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Abstract. This paper discusses how to build a solver for mixed integer quadrati-
cally constrained programs (MIQCPs) by extending a framework for constraint integer
programming (CIP). The advantage of this approach is that we can utilize the full power
of advanced MIP and CP technologies. In particular, this addresses the linear relaxation
and the discrete components of the problem. For relaxation, we use an outer approx-
imation generated by linearization of convex constraints and linear underestimation of
nonconvex constraints. Further, we give an overview of the reformulation, separation,
and propagation techniques that are used to handle the quadratic constraints efficiently.

We implemented these methods in the branch-cut-and-price framework SCIP. Com-
putational experiments indicates the potential of the approach.
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1. Introduction. In recent years, substantial progress has been made
in the solvability of generic mixed integer programs (MIPs) [2, 10]. Fur-
thermore, it has been shown that successful MIP solving techniques can
often be extended to the more general case of mixed integer nonlinear pro-
grams (MINLPs) [1, 4, 11]. Analogously, several authors have shown that
an integrated approach of constraint programming (CP) and mixed integer
programming (MIP) can help to solve optimization problems that were in-
tractable with either of the two methods alone, for an overview see [15, 28].

The paradigm of constraint integer programming (CIP) [2, 3] combines
modeling and solving techniques from the fields of constraint programming
(CP), mixed integer programming, and the solution of satisfiability prob-
lems (SAT). The concept of CIP aims at restricting the generality of CP
modeling as little as needed to retain the full performance of all MIP solv-
ing techniques. This still allows for a wide range of optimization problems.
For example, in [2], it is shown that CIP includes MIP and constraint
programming over finite domains as special cases.

The goal of this paper is to show, how a framework for CIPs can be
extended towards a competitive solver for mixed integer quadratically con-
strained programs (MIQCPs), which are an important subclass of MINLPs.
This allows to utilize the complete power of already existing MIP and CP
technologies for handling the linear and the discrete parts of the problem.
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Fig. 1. Flowchart of the main solving loop of SCIP

For this purpose, we use the branch-cut-and-price framework SCIP
(Solving Constraint Integer Programs). SCIP incorporates the idea of CIP
and implements several state-of-the-art techniques for MIP solving. Due to
its plugin-based design, it can be easily customized, e.g., by adding problem
specific separation, presolving, or domain propagation algorithms.

The framework SCIP solves CIPs by a branch-and-bound algorithm.
The problem is recursively split into smaller subproblems, thereby creat-
ing a branching tree and implicitly enumerating all potential solutions. At
each subproblem, domain propagation is performed to exclude further val-
ues from the variables’ domains, and a relaxation may be solved to achieve
a local lower bound – assuming the problem is given in minimization form.
The relaxation may be strengthened by adding further valid constraints,
which cut off the optimum of the relaxation. In case of an infeasible sub-
problem, conflict analysis is performed to learn additional valid constraints.
Primal heuristics are used as supplementary methods to improve the upper
bound. Figure 1 illustrates the interdependencies between the main algo-
rithmic components of SCIP. In the context of this article, the relaxation
employed in SCIP is a linear program (LP).

The integration of MIQCP is a first step towards the incorporation
of MINLP into the concept of constraint integer programming. The re-
mainder of this article is organized as follows. In Section 2, we give the
necessary definitions of MIQCP and CIP, in Sections 3 and 4, we show how
to handle quadratic constraints inside SCIP, and in Section 5, we present
computational results.
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2. Problem definition. A mixed integer quadratically constrained
program (MIQCP) is an optimization problem of the form

min dTx (2.1)
s.t. xTAix+ bi

Tx+ ci ≤ 0 for i = 1, . . . ,m

xL
k ≤ xk ≤ xU

k for all k ∈ N
xk ∈ Z for all k ∈ I,

where I ⊆ N := {1, . . . , n} is the index set of the integer variables, d ∈ Qn,
Ai ∈ Qn×n and symmetric, bi ∈ Qn, ci ∈ Q for i = 1, . . . ,m, xL ∈ Qn

and xU ∈ Qn
, with Q := Q ∪ {±∞}, are the lower and upper bounds of

the variables x, respectively. Note that we do not require the matrices Ai

to be positive semidefinite, hence we also allow for nonconvex quadratic
constraints.

The definition of CIP, as given in [2], requires a linear objective func-
tion. This is, however, just a technical prerequisite, as a quadratic (or
more general) objective f(x) can be modeled by introducing an auxiliary
objective variable z that is linked to the actual nonlinear objective function
with a constraint f(x) ≤ z. Thus, formulation (2.1) also covers the general
case of mixed integer all quadratic problems.

In this article, we use a definition of CIP which is slightly different
from the one given in [2, 3].

A constraint integer program (CIP) consists of solving

min dTx

s.t. Ci(x) = 1 for i = 1, . . . ,m
xk ∈ Z for all k ∈ I,

with a finite set of constraints Ci : Qn → {0, 1}, for i = 1, . . . ,m, the index
set I ⊆ N of the integer variables, and an objective function vector d ∈ Qn.

In [2, 3], it is required that the remaining subproblem after fixing all
integer variables is a linear program – in order to guarantee finite solvability.
In this article, we require, however, the remaining subproblem to be a
quadratically constrained program (QCP). Note that, using spatial branch-
and-bound algorithms, QCPs with finite bounds on the variables can be
solved in finite time up to a given tolerance [16].

3. A constraint handler for quadratic constraints. A constraint
handler defines the semantics and the algorithms to process constraints of
a certain class. A single constraint handler is responsible for all the con-
straints belonging to its constraint class. Each constraint handler has to
implement an enforcement method. In enforcement, the handler has to de-
cide whether a given solution, e.g., the optimum of a relaxation, satisfies all
of its constraints. If the solution violates one or more constraints, the han-
dler may resolve the infeasibility by adding another constraint, performing
a domain reduction, or a branching.
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For speeding up the computation, a constraint handler may further
implement additional features like presolving, cut separation, and domain
propagation for its particular class of constraints.

In the following, we discuss the presolving, separation, propagation,
and enforcement algorithms that are used in our handler for quadratic
constraints.

3.1. Presolving. During the presolving phase, a set of reformulations
and simplifications are tried. When SCIP fixes or aggregates variables,
then the corresponding reformulations are also realized in the quadratic
constraints. Bounds on the variables are tightened using the domain prop-
agation method described in Section 3.3. If – due to reformulations – the
quadratic part of a constraint vanishes, it is replaced by the corresponding
linear constraint. Furthermore, the following reformulations are performed.

Binary Variables. Squares of binary variables are replaced by the
binary variable itself. Further, if a constraint contains a product of a
binary variable with a linear term, i.e., x

∑k
i=1 aiyi, where x is a binary

variable, yi are variables with finite bounds, and ai ∈ Q, i = 1, . . . , k, this
product is replaced by a new variable z and the linear constraints

yLx ≤ z ≤ yUx
k∑

i=1

aiyi − yL(1− x) ≤ z ≤
k∑

i=1

aiyi − yU (1− x), where

yL :=
k∑

i=1,
ai>0

aiy
L
i +

k∑
i=1,
ai<0

aiy
U
i , and

yU :=
k∑

i=1,
ai>0

aiy
U
i +

k∑
i=1,
ai<0

aiy
L
i .

(3.1)

In the case that k = 1 and y1 is also a binary variables, the product xy1 is
replaced by a new variable z and the constraint z = x∧ y1 by using SCIP’s
handler for AND constraints [9].

Second-Order Cone Constraints. Constraints of the form

k∑
i=1

(αixi)2 ≤ (βy)2, y ≥ 0, (3.2)

where αi ∈ Q, i = 1 . . . , k, and β ∈ Q are recognized as second-order cone
constraints. For the case k = 2, we add a linear outer-approximation as
suggested in [5] as follows: A parameter N > 0 determines the number of
additional variables. We add variables y0, y1, . . . , yN and z0, z1, . . . , zN and
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the following linear constraints:

y0 ≥ |α1 x1|,
z0 ≥ |α2 x2|,

yj = cos
( π

2j+1

)
yj−1 + sin

( π

2j+1

)
zj−1, j = 1, . . . , N,

zj ≥
∣∣∣− sin

( π

2j+1

)
yj−1 + cos

( π

2j+1

)
zj−1

∣∣∣ , j = 1, . . . , N,

yN ≤ β x3,

zN ≤ tan
( π

2N+1

)
yN .

(3.3)

The gap between the outer-approximation given by (3.3) and the set given
by the original constraint (3.2) is of order O(4−N ). In our implementa-
tion, we add the constraint set (3.3) during the presolving phase. Note
that we also keep the original quadratic constraint (3.2). The idea is to
use all MIP features such as presolving and cut generation on the linear
relaxation (3.3). Furthermore, separation, propagation, and branching rou-
tines for the quadratic constraint (3.2) ensure feasibility w.r.t. the original
formulation.

For the general case of a second-order cone constraint of dimension
k > 2, we first add new positive variables w1 and w2 and the linear ap-
proximation of the second-order cone constraint w2

1 + w2
2 ≤ (βy)2. Then

the method is applied recursively to the constraints
∑bk/2c

i=1 (αixi)2 ≤ w2
1

and
∑k

i=bk/2c+1(αixi)2 ≤ w2
2.

Disaggregation. Assume that a quadratic constraint has the block-
separable form

ci + bT

i x+
p∑

k=1

xT

Jk
Ai,kxJk

≤ 0, (3.4)

where Jk, k = 1, . . . , p, are pairwise-disjoint subsets of {1, . . . , n}, p > 1 is
the number of blocks, and xJk

denotes the vector {xj}j∈Jk
. In this case,

we introduce new variables z2, . . . , zp and replace the constraint (3.4) by
the equivalent set of constraints

ci + bT

i x+
p∑

k=2

zk + xT

J1
Ai,1xJ1 ≤ 0

xT

Jk
Ai,kxJk

− zk ≤ 0 k = 2, . . . , p.
(3.5)

There is computational evidence that this reformulation reduces the num-
ber of cuts needed to obtain a tight linear outer-approximation of the set
defined by (3.4). Note, that requiring the sets Jk, k = 2, . . . , p, to be pair-
wise disjoint ensures that convexity of a quadratic expression in a block
of (3.4) is not destroyed by the reformulation (3.5). This can also lead to
further bound tightenings in the domain propagation process.
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Convexity. After the presolving phase is finished, each quadratic con-
straint is checked for convexity by computing the sign of the minimal eigen-
value of the coefficient matrix A. This information will be used for sepa-
ration.

3.2. Separation. If the current LP solution x̃ violates some con-
straints, a constraint handler may add valid cutting planes in order to
strengthen the formulation.

For a violated convex constraint i, this is always possible by linearizing
the constraint function at x̃. Thus, we add the valid cutting plane

ci − x̃TAix̃+ (bT

i + 2x̃TAi)x ≤ 0

to separate x̃. In the important special case that xTAix ≡ ax2
j for a > 0

and some j ∈ I with fractional value x̃j , we generate the tighter cut

ci + bT

i x+ a(2bx̃jc+ 1)xj − abx̃jc(bx̃jc+ 1) ≤ 0.

For a violated nonconvex constraint i, we currently underestimate each
term of xTAix separately. A term ax2

j with a > 0, j ∈ N , is underesti-
mated as just discussed. However, for the case a < 0, the tightest linear
underestimation for the term ax2

j is given by the secant approximation
a(xL

j + xU
j )xj − axL

j x
U
j , if xL

j and xU
j are finite. Otherwise, if xL

j = −∞
or xU

j =∞, we skip separation for constraint i. For a bilinear term axjxk

with a > 0, we utilize the McCormick underestimators [21]

axjxk ≥ axL
j xk + axL

k xj − axL
j x

L
k ,

axjxk ≥ axU
j xk + axU

k xj − axU
j x

U
k .

If (xU
j − xL

j )x̃k + (xU
k − xL

k )x̃j ≤ xU
j x

U
k − xL

j x
L
k and the bounds xL

j and
xL

k are finite, the former is used for cut generation, elsewise the latter is
used. If both xL

j or xL
k and xU

j or xU
k are infinite, we skip separation for

constraint i. Similar, for a bilinear term axjxk with a < 0, the McCormick
underestimators are

axjxk ≥ axU
j xk + axL

k xj − axU
j x

L
k ,

axjxk ≥ axL
j xk + axU

k xj − axL
j x

U
k .

If (xU
j − xL

j )x̃k − (xU
k − xL

k )x̃j ≤ xU
j x

L
k − xL

j x
U
k and the bounds xU

j and xL
k

are finite, the former is used for cut generation, elsewise the latter is used.
In the case that a linear inequality generated by this method does

not cut off the current LP solution x̃, the infeasibility has to be resolved
in enforcement, see Section 3.4. Besides others, the enforcement method
may apply a spatial branching operation on a variable xj , creating two
subproblems, which both contain a strictly smaller domain for xj . This
results in tighter linear underestimators.
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3.3. Propagation. In the domain propagation call, the constraint
handler may infer deductions of the variables’ local domains. Domain de-
ductions can yield stronger linear underestimators in the separation proce-
dures, they may cut off nodes due to infeasibility of a constraint, and can
result in further domain deductions on other constraints. For quadratic
constraints, we implemented an interval-arithmetic based method similar
to [14].

To allow for an efficient propagation, we write a quadratic constraint
in the form∑

j∈J

djxj +
∑
k∈K

(ek + pk,kxk +
∑
r∈K

pk,rxr)xk ∈ [`, u], (3.6)

such that `, u ∈ Q, J ∪K ⊆ N , J ∩K = ∅, and pk,r = 0 for k > r. For a
number a, an interval [bL, bU ], and a variable y with domain [yL, yU ], we
denote by q(a, [bL, bU ], y) the interval {by+ay2 : y ∈ [yL, yU ], b ∈ [bL, bU ]}.
This can be computed analytically [14].

The forward propagation step aims at tightening the bounds [`, u] in
(3.6). For this purpose, we replace the variables xj and xr in (3.6) by their
domain to obtain the “interval-equation”∑

j∈J

dj [xL
j , x

U
j ] +

∑
k∈K

([fL
k , f

U
k ]xk + pk,kx

2
k) ∈ [`, u],

where [fL
k , f

U
k ] := [ek, ek]+

∑
r∈K pk,r[xL

r , x
U
r ] is computed by interval-arith-

metic. Computing [hL, hU ] :=
∑

j∈J dj [xL
j , x

U
j ]+

∑
k∈K q(pk,k, [fL

k , f
U
k ], xk)

yields an interval that contains all values that the left hand side of (3.6)
can take w.r.t. to the current variables’ domains. If [hL, hU ] ∩ [`, u] = ∅,
then the constraint (3.4) cannot be satisfied for any x ∈ [xL, xU ]. In this
case, the current branch-and-bound node can be cut off. Otherwise, we
can tighten [`, u] to [`, u] ∩ [hL, hU ].

The backward propagation step aims at inferring domain deductions
on the variables in (3.4) from the bounds [`, u]. For a linear variable xj ,
j ∈ J , we can easily infer the bounds

1
dj

[`, u]−
∑

j′∈J,j 6=j′

dj′ [xL
j′ , xU

j′ ]−
∑
k∈K

q(pk,k, [fL
k , f

U
k ], xk)

 .

For a quadratic variable xk, k ∈ K, one way to compute tight bounds is
by solving the quadratic interval-equation∑

j∈J

dj [xL
j , x

U
j ] +

∑
k′∈K,k′ 6=k

q(pk′,k′ , [ek′ , ek′ ] +
∑

r∈K,r 6=k′

pk,r[xL
r , x

U
r ], xk′)

+ ([ek, ek] +
∑
r∈K

(pk,r + pr,k)[xL
r , x

U
r ])xk + pk,kx

2
k ∈ [`, u]
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However, since evaluating the coefficient of xk for each k ∈ K may pro-
duce a huge computational overhead, especially for constraints with many
bilinear terms, we resort to compute the solution set of

∑
j∈J

dj [xL
j , x

U
j ]+

∑
k′∈K
k′ 6=k

q(pk′,k′ , [ek′ , ek′ ], xk′) +
∑
r∈K
r 6=k′

pk′,r[xL
k′ , xU

k′ ][xL
r , x

U
r ]


+ ([ek, ek] +

∑
r∈K

(pk,r + pr,k)[xL
r , x

U
r ])xk + pk,kx

2
k ∈ [`, u], (3.7)

which can be performed more efficiently. If the intersection of the current
domain [xL

k , x
U
k ] of xk with the solution set of (3.7) is empty, we can deduce

infeasibility and cut off the corresponding node. Otherwise, we may be able
to tighten the bounds of xk.

As in [14], all interval operations detailed in this section are performed
in outward rounding mode.

3.4. Enforcement. In the enforcement call, the constraint handler
has to check whether the current LP solution x̃ is feasible for the constraints
of the constraint handler. If it is not feasible, it can resolve this infeasibility
by either adding cutting planes that separate x̃ from the relaxation, by
tightening bounds on a variable such that x̃ is separated from the current
domain, by cutting off the current node from the branch and bound tree,
or by performing a branching operation.

We have configured SCIP to call the enforcement method of the quadra-
tic constraint handler with a lower priority than the enforcement method for
the handler of integrality constraints. Thus, at the point where quadratic
constraints are enforced, all integer variables take an integral value in the
LP optimum x̃. For a violated quadratic constraint, we first perform a
forward propagation step, see Section 3.3), which may cut off the current
node. If the forward propagation does not declare infeasibility, we call the
separation method, see Section 3.2. If the separator fails to cut off x̃, we
perform a spatial branching operation. We use the following branching rule
to resolve infeasibility in a nonconvex quadratic constraint.

Branching Rule. We consider each unfixed variable xj that appears
in a violated nonconvex quadratic constraint as branching candidate. Let
xl

j , xu
j ∈ Q be the lower and upper bounds of xj , and xb

j ∈ (xl
j , x

u
j ) be the

potential branching point for branching on xj . Usually, we choose xb
j = x̃j .

If, however, x̃j is very close to one of the bounds, xb
j is shifted inwards the

interval.
As suggested in [4], we select the branching variable w.r.t. its pseudo-

cost values. The pseudocosts are used to estimate the objective change in
the LP relaxation when branching downwards and upwards on a particular
variable. The pseudocosts of a variable are defined as the average objective
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gains per unit change, taken over all nodes, where this variable has been
chosen for branching, see [6] for details.

In classical pseudocost branching for integer variables, the distances
of x̃j to the nearest integers are used as multiplicators for the pseudocosts.
For continuous variables, we use another measure similar to “rb-int-br-rev”
which was suggested in [4]: the distance of xb

j to the bounds xL
j and xU

j

for a variable xj . This is motivated by the observation that the width of
the domain determines the quality of the convexification. If the domain
of xj is unbounded, then the “convexification error of the variable xj” is
used as multiplicator. This value is computed by assigning to each variable
the gap evaluated in x̃ that is introduced by using a secant or McCormick
underestimator for a nonconvex term in which this variables appears.

We combine the two estimates for downwards and upwards branching
by multiplication rather then by a convex sum, since this usually performs
much better [2].

4. Primal heuristics. When solving MIQCPs, we still make use of
all default MIP primal heuristics of SCIP. Most of these heuristics base
on the LP relaxation and aim at finding good integer-feasible solutions
starting from the optimum of the LP relaxation. For a detailed description
and computational study of the primal MIP heuristics available in SCIP,
see [7].

So far, we implemented two additional primal heuristics for solving
MIQCPs in SCIP, both of which base on a large neighborhood search.

QCP local search. There are several cases, where the MIP primal
heuristics already yield feasible solutions for the MIQCP. However, the
heuristics usually construct a point x̂ which is only feasible for the MIP
relaxation, hence the LP relaxation plus the integrality requirements, but
violate some of the quadratic constraints. Such a point may, nevertheless,
still provide useful information, since it can serve as starting point for a
local search.

The local search we currently use considers the space of continuous
variables. That is, if there are continuous variables in a quadratic part of a
constraint, we solve a QCP obtained from the MIQCP by fixing all integer
variables to the values of x̂, using x̂ as starting point for the QCP solver.
Each feasible solution of this QCP also is a feasible solution of the MIQCP.

Relaxation enforced neighborhood search. Furthermore, we im-
plemented an extended form of the relaxation enforced neighborhood search
(RENS) heuristic [8]. This heuristic creates a sub-MIQCP problem by ex-
ploiting the optimum of the LP relaxation x̃ at some node of the branch-
and-bound-tree. In particular, it fixes all integer variables which take an
integral value in x̃ and restricts the bounds of all integer variables with
fractional LP solution value to the two nearest integral values. This –
hopefully much easier – sub-MIQCP is then partially solved by a separate
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SCIP instance. Obviously, each feasible solution of the sub-MIQCP is a
feasible solution of the original MIQCP.

Note that, during the solution process of the sub-MIQCP, the QCP
local search heuristic may be used next to the SCIP default heuristics. For
some instances this works particularly well since, amongst others, RENS
performs additional presolving reductions on the sub-MIQCP– which yields
a better performance of the QCP solver.

5. Numerical Experiments. We conducted numerical experiments
on three different testsets. The first is a testset of H. Mittelmann of mixed
integer quadratic programs (MIQPs) [22], i.e., problems with a quadratic
objective function and linear constraints. Second, we have selected a testset
of mixed integer conic programs (MICPs), which have been formulated as
MIQCP. They represent three different classes of portfolio optimization
problems and have been introduced in [26]. Finally, we have assembled
a testset of general MIQCPs from the MINLPLib [12] and an IBM-CMU
project on MINLP [13].

We will refer to these testsets as Miqp, Micp, and Minlp. In each of
the following sections, detailed problem statistics are presented. The “pre-
solved problem” columns show statistics about the MIQCP after SCIP has
applied its presolving routines, including the ones described in Section 3.1.
The columns “vars”, “int”, and “bin” show the number of all variables, the
number of integer variables, and the number of binary variables, respec-
tively. The columns “linear” and “quad” show the number of linear and
quadratic constraints, respectively. The column “conv” indicates whether
all quadratic constraints of the presolved MIQCP are convex or whether at
least one of them is nonconvex. In the tables with computational results,
each entry shows the number of seconds to solve a problem, or the lower
and upper bounds at termination, if the problem was not solved.

For our benchmark, we ran SCIP 1.1.0.10 using CPLEX 11.2.1 [17] as
LP solver and Ipopt 3.6 [27] as QCP solver for the heuristics, see 4. For com-
parison, we ran CPLEX 11.2.1, BARON 8.1.5 [25], and LindoGlobal 5.0.1 [20].
All solvers were run with a time limit of one hour, a final gap tolerance
of 10−4, and a feasibility tolerance of 10−6 on a 2.66 GHz Intel Core2 Quad
CPU with 4 GB RAM and 4 MB Cache.

Mixed Integer Quadratic Programs. Table 4 presents the 24 in-
stances from the Miqp testset [22]. Note that we consider the clay* in-
stances in the Minlp testset, since they are not MIQPs.

We observe, that due to the reformulation (3.1), seven instances could
be reformulated as mixed integer linear programs in the presolving state.
For some instances, e.g. ibell3a, there is an increase in the number of
variables and quadratic constraints. This is due to the disaggregation
step (3.5).

Table 1 compares the performance of SCIP, BARON, and CPLEX on
Miqp. We did not run LindoGlobal since many of the Miqp instances ex-
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Table 1
Results on Miqp instances.

instance SCIP BARON CPLEX

iair04 72.69 [55577,∞] 8.15
iair05 43.35 [25902,∞] 22.29
ibc1 12.41 [0.8182, 6.411] 24.28
ibell3a 15.55 [−∞, 878793] 8.14
ibienst1 23.91 1221.23 709.88
icap6000 8.82 [−2437987,−2429117] 4.69
icvxqp1 93.86 [1436360,∞] 0.52
ieilD76 15.61 [682.4, 1488] 4.20
ilaser0 15.78 fail 0.00
imas284 38.15 [87604, 94665] 16.82
imisc07 49.71 [2019,∞] 155.23
imod011 485.54 30.67 0.09
inug06-3rd 84.13 [7581, 8281] 0.81
inug08 10.82 1661.85 0.08
iportfolio [−0.5253,∞] [−0.5248, 0] [−0.5253, 0]
iqap10 845.77 [319, 393.4] 40.82
iqiu 117.05 [−603.1, 1787] 376.51
iran13x13 127.19 [−∞, 3535] 168.40
iran8x32 112.25 [4974, 5937] 65.68
isqp0 54.92 [−∞, 1.40 · 109] 0.78
isqp1 [−22016,−22002] [−∞, 1.45 · 109] 25.41
isqp 55.10 [−∞, 1.40 · 109] 0.78
iswath2 249.21 [336.7,∞] 21.88
itointqor 0.02 [−∞,−1503] 0.00
ivalues 0.02 0.08 0.00

ceed limitations of our LindoGlobal license. Note that some of the instances
are nonconvex before applying the reformulation described in Section 3.1,
so that we did not apply solvers which have only been designed for con-
vex problems. Altogether, SCIP performs much better than BARON and
slightly worse than CPLEX w.r.t. the number of solved instances of this
testset. Although there are some examples which SCIP solves faster, CPLEX
performs better w.r.t. average computation time.

Mixed Integer Conic Programs. The Micp testset consists of three
types of optimization problems, see Table 5. The classical XXX YY in-
stances contain only one convex quadratic constraint of the form

∑k
j=1 x

2
j ≤

u for some u ∈ Q, where XXX stand for the dimension k and YY is a problem
index. The instances robust XXX YY and shortfall XXX YY additionally
contain a second-order cone constraint of dimension k. Due to its formu-
lation as quadratic constraint with the term (βy)2 on the right hand side
of (3.2), it is categorized as nonconvex constraint. The large increase in
the number of linear constraints is due to adding the linear relaxation (3.3)
to the problem formulation, while the increase in the number of quadratic
constraints is due to the disaggregation (3.5).

Table 2 compares the performance of SCIP, BARON, and LindoGlobal
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Table 2
Results on Micp instances

instance SCIP BARON LindoGlobal

classical_200_0 [−0.1232,−0.11] [−0.1257,−0.09588] [−0.1257,−0.1077]
classical_200_1 [−0.1234,−0.1167] [−0.1285,−0.1075] [−0.1284,−0.1144]
classical_40_0 4.55 101.59 44.19
classical_40_1 1.84 27.58 [−0.08481,−0.08475]
classical_50_0 58.44 1835.19 [−0.09593,−0.09074]
classical_50_1 19.45 149.72 [−0.09632,−0.09476]
robust_100_0 1174.58 [−0.1048,−0.08674] [−0.1542,−0.08404]
robust_100_1 389.04 [−0.07956,−0.06633] [−0.1269, 0]
robust_200_0 [−0.1442,−0.1411] [−0.1746,−0.07277] [−0.2002, 0]
robust_200_1 [−0.1457,−0.1427] [−0.1608,−0.1012] [−0.1998, 0]
robust_40_0 6.22 164.59 [−0.07611,−0.07601]
robust_40_1 4.62 83.79 [−0.07652,−0.07646]
robust_50_0 2.14 2046.31 139.74
robust_50_1 8.88 430.26 [−0.08572,−0.08569]
shortfall_100_0 [−1.12,−1.114] [−1.123,−1.112] [−1.125,−1.113]
shortfall_100_1 [−1.109,−1.106] [−1.112,−1.105] [−1.112,−1.106]
shortfall_200_0 [−1.147,−1.124] [−1.15,−1] [−1.161,−1.071]
shortfall_200_1 [−1.148,−1.134] [−1.153,−1] [−1.361,−1.079]
shortfall_40_0 52.70 242.15 2550.00
shortfall_40_1 15.43 15.61 130.15
shortfall_50_0 1222.03 [−1.101,−1.095] [−1.103,−1.095]
shortfall_50_1 96.18 278.38 [−1.104,−1.102]

on Micp. We observe that SCIP outperforms the other two solvers on this
specific testset.

Mixed Integer Quadratically Constrained Programs. For the
Minlp testset, we took 24 instances from the MINLPLib [12] and six con-
vexified constrained layout problems (clay*) from [13].

The instances lop97ic, lop97icx, pb302035, pb351535, qap, and
qapw were transformed into MIPs after presolving – which is due to the
reformulation (3.1). The instances nuclear*, space25, space25a, and
waste are particularly difficult since they contain continuous variables that
appear in quadratic terms with at least one bound at infinity. This pro-
hibits to use the reformulation (3.1) for products of binary variables with
a linear term. Further, cut generation for nonconvex terms is not pos-
sible. Thus, if the propagation algorithm cannot find domain reductions
for such unbounded variables, it may require many branching operations
until meaningful variable bounds and a corresponding lower bound can be
computed.

Table 3 compares the performance of SCIP, BARON, and LindoGlobal
on Minlp. Figure 2 shows a performance profile for this testset. Again,
SCIP performs better than BARON. Taking the number of solved instances
into account, LindoGlobal slightly wins: it could solve one instance more
than SCIP, which solved one instance more than BARON. Other compari-
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Table 3
Results on Minlp instances.

instance SCIP BARON LindoGlobal

clay0203m 0.18 1.87 27.57
clay0204m 2.78 45.92 110.29
clay0205m 12.07 1057.00 1976.57
clay0303m 0.75 1.43 61.66
clay0304m 4.39 16.50 1007.32
clay0305m 17.79 [6516, 8092] [1320, 8093]
du-opt5 0.56 142.28 1894.31
du-opt 1.22 142.37 453.35
lop97ic [2596, 4759] [2542, 8012] [−∞,∞]
lop97icx [3611, 4099] [2739, 4377] 259.99
nous1 [1.006, 1.567] 249.81 110.12
nous2 23.65 0.97 0.50
nuclear14a [−228.8,−1.101] [−12.26,∞] [−12.26,−1.129]
nuclear14b [−197.9,−1.11] [−5.334,∞] [−∞,∞]
nuclear14 [−∞,∞] [−∞,∞] [−∞,−1.126]
nuclearva [−∞,∞] [−∞,∞] [−∞,−1.011]
nvs19 0.28 14.24 2271.25
nvs23 0.38 60.12 [−1570,−1125]
pb302035 [1228245, 3804752] [−∞,∞] abort
pb351535 [1839388, 4929561] [1112854, 16612296] abort
product 19.02 fail [−2185,−2141]
qap [88415, 401300] [40243, 396014] [0, 396134]
qapw [35610, 405328] [264534, 396172] [265684, 398792]
space25 [73.01,∞] [83.01, 487.6] 166.13
space25a [73.42,∞] [96.07, 501.2] [233.6, 485]
tln12 [16.26, 91.4] [27.25,∞] [86, 106.6]
tln5 61.41 165.83 50.14
tln6 [8.923, 15.3] [13.72, 15.3] 185.18
tln7 [5.608, 15] [12.5, 15.5] [14.3, 15.5]
waste [346.8, 623.3] [−∞, 712.3] [0, 684.1]

son criteria rather indicate a tie between SCIP and LindoGlobal which are
both slightly better than BARON. SCIP is the fastest solver eleven times,
LindoGlobal six times. There are five cases where SCIP has the best dual
bound, versus five for LindoGlobal and two for BARON. Five times, SCIP
has the best primal bound, compared to four times for LindoGlobal and two
times for BARON. No solver, however, strictly dominates the others on this
particular testset.

BARON wrongly declared the instance product to be infeasible and
hit the time limit while parsing the instance pb302035. For the instances
pb302035 and pb351535, LindoGlobal did not stop after 4000 seconds (using
a 3600 seconds time limit) and did not report any bounds in the log file.

6. Conclusions. In this paper, we have shown how a framework for
constraint integer programming can be extended towards a solver for gen-
eral MIQCPs. We added the necessary methods to correctly handle the
quadratic constraints, see Section 3.4. To speed up computations we fur-
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Fig. 2. Performance profile for MINLP testset.
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ther implemented MIQCP specific presolving, propagation, and separation
methods, see Sections 3.1–3.3. Furthermore, we discussed two large neigh-
borhood search heuristics for MIQCP, see Section 4. The computational
results indicate that this already suffices to get a solver which is competi-
tive to state-of-the-art solvers like CPLEX, BARON, and LindoGlobal. SCIP
performed particularly well on the Miqp and Micp testsets, which contain
a linear core that is complemented by a few quadratic constraints. This
confirms our expectations, since SCIP already features several sophisticated
MIP technologies.

We conclude that the extension of a full-scale MIP solver for handling
MIQCP is a promising approach. The next step towards a full-scale MIQCP
solver will be the incorportation of further MIQCP specific components
into SCIP, e.g., advanced reformulations [18], more sophisticated separation
routines [23], simplicial branching [19], and constraint handlers for specific
types, e.g., bilinear covering constraints [24].
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APPENDIX

Table 4
Statistics of instances in Miqp testset.

instance original problem presolved problem

vars int bin linear quad vars int bin linear quad conv

iair04 8905 8904 0 823 1 7370 0 7370 601 0 X
iair05 7196 7195 0 426 1 6115 0 6115 342 0 X
ibc1 1752 252 0 1913 1 735 0 252 1045 0 X
ibell3a 123 60 0 104 1 138 43 12 71 43 X
ibienst1 506 28 0 576 1 477 28 0 520 28 X
icap6000 6001 4099 1901 2171 1 5793 19 5740 1936 34 X
icvxqp1 10001 10000 0 5000 1 19996 9998 0 4994 9998 X
ieilD76 1899 1898 0 75 1 1823 0 1823 75 0 X
ilaser0 1003 151 0 2000 1 1892 50 90 1030 901 X
imas284 152 150 0 68 1 301 150 0 68 150 X
imisc07 261 259 0 212 1 308 70 168 211 70 X
imod011 10958 97 0 4480 1 20956 97 0 4480 10000 X
inug06-3rd 2887 2886 0 3972 1 2886 0 2886 3972 0 X
inug08 1633 1632 0 912 1 1632 0 1632 912 0 X
iportfolio 1201 967 0 201 1 1400 967 0 201 200 X
iqap10 4151 4150 0 1820 1 4150 0 4150 1820 0 X
iqiu 841 48 0 1192 1 888 48 0 1192 48 X
iran13x13 339 169 0 195 1 507 169 0 195 169 X
iran8x32 513 256 0 296 1 768 256 0 296 256 X
isqp0 1001 50 0 249 1 2000 50 0 249 1000 X
isqp1 1001 100 0 249 1 2000 100 0 249 1000 X
isqp 1001 50 0 249 1 2000 50 0 249 1000 X
iswath2 6405 2213 0 483 1 6378 29 2184 482 29 X
itointqor 51 50 0 0 1 100 50 0 0 50 X
ivalues 203 202 0 1 1 404 202 0 1 202 X
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Table 5
Statistics of instances in Micp testset.

instance original problem presolved problem

vars int bin linear quad vars int bin linear quad conv

classical_40_0 120 0 40 82 1 159 0 40 82 40 X
classical_40_1 120 0 40 82 1 159 0 40 82 40 X
classical_50_0 150 0 50 102 1 199 0 50 102 50 X
classical_50_1 150 0 50 102 1 199 0 50 102 50 X
classical_200_0 600 0 200 402 1 799 0 200 402 200 X
classical_200_1 600 0 200 402 1 799 0 200 402 200 X
robust_40_0 163 0 41 124 2 904 0 41 1139 81
robust_40_1 163 0 41 124 2 904 0 41 1138 81
robust_50_0 203 0 51 154 2 1134 0 51 1429 101
robust_50_1 203 0 51 154 2 1134 0 51 1429 101
robust_100_0 403 0 101 304 2 2284 0 101 2879 201
robust_100_1 403 0 101 304 2 2284 0 101 2879 201
robust_200_0 803 0 201 604 2 4584 0 201 5779 401
robust_200_1 803 0 201 604 2 4584 0 201 5779 401
shortfall_40_0 164 0 41 125 2 1568 0 41 2153 82
shortfall_40_1 164 0 41 125 2 1568 0 41 2141 82
shortfall_50_0 204 0 51 155 2 1968 0 51 2705 102
shortfall_50_1 204 0 51 155 2 1968 0 51 2705 102
shortfall_100_0 404 0 101 305 2 3968 0 101 5455 202
shortfall_100_1 404 0 101 305 2 3968 0 101 5455 202
shortfall_200_0 804 0 201 605 2 7968 0 201 10955 402
shortfall_200_1 804 0 201 605 2 7968 0 201 10955 402

Table 6
Statistics of instances in Minlp testset.

instance original problem presolved problem

vars int bin linear quad vars int bin linear quad conv

clay0203m 30 0 18 30 24 51 0 15 27 48 X
clay0204m 52 0 32 58 32 80 0 28 54 64 X
clay0205m 80 0 50 95 40 115 0 45 90 80 X
clay0303m 33 0 21 30 36 67 0 19 29 72 X
clay0304m 56 0 36 58 48 102 0 34 57 96 X
clay0305m 85 0 55 95 60 141 0 51 93 120 X
du-opt 21 13 0 9 1 21 13 0 5 1 X
du-opt5 21 13 0 9 1 19 11 0 4 1 X
lop97ic 1754 831 831 52 40 5228 708 708 11521 0 X
lop97icx 987 831 68 48 40 488 68 68 1138 0 X
nous1 51 0 2 15 29 72 0 2 13 52
nous2 51 0 2 15 29 72 0 2 13 52
nvs19 9 8 0 0 9 9 8 0 0 9
nvs23 10 9 0 0 10 10 9 0 0 10
pb302035 601 0 600 50 1 1180 0 600 1790 0 X
pb351535 526 0 525 50 1 1035 0 525 1580 0 X
product 1553 0 107 1793 132 528 0 92 450 164
qap 226 0 225 30 1 435 0 225 660 0 X
qapw 451 0 225 255 1 675 0 225 930 0 X
space25 893 0 750 210 25 767 0 716 118 25
space25a 383 0 240 176 25 308 0 240 101 25
nuclear14 1562 0 576 624 602 3048 0 576 48 2664
nuclear14a 992 0 600 49 584 2808 0 600 2377 1800
nuclear14b 1568 0 600 1225 560 2808 0 600 1225 1800
nuclearva 351 0 168 50 267 1030 0 144 24 970
tln12 168 156 12 60 12 301 144 24 85 132
tln5 35 30 5 25 5 55 30 5 20 25
tln6 48 42 6 30 6 78 42 6 24 36
tln7 63 56 7 35 7 105 56 7 28 49
waste 2484 0 400 623 1368 1238 0 400 516 1230


