probabilities between lattice nodes from Stk−1 = x > 0

to S
(j)
tk
are denoted by and computed as

pk−1,k

(
S
(j)
tk

∣
∣x
)
:= P

(
x−j,k < Stk < x

+
j,k

∣
∣Stk−1 = x

)
(3.21)

with x−j,k := S
(j)
tk
− 1
2ΔS

(j−1)
tk

> 0 and x+j,k := S
(j)
tk
+ 1
2ΔS

(j)
tk
> 0. Omitting

k−1, k (j) sub(super)-scripts for ease of notation, the transition probabilities can
be written as P

(
x−k < Xtk < x

+
k , I

X
k > 0, τN > tk

∣
∣Xtk−1 = x, τN > tk−1

)
with

IXk = inftk−1<u<tk Xu. Since conditional on Xtk−1 = x, point process Nt has
constant intensity λk(x) over (tk−1, tk], the processesNt and Xt are conditionally
independent on (tk−1, tk], implying

p(Stk |x) = e
−(tk−tk−1)λk(x)P

(
x−k < Xtk < x

+
k , I

X
k > 0

∣
∣Xtk−1 = x

)
. (3.22)

Transition probability (3.22) can be computed, by using (3.19) and the known
joint distribution of the value of Brownian motion with drift and its running
minimum (see Borodin and Salminen (1996)), from

P
(
x−k < Xtk < x

+
k , I

X
k > 0

∣
∣Xtk−1 = x

)

= P
(
Ŷk(x

−
k ;x) < y

(k)
tk
< Ŷk(x

+
k ;x), I

y
k > Ŷk(0;x)

)
(3.23)

where Iyk = inftk−1<u<tk y
(k)
u and Ŷk( ∙ ; ∙ ) is defined in (3.20).

Forward Induction and Calibration

For the Markov states underlying a simple lattice implementation, let us consider
for each time tk the possible non-zero levels of the stock prices plus two possible
Markov states associated with default, D1tk and D

2
tk
. The state D1tk corresponds

to default within the interval (tk−1, tk] and state D
2
tk
to default within (0, tk−1].

We refer by Dtk := D
1
tk
∪D2tk to the aggregate default state, which is absorbing.

11



The transition probabilities between non-zero stock price levels of consecu-
tive times tk−1 and tk are computed using (3.22) as

p
(
S
(j)
tk

∣
∣S(m)tk−1

)
= P

(
x−j,k < S

(j)
tk
< x+j,k

∣
∣Stk−1 = S

(m)
tk−1

)
,

p
(
D1tk

∣
∣S(m)tk−1

)
= 1−

∑

j
p
(
S
(j)
tk

∣
∣S(m)tk−1

)
.

Trivially, p(S0) = 1 at time t0 = 0. Suppose that transition probabilities from

S0 to each node S
(m)
tk−1

between t0 and tk−1 are already known (denoted by
pk−1), and are such that the model values of European options and defaultable
zero coupons bond of maturity tk−1 are sufficiently close to the market. Then,
further probabilities of transition between t0 and tk are obtained easily from

pk = Tk−1,kpk−1 (3.24)

with Tk−1,k being the (time-dependent) (N
d
k + N

u
k + 1) × (N

d
k−1 + N

u
k−1 + 1)

transition matrix with elements
[
Tk−1,k

]
j,m
= p(S

(j)
tk
|S(m)tk−1

). This uses transi-

tion probabilities for which explicit formulas exists, see (3.19),(3.22), involving
calibration parameters qk, σk and ak. The (unconditional) time zero probabil-
ity of transition to D1tk is given by p(D

1
tk
) = dk.pk−1 where the jth vector

coordinate [dk]j = p(D
1
tk
|S(j)tk−1) and the probability of default by tk is given by

p(Dtk) = p(D
1
tk
) + p(D2tk) = 1− pk.1. (3.25)

Furthermore, p(D2tk |D
j
tk−1
) = 1 holds for j = 1, 2, thus p(D2tk) = p(Dtk−1).

Using risk neutral probabilities p and discounting, the values of continent
payment streams stemming from derivative securities, possibly with optimal
(Bermudan) exercise optionalities, are computed by usual backward computa-
tion. More specifically, for the securities to be used for calibration in the sequel,
simple concrete formulas are as follows. Let Sn denote the vector of time-tn
stock price values strictly greater than zero. The time zero values of European
call and put options with expiry tn and strike K are given by

VC(K, tn) =
pn.(Sn −K1)

+

exp(
∫ tn
0
rsds)

and VP (K, tn) =
pn.(K1− Sn)

+ + p(Dtn)K

exp(
∫ tn
0
rsds)

where 1 denotes a vector of ones. The value of a defaultable zero coupon bond
of maturity tn is BD(0, tn) = e

−
∫
tn
0
rsds(1 − p(Dtn)) . A CDS of maturity tn,

paying spread s over accrual periods Δt for protection against losses (1 − R),
with no accrued coupon paid at default, has value VCDS(0, tn) equal to

n∑

i=1

{ (1−R)
(
p(Dti)− p(Dti−1)

)
BD(0, ti−1)

exp(
∫ ti
ti−1
rsds)

− sΔtBD(0, ti)
}
, (3.26)

where we have used that
∑
j p(D

1
ti
|S(j)ti ) + p(Dti−1) = p(Dti).

Remark 3.2. The valuation of derivatives has been outlined above. For the
later purpose of static hedging according to section 2.2, we attribute cash flows
to the derivatives by assuming that any (recovery and option) payments made in
default are reinvested until the maturity of the respective instruments. For sim-
plicity, we assume that such reinvestments earn a rate of zero return and that

12



recovery is constant over time. This fits conveniently with the simple imple-
mentation described above. It would be straightforward to deal with non-zero
reinvestment returns for payments originating at default, by incorporating fur-
ther default states in the implementation to keep track of the timing of default.

Calibration Algorithm

Calibration is done by forward induction. During the kth induction step, the
parameters σk, qk and ak are varied to minimise the market/model price error
of European out of the money (OTM) calls and puts and the price of defaultable
zero coupon bonds of maturity tk. The calibration at time tk proceeds along the
following three steps: 1) Make suitable first guesses for σk, qk (e.g. σk = σk−1,
qk = qk−1 for k > 1). 2) Set ak so that defaultable zero coupon bond prices
of maturity tk are fitted within given error tolerance. 3) Calculate OTM call
and put option prices VOTM (Kj) for strikes Kj , and compare to market quotes
V mOTM (Kj). If

∑
j(V

m
OTM (Kj)−VOTM (Kj))

2 > tolerance adjust σk and qk and
return to step 2) (or terminate if no further improvement is obtained).

Remark 3.3. (i) The calibration minimises the absolute error for OTM options;
this ensures greater accuracy in relative error terms for options nearer the ATM
strike than those further OTM. Parameters ak in step 2) were calibrated by
Newton’s method. For step 3) we used Levenberg-Marquardt’s least squares
algorithm.
(ii) The procedure above was used successfully for the calibrations in sec-

tion 5 and delivered positive ak. Additional constraints on (σk, qk) may be
imposed in step 3) to ensure that step 2) can be obtained by ak ≥ 0 in general.

4 The Extended Heston Model

This section presents an affine extension of the stochastic volatility model by
Heston (1993) to incorporate default risk, which is subsumed by the model of
equity and credit risk in Carr and Wu (2006). We refer to it as the Extended He-
ston Model EH. It permits to price many vanilla derivatives by Fourier transform
methods. For the valuation of convertible bonds, we apply PDE techniques.

The Model Framework

Let (Ω,F , (Ft),P) be a filtered probability space whose filtration satisfies the
usual conditions. The probability P is the risk neutral measure under which
security values, discounted by the riskless savings account Bt = exp(

∫ t
0
r(s)ds),

are martingales. Unless otherwise specified, expectations are taken under P.
The evolution of the pre-default log stock price process Xt = logSt (on

{τ > t}) and its stochastic variance Σt are given by

dXt = (r(t) + λ(t,Σt)−
1

2
Σt)dt+

√
ΣtdW

1
t , (4.27)

dΣt = κ(θ − Σt)dt+ σν
√
ΣtdW

2
t , (4.28)

with X0 = logS0,Σ0 > 0, where W
1 and W 2 are correlated, Ft-adapted, Brow-

nian motions with d〈W 1,W 2〉t = ρdt. Let Nt be an Ft-adapted doubly stochas-
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tic Poisson process2 that admits the intensity λt = λ(t,Σ(t)). The time of
default of the stock issuer is defined as the (totally inaccessible) stopping time
τ = inf{t : Nt = 1 > 0 ≡ N0}.
The intensity of Nt is taken to be affine

λ(t,Σ(t)) = α(t) + ξΣ(t) (4.29)

with α : [0,∞)→ R+ being bounded and deterministic, and ξ ∈ [0,∞) constant.

Pricing by Transform or PDE methods

At time t, the (pre-default) value of a defaultable derivative security with Eu-
ropean style payoff f(XT ,ΣT ) at T (if {τ > T}) is,

u(t, x, ν) := E
[
e−
∫
T
t
(r(s)+λ(s,Σs))dsf(XT ,ΣT )|Ft

]
(4.30)

= E
[
e−
∫
T
t
(r(s)+λ(s,Σs))dsf(XT ,ΣT )|X(t) = x,Σ(t) = ν

]

Under the above assumptions, the model is affine. This permits evaluation of
(4.30) for several derivatives by inversion of Fourier transforms, see Carr and
Madan (1998); Duffie et al. (2000), which we summarise in the Appendix. Such
derivatives include European vanilla options and credit default swaps, but not
convertible bonds, whose prices will be computed by solving PDEs numerically
described in the following section.

Pricing by PDE methods: Convertible bonds

Let u(t, x, ν) denote the pre-default value at time t of some defaultable Euro-
pean derivative of fixed maturity T , when X(t) = x, Σ(t) = ν, in the EH model.
Assume that the derivative provides payments at rate g(t) to the investor be-
fore default, and pays a constant amount R at default. Supposing sufficient
smoothness, u then satisfies the PDE

∂u

∂t
+ Lu− (λ(t, ν) + r(t))u = −λ(t, ν)R− g(t) (4.31)

on (0, T )×D ⊂ R2. The infinitesimal generator of the process (Xt, νt) is

L =
1

2
ν
∂2

∂x2
+ ρσνν

∂2

∂x∂ν
+
1

2
σ2νν

∂2

∂ν2
(4.32)

+
[
r(t) + λ(t, ν)−

1

2
ν
] ∂
∂x
+
[
κ(θ − ν)

] ∂
∂ν
.

To compute FD solutions to the PDE (4.31) one needs to provide truncation
boundary conditions, in addition to the boundary condition at terminal time
given by the payoff functional. We do so below, turning to the pricing of a
convertible bond. It has maturity T , and notional of 1 currency unit paying
some annualised coupon c that accrues over the period Δc years, is convertible
on coupon payment dates only (after coupon being payed) to ζ stocks and
callable by the issuer on conversion dates only for the price CBc. The holder of

2That is, conditional on knowing H := σ({λt : t ≥ 0}), the process Nt is a Poisson process
with (known) intensity (λt) under the larger filtration (Ft ∨H)t≥0.
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the bond still has the right to convert after the issuer has exercised the right to
call.
Denote the value at t of a T maturity defaultable bond with no conversion

features by DB(t, T ) and assume that the bond recovers a constant R, equal
to a fraction of the bond notional at default. The (pre-default, ex-coupon)
convertible bond price u(t, x, ν) is described by the parabolic PDE

0 =
∂u

∂t
+ Lu− (λ(t, ν) + r(t))u+ λ(t, ν)R (4.33)

on (tci , t
c
i+1) × D+ with D+ = {(x, ν) ∈ R2 : ν > 0}, describing the (pre-

default) value u between coupon payment dates tci , for i = 1, ...N
c. Further, the

boundary condition at maturity tcNc = T is

u(T−, x, ν) = max(ζex,min(CBc, DB(T, T ))) ,

where DB(T, T ) = 1 + cΔc, while at intermediate coupon dates tci , i < N
c,

u(tci−, x, ν) = cΔc +max(ζex,min(CBc, u(t
c
i+, x, ν)))

holds. The last equation reflects that the holder, after receiving the coupon,
has the option to convert, whereas the issuer might call the convertible bond.
To set suitable truncation boundary conditions for the FD implementation

of a numerical PDE solution, we postulate the following boundary behaviour

u(t, x, ν)→ DB(t, T ) as x→ −∞ ,
∂2u

∂x2
−
∂u

∂x
→ 0 as x→ +∞ ,

recalling that x denotes log-prices. For the ν boundaries, we assume ∂
2u
∂ν2
→

0 as ν ↑ ∞ , and for ν → 0, a condition for ∂u
∂ν
follows from taking u to satisfy

the PDE (4.33) with ν = 0, i.e. ∂u
∂t
+ r̃(t)∂u

∂x
+ κθ ∂u

∂ν
− r̃(t)u + α(t)R = 0 for

r̃(t) := r(t) + α(t) at ν = 0.
The numerical PDE solution is computed by FD methods on some finite

truncated domain D = {(x, ν) : xL ≤ x ≤ xU , νL ≤ ν ≤ νU}, which is to be
chosen such that the truncation introduces sufficiently small errors. To com-
pute the numerical solution we have used a predictor-corrector FD method that
employs operator splitting from Hout and Welfert (2007).

The Forward Equation

To compute moments or other statistics of the P/L of a statically hedged portfo-
lio in the EH model, see Section 5.4 and Remark 2.3, we need the pricing kernel
density, that is the risk neutral (unconditional) transition density with appropri-
ate discounting (killing). It is computed from the forward PDE, that describes
the evolution of the density (including the discounting), by FD methods.
Recall the backward equation for the pricing density, that is the suitably dis-

counted (by risk less rate and intensity to default) transition density function
p(t, x, ν, t′, y, μ) from (x, ν) at time t to (y, μ) at t′. Supposing sufficient smooth-
ness of p, the backward Kolmogorov equation is ∂

∂t
p + Ap = 0 with operator

A = L− (λ(t, ν)+ r(t)) acting on (x, ν) in D+ = {(x, ν) ∈ R2 : ν > 0}, for fixed
(y, μ). To describe the forward evolution by a forward equation for the pricing
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density associated to the process (Xt+s,Σt+s)s≥0 starting at Xt = x,Σt = ν at
t (fixed), one needs the formal adjoint operator

A∗,t :=
1

2
μ
∂2

∂y2
+ ρσνμ

∂2

∂y∂μ
+
1

2
σ2νμ

∂2

∂μ2
−
[
r(t) + λ(t, μ)−

1

2
μ− ρσν

] ∂
∂y

−
[
κ(θ − μ)− σ2ν

] ∂
∂μ
+ κ− (λ(t, μ) + r(t))

that is acting on the forward arguments y and μ of the pricing density p̃(s, y, μ) :=
p(t, x, ν, s, y, μ). The forward equation then reads − ∂

∂s
p̃ + A∗,T−sp̃ = 0 . With

suitable initial condition (p̃(0, dy, dμ) = δ(x−y, ν−μ)) and (truncation) bound-
ary conditions, the pricing density can be computed numerically using FD meth-
ods, mentioned above. In the examples in section 5, the boundary μ = 0 is non-
attainable, since σ2ν ≤ 2κθ holds, and p̃ = 0 on ∂D+ was used as approximate
truncation boundary condition.

5 Static Hedging example: Convertible Bond

We demonstrate the static hedging method of this paper by applying it to
hedging a convertible bond with European calls and puts, credit default swaps
and zero coupon bonds. We hedge a trade called CB1; a 100 notional, 2 year
maturity convertible bond with a 5% coupon paid semi-annually. The bond
may be converted by the holder for 0.9 shares or called by the issuer for 120 on
coupon dates only. If the bond issuer exercises the right to call the bond, the
bond holder may still convert.

5.1 DD+ Model Calibration

Figure 1: Calibration accuracy (in terms of Black Scholes implied volatility) of
the DD+ model to the EH model computed option prices.

We assume that the market values equity and credit derivatives using the
EH model with r = 0.04, κ = 1.0, θ = 0.352, σν = 0.3, ρ = −0.6 and ξ = 0.35,
α ≡ 0. We assume initial values for the stock price and variance of S0 = 100,
Σ0 = 0.09 (i.e., initial stock volatility of 30%). Recovery for all default sensitive
securities is 40% of the notional position prior to default. We assume the trader
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Maturity Intensity CDS Spread
1m 3.1960% 1.9610%
3m 3.2802% 2.0017%
6m 3.3893% 2.0877%
1y 3.5595% 2.1791%
18m 3.6829% 2.2573%
2y 3.7742% 2.3047%

Table 1: Default intensity and credit default swap spreads calculated using the
EH model and assuming 40% recovery in default.

Time tk Vol σk Skew qk Intensity ak
0.083 0.3004062577 0.0430075262 0.0319607070
0.25 0.3008774584 0.1397628001 0.0319505343
0.5 0.3050992656 0.2685696661 0.0328532553
1.0 0.3121133276 0.4301136463 0.0337547937
1.5 0.3266560551 0.5250142422 0.0343758047
2.0 0.3404775784 0.5716379599 0.0318235221

Table 2: DD+ model calibration parameters with p = 2 and bk chosen to match
EH model defaultable zero coupon bonds.

hedging CB1 observes the EH market prices of the hedge instruments, but uses
and calibrates his DD+ model (with p = 2) to reprice hedge instruments as
close to the market as possible. For DD+ calibration parameters see table 2.
To simulate the hedger’s choice among a (small) given number of liquid

options in the market with plausible strikes for respective maturities, we take
the given (European) options to have strikes equivalent to those Black Scholes
option deltas, where call and put delta are equal or (out of the money) calls
respectively puts have deltas of 10% and 25%, for each given expiry dates.
The accuracy of the DD+ model calibration to option prices is illustrated

in figure 1 in terms of Black Scholes volatility at each option expiry and strike.
Option volatility errors are less than 1% along with perfect repricing of CDS
hedge spreads given in table 1.

5.2 The Weak Static Hedge Performance

We consider the hedge to be perfect if the value of CB1 plus all hedging instru-
ments (the hedged portfolio) is zero at all expiry times of the hedge instruments
(6m, 1y, 18m and 2y). A perfect hedge is unlikely so we judge the performance
of the hedge by considering the distributional properties of the non-discounted
profit and loss (P/L) for the hedged portfolio at the CB1 coupon payment dates.
Using the calibrated DD+ model and the optimal static hedge algorithm, a

hedge portfolio is computed for hedging the value of the convertible bond CB1
at its coupon dates. The notionals of each hedge instrument are given in table
3. At the time the convertible bond CB1 is issued, the trader holds CB1 plus
the portfolio given in table 3. No change to the hedge is made over the lifetime
of the bond unless the bond is converted, called or default occurs.
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# Trade Expiry Notional Details

1 Par CDS 2.00 102.36196 Spread 0.023038
2 OPTION 2.00 0.044629 CALL strike 68.82
3 OPTION 2.00 -0.164464 CALL strike 89.03
4 OPTION 2.00 -0.829655 CALL strike 118.53
5 OPTION 2.00 0.064043 CALL strike 157.80
6 OPTION 2.00 -0.017375 CALL strike 204.16
7 ZCB 2.00 -101.4171
8 Par CDS 1.50 -1.043921 Spread 0.022445
9 OPTION 1.50 0.159955 CALL strike 113.60
10 OPTION 1.50 -0.23741 CALL strike 145.55
11 OPTION 1.50 0.085212 CALL strike 181.92
12 ZCB 1.50 -1.381842
13 Par CDS 1.00 -1.084435 Spread 0.021725
14 OPTION 1.00 0.025512 CALL strike 74.12
15 OPTION 1.00 -0.10441 CALL strike 88.93
16 OPTION 1.00 0.404295 CALL strike 108.87
17 OPTION 1.00 -0.418216 CALL strike 133.29
18 OPTION 1.00 0.053135 CALL strike 159.91
19 ZCB 1.00 -1.345131
20 Par CDS 0.50 -1.111014 Spread 0.020525
21 OPTION 0.50 -0.02296 CALL strike 90.43
22 OPTION 0.50 0.108459 CALL strike 104.34
23 OPTION 0.50 0.383026 CALL strike 120.39
24 OPTION 0.50 -0.677842 CALL strike 136.94
25 ZCB 0.50 -1.3163

Table 3: Hedge portfolio computed using the DD+ for CB1 primary instrument
(CDS = credit default swap with recovery 40%, ZCB = zero coupon bond).

Notice that the hedge portfolio only contains a subset of the available hedge
instruments at each hedging time. This subset of hedge instruments has been
chosen by experimentation (algorithms to select a small number of regressors
are discussed in Lamberton and Lapeyre (1993), section 3.1): for the first hedge
calculation all hedging instruments were used; this generated P/L statistics3 in
table 4 - Panel A, that we considered to be the ’benchmark’ we could achieve.
A second hedge calculation with all hedge instruments except puts resulted in
minimal worsening of P/L statistics compared to our benchmark. And this sec-
ond hedge also included calls with a few relatively small hedge notionals. From
this hedge portfolio, the smallest notional call was removed and a new hedge
portfolio computed; if the P/L statistics were suitably close to our benchmark
we left the removed call out of the hedge portfolio. This procedure was re-
peated until we were left with call hedge positions greater than 0.01 where we
stopped. The P/L statistics for this reduced portfolio are given in 4 - Panel
B that are clearly close to those of Panel A. Table 4 - Panel C shows more
dramatic worsening of P/L statistics for a portfolio that contains credit default
swaps, zero coupon bonds but excludes all put options and, most importantly,

3P/L statistics are given in currency units.
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Time P/L Mean Variance Skew Kurtosis
Panel A - ’Benchmark’ Hedge using all options

2.0 0.000000 0.441849 -0.7308 4.15437
1.5 0.000000 0.426554 -1.3938 8.93081
1.0 0.000000 0.531097 0.84611 4.42561
0.5 0.000000 0.241966 -0.9791 12.7067
Panel B - Hedge using portfolio in table 3

2.0 0.000000 0.443657 -0.7267 4.14161
1.5 0.000000 0.432481 -1.2046 8.60745
1.0 0.000000 0.533097 0.84642 4.42283
0.5 0.000000 0.242496 -0.9768 12.6853
Panel C - Hedge without 2 lowest strike calls

2.00 0.000000 1.214579 1.70296 4.78944
1.50 0.000000 0.523927 -0.3654 5.99832
1.00 0.000000 0.770099 1.22743 4.80507
0.50 0.000000 0.282684 -0.7937 9.97402

Panel D - Only zero coupon bonds

2.00 0.000000 1346.182 0.92058 6.40640
1.50 0.000000 825.0955 0.34701 6.54585
1.00 0.000000 435.4891 -0.5850 8.27132
0.50 0.000000 165.0104 -2.6315 18.2412

Table 4: A comparison of DD+ model P/L statistics for different hedge port-
folios. Panel A P/L statistics are for a CB1 hedge portfolio using CDS, ZCB
and all call and put options. Panel B P/L statistics correspond to the portfolio
in table 3. Panel C P/L statistics correspond to a hedge portfolio using CDS,
ZCB, calls but not the lowest two strikes and no puts.

the two lowest strike call options at all hedge time horizons. Panel D contains
P/L statistics when the convertible bond has not been hedged at all, only zero
coupon bonds have been used to set the expected P/L to zero. These numbers
demonstrate the extent of P/L variance reduction achieved through the hedge,
for all cases considered.
Figure 2 shows plots of the DD+ model P/L for the hedged portfolio (CB1

plus hedges) over a range of future stock prices at each CB1 coupon payment
date and the DD+ model probability distribution for reaching stock prices at
each CB1 coupon date given the initial stock price S0 = 100. We observe from
figure 2 that as we step back in time from the 2 year time horizon to today
the hedge quality at coupon dates tends to worsen in the region of high stock
prices. The probability density graph shows that for each hedge time horizon
the regions of high P/L correspond to low likelihood, high stock price values.
The majority of the P/L error is in the jagged region for stock prices of 100

to 130. Our further tests show that if we add a 2 year call option of strike 113.88
(Bond Value/conversion ratio = (100 + 100 x 5% x 0.5)/0.9=113.88) all the 2y
hedge options have zero notional except for the 113.88 option and we have a
perfect hedge (almost zero P/L for all stock price levels). This is not surprising,
given the conversion ratio. However the hedge error at earlier times is mostly
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Time P/L Mean Variance Skew Kurtosis
Panel A - Hedge using portfolio in table 3

2.0 0.000000 0.443657 -0.7267 4.14161
1.5 0.000000 0.432481 -1.2046 8.60745
1.0 0.000000 0.533097 0.84642 4.42283
0.5 0.000000 0.242496 -0.9768 12.6853
Panel B - Hedge in DD+ model with market price changes

2.0 -0.00147 0.402973 -0.7818 5.23895
1.5 -0.18047 0.572386 -2.0936 12.7339
1.0 -0.45498 0.696917 -0.6579 3.50667
0.5 -0.68086 0.747691 -2.6296 16.5599

Panel C - Hedge in EH model

2.0 0.039114 0.507971 -0.523523 3.905897
1.5 -0.213219 0.71434 -1.628541 7.805858
1.0 -0.322333 1.64298 -0.26542 4.644496
0.5 -0.338016 1.338578 -2.071667 10.23964

Table 5: A comparison of hedge P/L statistics due to changes in the DD+ model
parameters (Panel B) and a change in the valuation model from the DD+ model
to the EH model (Panel C).

unaffected by this perfect 2y hedge and P/L error remains at the levels given in
table 4.

5.3 Robustness of the Static Hedge to Parameter Risk

On a daily basis the trader hedging CB1 will recalibrate the DD+ model using
observable market option prices and credit default swap spreads and then revalue
the hedged portfolio. We demonstrate how the hedge performs as the DD+
model calibration parameters change due to changes in market prices used in
the DD+ model calibration.
To generate a realistic scenario of changes to the DD+ model calibration

parameters we continue with the assumption that the market values equity
and credit derivatives using the EH model. We consider the scenario where
immediately after CB1 is hedged with the portfolio in table 3 the parameters
the market uses in the EH model change resulting in significant changes to all
option volatilities and par credit default swap spreads. On observing the market
price moves, the DD+ model is re-calibrated to match the new market price data
and the hedged portfolio is revalued using the re-calibrated DD+ model. The
positions of the hedge instruments are not changed in any way.
We assume that the market EH model has new post-hedge parameters θ =

0.362, ξ = 0.5 and spot volatility is now 0.35 (originally 0.352, 0.35 and 0.3
respectively) and all other parameters remain unchanged. Using post-hedge EH
model parameters in the EH model we see an increase in the market option
volatilities of figure 1 ranging from 4.5% to 8% and CDS spreads are nearly
double those in table 1. The DD+ model is now re-calibrated to match the
changed (post-hedge) option prices and CDS spreads and the hedged portfolio is
revalued. The hedged portfolio’s P/L statistics associated with this revaluation
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Figure 2: DD+ model hedged portfolio P/L by stock price at coupon dates.

are given in table 5 Panel B. The performance of the hedge after market price
moves should be assessed by comparison of table 5 Panel A and Panel B. There
is clearly a loss of hedge accuracy as the P/L variance in Panel B has increased
over Panel A for the 18m, 12m and 6m hedge time horizons; skew and kurtosis
is larger for almost all of Panel B compared with Panel A. However given the
relatively dramatic increase in the market prices for our scenario these P/L
statistics suggest the hedge may perform well for more typical market moves.

Scenario Time 0.5 Time 1.0 Time 1.5 Time 2.0

- 0.00000 0.24197 0.53110 0.42655
25% rel skew shift down 0.26903 0.58254 0.43737 0.44592
25% rel skew shift up 0.24933 0.54138 0.40585 0.45411
0.25 abs skew shift down 0.30975 0.62355 0.43774 0.46870
0.25 abs skew shift up 0.28089 0.54040 0.40408 0.45234
25% rel vol shift down 1.51509 2.01173 0.54917 0.57912
25% rel vol shift up 2.00364 1.29474 0.88676 0.38396
25% abs vol shift down 0.83953 2.20812 1.14961 1.38601
25% abs vol shift up 15.54973 9.76510 4.46552 0.24231

Table 6: P/L Variance for scenarios of changes to model parameters in table 2
with other parameters fixed. Top (bottom) rows refer to qk (σk) changes.

Table 6 provides a comparison of P/L variance for different scenarios of
changes to the calibrated DD+ model parameters in table 2 with all of other
parameters of the model fixed. The first 4 rows are changes to all of the model
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skew parameter values qk, the last 4 rows are to all volatility values σk (rel
means relative, abs means absolute). We observe little effect on the hedge
performance for all scenarios of skew parameter changes. Volatility scenarios
show a larger, but reasonably small effect on the hedge performance for all but
the last scenario. Even for this case the statically hedged portfolio demonstrates
only a small fraction of the P/L variance of the unhedged portfolio under the
original EH model (see table 4 Panel D) and so we might still consider the hedge
as successful.

5.4 Robustness of the Static Hedge to Model Risk

Our assumption was that the market values equity and credit derivatives using
the EH model. We may demonstrate the robustness of the hedge methodology
to model risk by valuing the P/L of the hedged portfolio in the EH model.
To this end, we calculate this P/L over a suitable range of future stock price

and stock variance at each CB1 coupon date. To calculate P/L statistics for the
EH model we require the transition probability from S0,Σ0 at time zero to all
values in the same range of future stock price and variance at each CB1 coupon
date. The valuation of the hedged portfolio will make use of the inverse Fourier
transform methods and the numerical solution of PDEs from Section 4. The
required transition probabilities may be calculated by numerical solution of the
forward equation given in Section 4.

Figure 3: EH model 18 month hedged portfolio P/L and discounted stock price
distribution (pricing density) for varying levels of stock variance.

Figure 3 displays the hedged portfolio P/L (CB1 plus hedge portfolio in
table 3) against values of the 18 month stock price. Each plot on this graph is
for different values of the 18 month stock variance, i.e., values of Σt for t = 1.5.
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Figure 3 also displays the probability of transition from the spot stock price
and variance of 100 and 0.09 respectively to 18 month stock price (x axis) and
variance (each curve). In general, these plots show that the hedged portfolio
P/L is relatively small in a region where the 18 month stock variance is near the
initial stock variance (variance 0.09, equivalent to 30% volatility in the DD+
model). Moving into regions of higher variance results in higher P/L however
figure 3 shows that these points of higher P/L typically correspond to lower
probabilities of transition.
The performance of the hedged portfolio when valued in the EH model is

given by table 5 Panel C. A comparison of the P/L variance in table 5 Panel A
and Panel C shows that the hedge computed using the DD+ model, then used
as a hedge for CB1 in the EH model does not perform as well as for the DD+
model given in table 5 Panel A. However given the significant differences in the
two models and that the variance in table 5 Panel C remains low compared to
the CB1 notional (below 2% of CB1 notional) we might consider the hedged
portfolio in this example a success.

5.5 Weak Static Hedging versus Dynamic Delta Hedging

The performance of static hedging the convertible bond CB1 is now compared
with an alternative (ad-hoc) dynamic delta hedging strategy when there are
transaction costs (TCs). Let 0 = T0 < ... < TM = T be a subset of the
occurrence times in A1 such that the delta hedging strategy is rebalanced at
times Tk, for k < M , to hedge a primary instrument with maturity T .
The delta hedging strategy considered for a long CB1 position is as follows.

At each rebalancing time Tk, short Δk of stock to reduce the sensitivity of the
total portfolio to stock price movements between Tk and Tk+1. For each hedging
period [Tk, Tk+1) a par CDS with maturity T and semi-annual coupons is held,
with notional being set such that the P/L of the hedged portfolio is zero if
default were to occur at time Tk. At time Tk+1 this CDS position is closed (by
entering an opposite CDS position). The delta hedge CDS price changes were
not hedged as the CDS spreads in the DD+ model were found to be relatively
insensitive to stock price changes. The positions in stock, CDS and the primary
instrument CB1 are funded from the savings account.
To compare delta hedging with static hedging, paths of the stock price are

generated at each rebalancing time with DD+ dynamics given in (3.14) using
Monte Carlo simulation. Each simulation path is then used to traverse a DD+
stock price lattice computed from the calibration parameters given in table 2 to
compute the value of delta hedged portfolio at each rebalancing time.
The P/L statistics for delta hedging a long CB1 position with monthly and 2

weekly rebalancing are given in the tables below where the results are generated
using 5000 simulation paths. The 2nd and 3rd columns of table 7 contain the
time-Tk non-discounted value of the P/L mean and variance for delta hedging
a long CB1 position up to time Tk with monthly re-balancing (Tk given in the
first column). The last two columns contain the mean and variance of the time
zero discounted value of TCs for delta hedging up to Tk. We notice that the
use of CDS hedges greatly reduces the variance of the hedged portfolio P/L
for relatively small TC and small reduction of the hedged portfolio mean P/L.
Table 8 contains similar information for delta hedging CB1 with rebalancing
every 2 weeks rather than monthly. The increased frequency of the rebalancing

23



Time P/L Mean P/L Variance TC Mean TC Variance
Panel A - 1m rebalancing, no CDS used, TC 0bp

2.0 3.803940 169.7663 0 0
1.5 2.553855 106.9060 0 0
1.0 1.123477 55.16908 0 0
0.5 0.024917 19.15462 0 0

Panel B - 1m rebalancing, no CDS used, TC 50bp

2.0 2.729340 163.4823 -0.95934 0.333858
1.5 1.701802 102.5294 -0.78250 0.245581
1.0 0.539416 53.41137 -0.55114 0.131598
0.5 -0.30599 19.06527 -0.32077 0.024667

Panel C - 1m rebalancing, CDS used, TC 0bp

2.0 3.629878 41.22700 0 0
1.5 1.883685 25.01643 0 0
1.0 -0.16951 11.39029 0 0
0.5 -1.85392 2.569395 0 0

Panel D - 1m rebalancing, CDS used, TC 50bp

2.0 2.282648 38.90189 -1.22478 0.303458
1.5 0.762635 23.21537 -1.03806 0.211020
1.0 -0.98100 10.81715 -0.76211 0.109771
0.5 -2.33317 2.714840 -0.45173 0.020833

Table 7: The P/L and TC from monthly delta hedging, for varying the use of
CDS for default risk hedging and the level of TC.

increases the TCs but reduces the variance of P/L for the delta hedged portfolio,
as one would expect.
In comparison to the delta hedge, the static hedge of table 3, results in a

hedge portfolio P/L variance, given in table 4 panel B, that is significantly lower
than the delta hedge with the lowest P/L variance, given in table 8 Panel B.
If the TCs for options and CDS in the static hedge of table 7 are computed in
the same way as they were for the delta hedge, the expectation of discounted
TCs at time zero for the static hedge portfolio is −0.2084. We see that the
static hedge up to the 2 year time horizon has TCs that are a fraction of those
for delta hedging (this would still hold even if TCs for OTM options in the
static hedge are up to almost six times greater) and significantly out performs
the delta hedge, in terms of P/L variance minimisation at the coupon dates
of CB1. Note that the mean TCs for delta hedging with re-hedging every two
weeks are already mostly larger than the standard deviation of the static hedging
error. Re-hedging at a higher frequency would decrease the variance of the delta
hedging error but would further increase the TCs.
We note that the observed positive mean P/L is mostly due to the long

stock option position embedded in the convertible bond, that results in a long
gamma. As a caveat, it should also be noted that we have compared an ‘ad-hoc’
implementation of delta hedging against static hedging here, neither of which
having been optimised with respect to TC.
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Time P/L Mean P/L Variance TC Mean TC Variance
Panel A - 2w rebalancing, no CDS used, TC 50bp

2.0 2.766969 136.6035 -1.23883 0.544749
1.5 1.797473 80.60935 -0.96627 0.375807
1.0 0.453373 45.30512 -0.66135 0.204205
0.5 -0.34726 17.76466 -0.36452 0.039486

Panel B - 2w rebalancing, CDS used, TC 50bp

2.0 1.862928 30.30983 -1.77443 0.481376
1.5 0.381399 16.64296 -1.47849 0.299304
1.0 -1.29223 8.289043 -1.08026 0.153423
0.5 -2.50896 2.602309 -0.62185 0.029939

Table 8: The P/L and TC from 2 week delta hedging, for varying the use of
CDS for default risk hedging.

6 Conclusion & Further Research

We have studied a static minimum variance hedging methodology for hedging
equity and credit derivative securities, namely a convertible bond, using other
derivatives. The optimal static hedge was shown to be robust under realistic
hedge model parameter changes, and also within a qualitatively different ‘real
world’ model. The fact that the hedge performs well under a completely different
model suggests that the hedge instruments are well suited for their task, in that
they react similarly as the primary instrument to be hedged. This can be related
to nice results from Bielecki et al. (2006), showing that a convertible bond (CB)
can be decomposed into a pure defaultable bond and an American-type game
option. The latter being not traded in practice, this shows a perfect (static)
decomposition of the convertible security into ideal but hypothetical derivatives.
The game option part permits definition of an implied CB volatility that could
be useful for calibration and quoting purposes. In comparison, our paper shows
how to compute an approximate static hedge using given vanilla derivatives,
after calibrating a model to their prices. The observation that this works rather
well is intuitively supported by the insight from Bielecki et al. (2006, 2007) that
the CB embeds a floating strike American-type game option.
In general, the method generically depends on the transition probabilities of

some underlying Markov process Xtk , which are usually not determined by, say,
European calls and puts alone. If those alone determine the calibration, this
can give rise to model risk which should show up in particular with derivatives
whose payoffs depend strongly on joint distributional properties of Xtk . This
was demonstrated in Schoutens et al. (2004) or Hirsa et al. (2003) in terms
of big variations in the prices of exotics. For the hedge to perform well it
is essential to choose appropriate instruments for hedging (calibration), with
similar dependencies as the derivative to be hedged. In contrast, statically
hedging a forward starting option by European vanilla options maturing at
the forward start date would involve high model risk, as an analysis of hedge
robustness like in Sections 5.3-5.4 would reveal quickly.
There are interesting avenues for further research and possible extensions:
1. Adaptive calibration. Clearly, a model should be calibrated mainly to
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the relevant hedge instruments. Which instruments are relevant? Those that
contribute to the hedge! This suggests an adaptive calibration, by re-calibrating
to the hedge. Supposing an insufficient initial calibration to some market prices
(unlike the DD+ example), one could adjust the respective weights in the objec-
tive function according to the importance of each option, revealed by the static
hedge, to re-calibrate where it matters most. This procedure can be iterated.
2. Hedging of (or with) more exotic options. One could study to what extent

other more exotic options could be hedged statically and what the most appro-
priate hedge instruments are. In reality, options on individual stocks usually
are of American type. For simplicity we have used European options but the
same algorithm can also deal with American options (of Bermudan type). Since
the latter hedge instruments are rather more similar to the options embedded
in a convertible bond, the hedge quality should not deteriorate.
3. Alternative models. Let us note that the DD+ model serves just as an

example for a model that can be calibrated to given hedge instruments. One
can use another model, provided it fits in the framework of Section 2.
4. Parameter risk, as in Section 5.3, may be incorporated into the hedge com-

putation, by computing a (global) minimum variance hedge over an extended
probability space with Bayesian prior distribution over parameter scenarios.

Appendix

Pricing by Transforms

For convenience we summarise transform pricing results from Carr and Wu
(2006) applied to the EH model. Let

φ(u) = E
[
e−ξ

∫
T
t
ΣsdseiuX̂T

∣
∣
∣Ft
]
= exp

{
iu

∫ T

t

(r(y) + α(y))dy −A(s)−B(s)ν
}

denote the (analytic) discounted characteristic function of X̂T = logST /St =

XT −Xt for T > t, with ν = Σ(t), s = T − t, A(s) = κθ
σ2ν

[
2 log

{
1− (η−κ

M )
2η (1−

e−ηs)
}
+ (η − κM )s

]
, B(s) = [2bν(1− e−ηs)] /

[
2η − (η − κM )(1− e−ηs)

]
and

with κM = κ− iuσνρ, η =
√
κM + 2σ2νbν and bν = (1− iu)ξ + 1/2(iu+ u

2).

For a European derivative with payoff Π(k; a, b, θ, c) = (a+ beθX̂T )1{cX̂T≤k}

let Pt(k; a, b, θ, c) = E
[
e−ξ

∫
T
t
ΣsdsΠ(k; a, b, θ, c)

∣
∣
∣Ft
]
denote the expectation of

the discounted payoff. The (generalised) Fourier transform of Pt equals

Pt(z; a, b, θ, c) :=
∫ ∞

−∞
eizkPt(k; a, b, θ, c)dk =

i

z
(aφ(zc) + bφ(zc− iθ))

for z from the domain C ⊆ C where Pt is defined, see Prop. 3 in Carr and Wu
(2004). Prices for several derivatives can be calculated numerically by inversion
of analytically known Fourier transforms. The value at t of a call option with
maturity T and strike K is

VC(K, t, T ) = e
−
∫
T
t
(rs+αs)dsPt(− logK/St;−K,St, 1,−1) .
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The value at t of a defaultable zero coupon bond with maturity T is VRZ(t, T ) =

e−
∫
T
t
(rs+αs)dsφ(0), and q̃(t, T ) = e−

∫
T
t
αsdsφ(0) is the survival probability be-

tween t and T . A credit default swap may be valued using the default prob-
abilities and defaultable zero coupon bonds, similarly as in (3.26). The value
VP (K, t, T ) at t of a European put option that pays the strike K at expiry T in
the event of a default before expiry is given by

e−
∫
T
t
rsds

[
e−
∫
T
t
αsdsPt(logK/St;K,−St, 1, 1) +K(1− q̃(t, T ))

]
.
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