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A NEW DOUBLY DISCRETE ANALOGUE OF SMOKE

RING FLOW AND THE REAL TIME SIMULATION OF

FLUID FLOW

ULRICH PINKALL, BORIS SPRINGBORN, AND STEFFEN WEISSMANN

Abstract. Modelling incompressible ideal fluids as a finite collection of
vortex filaments is important in physics (super-fluidity, models for the
onset of turbulence) as well as for numerical algorithms used in com-
puter graphics for the real time simulation of smoke. Here we introduce
a time-discrete evolution equation for arbitrary closed polygons in 3-
space that is a discretisation of the localised induction approximation of
filament motion. This discretisation shares with its continuum limit the
property that it is a completely integrable system. We apply this poly-
gon evolution to a significant improvement of the numerical algorithms
used in Computer Graphics.

1. Introduction

The motion of vortex filaments in an incompressible, inviscid fluid has
aroused considerable interest in quite different areas:

Differential geometry. The limiting case of infinitely thin vortex filaments
leads to an evolution equation for closed space curves γ,

γ̇ = γ′ × γ′′. (1)

Equation (1) was discovered in the beginning of the 20th century by Levi-
Civita and his student Da Rios [1] and is called the smoke ring flow or
localised induction approximation. In 1972 Hasimoto [2] discovered that
the smoke ring flow is in fact a completely integrable Hamiltonian system
equivalent to the non-linear Schrödinger equation. See [3] for more details
on the history of the smoke ring equation. Subsequently the smoke ring flow
has been studied by differential geometers as a natural evolution equation
for space curves [4, 5, 6, 7]. Also discrete versions of the smoke ring flow
in the form of completely integrable evolution equations for polygons with
fixed edge length have been developed [8, 9, 10].

Fluid dynamics. As will be explained below, for applications in fluid
mechanics a finite thickness of the vortex filaments has to be taken into
account. The transition from infinitely thin filaments to filaments of finite
thickness involves the incorporation of long range interactions (governed by
the Biot-Savart law) between different filaments and different parts of the
same filament into the purely local evolution equation (1). The resulting
evolution of vortex filaments has been extensively studied both numerically
and in the context of explaining the onset of turbulence [11]. Including
in addition a small amount of viscosity in the equations leads to striking
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physical effects like vortex reconnection [12, 13, 14] and numerical techniques
like “hairpin removal” [15, 16].

Computer graphics. Filament-based methods for fluid simulation are
becoming important in Computer Graphics for special effects in motion pic-
tures and for real time applications like computer games [17, 18]. Here the
emphasis is on physical correctness and speed rather than numerical accu-
racy. Filament methods are ideal for these applications because complicated
fluid motions can be created by a graphics designer by modelling the ini-
tial positions and strengths of the filaments. Moreover, filament methods
work in unbounded space rather than in a bounded box (as is the case for
grid-based methods [19]). This is desirable for the simulation of smoke.

The main goal of this paper is to improve the numerical algorithms cur-
rently used in Computer Graphics by applying the recent knowledge from
Discrete Differential Geometry to the motion of polygonal smoke rings. Our
method makes it possible to model thin filaments by polygons with arbi-
trarily few vertices. For comparison, using current methods to model a
circular smoke ring which is thin enough to entrain smoke in a torus shape,
it necessary to use a regular polygon with at least 800 vertices.

In Section 2 we will explain the evolution equation for systems of vortex
filaments that we will discretise. The resulting equations of motion are still
Hamiltonian like the smoke ring flow (1). However, since already Poincaré
knew that a system of vortex filaments consisting of more than three parallel
straight lines (the “n-vortex problem”) fails to be an integrable system [20,
p. 58f], we do not believe that this system is an integrable Hamiltonian
system. Nevertheless it is a small perturbation of the integrable system
constituted by the limit of infinitely thin filaments. This might be interesting
for future investigations along the lines of KAM theory.

In Section 3 we consider polygonal vortex filaments. In this case, there is
an elementary formula (11) for the Biot-Savart integral.

In Section 4 we will develop an extension of the known discrete-time smoke
ring flow for polygons of constant edge lengths to arbitrary polygons. This
is needed because after including the long range Biot-Savart interactions,
the lengths of the edges will be no longer constant in time.

In the theory of integrable systems it is known at least since the 1980s
that integrable difference equations may be interpreted as Darboux trans-
formations of integrable differential equations [21, 22, 23]. In the meantime,
this seminal discovery has lead to a reversed point of view, where the discrete
integrable systems are considered fundamental and the continuous systems
appear as smooth limits (see for example [24] and the references therein). In
this vein, we will in Section 4 define the discrete-time integrable system in
terms of iterated Darboux transformations of polygons and show afterwards
that the smoke ring flow is obtained as a smooth limit.

In Section 5 we will describe our numerical method that very efficiently
models the motion of fluids near the smoke ring limit.
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2. Euler’s Equation for Vortex Filaments

Consider an incompressible, inviscid fluid in euclidean 3-space whose ve-
locity field u vanishes at infinity and whose vorticity ω = curlu is compactly
supported. Then u can be reconstructed from ω by the Biot-Savart formula

u(x) = −
1

4π

∫

R3

x− z

‖x− z‖3
× ω(z) dz. (2)

The equation of motion can then be written as

ω̇ = [ω, u]. (3)

Viewed as an evolution equation on the vector space M of compactly sup-
ported divergence-free vector fields on R

3 this is a Hamiltonian system: A

symplectic form σ onM is defined as follows. Let ω ∈M and ω̇,
◦
ω ∈ TωM.

Then

σω(ω̇,
◦
ω) =

∫

R3

det(ω, ω̇,
◦
ω). (4)

Let H :M→ R be the quadratic function

H =

∫∫

〈ω(x), ω(y)〉

‖x− y‖
dx dy, (5)

where 〈·, ·〉 is the euclidean scalar product on R
3. Then H is the Hamil-

tonian for the dynamical system (3). See [20, 25] for more details on this
Hamiltonian description of ideal fluids.

If the vorticity of a fluid is concentrated on a closed curve γ in a delta-
function like manner, by Equation (2) the resulting velocity field u becomes

u(x) = −
Γ

4π

∮

x− γ(s)

‖x− γ(s)‖3
× γ′(s) ds. (6)

Here Γ is the circulation around the filament. The problem with Equa-
tion (6) is that in order to determine the motion of γ itself, u has to be
evaluated on γ, which results in a logarithmically divergent integral. Usu-
ally, this problem is handled by considering a vorticity field concentrated
in a tube around γ of small but finite radius r. For small r the velocity
in this tube is dominated by a term proportional to the localised induction
approximation. (See, for example, [26, p. 36f].) Here we want to derive
the smoke ring flow by taking the limit r → 0. In order to prevent vortex
filaments acquiring infinite speed, one has to scale the circulation Γ down
to zero when performing the limit to infinitely thin filaments. This means
that the fluid velocity (6) goes to zero as well.

The resulting picture is then as follows: The fluid is completely at rest
away from the filaments while the filaments just cut through the fluid with
finite speed according to the smoke ring flow:

γ̇j = Kj γ′
j × γ′′

j . (7)

Here the constants Kj account for the fact that the circulation of the differ-
ent filaments γj might go to zero at a different rate.

Equation (7) can be viewed as a completely integrable Hamiltonian system
on the space of weighted links (see Figure 1) endowed with the symplectic
form
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Figure 1. The space of links as the phase space for vortex filaments.

σγ(γ̇,
◦
γ) =

∑

j

Kj

∮

γj

det(γ′
j , γ̇,

◦
γ). (8)

For single curves this symplectic form is due to V. I. Arnold [20]. The
corresponding Hamiltonian is a weighted sum of the filament lengths

H =
∑

j

Kj Length(γj).

Equation (7) can be obtained (using a simple renormalisation of time) as
a limit as a → 0 of the following system: Stick with (8) as the symplectic
form, with Kj replaced by the non-zero circulation Γj around γj . As a
Hamiltonian, use

H =
∑

i,j

ΓiΓj

8π

∮ ∮

〈γ′
i(s), γ

′
j(s̃)〉

√

a2 + ‖γi(s)− γj(s̃)‖
2

ds ds̃.

The resulting equation of motion is

γ̇i(s) = −
∑

j

Γj

4π

∮

γi(s)− γj(s̃)
√

a2 + |γi(s)− γj(s̃)|2
3 × γ′

j(s̃) ds̃. (9)

This equation of motion (9) can also be derived as follows:

• Smooth the delta-function like vorticity field ω0 of the link by a
suitable convolution kernel and obtain

ω(x) =
3a2

4π

∫

R3

ω0(y)
√

a2 + |x− y|2
5 dy.

• Compute the corresponding velocity field u with curlu = ω:

u(x) = −
Γ

4π

∑

j

∮

x− γj(s)
√

a2 + |x− γj(s)|2
3 × γ′

j(s) ds. (10)

• Evaluate u on the filaments to obtain (9).
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To summarise: We model fluid motion near the filament limit by a Hamilton-
ian system on the space of weighted links. This system is still Hamiltonian
but no longer integrable. Nevertheless it still has all the constants of motion
induced by invariance with respect to the euclidean symmetry group. For
example the weighted sum of the area vectors

A =
∑

j

Γj

∮

γ′
j × γj

is one of the preserved quantities. (Compare Theorem 4 of Section 4.)
The physical approximation implicit in our model is that we ignore pos-

sible deformations of the internal structure of the filaments and reduce ev-
erything to the evolution of the filament curves. The finite thickness of the
filaments is taken into account by applying a fixed convolution kernel.

3. Polygonal Vortex Filaments

In order to develop a numerical method for modelling fluid motion near
the filament limit we have to discretise the vortex filaments, i.e. we replace
them by polygons. If γ is a piecewise linear parametrisation of a closed
polygon, on each edge we have γ′′ = 0 and we find an explicit anti-derivative
for the integrands of equation (10):

(

〈γ, γ′〉
√

a2 + |γ|2 (|γ′|2a2 + |γ × γ′|2)
γ × γ′

)′

=
γ × γ′

√

a2 + |γ|2
3 . (11)

Here we have abbreviated x−γj(s) to γ, γ′
j(s) to γ′ and the prime is deriva-

tion with respect to s.
Inspection of Equation (11) reveals the following problem: The two adja-

cent edges have no influence at all on the velocity of a vertex. This amounts
to effectively employing a distance cut-off in order to regularise the singular
integral (6) for points on γ. It is known [26] that this is roughly equivalent to
modelling vortex tubes of thickness equal to the edge length of the polygon.
Using this model we would therefore be unable to model thin (and therefore
fast) filaments without using excessively many edges for each polygon.

The contribution of local effects behaves like the smoke ring flow and the
resulting equation of motion for a vertex γi of a polygonal vortex filament
γ is then

γ̇i = u(γi) + λκibi, (12)

where u is given by Equation (10) using (11), κibi denotes curvature times
binormal at γi, and λ is constant for fixed a. Since the non-local effects
quickly destroy any arc-length parametrisation (i.e. the lengths of the dif-
ferent edges of the polygon) and we do not have an adequate notion of
curvature for arbitrary polygons, we can not evaluate (12) directly.

On the other hand, for polygons with constant edge lengths it is known
that the doubly discrete smoke ring (or Hasimoto) flow [9] captures excel-
lently the qualitative behaviour of the smooth smoke ring flow. In the next
section we will discuss a version of this doubly discrete smoke ring flow which
works also for polygons with varying edge lengths.
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ηi

γi+1

lTi − Si

ηi+1

lTi+1

lTi

Siγi

S̃i

Figure 2. A polygon γ and an edge of its Darboux trans-
form η.

4. Darboux Transformation of Polygons

In this section we develop a discrete-time evolution for closed polygons
that has the smoke ring flow (1) as a limit when the polygon approaches
a smooth curve and the time-step goes to zero. This evolution (obtained
by iterating so-called Darboux transformations) shares with its continuum
limit the property that it is a completely integrable system in the sense
that it comes from a Lax pair of quaternionic 2× 2-matrices with a spectral
parameter. (This system therefore fits into the framework of [27].) The
constants of the motion of the discrete system converge to constants of the
motion of the smooth system in the limit.

Let γ : Z → R
3 be an immersed polygon in R

3, where immersed means
that γi 6= γi+1 for all i ∈ Z, and let Si = γi+1−γi. If γ is periodic with some
period n, then the polygon is closed and γ may be interpreted as a function
on Z/nZ. In the following, we identify R

3 with the imaginary quaternions
Im H = {xi + yj + zk |x, y, z ∈ R}.

Definition. A polygon η is called a Darboux transform of γ with twist
parameter r ∈ R and distance l > 0, if ‖ηi − γi‖ = l for all i ∈ Z, and
the normalised difference vectors Ti defined by lTi = ηi − γi satisfy the
quaternionic equation

Ti+1 = (−r + lTi − Si)Ti(−r + lTi − Si)
−1. (13)

The Darboux transformation of polygons and its relationship with the
nonlinear Schrödinger equation and smoke ring flow was treated in [9] under
the assumption that the polygon γ has constant edge length. To drop this
assumption was suggested to us by Tim Hoffmann [28].

Geometrically, Equation (13) has the following meaning (see Figure 2).
The difference vector Ti+1 is obtained from Ti by a rotation with axis lTi −
Si. The quadrilateral γiγi+1ηi+1ηi is therefore a “folded parallelogram”. In
particular, corresponding edges of γ and η have the same length. The angle
of rotation is 2 arctan(‖lTi − Si‖/r). For r = 0 it is π. For r → ±∞, it goes
to zero and in the limit the Darboux transformation becomes a translation.

Equation (13) can be written in the form

Ti+1 = (aTi + b)(cTi + d)−1, (14)
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where a, b, c, d ∈ H depend on Si and the parameters l, r. That is, for
each i ∈ Z, Ti+1 is obtained by applying a quaternionic fractional linear
transformation fi : H̄ → H̄ to Ti, where H̄ = H ∪ {∞}. Indeed, (13) is
equivalent to

Ti+1 =
(

lTi − r − Si

)(

(r + Si)Ti + l
)−1

. (15)

To see this note that T−1
i = −Ti because Ti is a purely imaginary unit

quaternion, and hence Ti(−r + lTi − Si)
−1 = (rTi + l + SiTi).

It is convenient to rewrite fractional linear transformations as matrix mul-
tiplication. Just as the extended complex plane C̄ = C∪{∞} can be identi-
fied with the Riemann sphere S2 and with the complex projective line CP1,
H̄ ∼= S4 ∼= HP1. The quaternionic projective line HP1 is the set of (quater-
nionic) 1-dimensional subspaces of the vector space H

2 over H. We consider
H

2 as right vector space: the product of a vector
(

p
q

)

∈ H
2 and a scalar

λ ∈ H is
(

p
q

)

λ = (pλ
qλ

). A point
[

p

q

]

=

(

p

q

)

H ∈ HP1

corresponds to the point pq−1 ∈ H̄, and p, q are quaternionic homogeneous
coordinates for this point. Now any fractional linear transformation of H̄ can
be written as quaternionic 2× 2-matrix acting from the left on quaternionic
homogeneous coordinates of HP1: Writing Ti in quaternionic homogeneous
coordinates,

Ti = T
(1)
i (T

(2)
i )−1,

one obtains from (15)
(

T
(1)
i+1

T
(2)
i+1

)

= Ui(l, r)

(

T
(1)
i

T
(2)
i

)

, Ui(λ, ρ) :=

(

λ −ρ− Si

ρ + Si λ

)

. (16)

The following Theorem 1 characterises the Darboux transformations of
polygons via a Lax pair of quaternionic 2× 2-matrices with spectral param-
eter. Theorem 2 is a permutability theorem for these Darboux transforma-
tions.

Theorem 1 (Lax pair). Let Si = γi+1 − γi, |Ti| = 1, and let Ui(λ, ρ) be
defined by (16) and

Ũi(λ, ρ) =

(

λ −ρ− S̃i

ρ + S̃i λ

)

,

Vi(λ, ρ) =

(

λ −ρ + r − lTi

ρ− r + lTi λ

)

.

Then

Vi+1(λ, ρ)Ui(λ, ρ) = Ũi(λ, ρ)Vi(λ, ρ) (17)

for all λ, ρ ∈ R, if and only if S and T satisfy (13) and

lTi+1 + Si = S̃i + lTi. (18)

That is, if and only if η = γ + lT is a Darboux transform of γ with twist
parameter r and distance l, and S̃i = ηi+1 − ηi.
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Of course (17) means that the following diagram commutes:

H
2 Ũi−→ H

2

Vi

x





x




Vi+1

H
2 Ui−→ H

2

Proof. Note that in general for quaternionic 2× 2-matrices with a+, a, b, b̃ ∈
H and λ ∈ R the equality

(

λ a+

−a+ λ

)(

λ b
−b λ

)

=

(

λ b̃

−b̃ λ

)(

λ a
−a λ

)

is equivalent to

a+b = b̃a and λ(a+ + b) = λ(b̃ + a).

It follows that (17) holds for all λ ∈ R, if and only if (18) holds and

(−ρ + r − lTi+1)(−ρ− Si) = (−ρ− S̃i)(−ρ + r − lTi).

Use (18) to eliminate S̃i from this equation and gather terms of equal power
in ρ on both sides. The coefficients of ρ2 are both 1, and the coefficients of
ρ are obviously equal. What remains is the equation

(r − lTi+1)(−Si) = (−Si − lTi+1 + lTi)(r − lTi).

Solve for Ti+1 to obtain (13). �

Theorem 2 (Permutability). Suppose η = γ + lT is a Darboux transform

of γ with twist parameter r and distance l, and η̂ = γ + λT̂ is a Darboux
transform of γ with twist parameter ρ and distance λ, then η + λT̃ with

T̃ =
(

λT̂ − ρ + r − lT
)(

(ρ− r + lT )T̂ + λ
)−1

(19)

is a Darboux transformation of η with twist parameter ρ and distance λ.

Proof. Note that T̃i is obtained by applying the quaternionic fractional linear
transformation represented by the matrix Vi(λ, ρ) to T̂i. Let us write T̃i =

Vi(λ, ρ)T̂i for short. Since η̂ is a Darboux transform of γ with twist parameter

ρ and distance λ, Equation (16) says that T̂i+1 = Ui(λ, ρ)T̂i. Now Theorem 1

implies T̃i+1 = Ũi(λ, ρ)T̃i and hence (again by Equation (16)), η + λT̃ is a
Darboux transformation of η with twist parameter ρ and distance λ. �

Even if γ is a closed curve, the curves obtained by iterating (13) will
in general not close up. However, we will see that any closed curve has
generically two closed Darboux transforms.

The fractional linear transformations fi : Ti 7→ Ti+1 that are represented
by the matrices Ui(l, r) have the special property that they map the unit
sphere S2 = {q ∈ ImH | q2 = −1} to itself. This follows directly from (13).
Hence the restrictions fi|S2 are Möbius transformations of S2. In fact,
they are orientation preserving Möbius transformations: By continuity, it is
enough to check this for a particular value of r and l; and for r = 0, l = 0
one obtains Ti+1 = SiTiS

−1
i , which is a 180◦ rotation with axis Si.

In order to find for given l, r the closed Darboux transforms of γ, one
has to look for choices of the initial unit vector T0 such that the recursion
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(15) generates a sequence with period n, i.e. T0 = Tn. The composition
fn−1 ◦ . . . ◦ f0, which maps T0 7→ Tn, is represented by the monodromy
matrix

Hl,r = Un−1(l, r) · · ·U2(l, r)U1(l, r)U0(l, r).

It is is itself an orientation-preserving Möbius transformation of the unit
sphere S2 onto itself. For special cases (we will see below that this cannot
happen for all l, r) this Möbius-transformation could be the identity, but in
general it will have exactly two fixed points (counted with multiplicity).

With each closed curve γ we have thus associated a monodromy map

fn−1 ◦ . . . ◦ f0. T0 will be a fixed point if and only if
(

T0

1

)

is an eigenvector

of the monodromy matrix Hl,r. The following theorem is an immediate
consequence of Theorem 1.

Theorem 3. Suppose η = γ + lT is a closed Darboux transform of γ with
distance l and twist parameter r. Then for all λ and ρ, the monodromy
matrix Hη

λ,ρ of η is conjugate to the monodromy matrix Hλ,ρ of γ:

Hη
λ,ρ = V0(λ, ρ)Hλ,ρV0(λ, ρ)−1. (20)

This means that if
(

T̂0

1

)

is an eigenvector of Hλ,ρ, then V0(λ, ρ)
(

T̂0

1

)

is an

eigenvector of Hη
λ,ρ.

Moreover, one can compute all closed Darboux transforms of η without
having to solve an eigenvalue problem, even without iterating the fi. Indeed,
by Theorem 2, all closed Darboux transforms of η are given by (19).

Theorem 3 implies that apart from the edge lengths there are many other
quantities connected with closed polygons that are invariant under Darboux
transforms: For each λ, ρ the conjugacy class of the monodromy matrix
Hλ,ρ is invariant. We will show that this implies a nice geometric invariant:
The area vector of a closed polygon turns out to be invariant under Darboux
transformations (Theorem 4).

To derive the invariance of the area vector from the invariance of the
conjugacy class of the monodromy matrix, we equip the set of quaternionic
2× 2-matrices of the form

(

a −b
b a

)

, a, b ∈ H (21)

with the structure of a C-algebra that is isomorphic to gl(2, C). First note
that a quaternionic 2× 2-matrix is of the form (21) precisely if it commutes
with

J =

(

0 −1
1 0

)

.

Define the multiplication of such a matrix with a scalar λ + iρ ∈ C by

(λ + iρ)A = (λI + ρJ)A, (22)

where I is the identity matrix.
The complex multiples of the identity are then

Z = (λ + iρ)I = λI + ρJ =

(

λ −ρ
ρ λ

)

. (23)
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Thus we can write Ui(λ, ρ) and Vi(λ, ρ) as

Ui(λ, ρ) = (λ + iρ)I + J

(

Si 0
0 Si

)

,

Vi(λ, ρ) = (λ + iρ)I + J

(

−r + lTi 0
0 −r + lTi

)

.

Remark. This means we can combine λ and ρ into one complex spectral
parameter λ + iρ.

Equation (23) also implies that the trace-free complex matrices in gl(2, C)
correspond to those matrices of the form (21) with a, b ∈ ImH. Further, a
matrix of the form (21) has a, b ∈ ImH precisely if its square is a matrix
of the form (23), that is, a (complex) multiple (with multiplication defied
by (22)) of the identity. Identifying C with the matrices of the form (23) we
obtain

1

2
trC

(

a −b
b a

)

= Re a + (Re b)J

and

detC

(

a −b
b a

)

=
1

2
((tr A)2 − tr A2) = |a2| − |b2|+ 2〈a, b〉J.

In particular

detC

(

l −r − S
r + S l

)

= l2 − r2 − |S|2 + 2lrJ,

which vanishes precisely when r = 0, l = ±|S|. Using the notation

diag(S) :=

(

S 0
0 S

)

for S ∈ H we can express Hλ,ρ as

HZ = (Z + Jdiag(Sn−1)) · · · (Z + Jdiag(S0)),

with Z given by (23). Hence detC HZ is a complex polynomial of degree
2n with zeroes precisely at Z = ±|S0|, ..., ±|Sn−1|. By Theorem 3 this
determinant is invariant under Darboux transforms. This just corresponds
to the fact that the edge lengths are invariant by construction. Non-trivial
further invariants come from the complex polynomial

P (Z) = trC HZ

of degree n. Let us look at the polynomial coefficients of HZ itself:

HZ =
n
∑

k=1

ZkAn−k,

where
Ak = Jk

∑

n−1≥j1,...,jk≥0

diag(Sj1 · · ·Sjk
).

In particular,

A0 = I,

A1 = Jk
∑n−1

k=0 diag(Sk) = 0,

A2 = −
∑

n−1≥i>j≥0 diag(SiSj).
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That is, A2 is a diagonal matrix with both diagonal entries equal to

q = −
∑

n−1≥i>j≥0

SiSj.

The real part of q is

Re(q) =
∑

n−1≥i>j≥0〈Si, Sj〉 = 1
2

∑

i6=j〈Si, Sj〉 = 1
2 |
∑n−1

i=0 Si|
2 − 1

2

∑n−1
i=0 |Si|

2

= −1
2

∑n−1
i=0 |Si|

2.

This is a function of the edge lengths and therefore not interesting. The
imaginary part of q is given by

2A := Im(q) = −
∑

i>j Si × Sj

=
∑n−1

j=1

(

∑n−1
i=1 Si

)

× Sj

=
∑n−1

j=1 (γj − γ0)× (γj+1 − γj)

=
∑n−1

j=1 (γj − γ0)× (γj+1 − γ0).

This invariant A is just the area vector. The following proposition (with
obvious proof) clarifies its geometrical meaning.

Proposition 1. Let a ∈ R
3 be a unit vector, |a| = 1, and endow the plane

a⊥ with the volume form

deta⊥(X,Y ) := detR3(a,X, Y ).

Then the area enclosed by the orthogonal projection γ̂ of the polygon γ

γ̂n = γn − 〈γn, a〉a

is equal to 〈M,a〉.

This explains the name area vector : It encodes all the projected areas.

Theorem 4. The area vector A is invariant under Darboux transforms.

Proof. By (20), the monodromy matrix of the Darboux transformed curve
η,

Hη
Z =

n
∑

k=0

ZkAη
n−k,

satisfies

Hη
Z(Z + J(−rI + l diagT0)) = (Z + J(−rI + l diagT0))HZ (24)

Using

HZ = Zn + Zn−2A2 + ... + A0,

Hη
Z = Zn + Zn−2Aη

2 + ... + Aη
0

and comparing the Zn−2-coefficients in both sides of (24) we obtain Aη
2 = A2.

�

Finally we consider the continuum limit of smooth curves γ : S1 → R
3

and indicate why Darboux transforms with small parameters l, r do indeed
converge to the smoke ring flow (1). The continuum limit of (13) is obtained
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by replacing S by hS and then computing T ′ := d
dh

∣

∣

h=0
Th. The resulting

differential equation is

T ′ = (TS − ST )(−r + lT )−1

or

T ′ =
2

r2 + l2
T × (lT × S − rS), (25)

where S : R→ R
3 is given by

γ′ = S.

One can check that, as expected, the transformed curve η = γ + lT satisfies

|η′| = |γ′|.

The monodromy of the ODE (25) is a Möbius transformation of S2 that
generically has exactly two fixed points. Thus, for generic parameters l and
r a space curve γ has exactly two closed Darboux transforms.

Assume now that we have for r = −l a family of such closed Darboux
transforms ηl that depend analytically on l. Then we reparametrise ηl as

γl(s) := ηl(s − l) = γ(s− l) + lTl(s− l). (26)

Then γ0 = γ and comparing coefficients of l in the power series expansion
of (26) we obtain

∂

∂l

∣

∣

∣

l=0
γl = 0,

∂2

∂l2

∣

∣

∣

l=0
γl = γ′ × γ′′.

Hence
γl − γ0 = l2γ′ × γ′′ + O(l3).

A small time-step ∆t of the smoke ring flow is therefore approximated by a
Darboux transform with length l given by l2 = ∆t.

Remark. In order to eliminate the reparametrising effect of the Darboux
transforms it is convenient to apply first a Darboux transform with param-
eters l and −r followed by a reverse Darboux transform with parameters l
and r. This will cancel out the (first order in t) tangential shift and leave
only the (second order in t) smoke ring evolution (see [8]).

5. An algorithm for the real time simulation of fluid flow

Based on the theoretic foundations covered in the previous sections, we
have implemented the following algorithm for the simulation of fluid flow.
Our aim was to develop an algorithm which is fast enough to generate re-
alistic looking computer animations of fluid motion in real time. Figure 3
shows a sample screen shot from a simulation which runs smoothly on stan-
dard hardware. We assume the vorticity is concentrated along a few vortex
rings, which we represent by closed polygons. Their motion is governed by
a mixture of the velocity field induced by the polygonal vortex rings via the
smoothed Biot-Savart formula (10) of Section 3, and Darboux transforma-
tions which approximate a time step of the polygonal smoke ring flow as
explained in Section 4. The rationale behind this scheme is that the veloc-
ity field induced by an edge of a polygonal vortex filament is zero on that
edge itself. Thus, the adjacent edges do not contribute to the velocity of a
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Figure 3. 2562 fluid particles evolving under the influence
of three polygonal vortex filaments.

vertex. The Darboux transforms make up for this lack of local interaction.
The following is a summary description of the algorithm. Details (in par-
ticular how we set the parameters ri and li of the Darboux transformation)
are given below.

input:

• positions γij of the jth vertex of the ith polygonal vortex fila-
ment γi, where i = 1 . . . m, j = 1 . . . ni.
• strengths Γi and smoothing (thickness) parameters ai of the

vortex filaments.
• positions pi ∈ R

3 of advected particles, where i = 1 . . . k.
• time-step ∆t .

loop:

1 Compute a double Darboux transform ηi with parameters∓ri, li
of each polygon γi. γij ← ηij .

2 Solve γ̇ij = u(γij) for time-step ∆t, where u(x) is the velocity
field obtained by the smoothed Biot-Savart formula (10).

3 Update the particle positions pi by solving ṗi = u(pi) for time-
step ∆t.

In Step 1, we determine the parameters li and ri as follows. The amount of
smoke ring flow needed to make up for the lack of local interaction depends
on the thickness ai, the number of edges ni and the total length Li of
γi. Since we do not know the correct speed for an arbitrary polygon, we
determine the parameters for the test case of a regular ni-gon with same
strength, thickness and total length. We choose the parameters in such
a way that for the regular ni-gon the sum of self-induced velocity from
the Biot-Savart formula (10) plus the effect of a double Darboux transform
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coincides with the analytically known speed Ui for a circle with same length
Li:

Ui =
Γi

2Li

(

ln
4Li

πai
− 1

)

, (27)

compare [26, p. 212]. We compute the self-induced speed Ũi of the ni-gon
by evaluating the smoothed Biot-Savart formula (10) at one vertex for all
edges of the ni-gon. This speed is slower than Ui because the adjacent edges
have no influence on a vertex, see Section 3. Now we choose ri and li such
that a double Darboux transformation translates the regular ni-gon by a
distance of (Ui − Ũi)∆t. A single Darboux transform of the regular ni-gon
is a translation in binormal direction plus a non-zero rotation about the
centre axis. The rotation cancels out for a double Darboux transform and is
therefore arbitrary. We choose the rotation angle to be 2π/ni, which leads
to the following formulas for li and ri:

li =

√

(Li/ni)
2 + σ2

i , ri = σi cot(π/ni) ,

where we have abbreviated 1
2(Ui − Ũi)∆t by σi.

In Step 2, we use the fourth order Runge-Kutta scheme (RK4) to solve the
ordinary the differential equation ẋ = u(x) for the time-step ∆t. To advect
the large number of particles in Step 3 we use second order Runge-Kutta
(RK2), where we use the two polygon positions after Step 1 and Step 2 as
intermediate values. To improve performance further, this step is computed
on the computer’s graphics chip (GPGPU).

Evaluating u(x) via Equation (10) is unproblematic, because the integral
on the right hand side can be solved explicitly for straight line segments; see
Equation (11) in Section 3.
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